1 /* Instruction scheduling pass.
2    Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3    1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4    Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
5    and currently maintained by, Jim Wilson (wilson@cygnus.com)
6 
7 This file is part of GCC.
8 
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
12 version.
13 
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
17 for more details.
18 
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING.  If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 02111-1307, USA.  */
23 
24 /* Instruction scheduling pass.  This file, along with sched-deps.c,
25    contains the generic parts.  The actual entry point is found for
26    the normal instruction scheduling pass is found in sched-rgn.c.
27 
28    We compute insn priorities based on data dependencies.  Flow
29    analysis only creates a fraction of the data-dependencies we must
30    observe: namely, only those dependencies which the combiner can be
31    expected to use.  For this pass, we must therefore create the
32    remaining dependencies we need to observe: register dependencies,
33    memory dependencies, dependencies to keep function calls in order,
34    and the dependence between a conditional branch and the setting of
35    condition codes are all dealt with here.
36 
37    The scheduler first traverses the data flow graph, starting with
38    the last instruction, and proceeding to the first, assigning values
39    to insn_priority as it goes.  This sorts the instructions
40    topologically by data dependence.
41 
42    Once priorities have been established, we order the insns using
43    list scheduling.  This works as follows: starting with a list of
44    all the ready insns, and sorted according to priority number, we
45    schedule the insn from the end of the list by placing its
46    predecessors in the list according to their priority order.  We
47    consider this insn scheduled by setting the pointer to the "end" of
48    the list to point to the previous insn.  When an insn has no
49    predecessors, we either queue it until sufficient time has elapsed
50    or add it to the ready list.  As the instructions are scheduled or
51    when stalls are introduced, the queue advances and dumps insns into
52    the ready list.  When all insns down to the lowest priority have
53    been scheduled, the critical path of the basic block has been made
54    as short as possible.  The remaining insns are then scheduled in
55    remaining slots.
56 
57    Function unit conflicts are resolved during forward list scheduling
58    by tracking the time when each insn is committed to the schedule
59    and from that, the time the function units it uses must be free.
60    As insns on the ready list are considered for scheduling, those
61    that would result in a blockage of the already committed insns are
62    queued until no blockage will result.
63 
64    The following list shows the order in which we want to break ties
65    among insns in the ready list:
66 
67    1.  choose insn with the longest path to end of bb, ties
68    broken by
69    2.  choose insn with least contribution to register pressure,
70    ties broken by
71    3.  prefer in-block upon interblock motion, ties broken by
72    4.  prefer useful upon speculative motion, ties broken by
73    5.  choose insn with largest control flow probability, ties
74    broken by
75    6.  choose insn with the least dependences upon the previously
76    scheduled insn, or finally
77    7   choose the insn which has the most insns dependent on it.
78    8.  choose insn with lowest UID.
79 
80    Memory references complicate matters.  Only if we can be certain
81    that memory references are not part of the data dependency graph
82    (via true, anti, or output dependence), can we move operations past
83    memory references.  To first approximation, reads can be done
84    independently, while writes introduce dependencies.  Better
85    approximations will yield fewer dependencies.
86 
87    Before reload, an extended analysis of interblock data dependences
88    is required for interblock scheduling.  This is performed in
89    compute_block_backward_dependences ().
90 
91    Dependencies set up by memory references are treated in exactly the
92    same way as other dependencies, by using LOG_LINKS backward
93    dependences.  LOG_LINKS are translated into INSN_DEPEND forward
94    dependences for the purpose of forward list scheduling.
95 
96    Having optimized the critical path, we may have also unduly
97    extended the lifetimes of some registers.  If an operation requires
98    that constants be loaded into registers, it is certainly desirable
99    to load those constants as early as necessary, but no earlier.
100    I.e., it will not do to load up a bunch of registers at the
101    beginning of a basic block only to use them at the end, if they
102    could be loaded later, since this may result in excessive register
103    utilization.
104 
105    Note that since branches are never in basic blocks, but only end
106    basic blocks, this pass will not move branches.  But that is ok,
107    since we can use GNU's delayed branch scheduling pass to take care
108    of this case.
109 
110    Also note that no further optimizations based on algebraic
111    identities are performed, so this pass would be a good one to
112    perform instruction splitting, such as breaking up a multiply
113    instruction into shifts and adds where that is profitable.
114 
115    Given the memory aliasing analysis that this pass should perform,
116    it should be possible to remove redundant stores to memory, and to
117    load values from registers instead of hitting memory.
118 
119    Before reload, speculative insns are moved only if a 'proof' exists
120    that no exception will be caused by this, and if no live registers
121    exist that inhibit the motion (live registers constraints are not
122    represented by data dependence edges).
123 
124    This pass must update information that subsequent passes expect to
125    be correct.  Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
126    reg_n_calls_crossed, and reg_live_length.  Also, BB_HEAD, BB_END.
127 
128    The information in the line number notes is carefully retained by
129    this pass.  Notes that refer to the starting and ending of
130    exception regions are also carefully retained by this pass.  All
131    other NOTE insns are grouped in their same relative order at the
132    beginning of basic blocks and regions that have been scheduled.  */
133 
134 #include "config.h"
135 #include "system.h"
136 #include "coretypes.h"
137 #include "tm.h"
138 #include "toplev.h"
139 #include "rtl.h"
140 #include "tm_p.h"
141 #include "hard-reg-set.h"
142 #include "basic-block.h"
143 #include "regs.h"
144 #include "function.h"
145 #include "flags.h"
146 #include "insn-config.h"
147 #include "insn-attr.h"
148 #include "except.h"
149 #include "toplev.h"
150 #include "recog.h"
151 #include "sched-int.h"
152 #include "target.h"
153 
154 #ifdef INSN_SCHEDULING
155 
156 /* issue_rate is the number of insns that can be scheduled in the same
157    machine cycle.  It can be defined in the config/mach/mach.h file,
158    otherwise we set it to 1.  */
159 
160 static int issue_rate;
161 
162 /* If the following variable value is nonzero, the scheduler inserts
163    bubbles (nop insns).  The value of variable affects on scheduler
164    behavior only if automaton pipeline interface with multipass
165    scheduling is used and hook dfa_bubble is defined.  */
166 int insert_schedule_bubbles_p = 0;
167 
168 /* sched-verbose controls the amount of debugging output the
169    scheduler prints.  It is controlled by -fsched-verbose=N:
170    N>0 and no -DSR : the output is directed to stderr.
171    N>=10 will direct the printouts to stderr (regardless of -dSR).
172    N=1: same as -dSR.
173    N=2: bb's probabilities, detailed ready list info, unit/insn info.
174    N=3: rtl at abort point, control-flow, regions info.
175    N=5: dependences info.  */
176 
177 static int sched_verbose_param = 0;
178 int sched_verbose = 0;
179 
180 /* Debugging file.  All printouts are sent to dump, which is always set,
181    either to stderr, or to the dump listing file (-dRS).  */
182 FILE *sched_dump = 0;
183 
184 /* Highest uid before scheduling.  */
185 static int old_max_uid;
186 
187 /* fix_sched_param() is called from toplev.c upon detection
188    of the -fsched-verbose=N option.  */
189 
190 void
fix_sched_param(const char * param,const char * val)191 fix_sched_param (const char *param, const char *val)
192 {
193   if (!strcmp (param, "verbose"))
194     sched_verbose_param = atoi (val);
195   else
196     warning ("fix_sched_param: unknown param: %s", param);
197 }
198 
199 struct haifa_insn_data *h_i_d;
200 
201 #define LINE_NOTE(INSN)		(h_i_d[INSN_UID (INSN)].line_note)
202 #define INSN_TICK(INSN)		(h_i_d[INSN_UID (INSN)].tick)
203 
204 /* Vector indexed by basic block number giving the starting line-number
205    for each basic block.  */
206 static rtx *line_note_head;
207 
208 /* List of important notes we must keep around.  This is a pointer to the
209    last element in the list.  */
210 static rtx note_list;
211 
212 /* Queues, etc.  */
213 
214 /* An instruction is ready to be scheduled when all insns preceding it
215    have already been scheduled.  It is important to ensure that all
216    insns which use its result will not be executed until its result
217    has been computed.  An insn is maintained in one of four structures:
218 
219    (P) the "Pending" set of insns which cannot be scheduled until
220    their dependencies have been satisfied.
221    (Q) the "Queued" set of insns that can be scheduled when sufficient
222    time has passed.
223    (R) the "Ready" list of unscheduled, uncommitted insns.
224    (S) the "Scheduled" list of insns.
225 
226    Initially, all insns are either "Pending" or "Ready" depending on
227    whether their dependencies are satisfied.
228 
229    Insns move from the "Ready" list to the "Scheduled" list as they
230    are committed to the schedule.  As this occurs, the insns in the
231    "Pending" list have their dependencies satisfied and move to either
232    the "Ready" list or the "Queued" set depending on whether
233    sufficient time has passed to make them ready.  As time passes,
234    insns move from the "Queued" set to the "Ready" list.  Insns may
235    move from the "Ready" list to the "Queued" set if they are blocked
236    due to a function unit conflict.
237 
238    The "Pending" list (P) are the insns in the INSN_DEPEND of the unscheduled
239    insns, i.e., those that are ready, queued, and pending.
240    The "Queued" set (Q) is implemented by the variable `insn_queue'.
241    The "Ready" list (R) is implemented by the variables `ready' and
242    `n_ready'.
243    The "Scheduled" list (S) is the new insn chain built by this pass.
244 
245    The transition (R->S) is implemented in the scheduling loop in
246    `schedule_block' when the best insn to schedule is chosen.
247    The transition (R->Q) is implemented in `queue_insn' when an
248    insn is found to have a function unit conflict with the already
249    committed insns.
250    The transitions (P->R and P->Q) are implemented in `schedule_insn' as
251    insns move from the ready list to the scheduled list.
252    The transition (Q->R) is implemented in 'queue_to_insn' as time
253    passes or stalls are introduced.  */
254 
255 /* Implement a circular buffer to delay instructions until sufficient
256    time has passed.  For the old pipeline description interface,
257    INSN_QUEUE_SIZE is a power of two larger than MAX_BLOCKAGE and
258    MAX_READY_COST computed by genattr.c.  For the new pipeline
259    description interface, MAX_INSN_QUEUE_INDEX is a power of two minus
260    one which is larger than maximal time of instruction execution
261    computed by genattr.c on the base maximal time of functional unit
262    reservations and geting a result.  This is the longest time an
263    insn may be queued.  */
264 
265 #define MAX_INSN_QUEUE_INDEX max_insn_queue_index_macro_value
266 
267 static rtx *insn_queue;
268 static int q_ptr = 0;
269 static int q_size = 0;
270 #define NEXT_Q(X) (((X)+1) & MAX_INSN_QUEUE_INDEX)
271 #define NEXT_Q_AFTER(X, C) (((X)+C) & MAX_INSN_QUEUE_INDEX)
272 
273 /* The following variable defines value for macro
274    MAX_INSN_QUEUE_INDEX.  */
275 static int max_insn_queue_index_macro_value;
276 
277 /* The following variable value refers for all current and future
278    reservations of the processor units.  */
279 state_t curr_state;
280 
281 /* The following variable value is size of memory representing all
282    current and future reservations of the processor units.  It is used
283    only by DFA based scheduler.  */
284 static size_t dfa_state_size;
285 
286 /* The following array is used to find the best insn from ready when
287    the automaton pipeline interface is used.  */
288 static char *ready_try;
289 
290 /* Describe the ready list of the scheduler.
291    VEC holds space enough for all insns in the current region.  VECLEN
292    says how many exactly.
293    FIRST is the index of the element with the highest priority; i.e. the
294    last one in the ready list, since elements are ordered by ascending
295    priority.
