1 /* Target-dependent code for GDB, the GNU debugger.
2 
3    Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4    1997, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 
6    This file is part of GDB.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 2 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, write to the Free Software
20    Foundation, Inc., 59 Temple Place - Suite 330,
21    Boston, MA 02111-1307, USA.  */
22 
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "target.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "regcache.h"
33 #include "value.h"
34 #include "osabi.h"
35 #include "regset.h"
36 #include "solib-svr4.h"
37 #include "ppc-tdep.h"
38 #include "trad-frame.h"
39 #include "frame-unwind.h"
40 
41 /* The following instructions are used in the signal trampoline code
42    on GNU/Linux PPC. The kernel used to use magic syscalls 0x6666 and
43    0x7777 but now uses the sigreturn syscalls.  We check for both.  */
44 #define INSTR_LI_R0_0x6666		0x38006666
45 #define INSTR_LI_R0_0x7777		0x38007777
46 #define INSTR_LI_R0_NR_sigreturn	0x38000077
47 #define INSTR_LI_R0_NR_rt_sigreturn	0x380000AC
48 
49 #define INSTR_SC			0x44000002
50 
51 /* Since the *-tdep.c files are platform independent (i.e, they may be
52    used to build cross platform debuggers), we can't include system
53    headers.  Therefore, details concerning the sigcontext structure
54    must be painstakingly rerecorded.  What's worse, if these details
55    ever change in the header files, they'll have to be changed here
56    as well. */
57 
58 /* __SIGNAL_FRAMESIZE from <asm/ptrace.h> */
59 #define PPC_LINUX_SIGNAL_FRAMESIZE 64
60 
61 /* From <asm/sigcontext.h>, offsetof(struct sigcontext_struct, regs) == 0x1c */
62 #define PPC_LINUX_REGS_PTR_OFFSET (PPC_LINUX_SIGNAL_FRAMESIZE + 0x1c)
63 
64 /* From <asm/sigcontext.h>,
65    offsetof(struct sigcontext_struct, handler) == 0x14 */
66 #define PPC_LINUX_HANDLER_PTR_OFFSET (PPC_LINUX_SIGNAL_FRAMESIZE + 0x14)
67 
68 /* From <asm/ptrace.h>, values for PT_NIP, PT_R1, and PT_LNK */
69 #define PPC_LINUX_PT_R0		0
70 #define PPC_LINUX_PT_R1		1
71 #define PPC_LINUX_PT_R2		2
72 #define PPC_LINUX_PT_R3		3
73 #define PPC_LINUX_PT_R4		4
74 #define PPC_LINUX_PT_R5		5
75 #define PPC_LINUX_PT_R6		6
76 #define PPC_LINUX_PT_R7		7
77 #define PPC_LINUX_PT_R8		8
78 #define PPC_LINUX_PT_R9		9
79 #define PPC_LINUX_PT_R10	10
80 #define PPC_LINUX_PT_R11	11
81 #define PPC_LINUX_PT_R12	12
82 #define PPC_LINUX_PT_R13	13
83 #define PPC_LINUX_PT_R14	14
84 #define PPC_LINUX_PT_R15	15
85 #define PPC_LINUX_PT_R16	16
86 #define PPC_LINUX_PT_R17	17
87 #define PPC_LINUX_PT_R18	18
88 #define PPC_LINUX_PT_R19	19
89 #define PPC_LINUX_PT_R20	20
90 #define PPC_LINUX_PT_R21	21
91 #define PPC_LINUX_PT_R22	22
92 #define PPC_LINUX_PT_R23	23
93 #define PPC_LINUX_PT_R24	24
94 #define PPC_LINUX_PT_R25	25
95 #define PPC_LINUX_PT_R26	26
96 #define PPC_LINUX_PT_R27	27
97 #define PPC_LINUX_PT_R28	28
98 #define PPC_LINUX_PT_R29	29
99 #define PPC_LINUX_PT_R30	30
100 #define PPC_LINUX_PT_R31	31
101 #define PPC_LINUX_PT_NIP	32
102 #define PPC_LINUX_PT_MSR	33
103 #define PPC_LINUX_PT_CTR	35
104 #define PPC_LINUX_PT_LNK	36
105 #define PPC_LINUX_PT_XER	37
106 #define PPC_LINUX_PT_CCR	38
107 #define PPC_LINUX_PT_MQ		39
108 #define PPC_LINUX_PT_FPR0	48	/* each FP reg occupies 2 slots in this space */
109 #define PPC_LINUX_PT_FPR31 (PPC_LINUX_PT_FPR0 + 2*31)
110 #define PPC_LINUX_PT_FPSCR (PPC_LINUX_PT_FPR0 + 2*32 + 1)
111 
112 static int ppc_linux_at_sigtramp_return_path (CORE_ADDR pc);
113 
114 /* Determine if pc is in a signal trampoline...
115 
116    Ha!  That's not what this does at all.  wait_for_inferior in
117    infrun.c calls get_frame_type() in order to detect entry into a
118    signal trampoline just after delivery of a signal.  But on
119    GNU/Linux, signal trampolines are used for the return path only.
120    The kernel sets things up so that the signal handler is called
121    directly.
122 
123    If we use in_sigtramp2() in place of in_sigtramp() (see below)
124    we'll (often) end up with stop_pc in the trampoline and prev_pc in
125    the (now exited) handler.  The code there will cause a temporary
126    breakpoint to be set on prev_pc which is not very likely to get hit
127    again.
128 
129    If this is confusing, think of it this way...  the code in
130    wait_for_inferior() needs to be able to detect entry into a signal
131    trampoline just after a signal is delivered, not after the handler
132    has been run.
133 
134    So, we define in_sigtramp() below to return 1 if the following is
135    true:
136 
137    1) The previous frame is a real signal trampoline.
138 
139    - and -
140 
141    2) pc is at the first or second instruction of the corresponding
142    handler.
