1 2 /* @(#)s_tan.c 5.1 93/09/24 */ 3 /* 4 * ==================================================== 5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 6 * 7 * Developed at SunPro, a Sun Microsystems, Inc. business. 8 * Permission to use, copy, modify, and distribute this 9 * software is freely granted, provided that this notice 10 * is preserved. 11 * ==================================================== 12 */ 13 14 15 /* 16 17 FUNCTION 18 <<tan>>, <<tanf>>---tangent 19 20 INDEX 21 tan 22 INDEX 23 tanf 24 25 ANSI_SYNOPSIS 26 #include <math.h> 27 double tan(double <[x]>); 28 float tanf(float <[x]>); 29 30 TRAD_SYNOPSIS 31 #include <math.h> 32 double tan(<[x]>) 33 double <[x]>; 34 35 float tanf(<[x]>) 36 float <[x]>; 37 38 39 DESCRIPTION 40 <<tan>> computes the tangent of the argument <[x]>. 41 Angles are specified in radians. 42 43 <<tanf>> is identical, save that it takes and returns <<float>> values. 44 45 RETURNS 46 The tangent of <[x]> is returned. 47 48 PORTABILITY 49 <<tan>> is ANSI. <<tanf>> is an extension. 50 */ 51 52 /* tan(x) 53 * Return tangent function of x. 54 * 55 * kernel function: 56 * __kernel_tan ... tangent function on [-pi/4,pi/4] 57 * __ieee754_rem_pio2 ... argument reduction routine 58 * 59 * Method. 60 * Let S,C and T denote the sin, cos and tan respectively on 61 * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 62 * in [-pi/4 , +pi/4], and let n = k mod 4. 63 * We have 64 * 65 * n sin(x) cos(x) tan(x) 66 * ---------------------------------------------------------- 67 * 0 S C T 68 * 1 C -S -1/T 69 * 2 -S -C T 70 * 3 -C S -1/T 71 * ---------------------------------------------------------- 72 * 73 * Special cases: 74 * Let trig be any of sin, cos, or tan. 75 * trig(+-INF) is NaN, with signals; 76 * trig(NaN) is that NaN; 77 * 78 * Accuracy: 79 * TRIG(x) returns trig(x) nearly rounded 80 */ 81 82 #include "fdlibm.h" 83 84 #ifndef _DOUBLE_IS_32BITS 85 86 #ifdef __STDC__ tan(double x)87 double tan(double x) 88 #else 89 double tan(x) 90 double x; 91 #endif 92 { 93 double y[2],z=0.0; 94 int32_t n,ix; 95 96 /* High word of x. */ 97 GET_HIGH_WORD(ix,x); 98 99 /* |x| ~< pi/4 */ 100 ix &= 0x7fffffff; 101 if(ix <= 0x3fe921fb) return __kernel_tan(x,z,1); 102 103 /* tan(Inf or NaN) is NaN */ 104 else if (ix>=0x7ff00000) return x-x; /* NaN */ 105 106 /* argument reduction needed */ 107 else { 108 n = __ieee754_rem_pio2(x,y); 109 return __kernel_tan(y[0],y[1],1-((n&1)<<1)); /* 1 -- n even 110 -1 -- n odd */ 111 } 112 } 113 114 #endif /* _DOUBLE_IS_32BITS */ 115