296    N_READY determines how many insns are on the ready list.  */
297 
298 struct ready_list
299 {
300   rtx *vec;
301   int veclen;
302   int first;
303   int n_ready;
304 };
305 
306 static int may_trap_exp (rtx, int);
307 
308 /* Nonzero iff the address is comprised from at most 1 register.  */
309 #define CONST_BASED_ADDRESS_P(x)			\
310   (GET_CODE (x) == REG					\
311    || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS	\
312 	|| (GET_CODE (x) == LO_SUM))			\
313        && (CONSTANT_P (XEXP (x, 0))			\
314 	   || CONSTANT_P (XEXP (x, 1)))))
315 
316 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
317    as found by analyzing insn's expression.  */
318 
319 static int
may_trap_exp(rtx x,int is_store)320 may_trap_exp (rtx x, int is_store)
321 {
322   enum rtx_code code;
323 
324   if (x == 0)
325     return TRAP_FREE;
326   code = GET_CODE (x);
327   if (is_store)
328     {
329       if (code == MEM && may_trap_p (x))
330 	return TRAP_RISKY;
331       else
332 	return TRAP_FREE;
333     }
334   if (code == MEM)
335     {
336       /* The insn uses memory:  a volatile load.  */
337       if (MEM_VOLATILE_P (x))
338 	return IRISKY;
339       /* An exception-free load.  */
340       if (!may_trap_p (x))
341 	return IFREE;
342       /* A load with 1 base register, to be further checked.  */
343       if (CONST_BASED_ADDRESS_P (XEXP (x, 0)))
344 	return PFREE_CANDIDATE;
345       /* No info on the load, to be further checked.  */
346       return PRISKY_CANDIDATE;
347     }
348   else
349     {
350       const char *fmt;
351       int i, insn_class = TRAP_FREE;
352 
353       /* Neither store nor load, check if it may cause a trap.  */
354       if (may_trap_p (x))
355 	return TRAP_RISKY;
356       /* Recursive step: walk the insn...  */
357       fmt = GET_RTX_FORMAT (code);
358       for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
359 	{
360 	  if (fmt[i] == 'e')
361 	    {
362 	      int tmp_class = may_trap_exp (XEXP (x, i), is_store);
363 	      insn_class = WORST_CLASS (insn_class, tmp_class);
364 	    }
365 	  else if (fmt[i] == 'E')
366 	    {
367 	      int j;
368 	      for (j = 0; j < XVECLEN (x, i); j++)
369 		{
370 		  int tmp_class = may_trap_exp (XVECEXP (x, i, j), is_store);
371 		  insn_class = WORST_CLASS (insn_class, tmp_class);
372 		  if (insn_class == TRAP_RISKY || insn_class == IRISKY)
373 		    break;
374 		}
375 	    }
376 	  if (insn_class == TRAP_RISKY || insn_class == IRISKY)
377 	    break;
378 	}
379       return insn_class;
380     }
381 }
382 
383 /* Classifies insn for the purpose of verifying that it can be
384    moved speculatively, by examining it's patterns, returning:
385    TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
386    TRAP_FREE: non-load insn.
387    IFREE: load from a globally safe location.
388    IRISKY: volatile load.
389    PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
390    being either PFREE or PRISKY.  */
391 
392 int
haifa_classify_insn(rtx insn)393 haifa_classify_insn (rtx insn)
394 {
395   rtx pat = PATTERN (insn);
396   int tmp_class = TRAP_FREE;
397   int insn_class = TRAP_FREE;
398   enum rtx_code code;
399 
400   if (GET_CODE (pat) == PARALLEL)
401     {
402       int i, len = XVECLEN (pat, 0);
403 
404       for (i = len - 1; i >= 0; i--)
405 	{
406 	  code = GET_CODE (XVECEXP (pat, 0, i));
407 	  switch (code)
408 	    {
409 	    case CLOBBER:
410 	      /* Test if it is a 'store'.  */
411 	      tmp_class = may_trap_exp (XEXP (XVECEXP (pat, 0, i), 0), 1);
412 	      break;
413 	    case SET:
414 	      /* Test if it is a store.  */
415 	      tmp_class = may_trap_exp (SET_DEST (XVECEXP (pat, 0, i)), 1);
416 	      if (tmp_class == TRAP_RISKY)
417 		break;
418 	      /* Test if it is a load.  */
419 	      tmp_class
420 		= WORST_CLASS (tmp_class,
421 			       may_trap_exp (SET_SRC (XVECEXP (pat, 0, i)),
422 					     0));
423 	      break;
424 	    case COND_EXEC:
425 	    case TRAP_IF:
426 	      tmp_class = TRAP_RISKY;
427 	      break;
428 	    default:
429 	      ;
430 	    }
431 	  insn_class = WORST_CLASS (insn_class, tmp_class);
432 	  if (insn_class == TRAP_RISKY || insn_class == IRISKY)
433 	    break;
434 	}
435     }
436   else
437     {
438       code = GET_CODE (pat);
439       switch (code)
440 	{
441 	case CLOBBER:
442 	  /* Test if it is a 'store'.  */
443 	  tmp_class = may_trap_exp (XEXP (pat, 0), 1);
444 	  break;
445 	case SET:
446 	  /* Test if it is a store.  */
447 	  tmp_class = may_trap_exp (SET_DEST (pat), 1);
448 	  if (tmp_class == TRAP_RISKY)
449 	    break;
450 	  /* Test if it is a load.  */
451 	  tmp_class =
452 	    WORST_CLASS (tmp_class,
453 			 may_trap_exp (SET_SRC (pat), 0));
454 	  break;
455 	case COND_EXEC:
456 	case TRAP_IF:
457 	  tmp_class = TRAP_RISKY;
458 	  break;
459 	default:;
460 	}
461       insn_class = tmp_class;
462     }
463 
464   return insn_class;
465 }
466 
467 /* Forward declarations.  */
468 
469 /* The scheduler using only DFA description should never use the
470    following five functions:  */
471 static unsigned int blockage_range (int, rtx);
472 static void clear_units (void);
473 static void schedule_unit (int, rtx, int);
474 static int actual_hazard (int, rtx, int, int);
475 static int potential_hazard (int, rtx, int);
476 
477 static int priority (rtx);
478 static int rank_for_schedule (const void *, const void *);
479 static void swap_sort (rtx *, int);
480 static void queue_insn (rtx, int);
481 static int schedule_insn (rtx, struct ready_list *, int);
482 static int find_set_reg_weight (rtx);
483 static void find_insn_reg_weight (int);
484 static void adjust_priority (rtx);
485 static void advance_one_cycle (void);
486 
487 /* Notes handling mechanism:
488    =========================
489    Generally, NOTES are saved before scheduling and restored after scheduling.
490    The scheduler distinguishes between three types of notes:
491 
492    (1) LINE_NUMBER notes, generated and used for debugging.  Here,
493    before scheduling a region, a pointer to the LINE_NUMBER note is
494    added to the insn following it (in save_line_notes()), and the note
495    is removed (in rm_line_notes() and unlink_line_notes()).  After
496    scheduling the region, this pointer is used for regeneration of
497    the LINE_NUMBER note (in restore_line_notes()).
498 
499    (2) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
500    Before scheduling a region, a pointer to the note is added to the insn
501    that follows or precedes it.  (This happens as part of the data dependence
502    computation).  After scheduling an insn, the pointer contained in it is
503    used for regenerating the corresponding note (in reemit_notes).
504 
505    (3) All other notes (e.g. INSN_DELETED):  Before scheduling a block,
506    these notes are put in a list (in rm_other_notes() and
507    unlink_other_notes ()).  After scheduling the block, these notes are
508    inserted at the beginning of the block (in schedule_block()).  */
509 
510 static rtx unlink_other_notes (rtx, rtx);
511 static rtx unlink_line_notes (rtx, rtx);
512 static rtx reemit_notes (rtx, rtx);
513 
514 static rtx *ready_lastpos (struct ready_list *);
515 static void ready_sort (struct ready_list *);
516 static rtx ready_remove_first (struct ready_list *);
517 
518 static void queue_to_ready (struct ready_list *);
519 static int early_queue_to_ready (state_t, struct ready_list *);
520 
521 static void debug_ready_list (struct ready_list *);
522 
523 static rtx move_insn1 (rtx, rtx);
524 static rtx move_insn (rtx, rtx);
525 
526 /* The following functions are used to implement multi-pass scheduling
527    on the first cycle.  It is used only for DFA based scheduler.  */
528 static rtx ready_element (struct ready_list *, int);
529 static rtx ready_remove (struct ready_list *, int);
530 static int max_issue (struct ready_list *, int *);
531 
532 static rtx choose_ready (struct ready_list *);
533 
534 #endif /* INSN_SCHEDULING */
535 
536 /* Point to state used for the current scheduling pass.  */
537 struct sched_info *current_sched_info;
538 
539 #ifndef INSN_SCHEDULING
540 void
schedule_insns(FILE * dump_file ATTRIBUTE_UNUSED)541 schedule_insns (FILE *dump_file ATTRIBUTE_UNUSED)
542 {
543 }
544 #else
545 
546 /* Pointer to the last instruction scheduled.  Used by rank_for_schedule,
547    so that insns independent of the last scheduled insn will be preferred
548    over dependent instructions.  */
549 
550 static rtx last_scheduled_insn;
551 
552 /* Compute the function units used by INSN.  This caches the value
553    returned by function_units_used.  A function unit is encoded as the
554    unit number if the value is non-negative and the complement of a
555    mask if the value is negative.  A function unit index is the
556    non-negative encoding.  The scheduler using only DFA description
557    should never use the following function.  */
558 
559 HAIFA_INLINE int
insn_unit(rtx insn)560 insn_unit (rtx insn)
561 {
562   int unit = INSN_UNIT (insn);
563 
564   if (unit == 0)
565     {
566       recog_memoized (insn);
567 
568       /* A USE insn, or something else we don't need to understand.
569          We can't pass these directly to function_units_used because it will
570          trigger a fatal error for unrecognizable insns.  */
571       if (INSN_CODE (insn) < 0)
572 	unit = -1;
573       else
574 	{
575 	  unit = function_units_used (insn);
576 	  /* Increment non-negative values so we can cache zero.  */
577 	  if (unit >= 0)
578 	    unit++;
579 	}
580       /* We only cache 16 bits of the result, so if the value is out of
581          range, don't cache it.  */
582       if (FUNCTION_UNITS_SIZE < HOST_BITS_PER_SHORT
583 	  || unit >= 0
584 	  || (unit & ~((1 << (HOST_BITS_PER_SHORT - 1)) - 1)) == 0)
585 	INSN_UNIT (insn) = unit;
586     }
587   return (unit > 0 ? unit - 1 : unit);
588 }
589 
590 /* Compute the blockage range for executing INSN on UNIT.  This caches
591    the value returned by the blockage_range_function for the unit.
592    These values are encoded in an int where the upper half gives the
593    minimum value and the lower half gives the maximum value.  The
594    scheduler using only DFA description should never use the following
595    function.  */
596 
597 HAIFA_INLINE static unsigned int
blockage_range(int unit,rtx insn)598 blockage_range (int unit, rtx insn)
599 {
600   unsigned int blockage = INSN_BLOCKAGE (insn);
601   unsigned int range;
602 
603   if ((int) UNIT_BLOCKED (blockage) != unit + 1)
604     {
605       range = function_units[unit].blockage_range_function (insn);
606       /* We only cache the blockage range for one unit and then only if
607          the values fit.  */
608       if (HOST_BITS_PER_INT >= UNIT_BITS + 2 * BLOCKAGE_BITS)
609 	INSN_BLOCKAGE (insn) = ENCODE_BLOCKAGE (unit + 1, range);
610     }
611   else
612     range = BLOCKAGE_RANGE (blockage);
613 
614   return range;
615 }
616 
617 /* A vector indexed by function unit instance giving the last insn to
618    use the unit.  The value of the function unit instance index for
619    unit U instance I is (U + I * FUNCTION_UNITS_SIZE).  The scheduler
620    using only DFA description should never use the following variable.  */
621 #if FUNCTION_UNITS_SIZE
622 static rtx unit_last_insn[FUNCTION_UNITS_SIZE * MAX_MULTIPLICITY];
623 #else
624 static rtx unit_last_insn[1];
625 #endif
626 
627 /* A vector indexed by function unit instance giving the minimum time
628    when the unit will unblock based on the maximum blockage cost.  The
629    scheduler using only DFA description should never use the following
630    variable.  */
631 #if FUNCTION_UNITS_SIZE
632 static int unit_tick[FUNCTION_UNITS_SIZE * MAX_MULTIPLICITY];
633 #else
634 static int unit_tick[1];
635 #endif
636 
637 /* A vector indexed by function unit number giving the number of insns
638    that remain to use the unit.  The scheduler using only DFA
639    description should never use the following variable.  */
640 #if FUNCTION_UNITS_SIZE
641 static int unit_n_insns[FUNCTION_UNITS_SIZE];
642 #else
643 static int unit_n_insns[1];
644 #endif
645 
646 /* Access the unit_last_insn array.  Used by the visualization code.
647    The scheduler using only DFA description should never use the
648    following function.  */
649 
650 rtx
get_unit_last_insn(int instance)651 get_unit_last_insn (int instance)
652 {
653   return unit_last_insn[instance];
654 }
655 
656 /* Reset the function unit state to the null state.  */
657 
658 static void
clear_units(void)659 clear_units (void)
660 {
661   memset (unit_last_insn, 0, sizeof (unit_last_insn));
662   memset (unit_tick, 0, sizeof (unit_tick));
663   memset (unit_n_insns, 0, sizeof (unit_n_insns));
664 }
665 
666 /* Return the issue-delay of an insn.  The scheduler using only DFA
667    description should never use the following function.  */
668 
669 HAIFA_INLINE int
insn_issue_delay(rtx insn)670 insn_issue_delay (rtx insn)
671 {
672   int i, delay = 0;
673   int unit = insn_unit (insn);
674 
675   /* Efficiency note: in fact, we are working 'hard' to compute a
676      value that was available in md file, and is not available in
677      function_units[] structure.  It would be nice to have this
678      value there, too.  */
679   if (unit >= 0)
680     {
681       if (function_units[unit].blockage_range_function &&
682 	  function_units[unit].blockage_function)
683 	delay = function_units[unit].blockage_function (insn, insn);
684     }
685   else
686     for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
687       if ((unit & 1) != 0 && function_units[i].blockage_range_function
688 	  && function_units[i].blockage_function)
689 	delay = MAX (delay, function_units[i].blockage_function (insn, insn));
690 
691   return delay;
692 }
693 
694 /* Return the actual hazard cost of executing INSN on the unit UNIT,
695    instance INSTANCE at time CLOCK if the previous actual hazard cost
696    was COST.  The scheduler using only DFA description should never
697    use the following function.  */
698 
699 HAIFA_INLINE int
actual_hazard_this_instance(int unit,int instance,rtx insn,int clock,int cost)700 actual_hazard_this_instance (int unit, int instance, rtx insn, int clock, int cost)
701 {
702   int tick = unit_tick[instance]; /* Issue time of the last issued insn.  */
703 
704   if (tick - clock > cost)
705     {
706       /* The scheduler is operating forward, so unit's last insn is the
707          executing insn and INSN is the candidate insn.  We want a
708          more exact measure of the blockage if we execute INSN at CLOCK
709          given when we committed the execution of the unit's last insn.