143 
144    Why the second instruction?  It seems that wait_for_inferior()
145    never sees the first instruction when single stepping.  When a
146    signal is delivered while stepping, the next instruction that
147    would've been stepped over isn't, instead a signal is delivered and
148    the first instruction of the handler is stepped over instead.  That
149    puts us on the second instruction.  (I added the test for the first
150    instruction long after the fact, just in case the observed behavior
151    is ever fixed.)  */
152 
153 int
ppc_linux_in_sigtramp(CORE_ADDR pc,char * func_name)154 ppc_linux_in_sigtramp (CORE_ADDR pc, char *func_name)
155 {
156   CORE_ADDR lr;
157   CORE_ADDR sp;
158   CORE_ADDR tramp_sp;
159   char buf[4];
160   CORE_ADDR handler;
161 
162   lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
163   if (!ppc_linux_at_sigtramp_return_path (lr))
164     return 0;
165 
166   sp = read_register (SP_REGNUM);
167 
168   if (target_read_memory (sp, buf, sizeof (buf)) != 0)
169     return 0;
170 
171   tramp_sp = extract_unsigned_integer (buf, 4);
172 
173   if (target_read_memory (tramp_sp + PPC_LINUX_HANDLER_PTR_OFFSET, buf,
174 			  sizeof (buf)) != 0)
175     return 0;
176 
177   handler = extract_unsigned_integer (buf, 4);
178 
179   return (pc == handler || pc == handler + 4);
180 }
181 
182 static int
insn_is_sigreturn(unsigned long pcinsn)183 insn_is_sigreturn (unsigned long pcinsn)
184 {
185   switch(pcinsn)
186     {
187     case INSTR_LI_R0_0x6666:
188     case INSTR_LI_R0_0x7777:
189     case INSTR_LI_R0_NR_sigreturn:
190     case INSTR_LI_R0_NR_rt_sigreturn:
191       return 1;
192     default:
193       return 0;
194     }
195 }
196 
197 /*
198  * The signal handler trampoline is on the stack and consists of exactly
199  * two instructions.  The easiest and most accurate way of determining
200  * whether the pc is in one of these trampolines is by inspecting the
201  * instructions.  It'd be faster though if we could find a way to do this
202  * via some simple address comparisons.
203  */
204 static int
ppc_linux_at_sigtramp_return_path(CORE_ADDR pc)205 ppc_linux_at_sigtramp_return_path (CORE_ADDR pc)
206 {
207   char buf[12];
208   unsigned long pcinsn;
209   if (target_read_memory (pc - 4, buf, sizeof (buf)) != 0)
210     return 0;
211 
212   /* extract the instruction at the pc */
213   pcinsn = extract_unsigned_integer (buf + 4, 4);
214 
215   return (
216 	   (insn_is_sigreturn (pcinsn)
217 	    && extract_unsigned_integer (buf + 8, 4) == INSTR_SC)
218 	   ||
219 	   (pcinsn == INSTR_SC
220 	    && insn_is_sigreturn (extract_unsigned_integer (buf, 4))));
221 }
222 
223 static CORE_ADDR
ppc_linux_skip_trampoline_code(CORE_ADDR pc)224 ppc_linux_skip_trampoline_code (CORE_ADDR pc)
225 {
226   char buf[4];
227   struct obj_section *sect;
228   struct objfile *objfile;
229   unsigned long insn;
230   CORE_ADDR plt_start = 0;
231   CORE_ADDR symtab = 0;
232   CORE_ADDR strtab = 0;
233   int num_slots = -1;
234   int reloc_index = -1;
235   CORE_ADDR plt_table;
236   CORE_ADDR reloc;
237   CORE_ADDR sym;
238   long symidx;
239   char symname[1024];
240   struct minimal_symbol *msymbol;
241 
242   /* Find the section pc is in; return if not in .plt */
243   sect = find_pc_section (pc);
244   if (!sect || strcmp (sect->the_bfd_section->name, ".plt") != 0)
245     return 0;
246 
247   objfile = sect->objfile;
248 
249   /* Pick up the instruction at pc.  It had better be of the
250      form
251      li r11, IDX
252 
253      where IDX is an index into the plt_table.  */
254 
255   if (target_read_memory (pc, buf, 4) != 0)
256     return 0;
257   insn = extract_unsigned_integer (buf, 4);
258 
259   if ((insn & 0xffff0000) != 0x39600000 /* li r11, VAL */ )
260     return 0;
261 
262   reloc_index = (insn << 16) >> 16;
263 
264   /* Find the objfile that pc is in and obtain the information
265      necessary for finding the symbol name. */
266   for (sect = objfile->sections; sect < objfile->sections_end; ++sect)
267     {
268       const char *secname = sect->the_bfd_section->name;
269       if (strcmp (secname, ".plt") == 0)
270 	plt_start = sect->addr;
271       else if (strcmp (secname, ".rela.plt") == 0)
272 	num_slots = ((int) sect->endaddr - (int) sect->addr) / 12;
273       else if (strcmp (secname, ".dynsym") == 0)
274 	symtab = sect->addr;
275       else if (strcmp (secname, ".dynstr") == 0)
276 	strtab = sect->addr;
277     }
278 
279   /* Make sure we have all the information we need. */
280   if (plt_start == 0 || num_slots == -1 || symtab == 0 || strtab == 0)
281     return 0;
282 
283   /* Compute the value of the plt table */
284   plt_table = plt_start + 72 + 8 * num_slots;
285 
286   /* Get address of the relocation entry (Elf32_Rela) */
287   if (target_read_memory (plt_table + reloc_index, buf, 4) != 0)
288     return 0;
289   reloc = extract_unsigned_integer (buf, 4);
290 
291   sect = find_pc_section (reloc);
292   if (!sect)
293     return 0;
294 
295   if (strcmp (sect->the_bfd_section->name, ".text") == 0)
296     return reloc;
297 
298   /* Now get the r_info field which is the relocation type and symbol
299      index. */
300   if (target_read_memory (reloc + 4, buf, 4) != 0)
301     return 0;
302   symidx = extract_unsigned_integer (buf, 4);
303 
304   /* Shift out the relocation type leaving just the symbol index */
305   /* symidx = ELF32_R_SYM(symidx); */
306   symidx = symidx >> 8;
307 
308   /* compute the address of the symbol */
309   sym = symtab + symidx * 4;
310 
311   /* Fetch the string table index */
312   if (target_read_memory (sym, buf, 4) != 0)
313     return 0;
314   symidx = extract_unsigned_integer (buf, 4);
315 
316   /* Fetch the string; we don't know how long it is.  Is it possible
317      that the following will fail because we're trying to fetch too
318      much? */
319   if (target_read_memory (strtab + symidx, symname, sizeof (symname)) != 0)
320     return 0;
321 
322   /* This might not work right if we have multiple symbols with the
323      same name; the only way to really get it right is to perform
324      the same sort of lookup as the dynamic linker. */
325   msymbol = lookup_minimal_symbol_text (symname, NULL);
326   if (!msymbol)
327     return 0;
328 
329   return SYMBOL_VALUE_ADDRESS (msymbol);
330 }
331 
332 /* ppc_linux_memory_remove_breakpoints attempts to remove a breakpoint
333    in much the same fashion as memory_remove_breakpoint in mem-break.c,
334    but is careful not to write back the previous contents if the code
335    in question has changed in between inserting the breakpoint and
336    removing it.
337 
338    Here is the problem that we're trying to solve...
339 
340    Once upon a time, before introducing this function to remove
341    breakpoints from the inferior, setting a breakpoint on a shared
342    library function prior to running the program would not work
343    properly.  In order to understand the problem, it is first
344    necessary to understand a little bit about dynamic linking on
345    this platform.
346 
347    A call to a shared library function is accomplished via a bl
348    (branch-and-link) instruction whose branch target is an entry
349    in the procedure linkage table (PLT).  The PLT in the object
350    file is uninitialized.  To gdb, prior to running the program, the
351    entries in the PLT are all zeros.
352 
353    Once the program starts running, the shared libraries are loaded
354    and the procedure linkage table is initialized, but the entries in
355    the table are not (necessarily) resolved.  Once a function is
356    actually called, the code in the PLT is hit and the function is
357    resolved.  In order to better illustrate this, an example is in
358    order; the following example is from the gdb testsuite.
359 
360 	We start the program shmain.
361 
362 	    [kev@arroyo testsuite]$ ../gdb gdb.base/shmain
363 	    [...]
364 
365 	We place two breakpoints, one on shr1 and the other on main.
366 
367 	    (gdb) b shr1
368 	    Breakpoint 1 at 0x100409d4
369 	    (gdb) b main
370 	    Breakpoint 2 at 0x100006a0: file gdb.base/shmain.c, line 44.
371 
372 	Examine the instruction (and the immediatly following instruction)
373 	upon which the breakpoint was placed.  Note that the PLT entry
374 	for shr1 contains zeros.
375 
376 	    (gdb) x/2i 0x100409d4
377 	    0x100409d4 <shr1>:      .long 0x0
378 	    0x100409d8 <shr1+4>:    .long 0x0
379 
380 	Now run 'til main.
381 
382 	    (gdb) r
383 	    Starting program: gdb.base/shmain
384 	    Breakpoint 1 at 0xffaf790: file gdb.base/shr1.c, line 19.
385 
386 	    Breakpoint 2, main ()
387 		at gdb.base/shmain.c:44
388 	    44        g = 1;
389 
390 	Examine the PLT again.  Note that the loading of the shared
391 	library has initialized the PLT to code which loads a constant
392 	(which I think is an index into the GOT) into r11 and then
393 	branchs a short distance to the code which actually does the
394 	resolving.
395 
396 	    (gdb) x/2i 0x100409d4
397 	    0x100409d4 <shr1>:      li      r11,4
398 	    0x100409d8 <shr1+4>:    b       0x10040984 <sg+4>
399 	    (gdb) c
400 	    Continuing.
401 
402 	    Breakpoint 1, shr1 (x=1)
403 		at gdb.base/shr1.c:19
404 	    19        l = 1;
405 
406 	Now we've hit the breakpoint at shr1.  (The breakpoint was
407 	reset from the PLT entry to the actual shr1 function after the
408 	shared library was loaded.) Note that the PLT entry has been
409 	resolved to contain a branch that takes us directly to shr1.
410 	(The real one, not the PLT entry.)
411 
412 	    (gdb) x/2i 0x100409d4
413 	    0x100409d4 <shr1>:      b       0xffaf76c <shr1>
414 	    0x100409d8 <shr1+4>:    b       0x10040984 <sg+4>
415 
416    The thing to note here is that the PLT entry for shr1 has been
417    changed twice.
418 
419    Now the problem should be obvious.  GDB places a breakpoint (a
420    trap instruction) on the zero value of the PLT entry for shr1.
421    Later on, after the shared library had been loaded and the PLT
422    initialized, GDB gets a signal indicating this fact and attempts
423    (as it always does when it stops) to remove all the breakpoints.
424 
425    The breakpoint removal was causing the former contents (a zero
426    word) to be written back to the now initialized PLT entry thus
427    destroying a portion of the initialization that had occurred only a
428    short time ago.  When execution continued, the zero word would be
429    executed as an instruction an an illegal instruction trap was
430    generated instead.  (0 is not a legal instruction.)
431 
432    The fix for this problem was fairly straightforward.  The function
433    memory_remove_breakpoint from mem-break.c was copied to this file,
434    modified slightly, and renamed to ppc_linux_memory_remove_breakpoint.
435    In tm-linux.h, MEMORY_REMOVE_BREAKPOINT is defined to call this new
436    function.
437 
438    The differences between ppc_linux_memory_remove_breakpoint () and
439    memory_remove_breakpoint () are minor.  All that the former does
440    that the latter does not is check to make sure that the breakpoint
441    location actually contains a breakpoint (trap instruction) prior
442    to attempting to write back the old contents.  If it does contain
443    a trap instruction, we allow the old contents to be written back.
444    Otherwise, we silently do nothing.
445 
446    The big question is whether memory_remove_breakpoint () should be
447    changed to have the same functionality.  The downside is that more
448    traffic is generated for remote targets since we'll have an extra
449    fetch of a memory word each time a breakpoint is removed.