710 
711          The blockage value is given by either the unit's max blockage
712          constant, blockage range function, or blockage function.  Use
713          the most exact form for the given unit.  */
714 
715       if (function_units[unit].blockage_range_function)
716 	{
717 	  if (function_units[unit].blockage_function)
718 	    tick += (function_units[unit].blockage_function
719 		     (unit_last_insn[instance], insn)
720 		     - function_units[unit].max_blockage);
721 	  else
722 	    tick += ((int) MAX_BLOCKAGE_COST (blockage_range (unit, insn))
723 		     - function_units[unit].max_blockage);
724 	}
725       if (tick - clock > cost)
726 	cost = tick - clock;
727     }
728   return cost;
729 }
730 
731 /* Record INSN as having begun execution on the units encoded by UNIT
732    at time CLOCK.  The scheduler using only DFA description should
733    never use the following function.  */
734 
735 static void
schedule_unit(int unit,rtx insn,int clock)736 schedule_unit (int unit, rtx insn, int clock)
737 {
738   int i;
739 
740   if (unit >= 0)
741     {
742       int instance = unit;
743 #if MAX_MULTIPLICITY > 1
744       /* Find the first free instance of the function unit and use that
745          one.  We assume that one is free.  */
746       for (i = function_units[unit].multiplicity - 1; i > 0; i--)
747 	{
748 	  if (!actual_hazard_this_instance (unit, instance, insn, clock, 0))
749 	    break;
750 	  instance += FUNCTION_UNITS_SIZE;
751 	}
752 #endif
753       unit_last_insn[instance] = insn;
754       unit_tick[instance] = (clock + function_units[unit].max_blockage);
755     }
756   else
757     for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
758       if ((unit & 1) != 0)
759 	schedule_unit (i, insn, clock);
760 }
761 
762 /* Return the actual hazard cost of executing INSN on the units
763    encoded by UNIT at time CLOCK if the previous actual hazard cost
764    was COST.  The scheduler using only DFA description should never
765    use the following function.  */
766 
767 static int
actual_hazard(int unit,rtx insn,int clock,int cost)768 actual_hazard (int unit, rtx insn, int clock, int cost)
769 {
770   int i;
771 
772   if (unit >= 0)
773     {
774       /* Find the instance of the function unit with the minimum hazard.  */
775       int instance = unit;
776       int best_cost = actual_hazard_this_instance (unit, instance, insn,
777 						   clock, cost);
778 #if MAX_MULTIPLICITY > 1
779       int this_cost;
780 
781       if (best_cost > cost)
782 	{
783 	  for (i = function_units[unit].multiplicity - 1; i > 0; i--)
784 	    {
785 	      instance += FUNCTION_UNITS_SIZE;
786 	      this_cost = actual_hazard_this_instance (unit, instance, insn,
787 						       clock, cost);
788 	      if (this_cost < best_cost)
789 		{
790 		  best_cost = this_cost;
791 		  if (this_cost <= cost)
792 		    break;
793 		}
794 	    }
795 	}
796 #endif
797       cost = MAX (cost, best_cost);
798     }
799   else
800     for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
801       if ((unit & 1) != 0)
802 	cost = actual_hazard (i, insn, clock, cost);
803 
804   return cost;
805 }
806 
807 /* Return the potential hazard cost of executing an instruction on the
808    units encoded by UNIT if the previous potential hazard cost was
809    COST.  An insn with a large blockage time is chosen in preference
810    to one with a smaller time; an insn that uses a unit that is more
811    likely to be used is chosen in preference to one with a unit that
812    is less used.  We are trying to minimize a subsequent actual
813    hazard.  The scheduler using only DFA description should never use
814    the following function.  */
815 
816 HAIFA_INLINE static int
potential_hazard(int unit,rtx insn,int cost)817 potential_hazard (int unit, rtx insn, int cost)
818 {
819   int i, ncost;
820   unsigned int minb, maxb;
821 
822   if (unit >= 0)
823     {
824       minb = maxb = function_units[unit].max_blockage;
825       if (maxb > 1)
826 	{
827 	  if (function_units[unit].blockage_range_function)
828 	    {
829 	      maxb = minb = blockage_range (unit, insn);
830 	      maxb = MAX_BLOCKAGE_COST (maxb);
831 	      minb = MIN_BLOCKAGE_COST (minb);
832 	    }
833 
834 	  if (maxb > 1)
835 	    {
836 	      /* Make the number of instructions left dominate.  Make the
837 	         minimum delay dominate the maximum delay.  If all these
838 	         are the same, use the unit number to add an arbitrary
839 	         ordering.  Other terms can be added.  */
840 	      ncost = minb * 0x40 + maxb;
841 	      ncost *= (unit_n_insns[unit] - 1) * 0x1000 + unit;
842 	      if (ncost > cost)
843 		cost = ncost;
844 	    }
845 	}
846     }
847   else
848     for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
849       if ((unit & 1) != 0)
850 	cost = potential_hazard (i, insn, cost);
851 
852   return cost;
853 }
854 
855 /* Compute cost of executing INSN given the dependence LINK on the insn USED.
856    This is the number of cycles between instruction issue and
857    instruction results.  */
858 
859 HAIFA_INLINE int
insn_cost(rtx insn,rtx link,rtx used)860 insn_cost (rtx insn, rtx link, rtx used)
861 {
862   int cost = INSN_COST (insn);
863 
864   if (cost < 0)
865     {
866       /* A USE insn, or something else we don't need to
867 	 understand.  We can't pass these directly to
868 	 result_ready_cost or insn_default_latency because it will
869 	 trigger a fatal error for unrecognizable insns.  */
870       if (recog_memoized (insn) < 0)
871 	{
872 	  INSN_COST (insn) = 0;
873 	  return 0;
874 	}
875       else
876 	{
877 	  if (targetm.sched.use_dfa_pipeline_interface
878 	      && (*targetm.sched.use_dfa_pipeline_interface) ())
879 	    cost = insn_default_latency (insn);
880 	  else
881 	    cost = result_ready_cost (insn);
882 
883 	  if (cost < 0)
884 	    cost = 0;
885 
886 	  INSN_COST (insn) = cost;
887 	}
888     }
889 
890   /* In this case estimate cost without caring how insn is used.  */
891   if (link == 0 || used == 0)
892     return cost;
893 
894   /* A USE insn should never require the value used to be computed.
895      This allows the computation of a function's result and parameter
896      values to overlap the return and call.  */
897   if (recog_memoized (used) < 0)
898     cost = 0;
899   else
900     {
901       if (targetm.sched.use_dfa_pipeline_interface
902 	  && (*targetm.sched.use_dfa_pipeline_interface) ())
903 	{
904 	  if (INSN_CODE (insn) >= 0)
905 	    {
906 	      if (REG_NOTE_KIND (link) == REG_DEP_ANTI)
907 		cost = 0;
908 	      else if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT)
909 		{
910 		  cost = (insn_default_latency (insn)
911 			  - insn_default_latency (used));
912 		  if (cost <= 0)
913 		    cost = 1;
914 		}
915 	      else if (bypass_p (insn))
916 		cost = insn_latency (insn, used);
917 	    }
918 	}
919 
920       if (targetm.sched.adjust_cost)
921 	cost = (*targetm.sched.adjust_cost) (used, link, insn, cost);
922 
923       if (cost < 0)
924 	cost = 0;
925     }
926 
927   return cost;
928 }
929 
930 /* Compute the priority number for INSN.  */
931 
932 static int
priority(rtx insn)933 priority (rtx insn)
934 {
935   rtx link;
936 
937   if (! INSN_P (insn))
938     return 0;
939 
940   if (! INSN_PRIORITY_KNOWN (insn))
941     {
942       int this_priority = 0;
943 
944       if (INSN_DEPEND (insn) == 0)
945 	this_priority = insn_cost (insn, 0, 0);
946       else
947 	{
948 	  for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
949 	    {
950 	      rtx next;
951 	      int next_priority;
952 
953 	      if (RTX_INTEGRATED_P (link))
954 		continue;
955 
956 	      next = XEXP (link, 0);
957 
958 	      /* Critical path is meaningful in block boundaries only.  */
959 	      if (! (*current_sched_info->contributes_to_priority) (next, insn))
960 		continue;
961 
962 	      next_priority = insn_cost (insn, link, next) + priority (next);
963 	      if (next_priority > this_priority)
964 		this_priority = next_priority;
965 	    }
966 	}
967       INSN_PRIORITY (insn) = this_priority;
968       INSN_PRIORITY_KNOWN (insn) = 1;
969     }
970 
971   return INSN_PRIORITY (insn);
972 }
973 
974 /* Macros and functions for keeping the priority queue sorted, and
975    dealing with queuing and dequeuing of instructions.  */
976 
977 #define SCHED_SORT(READY, N_READY)                                   \
978 do { if ((N_READY) == 2)				             \
979        swap_sort (READY, N_READY);			             \
980      else if ((N_READY) > 2)                                         \
981          qsort (READY, N_READY, sizeof (rtx), rank_for_schedule); }  \
982 while (0)
983 
984 /* Returns a positive value if x is preferred; returns a negative value if
985    y is preferred.  Should never return 0, since that will make the sort
986    unstable.  */
987 
988 static int
rank_for_schedule(const void * x,const void * y)989 rank_for_schedule (const void *x, const void *y)
990 {
991   rtx tmp = *(const rtx *) y;
992   rtx tmp2 = *(const rtx *) x;
993   rtx link;
994   int tmp_class, tmp2_class, depend_count1, depend_count2;
995   int val, priority_val, weight_val, info_val;
996 
997   /* The insn in a schedule group should be issued the first.  */
998   if (SCHED_GROUP_P (tmp) != SCHED_GROUP_P (tmp2))
999     return SCHED_GROUP_P (tmp2) ? 1 : -1;
1000 
1001   /* Prefer insn with higher priority.  */
1002   priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
1003 
1004   if (priority_val)
1005     return priority_val;
1006 
1007   /* Prefer an insn with smaller contribution to registers-pressure.  */
1008   if (!reload_completed &&
1009       (weight_val = INSN_REG_WEIGHT (tmp) - INSN_REG_WEIGHT (tmp2)))
1010     return weight_val;
1011 
1012   info_val = (*current_sched_info->rank) (tmp, tmp2);
1013   if (info_val)
1014     return info_val;
1015 
1016   /* Compare insns based on their relation to the last-scheduled-insn.  */
1017   if (last_scheduled_insn)
1018     {
1019       /* Classify the instructions into three classes:
1020          1) Data dependent on last schedule insn.
1021          2) Anti/Output dependent on last scheduled insn.
1022          3) Independent of last scheduled insn, or has latency of one.
1023          Choose the insn from the highest numbered class if different.  */
1024       link = find_insn_list (tmp, INSN_DEPEND (last_scheduled_insn));
1025       if (link == 0 || insn_cost (last_scheduled_insn, link, tmp) == 1)
1026 	tmp_class = 3;
1027       else if (REG_NOTE_KIND (link) == 0)	/* Data dependence.  */
1028 	tmp_class = 1;
1029       else
1030 	tmp_class = 2;
1031 
1032       link = find_insn_list (tmp2, INSN_DEPEND (last_scheduled_insn));
1033       if (link == 0 || insn_cost (last_scheduled_insn, link, tmp2) == 1)
1034 	tmp2_class = 3;
1035       else if (REG_NOTE_KIND (link) == 0)	/* Data dependence.  */
1036 	tmp2_class = 1;
1037       else
1038 	tmp2_class = 2;
1039 
1040       if ((val = tmp2_class - tmp_class))
1041 	return val;
1042     }
1043 
1044   /* Prefer the insn which has more later insns that depend on it.
1045      This gives the scheduler more freedom when scheduling later
1046      instructions at the expense of added register pressure.  */
1047   depend_count1 = 0;
1048   for (link = INSN_DEPEND (tmp); link; link = XEXP (link, 1))
1049     depend_count1++;
1050 
1051   depend_count2 = 0;
1052   for (link = INSN_DEPEND (tmp2); link; link = XEXP (link, 1))
1053     depend_count2++;
1054 
1055   val = depend_count2 - depend_count1;
1056   if (val)
1057     return val;
1058 
1059   /* If insns are equally good, sort by INSN_LUID (original insn order),
1060      so that we make the sort stable.  This minimizes instruction movement,
1061      thus minimizing sched's effect on debugging and cross-jumping.  */
1062   return INSN_LUID (tmp) - INSN_LUID (tmp2);
1063 }
1064 
1065 /* Resort the array A in which only element at index N may be out of order.  */
1066 
1067 HAIFA_INLINE static void
swap_sort(rtx * a,int n)1068 swap_sort (rtx *a, int n)
1069 {
1070   rtx insn = a[n - 1];
1071   int i = n - 2;
1072 
1073   while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
1074     {
1075       a[i + 1] = a[i];
1076       i -= 1;
1077     }
1078   a[i + 1] = insn;
1079 }
1080 
1081 /* Add INSN to the insn queue so that it can be executed at least
1082    N_CYCLES after the currently executing insn.  Preserve insns
1083    chain for debugging purposes.  */
1084 
1085 HAIFA_INLINE static void
queue_insn(rtx insn,int n_cycles)1086 queue_insn (rtx insn, int n_cycles)
1087 {
1088   int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
1089   rtx link = alloc_INSN_LIST (insn, insn_queue[next_q]);
1090   insn_queue[next_q] = link;
1091   q_size += 1;
1092 
1093   if (sched_verbose >= 2)
1094     {
1095       fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
1096 	       (*current_sched_info->print_insn) (insn, 0));
1097 
1098       fprintf (sched_dump, "queued for %d cycles.\n", n_cycles);
1099     }
1100 }
1101 
1102 /* Return a pointer to the bottom of the ready list, i.e. the insn
1103    with the lowest priority.  */
1104 
1105 HAIFA_INLINE static rtx *
ready_lastpos(struct ready_list * ready)1106 ready_lastpos (struct ready_list *ready)
1107 {
1108   if (ready->n_ready == 0)
1109     abort ();
1110   return ready->vec + ready->first - ready->n_ready + 1;
1111 }
1112 
1113 /* Add an element INSN to the ready list so that it ends up with the lowest
1114    priority.  */
1115 
1116 HAIFA_INLINE void
ready_add(struct ready_list * ready,rtx insn)1117 ready_add (struct ready_list *ready, rtx insn)
1118 {
1119   if (ready->first == ready->n_ready)
1120     {
1121       memmove (ready->vec + ready->veclen - ready->n_ready,
1122 	       ready_lastpos (ready),
1123 	       ready->n_ready * sizeof (rtx));
1124       ready->first = ready->veclen - 1;
1125     }
1126   ready->vec[ready->first - ready->n_ready] = insn;
1127   ready->n_ready++;
1128 }
1129 
1130 /* Remove the element with the highest priority from the ready list and
1131    return it.  */
1132 
1133 HAIFA_INLINE static rtx
ready_remove_first(struct ready_list * ready)1134 ready_remove_first (struct ready_list *ready)
1135 {
1136   rtx t;
1137   if (ready->n_ready == 0)
1138     abort ();
1139   t = ready->vec[ready->first--];
1140   ready->n_ready--;
1141   /* If the queue becomes empty, reset it.  */
1142   if (ready->n_ready == 0)
1143     ready->first = ready->veclen - 1;
1144   return t;
1145 }
1146 
1147 /* The following code implements multi-pass scheduling for the first
1148    cycle.  In other words, we will try to choose ready insn which
1149    permits to start maximum number of insns on the same cycle.  */
1150 
1151 /* Return a pointer to the element INDEX from the ready.  INDEX for
1152    insn with the highest priority is 0, and the lowest priority has
1153    N_READY - 1.  */
1154 
1155 HAIFA_INLINE static rtx
ready_element(struct ready_list * ready,int index)1156 ready_element (struct ready_list *ready, int index)
1157 {
1158 #ifdef ENABLE_CHECKING
1159   if (ready->n_ready == 0 || index >= ready->n_ready)
1160     abort ();
1161 #endif
1162   return ready->vec[ready->first - index];
1163 }
1164 
1165 /* Remove the element INDEX from the ready list and return it.  INDEX
1166    for insn with the highest priority is 0, and the lowest priority
1167    has N_READY - 1.  */
1168 
1169 HAIFA_INLINE static rtx
ready_remove(struct ready_list * ready,int index)1170 ready_remove (struct ready_list *ready, int index)
1171 {
1172   rtx t;
1173   int i;
1174 
1175   if (index == 0)
1176     return ready_remove_first (ready);
1177   if (ready->n_ready == 0 || index >= ready->n_ready)
1178     abort ();
1179   t = ready->vec[ready->first - index];
1180   ready->n_ready--;
1181   for (i = index; i < ready->n_ready; i++)
1182     ready->vec[ready->first - i] = ready->vec[ready->first - i - 1];
1183   return t;
1184 }
1185 
1186 
1187 /* Sort the ready list READY by ascending priority, using the SCHED_SORT
1188    macro.  */
1189 
1190 HAIFA_INLINE static void
ready_sort(struct ready_list * ready)1191 ready_sort (struct ready_list *ready)
1192 {
1193   rtx *first = ready_lastpos (ready);
1194   SCHED_SORT (first, ready->n_ready);
1195 }
1196 
1197 /* PREV is an insn that is ready to execute.  Adjust its priority if that
1198    will help shorten or lengthen register lifetimes as appropriate.  Also
1199    provide a hook for the target to tweek itself.  */
1200 
1201 HAIFA_INLINE static void
adjust_priority(rtx prev)1202 adjust_priority (rtx prev)
1203 {
1204   /* ??? There used to be code here to try and estimate how an insn
1205      affected register lifetimes, but it did it by looking at REG_DEAD
1206      notes, which we removed in schedule_region.  Nor did it try to
1207      take into account register pressure or anything useful like that.
1208 
1209      Revisit when we have a machine model to work with and not before.  */
1210 
1211   if (targetm.sched.adjust_priority)
1212     INSN_PRIORITY (prev) =
1213       (*targetm.sched.adjust_priority) (prev, INSN_PRIORITY (prev));
1214 }
1215 
1216 /* Advance time on one cycle.  */
1217 HAIFA_INLINE static void
advance_one_cycle(void)1218 advance_one_cycle (void)
1219 {
1220   if (targetm.sched.use_dfa_pipeline_interface
1221       && (*targetm.sched.use_dfa_pipeline_interface) ())
1222     {
1223       if (targetm.sched.dfa_pre_cycle_insn)
1224 	state_transition (curr_state,
1225 			  (*targetm.sched.dfa_pre_cycle_insn) ());
1226 
1227       state_transition (curr_state, NULL);
1228 
1229       if (targetm.sched.dfa_post_cycle_insn)
1230 	state_transition (curr_state,
1231 			  (*targetm.sched.dfa_post_cycle_insn) ());
1232     }
1233 }
1234 
1235 /* Clock at which the previous instruction was issued.  */
1236 static int last_clock_var;
1237 
1238 /* INSN is the "currently executing insn".  Launch each insn which was
1239    waiting on INSN.  READY is the ready list which contains the insns
1240    that are ready to fire.  CLOCK is the current cycle.  The function
1241    returns necessary cycle advance after issuing the insn (it is not
1242    zero for insns in a schedule group).  */
1243 
1244 static int
schedule_insn(rtx insn,struct ready_list * ready,int clock)1245 schedule_insn (rtx insn, struct ready_list *ready, int clock)
1246 {
1247   rtx link;
1248   int advance = 0;
1249   int unit = 0;
1250   int premature_issue = 0;
1251 
1252   if (!targetm.sched.use_dfa_pipeline_interface
1253       || !(*targetm.sched.use_dfa_pipeline_interface) ())
1254     unit = insn_unit (insn);
1255 
1256   if (targetm.sched.use_dfa_pipeline_interface
1257       && (*targetm.sched.use_dfa_pipeline_interface) ()
1258       && sched_verbose >= 1)
1259     {
1260       char buf[2048];
1261 
1262       print_insn (buf, insn, 0);
1263       buf[40] = 0;
1264       fprintf (sched_dump, ";;\t%3i--> %-40s:", clock, buf);
1265 
1266       if (recog_memoized (insn) < 0)
1267 	fprintf (sched_dump, "nothing");
1268       else
1269 	print_reservation (sched_dump, insn);
1270       fputc ('\n', sched_dump);
1271     }
1272   else if (sched_verbose >= 2)
1273     {
1274       fprintf (sched_dump, ";;\t\t--> scheduling insn <<<%d>>> on unit ",
1275 	       INSN_UID (insn));
1276       insn_print_units (insn);
1277       fputc ('\n', sched_dump);
1278     }
1279 
1280   if (!targetm.sched.use_dfa_pipeline_interface
1281       || !(*targetm.sched.use_dfa_pipeline_interface) ())
1282     {
1283       if (sched_verbose && unit == -1)
1284 	visualize_no_unit (insn);
1285 
1286 
1287       if (MAX_BLOCKAGE > 1 || issue_rate > 1 || sched_verbose)
1288 	schedule_unit (unit, insn, clock);
1289 
1290       if (INSN_DEPEND (insn) == 0)
1291 	return 0;
1292     }
1293 
1294   if (INSN_TICK (insn) > clock)
1295     {
1296       /* 'insn' has been prematurely moved from the queue to the
1297 	 ready list.  */
1298       premature_issue = INSN_TICK (insn) - clock;
1299     }
1300 
1301   for (link = INSN_DEPEND (insn); link != 0; link = XEXP (link, 1))
1302     {
1303       rtx next = XEXP (link, 0);
1304       int cost = insn_cost (insn, link, next);
1305 
1306       INSN_TICK (next) = MAX (INSN_TICK (next), clock + cost + premature_issue);
1307 
1308       if ((INSN_DEP_COUNT (next) -= 1) == 0)
1309 	{
1310 	  int effective_cost = INSN_TICK (next) - clock;
1311 
1312 	  if (! (*current_sched_info->new_ready) (next))
1313 	    continue;
1314 
1315 	  if (sched_verbose >= 2)
1316 	    {
1317 	      fprintf (sched_dump, ";;\t\tdependences resolved: insn %s ",
1318 		       (*current_sched_info->print_insn) (next, 0));
1319 
1320 	      if (effective_cost < 1)
1321 		fprintf (sched_dump, "into ready\n");
1322 	      else
1323 		fprintf (sched_dump, "into queue with cost=%d\n",
1324 			 effective_cost);
1325 	    }
1326 
1327 	  /* Adjust the priority of NEXT and either put it on the ready
1328 	     list or queue it.  */
1329 	  adjust_priority (next);
1330 	  if (effective_cost < 1)
1331 	    ready_add (ready, next);
1332 	  else
1333 	    {
1334 	      queue_insn (next, effective_cost);
1335 
1336 	      if (SCHED_GROUP_P (next) && advance < effective_cost)
1337 		advance = effective_cost;
1338 	    }
1339 	}
1340     }
1341 
1342   /* Annotate the instruction with issue information -- TImode
1343      indicates that the instruction is expected not to be able
1344      to issue on the same cycle as the previous insn.  A machine
1345      may use this information to decide how the instruction should
1346      be aligned.  */
1347   if (issue_rate > 1
1348       && GET_CODE (PATTERN (insn)) != USE
1349       && GET_CODE (PATTERN (insn)) != CLOBBER)
1350     {
1351       if (reload_completed)
1352 	PUT_MODE (insn, clock > last_clock_var ? TImode : VOIDmode);
1353       last_clock_var = clock;
1354     }
1355   return advance;
1356 }
1357 
1358 /* Functions for handling of notes.  */
1359 
1360 /* Delete notes beginning with INSN and put them in the chain
1361    of notes ended by NOTE_LIST.
1362    Returns the insn following the notes.  */
1363 
1364 static rtx
unlink_other_notes(rtx insn,rtx tail)1365 unlink_other_notes (rtx insn, rtx tail)
1366 {
1367   rtx prev = PREV_INSN (insn);
1368 
1369   while (insn != tail && GET_CODE (insn) == NOTE)
1370     {
1371       rtx next = NEXT_INSN (insn);
1372       /* Delete the note from its current position.  */
1373       if (prev)
1374 	NEXT_INSN (prev) = next;
1375       if (next)
1376 	PREV_INSN (next) = prev;
1377 
1378       /* See sched_analyze to see how these are handled.  */
1379       if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG
1380 	  && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_END
1381 	  && NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK
1382 	  && NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
1383 	  && NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_END)
1384 	{
1385 	  /* Insert the note at the end of the notes list.  */
1386 	  PREV_INSN (insn) = note_list;
1387 	  if (note_list)
1388 	    NEXT_INSN (note_list) = insn;
1389 	  note_list = insn;
1390 	}
1391 
1392       insn = next;
1393     }
1394   return insn;
1395 }
1396 
1397 /* Delete line notes beginning with INSN. Record line-number notes so
1398    they can be reused.  Returns the insn following the notes.  */
1399 
1400 static rtx
unlink_line_notes(rtx insn,rtx tail)1401 unlink_line_notes (rtx insn, rtx tail)
1402 {
1403   rtx prev = PREV_INSN (insn);
1404 
1405   while (insn != tail && GET_CODE (insn) == NOTE)
1406     {
1407       rtx next = NEXT_INSN (insn);
1408 
1409       if (write_symbols != NO_DEBUG && NOTE_LINE_NUMBER (insn) > 0)
1410 	{
1411 	  /* Delete the note from its current position.  */
1412 	  if (prev)
1413 	    NEXT_INSN (prev) = next;
1414 	  if (next)
1415 	    PREV_INSN (next) = prev;
1416 
1417 	  /* Record line-number notes so they can be reused.  */
1418 	  LINE_NOTE (insn) = insn;
1419 	}
1420       else
1421 	prev = insn;
1422 
1423       insn = next;
1424     }
1425   return insn;
1426 }
1427 
1428 /* Return the head and tail pointers of BB.  */
1429 
1430 void
get_block_head_tail(int b,rtx * headp,rtx * tailp)1431 get_block_head_tail (int b, rtx *headp, rtx *tailp)
1432 {
1433   /* HEAD and TAIL delimit the basic block being scheduled.  */
1434   rtx head = BB_HEAD (BASIC_BLOCK (b));
1435   rtx tail = BB_END (BASIC_BLOCK (b));
1436 
1437   /* Don't include any notes or labels at the beginning of the
1438      basic block, or notes at the ends of basic blocks.  */
1439   while (head != tail)
1440     {
1441       if (GET_CODE (head) == NOTE)
1442 	head = NEXT_INSN (head);
1443       else if (GET_CODE (tail) == NOTE)
1444 	tail = PREV_INSN (tail);
1445       else if (GET_CODE (head) == CODE_LABEL)
1446 	head = NEXT_INSN (head);
1447       else
1448 	break;
1449     }
1450 
1451   *headp = head;
1452   *tailp = tail;
1453 }
1454 
1455 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ].  */
1456 
1457 int
no_real_insns_p(rtx head,rtx tail)1458 no_real_insns_p (rtx head, rtx tail)
1459 {
1460   while (head != NEXT_INSN (tail))
1461     {
1462       if (GET_CODE (head) != NOTE && GET_CODE (head) != CODE_LABEL)
1463 	return 0;
1464       head = NEXT_INSN (head);
1465     }
1466   return 1;
1467 }
1468 
1469 /* Delete line notes from one block. Save them so they can be later restored
1470    (in restore_line_notes).  HEAD and TAIL are the boundaries of the
1471    block in which notes should be processed.  */
1472 
1473 void
rm_line_notes(rtx head,rtx tail)1474 rm_line_notes (rtx head, rtx tail)
1475 {
1476   rtx next_tail;
1477   rtx insn;
1478 
1479   next_tail = NEXT_INSN (tail);
1480   for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1481     {
1482       rtx prev;
1483 
1484       /* Farm out notes, and maybe save them in NOTE_LIST.