450 
451    For the time being, we'll leave this self-modifying-code-friendly
452    version in ppc-linux-tdep.c, but it ought to be migrated somewhere
453    else in the event that some other platform has similar needs with
454    regard to removing breakpoints in some potentially self modifying
455    code.  */
456 int
ppc_linux_memory_remove_breakpoint(CORE_ADDR addr,char * contents_cache)457 ppc_linux_memory_remove_breakpoint (CORE_ADDR addr, char *contents_cache)
458 {
459   const unsigned char *bp;
460   int val;
461   int bplen;
462   char old_contents[BREAKPOINT_MAX];
463 
464   /* Determine appropriate breakpoint contents and size for this address.  */
465   bp = BREAKPOINT_FROM_PC (&addr, &bplen);
466   if (bp == NULL)
467     error ("Software breakpoints not implemented for this target.");
468 
469   val = target_read_memory (addr, old_contents, bplen);
470 
471   /* If our breakpoint is no longer at the address, this means that the
472      program modified the code on us, so it is wrong to put back the
473      old value */
474   if (val == 0 && memcmp (bp, old_contents, bplen) == 0)
475     val = target_write_memory (addr, contents_cache, bplen);
476 
477   return val;
478 }
479 
480 /* For historic reasons, PPC 32 GNU/Linux follows PowerOpen rather
481    than the 32 bit SYSV R4 ABI structure return convention - all
482    structures, no matter their size, are put in memory.  Vectors,
483    which were added later, do get returned in a register though.  */
484 
485 static enum return_value_convention
ppc_linux_return_value(struct gdbarch * gdbarch,struct type * valtype,struct regcache * regcache,void * readbuf,const void * writebuf)486 ppc_linux_return_value (struct gdbarch *gdbarch, struct type *valtype,
487 			struct regcache *regcache, void *readbuf,
488 			const void *writebuf)
489 {
490   if ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
491        || TYPE_CODE (valtype) == TYPE_CODE_UNION)
492       && !((TYPE_LENGTH (valtype) == 16 || TYPE_LENGTH (valtype) == 8)
493 	   && TYPE_VECTOR (valtype)))
494     return RETURN_VALUE_STRUCT_CONVENTION;
495   else
496     return ppc_sysv_abi_return_value (gdbarch, valtype, regcache, readbuf,
497 				      writebuf);
498 }
499 
500 /* Fetch (and possibly build) an appropriate link_map_offsets
501    structure for GNU/Linux PPC targets using the struct offsets
502    defined in link.h (but without actual reference to that file).
503 
504    This makes it possible to access GNU/Linux PPC shared libraries
505    from a GDB that was not built on an GNU/Linux PPC host (for cross
506    debugging).  */
507 
508 struct link_map_offsets *
ppc_linux_svr4_fetch_link_map_offsets(void)509 ppc_linux_svr4_fetch_link_map_offsets (void)
510 {
511   static struct link_map_offsets lmo;
512   static struct link_map_offsets *lmp = NULL;
513 
514   if (lmp == NULL)
515     {
516       lmp = &lmo;
517 
518       lmo.r_debug_size = 8;	/* The actual size is 20 bytes, but
519 				   this is all we need.  */
520       lmo.r_map_offset = 4;
521       lmo.r_map_size   = 4;
522 
523       lmo.link_map_size = 20;	/* The actual size is 560 bytes, but
524 				   this is all we need.  */
525       lmo.l_addr_offset = 0;
526       lmo.l_addr_size   = 4;
527 
528       lmo.l_name_offset = 4;
529       lmo.l_name_size   = 4;
530 
531       lmo.l_next_offset = 12;
532       lmo.l_next_size   = 4;
533 
534       lmo.l_prev_offset = 16;
535       lmo.l_prev_size   = 4;
536     }
537 
538   return lmp;
539 }
540 
541 
542 /* Macros for matching instructions.  Note that, since all the
543    operands are masked off before they're or-ed into the instruction,
544    you can use -1 to make masks.  */
545 
546 #define insn_d(opcd, rts, ra, d)                \
547   ((((opcd) & 0x3f) << 26)                      \
548    | (((rts) & 0x1f) << 21)                     \
549    | (((ra) & 0x1f) << 16)                      \
550    | ((d) & 0xffff))
551 
552 #define insn_ds(opcd, rts, ra, d, xo)           \
553   ((((opcd) & 0x3f) << 26)                      \
554    | (((rts) & 0x1f) << 21)                     \
555    | (((ra) & 0x1f) << 16)                      \
556    | ((d) & 0xfffc)                             \
557    | ((xo) & 0x3))
558 
559 #define insn_xfx(opcd, rts, spr, xo)            \
560   ((((opcd) & 0x3f) << 26)                      \
561    | (((rts) & 0x1f) << 21)                     \
562    | (((spr) & 0x1f) << 16)                     \
563    | (((spr) & 0x3e0) << 6)                     \
564    | (((xo) & 0x3ff) << 1))
565 
566 /* Read a PPC instruction from memory.  PPC instructions are always
567    big-endian, no matter what endianness the program is running in, so
568    we can't use read_memory_integer or one of its friends here.  */
569 static unsigned int
read_insn(CORE_ADDR pc)570 read_insn (CORE_ADDR pc)
571 {
572   unsigned char buf[4];
573 
574   read_memory (pc, buf, 4);
575   return (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
576 }
577 
578 
579 /* An instruction to match.  */
580 struct insn_pattern
581 {
582   unsigned int mask;            /* mask the insn with this... */
583   unsigned int data;            /* ...and see if it matches this. */
584   int optional;                 /* If non-zero, this insn may be absent.  */
585 };
586 
587 /* Return non-zero if the instructions at PC match the series
588    described in PATTERN, or zero otherwise.  PATTERN is an array of
589    'struct insn_pattern' objects, terminated by an entry whose mask is
590    zero.
591 
592    When the match is successful, fill INSN[i] with what PATTERN[i]
593    matched.  If PATTERN[i] is optional, and the instruction wasn't
594    present, set INSN[i] to 0 (which is not a valid PPC instruction).