1485          This is needed to keep the debugger from
1486          getting completely deranged.  */
1487       if (GET_CODE (insn) == NOTE)
1488 	{
1489 	  prev = insn;
1490 	  insn = unlink_line_notes (insn, next_tail);
1491 
1492 	  if (prev == tail)
1493 	    abort ();
1494 	  if (prev == head)
1495 	    abort ();
1496 	  if (insn == next_tail)
1497 	    abort ();
1498 	}
1499     }
1500 }
1501 
1502 /* Save line number notes for each insn in block B.  HEAD and TAIL are
1503    the boundaries of the block in which notes should be processed.  */
1504 
1505 void
save_line_notes(int b,rtx head,rtx tail)1506 save_line_notes (int b, rtx head, rtx tail)
1507 {
1508   rtx next_tail;
1509 
1510   /* We must use the true line number for the first insn in the block
1511      that was computed and saved at the start of this pass.  We can't
1512      use the current line number, because scheduling of the previous
1513      block may have changed the current line number.  */
1514 
1515   rtx line = line_note_head[b];
1516   rtx insn;
1517 
1518   next_tail = NEXT_INSN (tail);
1519 
1520   for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1521     if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1522       line = insn;
1523     else
1524       LINE_NOTE (insn) = line;
1525 }
1526 
1527 /* After a block was scheduled, insert line notes into the insns list.
1528    HEAD and TAIL are the boundaries of the block in which notes should
1529    be processed.  */
1530 
1531 void
restore_line_notes(rtx head,rtx tail)1532 restore_line_notes (rtx head, rtx tail)
1533 {
1534   rtx line, note, prev, new;
1535   int added_notes = 0;
1536   rtx next_tail, insn;
1537 
1538   head = head;
1539   next_tail = NEXT_INSN (tail);
1540 
1541   /* Determine the current line-number.  We want to know the current
1542      line number of the first insn of the block here, in case it is
1543      different from the true line number that was saved earlier.  If
1544      different, then we need a line number note before the first insn
1545      of this block.  If it happens to be the same, then we don't want to
1546      emit another line number note here.  */
1547   for (line = head; line; line = PREV_INSN (line))
1548     if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
1549       break;
1550 
1551   /* Walk the insns keeping track of the current line-number and inserting
1552      the line-number notes as needed.  */
1553   for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1554     if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1555       line = insn;
1556   /* This used to emit line number notes before every non-deleted note.
1557      However, this confuses a debugger, because line notes not separated
1558      by real instructions all end up at the same address.  I can find no
1559      use for line number notes before other notes, so none are emitted.  */
1560     else if (GET_CODE (insn) != NOTE
1561 	     && INSN_UID (insn) < old_max_uid
1562 	     && (note = LINE_NOTE (insn)) != 0
1563 	     && note != line
1564 	     && (line == 0
1565 		 || NOTE_LINE_NUMBER (note) != NOTE_LINE_NUMBER (line)
1566 		 || NOTE_SOURCE_FILE (note) != NOTE_SOURCE_FILE (line)))
1567       {
1568 	line = note;
1569 	prev = PREV_INSN (insn);
1570 	if (LINE_NOTE (note))
1571 	  {
1572 	    /* Re-use the original line-number note.  */
1573 	    LINE_NOTE (note) = 0;
1574 	    PREV_INSN (note) = prev;
1575 	    NEXT_INSN (prev) = note;
1576 	    PREV_INSN (insn) = note;
1577 	    NEXT_INSN (note) = insn;
1578 	  }
1579 	else
1580 	  {
1581 	    added_notes++;
1582 	    new = emit_note_after (NOTE_LINE_NUMBER (note), prev);
1583 	    NOTE_SOURCE_FILE (new) = NOTE_SOURCE_FILE (note);
1584 	    RTX_INTEGRATED_P (new) = RTX_INTEGRATED_P (note);
1585 	  }
1586       }
1587   if (sched_verbose && added_notes)
1588     fprintf (sched_dump, ";; added %d line-number notes\n", added_notes);
1589 }
1590 
1591 /* After scheduling the function, delete redundant line notes from the
1592    insns list.  */
1593 
1594 void
rm_redundant_line_notes(void)1595 rm_redundant_line_notes (void)
1596 {
1597   rtx line = 0;
1598   rtx insn = get_insns ();
1599   int active_insn = 0;
1600   int notes = 0;
1601 
1602   /* Walk the insns deleting redundant line-number notes.  Many of these
1603      are already present.  The remainder tend to occur at basic
1604      block boundaries.  */
1605   for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
1606     if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1607       {
1608 	/* If there are no active insns following, INSN is redundant.  */
1609 	if (active_insn == 0)
1610 	  {
1611 	    notes++;
1612 	    NOTE_SOURCE_FILE (insn) = 0;
1613 	    NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1614 	  }
1615 	/* If the line number is unchanged, LINE is redundant.  */
1616 	else if (line
1617 		 && NOTE_LINE_NUMBER (line) == NOTE_LINE_NUMBER (insn)
1618 		 && NOTE_SOURCE_FILE (line) == NOTE_SOURCE_FILE (insn))
1619 	  {
1620 	    notes++;
1621 	    NOTE_SOURCE_FILE (line) = 0;
1622 	    NOTE_LINE_NUMBER (line) = NOTE_INSN_DELETED;
1623 	    line = insn;
1624 	  }
1625 	else
1626 	  line = insn;
1627 	active_insn = 0;
1628       }
1629     else if (!((GET_CODE (insn) == NOTE
1630 		&& NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
1631 	       || (GET_CODE (insn) == INSN
1632 		   && (GET_CODE (PATTERN (insn)) == USE
1633 		       || GET_CODE (PATTERN (insn)) == CLOBBER))))
1634       active_insn++;
1635 
1636   if (sched_verbose && notes)
1637     fprintf (sched_dump, ";; deleted %d line-number notes\n", notes);
1638 }
1639 
1640 /* Delete notes between HEAD and TAIL and put them in the chain
1641    of notes ended by NOTE_LIST.  */
1642 
1643 void
rm_other_notes(rtx head,rtx tail)1644 rm_other_notes (rtx head, rtx tail)
1645 {
1646   rtx next_tail;
1647   rtx insn;
1648 
1649   note_list = 0;
1650   if (head == tail && (! INSN_P (head)))
1651     return;
1652 
1653   next_tail = NEXT_INSN (tail);
1654   for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1655     {
1656       rtx prev;
1657 
1658       /* Farm out notes, and maybe save them in NOTE_LIST.
1659          This is needed to keep the debugger from
1660          getting completely deranged.  */
1661       if (GET_CODE (insn) == NOTE)
1662 	{
1663 	  prev = insn;
1664 
1665 	  insn = unlink_other_notes (insn, next_tail);
1666 
1667 	  if (prev == tail)
1668 	    abort ();
1669 	  if (prev == head)
1670 	    abort ();
1671 	  if (insn == next_tail)
1672 	    abort ();
1673 	}
1674     }
1675 }
1676 
1677 /* Functions for computation of registers live/usage info.  */
1678 
1679 /* This function looks for a new register being defined.
1680    If the destination register is already used by the source,
1681    a new register is not needed.  */
1682 
1683 static int
find_set_reg_weight(rtx x)1684 find_set_reg_weight (rtx x)
1685 {
1686   if (GET_CODE (x) == CLOBBER
1687       && register_operand (SET_DEST (x), VOIDmode))
1688     return 1;
1689   if (GET_CODE (x) == SET
1690       && register_operand (SET_DEST (x), VOIDmode))
1691     {
1692       if (GET_CODE (SET_DEST (x)) == REG)
1693 	{
1694 	  if (!reg_mentioned_p (SET_DEST (x), SET_SRC (x)))
1695 	    return 1;
1696 	  else
1697 	    return 0;
1698 	}
1699       return 1;
1700     }
1701   return 0;
1702 }
1703 
1704 /* Calculate INSN_REG_WEIGHT for all insns of a block.  */
1705 
1706 static void
find_insn_reg_weight(int b)1707 find_insn_reg_weight (int b)
1708 {
1709   rtx insn, next_tail, head, tail;
1710 
1711   get_block_head_tail (b, &head, &tail);
1712   next_tail = NEXT_INSN (tail);
1713 
1714   for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1715     {
1716       int reg_weight = 0;
1717       rtx x;
1718 
1719       /* Handle register life information.  */
1720       if (! INSN_P (insn))
1721 	continue;
1722 
1723       /* Increment weight for each register born here.  */
1724       x = PATTERN (insn);
1725       reg_weight += find_set_reg_weight (x);
1726       if (GET_CODE (x) == PARALLEL)
1727 	{
1728 	  int j;
1729 	  for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
1730 	    {
1731 	      x = XVECEXP (PATTERN (insn), 0, j);
1732 	      reg_weight += find_set_reg_weight (x);
1733 	    }
1734 	}
1735       /* Decrement weight for each register that dies here.  */
1736       for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
1737 	{
1738 	  if (REG_NOTE_KIND (x) == REG_DEAD
1739 	      || REG_NOTE_KIND (x) == REG_UNUSED)
1740 	    reg_weight--;
1741 	}
1742 
1743       INSN_REG_WEIGHT (insn) = reg_weight;
1744     }
1745 }
1746 
1747 /* Scheduling clock, modified in schedule_block() and queue_to_ready ().  */
1748 static int clock_var;
1749 
1750 /* Move insns that became ready to fire from queue to ready list.  */
1751 
1752 static void
queue_to_ready(struct ready_list * ready)1753 queue_to_ready (struct ready_list *ready)
1754 {
1755   rtx insn;
1756   rtx link;
1757 
1758   q_ptr = NEXT_Q (q_ptr);
1759 
1760   /* Add all pending insns that can be scheduled without stalls to the
1761      ready list.  */
1762   for (link = insn_queue[q_ptr]; link; link = XEXP (link, 1))
1763     {
1764       insn = XEXP (link, 0);
1765       q_size -= 1;
1766 
1767       if (sched_verbose >= 2)
1768 	fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
1769 		 (*current_sched_info->print_insn) (insn, 0));
1770 
1771       ready_add (ready, insn);
1772       if (sched_verbose >= 2)
1773 	fprintf (sched_dump, "moving to ready without stalls\n");
1774     }
1775   insn_queue[q_ptr] = 0;
1776 
1777   /* If there are no ready insns, stall until one is ready and add all
1778      of the pending insns at that point to the ready list.  */
1779   if (ready->n_ready == 0)
1780     {
1781       int stalls;
1782 
1783       for (stalls = 1; stalls <= MAX_INSN_QUEUE_INDEX; stalls++)
1784 	{
1785 	  if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
1786 	    {
1787 	      for (; link; link = XEXP (link, 1))
1788 		{
1789 		  insn = XEXP (link, 0);
1790 		  q_size -= 1;
1791 
1792 		  if (sched_verbose >= 2)
1793 		    fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
1794 			     (*current_sched_info->print_insn) (insn, 0));
1795 
1796 		  ready_add (ready, insn);
1797 		  if (sched_verbose >= 2)
1798 		    fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
1799 		}
1800 	      insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = 0;
1801 
1802 	      advance_one_cycle ();
1803 
1804 	      break;
1805 	    }
1806 
1807 	  advance_one_cycle ();
1808 	}
1809 
1810       if ((!targetm.sched.use_dfa_pipeline_interface
1811 	   || !(*targetm.sched.use_dfa_pipeline_interface) ())
1812 	  && sched_verbose && stalls)
1813 	visualize_stall_cycles (stalls);
1814 
1815       q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
1816       clock_var += stalls;
1817     }
1818 }
1819 
1820 /* Used by early_queue_to_ready.  Determines whether it is "ok" to
1821    prematurely move INSN from the queue to the ready list.  Currently,
1822    if a target defines the hook 'is_costly_dependence', this function
1823    uses the hook to check whether there exist any dependences which are
1824    considered costly by the target, between INSN and other insns that
1825    have already been scheduled.  Dependences are checked up to Y cycles
1826    back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
1827    controlling this value.
1828    (Other considerations could be taken into account instead (or in
1829    addition) depending on user flags and target hooks.  */
1830 
1831 static bool
ok_for_early_queue_removal(rtx insn)1832 ok_for_early_queue_removal (rtx insn)
1833 {
1834   int n_cycles;
1835   rtx prev_insn = last_scheduled_insn;
1836 
1837   if (targetm.sched.is_costly_dependence)
1838     {
1839       for (n_cycles = flag_sched_stalled_insns_dep; n_cycles; n_cycles--)
1840 	{
1841 	  for ( ; prev_insn; prev_insn = PREV_INSN (prev_insn))
1842 	    {
1843 	      rtx dep_link = 0;
1844 	      int dep_cost;
1845 
1846 	      if (GET_CODE (prev_insn) != NOTE)
1847 		{
1848 		  dep_link = find_insn_list (insn, INSN_DEPEND (prev_insn));
1849 		  if (dep_link)
1850 		    {
1851 		      dep_cost = insn_cost (prev_insn, dep_link, insn) ;
1852 		      if (targetm.sched.is_costly_dependence (prev_insn, insn,
1853 				dep_link, dep_cost,
1854 				flag_sched_stalled_insns_dep - n_cycles))
1855 			return false;
1856 		    }
1857 		}
1858 
1859 	      if (GET_MODE (prev_insn) == TImode) /* end of dispatch group */
1860 		break;
1861 	    }
1862 
1863 	  if (!prev_insn)
1864 	    break;
1865 	  prev_insn = PREV_INSN (prev_insn);
1866 	}
1867     }
1868 
1869   return true;
1870 }
1871 
1872 
1873 /* Remove insns from the queue, before they become "ready" with respect
1874    to FU latency considerations.  */
1875 
1876 static int
early_queue_to_ready(state_t state,struct ready_list * ready)1877 early_queue_to_ready (state_t state, struct ready_list *ready)
1878 {
1879   rtx insn;
1880   rtx link;
1881   rtx next_link;
1882   rtx prev_link;
1883   bool move_to_ready;
1884   int cost;
1885   state_t temp_state = alloca (dfa_state_size);
1886   int stalls;
1887   int insns_removed = 0;
1888 
1889   /*
1890      Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
1891      function:
1892 
1893      X == 0: There is no limit on how many queued insns can be removed
1894              prematurely.  (flag_sched_stalled_insns = -1).
1895 
1896      X >= 1: Only X queued insns can be removed prematurely in each
1897 	     invocation.  (flag_sched_stalled_insns = X).
1898 
1899      Otherwise: Early queue removal is disabled.
1900          (flag_sched_stalled_insns = 0)
1901   */
1902 
1903   if (! flag_sched_stalled_insns)
1904     return 0;
1905 
1906   for (stalls = 0; stalls <= MAX_INSN_QUEUE_INDEX; stalls++)
1907     {
1908       if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
1909 	{
1910 	  if (sched_verbose > 6)
1911 	    fprintf (sched_dump, ";; look at index %d + %d\n", q_ptr, stalls);
1912 
1913 	  prev_link = 0;
1914 	  while (link)
1915 	    {
1916 	      next_link = XEXP (link, 1);
1917 	      insn = XEXP (link, 0);
1918 	      if (insn && sched_verbose > 6)
1919 		print_rtl_single (sched_dump, insn);
1920 
1921 	      memcpy (temp_state, state, dfa_state_size);
1922 	      if (recog_memoized (insn) < 0)
1923 		/* non-negative to indicate that it's not ready
1924 		   to avoid infinite Q->R->Q->R... */
1925 		cost = 0;
1926 	      else
1927 		cost = state_transition (temp_state, insn);
1928 
1929 	      if (sched_verbose >= 6)
1930 		fprintf (sched_dump, "transition cost = %d\n", cost);
1931 
1932 	      move_to_ready = false;
1933 	      if (cost < 0)
1934 		{
1935 		  move_to_ready = ok_for_early_queue_removal (insn);
1936 		  if (move_to_ready == true)
1937 		    {
1938 		      /* move from Q to R */
1939 		      q_size -= 1;
1940 		      ready_add (ready, insn);
1941 
1942 		      if (prev_link)
1943 			XEXP (prev_link, 1) = next_link;
1944 		      else
1945 			insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = next_link;
1946 
1947 		      free_INSN_LIST_node (link);
1948 
1949 		      if (sched_verbose >= 2)
1950 			fprintf (sched_dump, ";;\t\tEarly Q-->Ready: insn %s\n",
1951 				 (*current_sched_info->print_insn) (insn, 0));
1952 
1953 		      insns_removed++;
1954 		      if (insns_removed == flag_sched_stalled_insns)
1955 			/* remove only one insn from Q at a time */
1956 			return insns_removed;
1957 		    }
1958 		}
1959 
1960 	      if (move_to_ready == false)
1961 		prev_link = link;
1962 
1963 	      link = next_link;
1964 	    } /* while link */
1965 	} /* if link */
1966 
1967     } /* for stalls.. */
1968 
1969   return insns_removed;
1970 }
1971 
1972 
1973 /* Print the ready list for debugging purposes.  Callable from debugger.  */
1974 
1975 static void
debug_ready_list(struct ready_list * ready)1976 debug_ready_list (struct ready_list *ready)
1977 {
1978   rtx *p;
1979   int i;
1980 
1981   if (ready->n_ready == 0)
1982     {
1983       fprintf (sched_dump, "\n");
1984       return;
1985     }
1986 
1987   p = ready_lastpos (ready);
1988   for (i = 0; i < ready->n_ready; i++)
1989     fprintf (sched_dump, "  %s", (*current_sched_info->print_insn) (p[i], 0));
1990   fprintf (sched_dump, "\n");
1991 }
1992 
1993 /* move_insn1: Remove INSN from insn chain, and link it after LAST insn.  */
1994 
1995 static rtx
move_insn1(rtx insn,rtx last)1996 move_insn1 (rtx insn, rtx last)
1997 {
1998   NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
1999   PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2000 
2001   NEXT_INSN (insn) = NEXT_INSN (last);
2002   PREV_INSN (NEXT_INSN (last)) = insn;
2003 
2004   NEXT_INSN (last) = insn;
2005   PREV_INSN (insn) = last;
2006 
2007   return insn;
2008 }
2009 
2010 /* Search INSN for REG_SAVE_NOTE note pairs for
2011    NOTE_INSN_{LOOP,EHREGION}_{BEG,END}; and convert them back into
2012    NOTEs.  The REG_SAVE_NOTE note following first one is contains the
2013    saved value for NOTE_BLOCK_NUMBER which is useful for
2014    NOTE_INSN_EH_REGION_{BEG,END} NOTEs.  LAST is the last instruction
2015    output by the instruction scheduler.  Return the new value of LAST.  */
2016 
2017 static rtx
reemit_notes(rtx insn,rtx last)2018 reemit_notes (rtx insn, rtx last)
2019 {
2020   rtx note, retval;
2021 
2022   retval = last;
2023   for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2024     {
2025       if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
2026 	{
2027 	  enum insn_note note_type = INTVAL (XEXP (note, 0));
2028 
2029 	  last = emit_note_before (note_type, last);
2030 	  remove_note (insn, note);
2031 	  note = XEXP (note, 1);
2032 	  if (note_type == NOTE_INSN_EH_REGION_BEG
2033 	      || note_type == NOTE_INSN_EH_REGION_END)
2034 	    NOTE_EH_HANDLER (last) = INTVAL (XEXP (note, 0));
2035 	  remove_note (insn, note);
2036 	}
2037     }
2038   return retval;
2039 }
2040 
2041 /* Move INSN.  Reemit notes if needed.
2042 
2043    Return the last insn emitted by the scheduler, which is the
2044    return value from the first call to reemit_notes.  */
2045 
2046 static rtx
move_insn(rtx insn,rtx last)2047 move_insn (rtx insn, rtx last)
2048 {
2049   rtx retval = NULL;
2050 
2051   move_insn1 (insn, last);
2052 
2053   /* If this is the first call to reemit_notes, then record
2054      its return value.  */
2055   if (retval == NULL_RTX)
2056     retval = reemit_notes (insn, insn);
2057   else
2058     reemit_notes (insn, insn);
2059 
2060   SCHED_GROUP_P (insn) = 0;
2061 
2062   return retval;
2063 }
2064 
2065 /* The following structure describe an entry of the stack of choices.  */
2066 struct choice_entry
2067 {
2068   /* Ordinal number of the issued insn in the ready queue.  */
2069   int index;
2070   /* The number of the rest insns whose issues we should try.  */
2071   int rest;
2072   /* The number of issued essential insns.  */
2073   int n;
2074   /* State after issuing the insn.  */
2075   state_t state;
2076 };
2077 
2078 /* The following array is used to implement a stack of choices used in
2079    function max_issue.  */
2080 static struct choice_entry *choice_stack;
2081 
2082 /* The following variable value is number of essential insns issued on
2083    the current cycle.  An insn is essential one if it changes the
2084    processors state.  */
2085 static int cycle_issued_insns;
2086 
2087 /* The following variable value is maximal number of tries of issuing
2088    insns for the first cycle multipass insn scheduling.  We define
2089    this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE).  We would not
2090    need this constraint if all real insns (with non-negative codes)
2091    had reservations because in this case the algorithm complexity is
2092    O(DFA_LOOKAHEAD**ISSUE_RATE).  Unfortunately, the dfa descriptions
2093    might be incomplete and such insn might occur.  For such
2094    descriptions, the complexity of algorithm (without the constraint)
2095    could achieve DFA_LOOKAHEAD ** N , where N is the queue length.  */
2096 static int max_lookahead_tries;
2097 
2098 /* The following value is value of hook
2099    `first_cycle_multipass_dfa_lookahead' at the last call of
2100    `max_issue'.  */
2101 static int cached_first_cycle_multipass_dfa_lookahead = 0;
2102 
2103 /* The following value is value of `issue_rate' at the last call of
2104    `sched_init'.  */
2105 static int cached_issue_rate = 0;
2106 
2107 /* The following function returns maximal (or close to maximal) number
2108    of insns which can be issued on the same cycle and one of which
2109    insns is insns with the best rank (the first insn in READY).  To
2110    make this function tries different samples of ready insns.  READY
2111    is current queue `ready'.  Global array READY_TRY reflects what
2112    insns are already issued in this try.  INDEX will contain index
2113    of the best insn in READY.  The following function is used only for
2114    first cycle multipass scheduling.  */
2115 static int
max_issue(struct ready_list * ready,int * index)2116 max_issue (struct ready_list *ready, int *index)
2117 {
2118   int n, i, all, n_ready, best, delay, tries_num;
2119   struct choice_entry *top;
2120   rtx insn;
2121 
2122   best = 0;
2123   memcpy (choice_stack->state, curr_state, dfa_state_size);
2124   top = choice_stack;
2125   top->rest = cached_first_cycle_multipass_dfa_lookahead;
2126   top->n = 0;
2127   n_ready = ready->n_ready;
2128   for (all = i = 0; i < n_ready; i++)
2129     if (!ready_try [i])
2130       all++;
2131   i = 0;
2132   tries_num = 0;
2133   for (;;)
2134     {
2135       if (top->rest == 0 || i >= n_ready)
2136 	{
2137 	  if (top == choice_stack)
2138 	    break;
2139 	  if (best < top - choice_stack && ready_try [0])
2140 	    {
2141 	      best = top - choice_stack;
2142 	      *index = choice_stack [1].index;
2143 	      if (top->n == issue_rate - cycle_issued_insns || best == all)
2144 		break;
2145 	    }
2146 	  i = top->index;
2147 	  ready_try [i] = 0;
2148 	  top--;
2149 	  memcpy (curr_state, top->state, dfa_state_size);
2150 	}
2151       else if (!ready_try [i])
2152 	{
2153 	  tries_num++;
2154 	  if (tries_num > max_lookahead_tries)
2155 	    break;
2156 	  insn = ready_element (ready, i);
2157 	  delay = state_transition (curr_state, insn);
2158 	  if (delay < 0)
2159 	    {
2160 	      if (state_dead_lock_p (curr_state))
2161 		top->rest = 0;
2162 	      else
2163 		top->rest--;
2164 	      n = top->n;
2165 	      if (memcmp (top->state, curr_state, dfa_state_size) != 0)
2166 		n++;
2167 	      top++;
2168 	      top->rest = cached_first_cycle_multipass_dfa_lookahead;
2169 	      top->index = i;
2170 	      top->n = n;
2171 	      memcpy (top->state, curr_state, dfa_state_size);
2172 	      ready_try [i] = 1;
2173 	      i = -1;
2174 	    }
2175 	}
2176       i++;
2177     }
2178   while (top != choice_stack)
2179     {
2180       ready_try [top->index] = 0;
2181       top--;
2182     }
2183   memcpy (curr_state, choice_stack->state, dfa_state_size);
2184   return best;
2185 }
2186 
2187 /* The following function chooses insn from READY and modifies
2188    *N_READY and READY.  The following function is used only for first
2189    cycle multipass scheduling.  */
2190 
2191 static rtx
choose_ready(struct ready_list * ready)2192 choose_ready (struct ready_list *ready)
2193 {
2194   int lookahead = 0;
2195 
2196   if (targetm.sched.first_cycle_multipass_dfa_lookahead)
2197     lookahead = (*targetm.sched.first_cycle_multipass_dfa_lookahead) ();
2198   if (lookahead <= 0 || SCHED_GROUP_P (ready_element (ready, 0)))
2199     return ready_remove_first (ready);
2200   else
2201     {
2202       /* Try to choose the better insn.  */
2203       int index = 0, i;
2204       rtx insn;
2205 
2206       if (cached_first_cycle_multipass_dfa_lookahead != lookahead)
2207 	{
2208 	  cached_first_cycle_multipass_dfa_lookahead = lookahead;
2209 	  max_lookahead_tries = 100;
2210 	  for (i = 0; i < issue_rate; i++)
2211 	    max_lookahead_tries *= lookahead;
2212 	}
2213       insn = ready_element (ready, 0);
2214       if (INSN_CODE (insn) < 0)
2215 	return ready_remove_first (ready);
2216       for (i = 1; i < ready->n_ready; i++)
2217 	{
2218 	  insn = ready_element (ready, i);
2219 	  ready_try [i]
2220 	    = (INSN_CODE (insn) < 0
2221 	       || (targetm.sched.first_cycle_multipass_dfa_lookahead_guard
2222 		   && !(*targetm.sched.first_cycle_multipass_dfa_lookahead_guard) (insn)));
2223 	}
2224       if (max_issue (ready, &index) == 0)
2225 	return ready_remove_first (ready);
2226       else
2227 	return ready_remove (ready, index);
2228     }
2229 }
2230 
2231 /* Called from backends from targetm.sched.reorder to emit stuff into
2232    the instruction stream.  */
2233 
2234 rtx
sched_emit_insn(rtx pat)2235 sched_emit_insn (rtx pat)
2236 {
2237   rtx insn = emit_insn_after (pat, last_scheduled_insn);
2238   last_scheduled_insn = insn;
2239   return insn;
2240 }
2241 
2242 /* Use forward list scheduling to rearrange insns of block B in region RGN,
2243    possibly bringing insns from subsequent blocks in the same region.  */
2244 
2245 void
schedule_block(int b,int rgn_n_insns)2246 schedule_block (int b, int rgn_n_insns)
2247 {
2248   struct ready_list ready;
2249   int i, first_cycle_insn_p;
2250   int can_issue_more;
2251   state_t temp_state = NULL;  /* It is used for multipass scheduling.  */
2252   int sort_p, advance, start_clock_var;
2253 
2254   /* Head/tail info for this block.  */
2255   rtx prev_head = current_sched_info->prev_head;
2256   rtx next_tail = current_sched_info->next_tail;
2257   rtx head = NEXT_INSN (prev_head);
2258   rtx tail = PREV_INSN (next_tail);
2259 
2260   /* We used to have code to avoid getting parameters moved from hard
2261      argument registers into pseudos.