595    INSN should have as many elements as PATTERN.  Note that, if
596    PATTERN contains optional instructions which aren't present in
597    memory, then INSN will have holes, so INSN[i] isn't necessarily the
598    i'th instruction in memory.  */
599 static int
insns_match_pattern(CORE_ADDR pc,struct insn_pattern * pattern,unsigned int * insn)600 insns_match_pattern (CORE_ADDR pc,
601                      struct insn_pattern *pattern,
602                      unsigned int *insn)
603 {
604   int i;
605 
606   for (i = 0; pattern[i].mask; i++)
607     {
608       insn[i] = read_insn (pc);
609       if ((insn[i] & pattern[i].mask) == pattern[i].data)
610         pc += 4;
611       else if (pattern[i].optional)
612         insn[i] = 0;
613       else
614         return 0;
615     }
616 
617   return 1;
618 }
619 
620 
621 /* Return the 'd' field of the d-form instruction INSN, properly
622    sign-extended.  */
623 static CORE_ADDR
insn_d_field(unsigned int insn)624 insn_d_field (unsigned int insn)
625 {
626   return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
627 }
628 
629 
630 /* Return the 'ds' field of the ds-form instruction INSN, with the two
631    zero bits concatenated at the right, and properly
632    sign-extended.  */
633 static CORE_ADDR
insn_ds_field(unsigned int insn)634 insn_ds_field (unsigned int insn)
635 {
636   return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
637 }
638 
639 
640 /* If DESC is the address of a 64-bit PowerPC GNU/Linux function
641    descriptor, return the descriptor's entry point.  */
642 static CORE_ADDR
ppc64_desc_entry_point(CORE_ADDR desc)643 ppc64_desc_entry_point (CORE_ADDR desc)
644 {
645   /* The first word of the descriptor is the entry point.  */
646   return (CORE_ADDR) read_memory_unsigned_integer (desc, 8);
647 }
648 
649 
650 /* Pattern for the standard linkage function.  These are built by
651    build_plt_stub in elf64-ppc.c, whose GLINK argument is always
652    zero.  */
653 static struct insn_pattern ppc64_standard_linkage[] =
654   {
655     /* addis r12, r2, <any> */
656     { insn_d (-1, -1, -1, 0), insn_d (15, 12, 2, 0), 0 },
657 
658     /* std r2, 40(r1) */
659     { -1, insn_ds (62, 2, 1, 40, 0), 0 },
660 
661     /* ld r11, <any>(r12) */
662     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
663 
664     /* addis r12, r12, 1 <optional> */
665     { insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 },
666 
667     /* ld r2, <any>(r12) */
668     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 2, 12, 0, 0), 0 },
669 
670     /* addis r12, r12, 1 <optional> */
671     { insn_d (-1, -1, -1, -1), insn_d (15, 12, 2, 1), 1 },
672 
673     /* mtctr r11 */
674     { insn_xfx (-1, -1, -1, -1), insn_xfx (31, 11, 9, 467),
675       0 },
676 
677     /* ld r11, <any>(r12) */
678     { insn_ds (-1, -1, -1, 0, -1), insn_ds (58, 11, 12, 0, 0), 0 },
679 
680     /* bctr */
681     { -1, 0x4e800420, 0 },
682 
683     { 0, 0, 0 }
684   };
685 #define PPC64_STANDARD_LINKAGE_LEN \
686   (sizeof (ppc64_standard_linkage) / sizeof (ppc64_standard_linkage[0]))
687 
688 
689 /* Recognize a 64-bit PowerPC GNU/Linux linkage function --- what GDB
690    calls a "solib trampoline".  */
691 static int
ppc64_in_solib_call_trampoline(CORE_ADDR pc,char * name)692 ppc64_in_solib_call_trampoline (CORE_ADDR pc, char *name)
693 {
694   /* Detecting solib call trampolines on PPC64 GNU/Linux is a pain.
695 
696      It's not specifically solib call trampolines that are the issue.
697      Any call from one function to another function that uses a
698      different TOC requires a trampoline, to save the caller's TOC
699      pointer and then load the callee's TOC.  An executable or shared
700      library may have more than one TOC, so even intra-object calls
701      may require a trampoline.  Since executable and shared libraries
702      will all have their own distinct TOCs, every inter-object call is
703      also an inter-TOC call, and requires a trampoline --- so "solib
704      call trampolines" are just a special case.
705 
706      The 64-bit PowerPC GNU/Linux ABI calls these call trampolines
707      "linkage functions".  Since they need to be near the functions
708      that call them, they all appear in .text, not in any special
709      section.  The .plt section just contains an array of function
710      descriptors, from which the linkage functions load the callee's
711      entry point, TOC value, and environment pointer.  So
712      in_plt_section is useless.  The linkage functions don't have any
713      special linker symbols to name them, either.