2262 
2263      However, it was removed when it proved to be of marginal benefit
2264      and caused problems because schedule_block and compute_forward_dependences
2265      had different notions of what the "head" insn was.  */
2266 
2267   if (head == tail && (! INSN_P (head)))
2268     abort ();
2269 
2270   /* Debug info.  */
2271   if (sched_verbose)
2272     {
2273       fprintf (sched_dump, ";;   ======================================================\n");
2274       fprintf (sched_dump,
2275 	       ";;   -- basic block %d from %d to %d -- %s reload\n",
2276 	       b, INSN_UID (head), INSN_UID (tail),
2277 	       (reload_completed ? "after" : "before"));
2278       fprintf (sched_dump, ";;   ======================================================\n");
2279       fprintf (sched_dump, "\n");
2280 
2281       visualize_alloc ();
2282       init_block_visualization ();
2283     }
2284 
2285   if (targetm.sched.use_dfa_pipeline_interface
2286       && (*targetm.sched.use_dfa_pipeline_interface) ())
2287     state_reset (curr_state);
2288   else
2289     clear_units ();
2290 
2291   /* Allocate the ready list.  */
2292   ready.veclen = rgn_n_insns + 1 + issue_rate;
2293   ready.first = ready.veclen - 1;
2294   ready.vec = xmalloc (ready.veclen * sizeof (rtx));
2295   ready.n_ready = 0;
2296 
2297   if (targetm.sched.use_dfa_pipeline_interface
2298       && (*targetm.sched.use_dfa_pipeline_interface) ())
2299     {
2300       /* It is used for first cycle multipass scheduling.  */
2301       temp_state = alloca (dfa_state_size);
2302       ready_try = xcalloc ((rgn_n_insns + 1), sizeof (char));
2303       choice_stack = xmalloc ((rgn_n_insns + 1)
2304 			      * sizeof (struct choice_entry));
2305       for (i = 0; i <= rgn_n_insns; i++)
2306 	choice_stack[i].state = xmalloc (dfa_state_size);
2307     }
2308 
2309   (*current_sched_info->init_ready_list) (&ready);
2310 
2311   if (targetm.sched.md_init)
2312     (*targetm.sched.md_init) (sched_dump, sched_verbose, ready.veclen);
2313 
2314   /* We start inserting insns after PREV_HEAD.  */
2315   last_scheduled_insn = prev_head;
2316 
2317   /* Initialize INSN_QUEUE.  Q_SIZE is the total number of insns in the
2318      queue.  */
2319   q_ptr = 0;
2320   q_size = 0;
2321 
2322   if (!targetm.sched.use_dfa_pipeline_interface
2323       || !(*targetm.sched.use_dfa_pipeline_interface) ())
2324     max_insn_queue_index_macro_value = INSN_QUEUE_SIZE - 1;
2325   else
2326     max_insn_queue_index_macro_value = max_insn_queue_index;
2327 
2328   insn_queue = alloca ((MAX_INSN_QUEUE_INDEX + 1) * sizeof (rtx));
2329   memset (insn_queue, 0, (MAX_INSN_QUEUE_INDEX + 1) * sizeof (rtx));
2330   last_clock_var = -1;
2331 
2332   /* Start just before the beginning of time.  */
2333   clock_var = -1;
2334   advance = 0;
2335 
2336   sort_p = TRUE;
2337   /* Loop until all the insns in BB are scheduled.  */
2338   while ((*current_sched_info->schedule_more_p) ())
2339     {
2340       do
2341 	{
2342 	  start_clock_var = clock_var;
2343 
2344 	  clock_var++;
2345 
2346 	  advance_one_cycle ();
2347 
2348 	  /* Add to the ready list all pending insns that can be issued now.
2349 	     If there are no ready insns, increment clock until one
2350 	     is ready and add all pending insns at that point to the ready
2351 	     list.  */
2352 	  queue_to_ready (&ready);
2353 
2354 	  if (ready.n_ready == 0)
2355 	    abort ();
2356 
2357 	  if (sched_verbose >= 2)
2358 	    {
2359 	      fprintf (sched_dump, ";;\t\tReady list after queue_to_ready:  ");
2360 	      debug_ready_list (&ready);
2361 	    }
2362 	  advance -= clock_var - start_clock_var;
2363 	}
2364       while (advance > 0);
2365 
2366       if (sort_p)
2367 	{
2368 	  /* Sort the ready list based on priority.  */
2369 	  ready_sort (&ready);
2370 
2371 	  if (sched_verbose >= 2)
2372 	    {
2373 	      fprintf (sched_dump, ";;\t\tReady list after ready_sort:  ");
2374 	      debug_ready_list (&ready);
2375 	    }
2376 	}
2377 
2378       /* Allow the target to reorder the list, typically for
2379 	 better instruction bundling.  */
2380       if (sort_p && targetm.sched.reorder
2381 	  && (ready.n_ready == 0
2382 	      || !SCHED_GROUP_P (ready_element (&ready, 0))))
2383 	can_issue_more =
2384 	  (*targetm.sched.reorder) (sched_dump, sched_verbose,
2385 				    ready_lastpos (&ready),
2386 				    &ready.n_ready, clock_var);
2387       else
2388 	can_issue_more = issue_rate;
2389 
2390       first_cycle_insn_p = 1;
2391       cycle_issued_insns = 0;
2392       for (;;)
2393 	{
2394 	  rtx insn;
2395 	  int cost;
2396 	  bool asm_p = false;
2397 
2398 	  if (sched_verbose >= 2)
2399 	    {
2400 	      fprintf (sched_dump, ";;\tReady list (t =%3d):  ",
2401 		       clock_var);
2402 	      debug_ready_list (&ready);
2403 	    }
2404 
2405 	  if (!targetm.sched.use_dfa_pipeline_interface
2406 	      || !(*targetm.sched.use_dfa_pipeline_interface) ())
2407 	    {
2408 	      if (ready.n_ready == 0 || !can_issue_more
2409 		  || !(*current_sched_info->schedule_more_p) ())
2410 		break;
2411 	      insn = ready_remove_first (&ready);
2412 	      cost = actual_hazard (insn_unit (insn), insn, clock_var, 0);
2413 	    }
2414 	  else
2415 	    {
2416 	      if (ready.n_ready == 0
2417 		  && can_issue_more
2418 		  && reload_completed)
2419 		{
2420 		  /* Allow scheduling insns directly from the queue in case
2421 		     there's nothing better to do (ready list is empty) but
2422 		     there are still vacant dispatch slots in the current cycle.  */
2423 		  if (sched_verbose >= 6)
2424 		    fprintf(sched_dump,";;\t\tSecond chance\n");
2425 		  memcpy (temp_state, curr_state, dfa_state_size);
2426 		  if (early_queue_to_ready (temp_state, &ready))
2427 		    ready_sort (&ready);
2428 		}
2429 
2430 	      if (ready.n_ready == 0 || !can_issue_more
2431 		  || state_dead_lock_p (curr_state)
2432 		  || !(*current_sched_info->schedule_more_p) ())
2433 		break;
2434 
2435 	      /* Select and remove the insn from the ready list.  */
2436 	      if (sort_p)
2437 		insn = choose_ready (&ready);
2438 	      else
2439 		insn = ready_remove_first (&ready);
2440 
2441 	      if (targetm.sched.dfa_new_cycle
2442 		  && (*targetm.sched.dfa_new_cycle) (sched_dump, sched_verbose,
2443 						     insn, last_clock_var,
2444 						     clock_var, &sort_p))
2445 		{
2446 		  ready_add (&ready, insn);
2447 		  break;
2448 		}
2449 
2450 	      sort_p = TRUE;
2451 	      memcpy (temp_state, curr_state, dfa_state_size);
2452 	      if (recog_memoized (insn) < 0)
2453 		{
2454 		  asm_p = (GET_CODE (PATTERN (insn)) == ASM_INPUT
2455 			   || asm_noperands (PATTERN (insn)) >= 0);
2456 		  if (!first_cycle_insn_p && asm_p)
2457 		    /* This is asm insn which is tryed to be issued on the
2458 		       cycle not first.  Issue it on the next cycle.  */
2459 		    cost = 1;
2460 		  else
2461 		    /* A USE insn, or something else we don't need to
2462 		       understand.  We can't pass these directly to
2463 		       state_transition because it will trigger a
2464 		       fatal error for unrecognizable insns.  */
2465 		    cost = 0;
2466 		}
2467 	      else
2468 		{
2469 		  cost = state_transition (temp_state, insn);
2470 
2471 		  if (targetm.sched.first_cycle_multipass_dfa_lookahead
2472 		      && targetm.sched.dfa_bubble)
2473 		    {
2474 		      if (cost == 0)
2475 			{
2476 			  int j;
2477 			  rtx bubble;
2478 
2479 			  for (j = 0;
2480 			       (bubble = (*targetm.sched.dfa_bubble) (j))
2481 				 != NULL_RTX;
2482 			       j++)
2483 			    {
2484 			      memcpy (temp_state, curr_state, dfa_state_size);
2485 
2486 			      if (state_transition (temp_state, bubble) < 0
2487 				  && state_transition (temp_state, insn) < 0)
2488 				break;
2489 			    }
2490 
2491 			  if (bubble != NULL_RTX)
2492 			    {
2493 			      if (insert_schedule_bubbles_p)
2494 				{
2495 				  rtx copy;
2496 
2497 				  copy = copy_rtx (PATTERN (bubble));
2498 				  emit_insn_after (copy, last_scheduled_insn);
2499 				  last_scheduled_insn
2500 				    = NEXT_INSN (last_scheduled_insn);
2501 				  INSN_CODE (last_scheduled_insn)
2502 				    = INSN_CODE (bubble);
2503 
2504 				  /* Annotate the same for the first insns
2505 				     scheduling by using mode.  */
2506 				  PUT_MODE (last_scheduled_insn,
2507 					    (clock_var > last_clock_var
2508 					     ? clock_var - last_clock_var
2509 					     : VOIDmode));
2510 				  last_clock_var = clock_var;
2511 
2512 				  if (sched_verbose >= 2)
2513 				    {
2514 				      fprintf (sched_dump,
2515 					       ";;\t\t--> scheduling bubble insn <<<%d>>>:reservation ",
2516 					       INSN_UID (last_scheduled_insn));
2517 
2518 				      if (recog_memoized (last_scheduled_insn)
2519 					  < 0)
2520 					fprintf (sched_dump, "nothing");
2521 				      else
2522 					print_reservation
2523 					  (sched_dump, last_scheduled_insn);
2524 
2525 				      fprintf (sched_dump, "\n");
2526 				    }
2527 				}
2528 			      cost = -1;
2529 			    }
2530 			}
2531 		    }
2532 
2533 		  if (cost < 0)
2534 		    cost = 0;
2535 		  else if (cost == 0)
2536 		    cost = 1;
2537 		}
2538 	    }
2539 
2540 
2541 	  if (cost >= 1)
2542 	    {
2543 	      queue_insn (insn, cost);
2544 	      continue;
2545 	    }
2546 
2547 	  if (! (*current_sched_info->can_schedule_ready_p) (insn))
2548 	    goto next;
2549 
2550 	  last_scheduled_insn = move_insn (insn, last_scheduled_insn);
2551 
2552 	  if (targetm.sched.use_dfa_pipeline_interface
2553 	      && (*targetm.sched.use_dfa_pipeline_interface) ())
2554 	    {
2555 	      if (memcmp (curr_state, temp_state, dfa_state_size) != 0)
2556 		cycle_issued_insns++;
2557 	      memcpy (curr_state, temp_state, dfa_state_size);
2558 	    }
2559 
2560 	  if (targetm.sched.variable_issue)
2561 	    can_issue_more =
2562 	      (*targetm.sched.variable_issue) (sched_dump, sched_verbose,
2563 					       insn, can_issue_more);
2564 	  /* A naked CLOBBER or USE generates no instruction, so do
2565 	     not count them against the issue rate.  */
2566 	  else if (GET_CODE (PATTERN (insn)) != USE
2567 		   && GET_CODE (PATTERN (insn)) != CLOBBER)
2568 	    can_issue_more--;
2569 
2570 	  advance = schedule_insn (insn, &ready, clock_var);
2571 
2572 	  /* After issuing an asm insn we should start a new cycle.  */
2573 	  if (advance == 0 && asm_p)
2574 	    advance = 1;
2575 	  if (advance != 0)
2576 	    break;
2577 
2578 	next:
2579 	  first_cycle_insn_p = 0;
2580 
2581 	  /* Sort the ready list based on priority.  This must be
2582 	     redone here, as schedule_insn may have readied additional
2583 	     insns that will not be sorted correctly.  */
2584 	  if (ready.n_ready > 0)
2585 	    ready_sort (&ready);
2586 
2587 	  if (targetm.sched.reorder2
2588 	      && (ready.n_ready == 0
2589 		  || !SCHED_GROUP_P (ready_element (&ready, 0))))
2590 	    {
2591 	      can_issue_more =
2592 		(*targetm.sched.reorder2) (sched_dump, sched_verbose,
2593 					   ready.n_ready
2594 					   ? ready_lastpos (&ready) : NULL,
2595 					   &ready.n_ready, clock_var);
2596 	    }
2597 	}
2598 
2599       if ((!targetm.sched.use_dfa_pipeline_interface
2600 	   || !(*targetm.sched.use_dfa_pipeline_interface) ())
2601 	  && sched_verbose)
2602 	/* Debug info.  */
2603 	visualize_scheduled_insns (clock_var);
2604     }
2605 
2606   if (targetm.sched.md_finish)
2607     (*targetm.sched.md_finish) (sched_dump, sched_verbose);
2608 
2609   /* Debug info.  */
2610   if (sched_verbose)
2611     {
2612       fprintf (sched_dump, ";;\tReady list (final):  ");
2613       debug_ready_list (&ready);
2614       if (!targetm.sched.use_dfa_pipeline_interface
2615 	  || !(*targetm.sched.use_dfa_pipeline_interface) ())
2616 	print_block_visualization ("");
2617     }
2618 
2619   /* Sanity check -- queue must be empty now.  Meaningless if region has
2620      multiple bbs.  */
2621   if (current_sched_info->queue_must_finish_empty && q_size != 0)
2622       abort ();
2623 
2624   /* Update head/tail boundaries.  */
2625   head = NEXT_INSN (prev_head);
2626   tail = last_scheduled_insn;
2627 
2628   if (!reload_completed)
2629     {
2630       rtx insn, link, next;
2631 
2632       /* INSN_TICK (minimum clock tick at which the insn becomes
2633          ready) may be not correct for the insn in the subsequent
2634          blocks of the region.  We should use a correct value of
2635          `clock_var' or modify INSN_TICK.  It is better to keep
2636          clock_var value equal to 0 at the start of a basic block.
2637          Therefore we modify INSN_TICK here.  */
2638       for (insn = head; insn != tail; insn = NEXT_INSN (insn))
2639 	if (INSN_P (insn))
2640 	  {
2641 	    for (link = INSN_DEPEND (insn); link != 0; link = XEXP (link, 1))
2642 	      {
2643 		next = XEXP (link, 0);
2644 		INSN_TICK (next) -= clock_var;
2645 	      }
2646 	  }
2647     }
2648 
2649   /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
2650      previously found among the insns.  Insert them at the beginning
2651      of the insns.  */
2652   if (note_list != 0)
2653     {
2654       rtx note_head = note_list;
2655 
2656       while (PREV_INSN (note_head))
2657 	{
2658 	  note_head = PREV_INSN (note_head);
2659 	}
2660 
2661       PREV_INSN (note_head) = PREV_INSN (head);
2662       NEXT_INSN (PREV_INSN (head)) = note_head;
2663       PREV_INSN (head) = note_list;
2664       NEXT_INSN (note_list) = head;
2665       head = note_head;
2666     }
2667 
2668   /* Debugging.  */
2669   if (sched_verbose)
2670     {
2671       fprintf (sched_dump, ";;   total time = %d\n;;   new head = %d\n",
2672 	       clock_var, INSN_UID (head));
2673       fprintf (sched_dump, ";;   new tail = %d\n\n",
2674 	       INSN_UID (tail));
2675       visualize_free ();
2676     }
2677 
2678   current_sched_info->head = head;
2679   current_sched_info->tail = tail;
2680 
2681   free (ready.vec);
2682 
2683   if (targetm.sched.use_dfa_pipeline_interface
2684       && (*targetm.sched.use_dfa_pipeline_interface) ())
2685     {
2686       free (ready_try);
2687       for (i = 0; i <= rgn_n_insns; i++)
2688 	free (choice_stack [i].state);
2689       free (choice_stack);
2690     }
2691 }
2692 
2693 /* Set_priorities: compute priority of each insn in the block.  */
2694 
2695 int
set_priorities(rtx head,rtx tail)2696 set_priorities (rtx head, rtx tail)
2697 {
2698   rtx insn;
2699   int n_insn;
2700   int sched_max_insns_priority =
2701 	current_sched_info->sched_max_insns_priority;
2702   rtx prev_head;
2703 
2704   prev_head = PREV_INSN (head);
2705 
2706   if (head == tail && (! INSN_P (head)))
2707     return 0;
2708 
2709   n_insn = 0;
2710   sched_max_insns_priority = 0;
2711   for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
2712     {
2713       if (GET_CODE (insn) == NOTE)
2714 	continue;
2715 
2716       n_insn++;
2717       (void) priority (insn);
2718 
2719       if (INSN_PRIORITY_KNOWN (insn))
2720 	sched_max_insns_priority =
2721 	  MAX (sched_max_insns_priority, INSN_PRIORITY (insn));
2722     }
2723   sched_max_insns_priority += 1;
2724   current_sched_info->sched_max_insns_priority =
2725 	sched_max_insns_priority;
2726 
2727   return n_insn;
2728 }
2729 
2730 /* Initialize some global state for the scheduler.  DUMP_FILE is to be used
2731    for debugging output.  */
2732 
2733 void
sched_init(FILE * dump_file)2734 sched_init (FILE *dump_file)
2735 {
2736   int luid;
2737   basic_block b;
2738   rtx insn;
2739   int i;
2740 
2741   /* Disable speculative loads in their presence if cc0 defined.  */
2742 #ifdef HAVE_cc0
2743   flag_schedule_speculative_load = 0;
2744 #endif
2745 
2746   /* Set dump and sched_verbose for the desired debugging output.  If no
2747      dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
2748      For -fsched-verbose=N, N>=10, print everything to stderr.  */
2749   sched_verbose = sched_verbose_param;
2750   if (sched_verbose_param == 0 && dump_file)
2751     sched_verbose = 1;
2752   sched_dump = ((sched_verbose_param >= 10 || !dump_file)
2753 		? stderr : dump_file);
2754 
2755   /* Initialize issue_rate.  */
2756   if (targetm.sched.issue_rate)
2757     issue_rate = (*targetm.sched.issue_rate) ();
2758   else
2759     issue_rate = 1;
2760 
2761   if (cached_issue_rate != issue_rate)
2762     {
2763       cached_issue_rate = issue_rate;
2764       /* To invalidate max_lookahead_tries:  */
2765       cached_first_cycle_multipass_dfa_lookahead = 0;
2766     }
2767 
2768   /* We use LUID 0 for the fake insn (UID 0) which holds dependencies for
2769      pseudos which do not cross calls.  */
2770   old_max_uid = get_max_uid () + 1;
2771 
2772   h_i_d = xcalloc (old_max_uid, sizeof (*h_i_d));
2773 
2774   for (i = 0; i < old_max_uid; i++)
2775     h_i_d [i].cost = -1;
2776 
2777   if (targetm.sched.use_dfa_pipeline_interface
2778       && (*targetm.sched.use_dfa_pipeline_interface) ())
2779     {
2780       if (targetm.sched.init_dfa_pre_cycle_insn)
2781 	(*targetm.sched.init_dfa_pre_cycle_insn) ();
2782 
2783       if (targetm.sched.init_dfa_post_cycle_insn)
2784 	(*targetm.sched.init_dfa_post_cycle_insn) ();
2785 
2786       if (targetm.sched.first_cycle_multipass_dfa_lookahead
2787 	  && targetm.sched.init_dfa_bubbles)
2788 	(*targetm.sched.init_dfa_bubbles) ();
2789 
2790       dfa_start ();
2791       dfa_state_size = state_size ();
2792       curr_state = xmalloc (dfa_state_size);
2793     }
2794 
2795   h_i_d[0].luid = 0;
2796   luid = 1;
2797   FOR_EACH_BB (b)
2798     for (insn = BB_HEAD (b); ; insn = NEXT_INSN (insn))
2799       {
2800 	INSN_LUID (insn) = luid;
2801 
2802 	/* Increment the next luid, unless this is a note.  We don't
2803 	   really need separate IDs for notes and we don't want to
2804 	   schedule differently depending on whether or not there are
2805 	   line-number notes, i.e., depending on whether or not we're
2806 	   generating debugging information.  */
2807 	if (GET_CODE (insn) != NOTE)
2808 	  ++luid;
2809 
2810 	if (insn == BB_END (b))
2811 	  break;
2812       }
2813 
2814   init_dependency_caches (luid);
2815 
2816   init_alias_analysis ();
2817 
2818   if (write_symbols != NO_DEBUG)
2819     {
2820       rtx line;
2821 
2822       line_note_head = xcalloc (last_basic_block, sizeof (rtx));
2823 
2824       /* Save-line-note-head:
2825          Determine the line-number at the start of each basic block.
2826          This must be computed and saved now, because after a basic block's
2827          predecessor has been scheduled, it is impossible to accurately
2828          determine the correct line number for the first insn of the block.  */
2829 
2830       FOR_EACH_BB (b)
2831 	{
2832 	  for (line = BB_HEAD (b); line; line = PREV_INSN (line))
2833 	    if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
2834 	      {
2835 		line_note_head[b->index] = line;
2836 		break;
2837 	      }
2838 	  /* Do a forward search as well, since we won't get to see the first
2839 	     notes in a basic block.  */
2840 	  for (line = BB_HEAD (b); line; line = NEXT_INSN (line))
2841 	    {
2842 	      if (INSN_P (line))
2843 		break;
2844 	      if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
2845 		line_note_head[b->index] = line;
2846 	    }
2847 	}
2848     }
2849 
2850   if ((!targetm.sched.use_dfa_pipeline_interface
2851        || !(*targetm.sched.use_dfa_pipeline_interface) ())
2852       && sched_verbose)
2853     /* Find units used in this function, for visualization.  */
2854     init_target_units ();
2855 
2856   /* ??? Add a NOTE after the last insn of the last basic block.  It is not
2857      known why this is done.  */
2858 
2859   insn = BB_END (EXIT_BLOCK_PTR->prev_bb);
2860   if (NEXT_INSN (insn) == 0
2861       || (GET_CODE (insn) != NOTE
2862 	  && GET_CODE (insn) != CODE_LABEL
2863 	  /* Don't emit a NOTE if it would end up before a BARRIER.  */
2864 	  && GET_CODE (NEXT_INSN (insn)) != BARRIER))
2865     {
2866       emit_note_after (NOTE_INSN_DELETED, BB_END (EXIT_BLOCK_PTR->prev_bb));
2867       /* Make insn to appear outside BB.  */
2868       BB_END (EXIT_BLOCK_PTR->prev_bb) = PREV_INSN (BB_END (EXIT_BLOCK_PTR->prev_bb));
2869     }
2870 
2871   /* Compute INSN_REG_WEIGHT for all blocks.  We must do this before
2872      removing death notes.  */
2873   FOR_EACH_BB_REVERSE (b)
2874     find_insn_reg_weight (b->index);
2875 }
2876 
2877 /* Free global data used during insn scheduling.  */
2878 
2879 void
sched_finish(void)2880 sched_finish (void)
2881 {
2882   free (h_i_d);
2883 
2884   if (targetm.sched.use_dfa_pipeline_interface
2885       && (*targetm.sched.use_dfa_pipeline_interface) ())
2886     {
2887       free (curr_state);
2888       dfa_finish ();
2889     }
2890   free_dependency_caches ();
2891   end_alias_analysis ();
2892   if (write_symbols != NO_DEBUG)
2893     free (line_note_head);
2894 }
2895 #endif /* INSN_SCHEDULING */
2896