714 
715      The only way I can see to recognize them is to actually look at
716      their code.  They're generated by ppc_build_one_stub and some
717      other functions in bfd/elf64-ppc.c, so that should show us all
718      the instruction sequences we need to recognize.  */
719   unsigned int insn[PPC64_STANDARD_LINKAGE_LEN];
720 
721   return insns_match_pattern (pc, ppc64_standard_linkage, insn);
722 }
723 
724 
725 /* When the dynamic linker is doing lazy symbol resolution, the first
726    call to a function in another object will go like this:
727 
728    - The user's function calls the linkage function:
729 
730      100007c4:	4b ff fc d5 	bl	10000498
731      100007c8:	e8 41 00 28 	ld	r2,40(r1)
732 
733    - The linkage function loads the entry point (and other stuff) from
734      the function descriptor in the PLT, and jumps to it:
735 
736      10000498:	3d 82 00 00 	addis	r12,r2,0
737      1000049c:	f8 41 00 28 	std	r2,40(r1)
738      100004a0:	e9 6c 80 98 	ld	r11,-32616(r12)
739      100004a4:	e8 4c 80 a0 	ld	r2,-32608(r12)
740      100004a8:	7d 69 03 a6 	mtctr	r11
741      100004ac:	e9 6c 80 a8 	ld	r11,-32600(r12)
742      100004b0:	4e 80 04 20 	bctr
743 
744    - But since this is the first time that PLT entry has been used, it
745      sends control to its glink entry.  That loads the number of the
746      PLT entry and jumps to the common glink0 code:
747 
748      10000c98:	38 00 00 00 	li	r0,0
749      10000c9c:	4b ff ff dc 	b	10000c78
750 
751    - The common glink0 code then transfers control to the dynamic
752      linker's fixup code:
753 
754      10000c78:	e8 41 00 28 	ld	r2,40(r1)
755      10000c7c:	3d 82 00 00 	addis	r12,r2,0
756      10000c80:	e9 6c 80 80 	ld	r11,-32640(r12)
757      10000c84:	e8 4c 80 88 	ld	r2,-32632(r12)
758      10000c88:	7d 69 03 a6 	mtctr	r11
759      10000c8c:	e9 6c 80 90 	ld	r11,-32624(r12)
760      10000c90:	4e 80 04 20 	bctr
761 
762    Eventually, this code will figure out how to skip all of this,
763    including the dynamic linker.  At the moment, we just get through
764    the linkage function.  */
765 
766 /* If the current thread is about to execute a series of instructions
767    at PC matching the ppc64_standard_linkage pattern, and INSN is the result
768    from that pattern match, return the code address to which the
769    standard linkage function will send them.  (This doesn't deal with
770    dynamic linker lazy symbol resolution stubs.)  */
771 static CORE_ADDR
ppc64_standard_linkage_target(CORE_ADDR pc,unsigned int * insn)772 ppc64_standard_linkage_target (CORE_ADDR pc, unsigned int *insn)
773 {
774   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
775 
776   /* The address of the function descriptor this linkage function
777      references.  */
778   CORE_ADDR desc
779     = ((CORE_ADDR) read_register (tdep->ppc_gp0_regnum + 2)
780        + (insn_d_field (insn[0]) << 16)
781        + insn_ds_field (insn[2]));
782 
783   /* The first word of the descriptor is the entry point.  Return that.  */
784   return ppc64_desc_entry_point (desc);
785 }
786 
787 
788 /* Given that we've begun executing a call trampoline at PC, return
789    the entry point of the function the trampoline will go to.  */
790 static CORE_ADDR
ppc64_skip_trampoline_code(CORE_ADDR pc)791 ppc64_skip_trampoline_code (CORE_ADDR pc)
792 {
793   unsigned int ppc64_standard_linkage_insn[PPC64_STANDARD_LINKAGE_LEN];
794 
795   if (insns_match_pattern (pc, ppc64_standard_linkage,
796                            ppc64_standard_linkage_insn))
797     return ppc64_standard_linkage_target (pc, ppc64_standard_linkage_insn);
798   else
799     return 0;
800 }
801 
802 
803 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG) on PPC64
804    GNU/Linux.
805 
806    Usually a function pointer's representation is simply the address
807    of the function. On GNU/Linux on the 64-bit PowerPC however, a
808    function pointer is represented by a pointer to a TOC entry. This
809    TOC entry contains three words, the first word is the address of
810    the function, the second word is the TOC pointer (r2), and the
811    third word is the static chain value.  Throughout GDB it is
812    currently assumed that a function pointer contains the address of
813    the function, which is not easy to fix.  In addition, the
814    conversion of a function address to a function pointer would
815    require allocation of a TOC entry in the inferior's memory space,
816    with all its drawbacks.  To be able to call C++ virtual methods in
817    the inferior (which are called via function pointers),
818    find_function_addr uses this function to get the function address
819    from a function pointer.  */
820 
821 /* If ADDR points at what is clearly a function descriptor, transform
822    it into the address of the corresponding function.  Be
823    conservative, otherwize GDB will do the transformation on any
824    random addresses such as occures when there is no symbol table.  */
825 
826 static CORE_ADDR
ppc64_linux_convert_from_func_ptr_addr(struct gdbarch * gdbarch,CORE_ADDR addr,struct target_ops * targ)827 ppc64_linux_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
828 					CORE_ADDR addr,
829 					struct target_ops *targ)
830 {
831   struct section_table *s = target_section_by_addr (targ, addr);
832 
833   /* Check if ADDR points to a function descriptor.  */
834   if (s && strcmp (s->the_bfd_section->name, ".opd") == 0)
835     return get_target_memory_unsigned (targ, addr, 8);
836 
837   return addr;
838 }
839 
840 static void
right_supply_register(struct regcache * regcache,int wordsize,int regnum,const bfd_byte * buf)841 right_supply_register (struct regcache *regcache, int wordsize, int regnum,
842 		       const bfd_byte *buf)
843 {
844   regcache_raw_supply (regcache, regnum,
845 		       (buf + wordsize
846 			- register_size (current_gdbarch, regnum)));
847 }
848 
849 /* Extract the register values found in the WORDSIZED ABI GREGSET,
850    storing their values in REGCACHE.  Note that some are left-aligned,
851    while others are right aligned.  */
852 
853 void
ppc_linux_supply_gregset(struct regcache * regcache,int regnum,const void * gregs,size_t size,int wordsize)854 ppc_linux_supply_gregset (struct regcache *regcache,
855 			  int regnum, const void *gregs, size_t size,
856 			  int wordsize)
857 {
858   int regi;
859   struct gdbarch *regcache_arch = get_regcache_arch (regcache);
860   struct gdbarch_tdep *regcache_tdep = gdbarch_tdep (regcache_arch);
861   const bfd_byte *buf = gregs;
862 
863   for (regi = 0; regi < ppc_num_gprs; regi++)
864     right_supply_register (regcache, wordsize,
865                            regcache_tdep->ppc_gp0_regnum + regi,
866                            buf + wordsize * regi);
867 
868   right_supply_register (regcache, wordsize, gdbarch_pc_regnum (regcache_arch),
869 			 buf + wordsize * PPC_LINUX_PT_NIP);
870   right_supply_register (regcache, wordsize, regcache_tdep->ppc_lr_regnum,
871 			 buf + wordsize * PPC_LINUX_PT_LNK);
872   regcache_raw_supply (regcache, regcache_tdep->ppc_cr_regnum,
873 		       buf + wordsize * PPC_LINUX_PT_CCR);
874   regcache_raw_supply (regcache, regcache_tdep->ppc_xer_regnum,
875 		       buf + wordsize * PPC_LINUX_PT_XER);
876   regcache_raw_supply (regcache, regcache_tdep->ppc_ctr_regnum,
877 		       buf + wordsize * PPC_LINUX_PT_CTR);
878   if (regcache_tdep->ppc_mq_regnum != -1)
879     right_supply_register (regcache, wordsize, regcache_tdep->ppc_mq_regnum,
880 			   buf + wordsize * PPC_LINUX_PT_MQ);
881   right_supply_register (regcache, wordsize, regcache_tdep->ppc_ps_regnum,
882 			 buf + wordsize * PPC_LINUX_PT_MSR);
883 }
884 
885 static void
ppc32_linux_supply_gregset(const struct regset * regset,struct regcache * regcache,int regnum,const void * gregs,size_t size)886 ppc32_linux_supply_gregset (const struct regset *regset,
887 			    struct regcache *regcache,
888 			    int regnum, const void *gregs, size_t size)
889 {
890   ppc_linux_supply_gregset (regcache, regnum, gregs, size, 4);
891 }
892 
893 static struct regset ppc32_linux_gregset = {
894   NULL, ppc32_linux_supply_gregset
895 };
896 
897 struct ppc_linux_sigtramp_cache
898 {
899   CORE_ADDR base;
900   struct trad_frame_saved_reg *saved_regs;
901 };
902 
903 static struct ppc_linux_sigtramp_cache *
ppc_linux_sigtramp_cache(struct frame_info * next_frame,void ** this_cache)904 ppc_linux_sigtramp_cache (struct frame_info *next_frame, void **this_cache)
905 {
906   CORE_ADDR regs;
907   CORE_ADDR gpregs;
908   CORE_ADDR fpregs;
909   int i;
910   struct ppc_linux_sigtramp_cache *cache;
911   struct gdbarch *gdbarch = get_frame_arch (next_frame);
912   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
913 
914   if ((*this_cache) != NULL)
915     return (*this_cache);
916   cache = FRAME_OBSTACK_ZALLOC (struct ppc_linux_sigtramp_cache);
917   (*this_cache) = cache;
918   cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
919 
920   cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
921 
922   /* Find the register pointer, which gives the address of the
923      register buffers.  */
924   if (tdep->wordsize == 4)
925     regs = (cache->base
926 	    + 0xd0 /* Offset to ucontext_t.  */
927 	    + 0x30 /* Offset to .reg.  */);
928   else
929     regs = (cache->base
930 	    + 0x80 /* Offset to ucontext_t.  */
931 	    + 0xe0 /* Offset to .reg.  */);
932   /* And the corresponding register buffers.  */
933   gpregs = read_memory_unsigned_integer (regs, tdep->wordsize);
934   fpregs = gpregs + 48 * tdep->wordsize;
935 
936   /* General purpose.  */
937   for (i = 0; i < ppc_num_gprs; i++)
938     {
939       int regnum = i + tdep->ppc_gp0_regnum;
940       cache->saved_regs[regnum].addr = gpregs + i * tdep->wordsize;
941     }
942   cache->saved_regs[PC_REGNUM].addr = gpregs + 32 * tdep->wordsize;
943   cache->saved_regs[tdep->ppc_ctr_regnum].addr = gpregs + 35 * tdep->wordsize;
944   cache->saved_regs[tdep->ppc_lr_regnum].addr = gpregs + 36 * tdep->wordsize;
945   cache->saved_regs[tdep->ppc_xer_regnum].addr = gpregs + 37 * tdep->wordsize;
946   cache->saved_regs[tdep->ppc_cr_regnum].addr = gpregs + 38 * tdep->wordsize;
947 
948   /* Floating point registers.  */
949   if (ppc_floating_point_unit_p (gdbarch))
950     {
951       for (i = 0; i < ppc_num_fprs; i++)
952         {
953           int regnum = i + tdep->ppc_fp0_regnum;
954           cache->saved_regs[regnum].addr = fpregs + i * tdep->wordsize;
955         }
956       cache->saved_regs[tdep->ppc_fpscr_regnum].addr
957         = fpregs + 32 * tdep->wordsize;
958     }
959 
960   return cache;
961 }
962 
963 static void
ppc_linux_sigtramp_this_id(struct frame_info * next_frame,void ** this_cache,struct frame_id * this_id)964 ppc_linux_sigtramp_this_id (struct frame_info *next_frame, void **this_cache,
965 			  struct frame_id *this_id)
966 {
967   struct ppc_linux_sigtramp_cache *info
968     = ppc_linux_sigtramp_cache (next_frame, this_cache);
969   (*this_id) = frame_id_build (info->base, frame_pc_unwind (next_frame));
970 }
971 
972 static void
ppc_linux_sigtramp_prev_register(struct frame_info * next_frame,void ** this_cache,int regnum,int * optimizedp,enum lval_type * lvalp,CORE_ADDR * addrp,int * realnump,void * valuep)973 ppc_linux_sigtramp_prev_register (struct frame_info *next_frame,
974 				void **this_cache,
975 				int regnum, int *optimizedp,
976 				enum lval_type *lvalp, CORE_ADDR *addrp,
977 				int *realnump, void *valuep)
978 {
979   struct ppc_linux_sigtramp_cache *info
980     = ppc_linux_sigtramp_cache (next_frame, this_cache);
981   trad_frame_prev_register (next_frame, info->saved_regs, regnum,
982 			    optimizedp, lvalp, addrp, realnump, valuep);
983 }
984 
985 static const struct frame_unwind ppc_linux_sigtramp_unwind =
986 {
987   SIGTRAMP_FRAME,
988   ppc_linux_sigtramp_this_id,
989   ppc_linux_sigtramp_prev_register
990 };
991 
992 static const struct frame_unwind *
ppc_linux_sigtramp_sniffer(struct frame_info * next_frame)993 ppc_linux_sigtramp_sniffer (struct frame_info *next_frame)
994 {
995   struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
996   if (frame_pc_unwind (next_frame)
997       > frame_unwind_register_unsigned (next_frame, SP_REGNUM))
998     /* Assume anything that is vaguely on the stack is a signal
999        trampoline.  */
1000     return &ppc_linux_sigtramp_unwind;
1001   else
1002     return NULL;
1003 }
1004 
1005 static void
ppc64_linux_supply_gregset(const struct regset * regset,struct regcache * regcache,int regnum,const void * gregs,size_t size)1006 ppc64_linux_supply_gregset (const struct regset *regset,
1007 			    struct regcache * regcache,
1008 			    int regnum, const void *gregs, size_t size)
1009 {
1010   ppc_linux_supply_gregset (regcache, regnum, gregs, size, 8);
1011 }
1012 
1013 static struct regset ppc64_linux_gregset = {
1014   NULL, ppc64_linux_supply_gregset
1015 };
1016 
1017 void
ppc_linux_supply_fpregset(const struct regset * regset,struct regcache * regcache,int regnum,const void * fpset,size_t size)1018 ppc_linux_supply_fpregset (const struct regset *regset,
1019 			   struct regcache * regcache,
1020 			   int regnum, const void *fpset, size_t size)
1021 {
1022   int regi;
1023   struct gdbarch *regcache_arch = get_regcache_arch (regcache);
1024   struct gdbarch_tdep *regcache_tdep = gdbarch_tdep (regcache_arch);
1025   const bfd_byte *buf = fpset;
1026 
1027   if (! ppc_floating_point_unit_p (regcache_arch))
1028     return;
1029 
1030   for (regi = 0; regi < ppc_num_fprs; regi++)
1031     regcache_raw_supply (regcache,
1032                          regcache_tdep->ppc_fp0_regnum + regi,
1033                          buf + 8 * regi);
1034 
1035   /* The FPSCR is stored in the low order word of the last
1036      doubleword in the fpregset.  */
1037   regcache_raw_supply (regcache, regcache_tdep->ppc_fpscr_regnum,
1038                        buf + 8 * 32 + 4);
1039 }
1040 
1041 static struct regset ppc_linux_fpregset = { NULL, ppc_linux_supply_fpregset };
1042 
1043 static const struct regset *
ppc_linux_regset_from_core_section(struct gdbarch * core_arch,const char * sect_name,size_t sect_size)1044 ppc_linux_regset_from_core_section (struct gdbarch *core_arch,
1045 				    const char *sect_name, size_t sect_size)
1046 {
1047   struct gdbarch_tdep *tdep = gdbarch_tdep (core_arch);
1048   if (strcmp (sect_name, ".reg") == 0)
1049     {
1050       if (tdep->wordsize == 4)
1051 	return &ppc32_linux_gregset;
1052       else
1053 	return &ppc64_linux_gregset;
1054     }
1055   if (strcmp (sect_name, ".reg2") == 0)
1056     return &ppc_linux_fpregset;
1057   return NULL;
1058 }
1059 
1060 static void
ppc_linux_init_abi(struct gdbarch_info info,struct gdbarch * gdbarch)1061 ppc_linux_init_abi (struct gdbarch_info info,
1062                     struct gdbarch *gdbarch)
1063 {
1064   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1065 
1066   if (tdep->wordsize == 4)
1067     {
1068       /* NOTE: jimb/2004-03-26: The System V ABI PowerPC Processor
1069          Supplement says that long doubles are sixteen bytes long.
1070          However, as one of the known warts of its ABI, PPC GNU/Linux
1071          uses eight-byte long doubles.  GCC only recently got 128-bit
1072          long double support on PPC, so it may be changing soon.  The
1073          Linux[sic] Standards Base says that programs that use 'long
1074          double' on PPC GNU/Linux are non-conformant.  */
1075       set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1076 
1077       /* Until November 2001, gcc did not comply with the 32 bit SysV
1078 	 R4 ABI requirement that structures less than or equal to 8
1079 	 bytes should be returned in registers.  Instead GCC was using
1080 	 the the AIX/PowerOpen ABI - everything returned in memory
1081 	 (well ignoring vectors that is).  When this was corrected, it
1082 	 wasn't fixed for GNU/Linux native platform.  Use the
1083 	 PowerOpen struct convention.  */
1084       set_gdbarch_return_value (gdbarch, ppc_linux_return_value);
1085 
1086       set_gdbarch_memory_remove_breakpoint (gdbarch,
1087                                             ppc_linux_memory_remove_breakpoint);
1088 
1089       /* Shared library handling.  */
1090       set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1091       set_gdbarch_skip_trampoline_code (gdbarch,
1092                                         ppc_linux_skip_trampoline_code);
1093       set_solib_svr4_fetch_link_map_offsets
1094         (gdbarch, ppc_linux_svr4_fetch_link_map_offsets);
1095     }
1096 
1097   if (tdep->wordsize == 8)
1098     {
1099       /* Handle PPC64 GNU/Linux function pointers (which are really
1100          function descriptors).  */
1101       set_gdbarch_convert_from_func_ptr_addr
1102         (gdbarch, ppc64_linux_convert_from_func_ptr_addr);
1103 
1104       set_gdbarch_in_solib_call_trampoline
1105         (gdbarch, ppc64_in_solib_call_trampoline);
1106       set_gdbarch_skip_trampoline_code (gdbarch, ppc64_skip_trampoline_code);
1107 
1108       /* PPC64 malloc's entry-point is called ".malloc".  */
1109       set_gdbarch_name_of_malloc (gdbarch, ".malloc");
1110     }
1111   set_gdbarch_regset_from_core_section (gdbarch, ppc_linux_regset_from_core_section);
1112   frame_unwind_append_sniffer (gdbarch, ppc_linux_sigtramp_sniffer);
1113 }
1114 
1115 void
_initialize_ppc_linux_tdep(void)1116 _initialize_ppc_linux_tdep (void)
1117 {
1118   /* Register for all sub-familes of the POWER/PowerPC: 32-bit and
1119      64-bit PowerPC, and the older rs6k.  */
1120   gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc, GDB_OSABI_LINUX,
1121                          ppc_linux_init_abi);
1122   gdbarch_register_osabi (bfd_arch_powerpc, bfd_mach_ppc64, GDB_OSABI_LINUX,
1123                          ppc_linux_init_abi);
1124   gdbarch_register_osabi (bfd_arch_rs6000, bfd_mach_rs6k, GDB_OSABI_LINUX,
1125                          ppc_linux_init_abi);
1126 }
1127