1 // Multimap implementation -*- C++ -*-
2 
3 // Copyright (C) 2001, 2002, 2004 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library.  This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 2, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 // GNU General Public License for more details.
15 
16 // You should have received a copy of the GNU General Public License along
17 // with this library; see the file COPYING.  If not, write to the Free
18 // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
19 // USA.
20 
21 // As a special exception, you may use this file as part of a free software
22 // library without restriction.  Specifically, if other files instantiate
23 // templates or use macros or inline functions from this file, or you compile
24 // this file and link it with other files to produce an executable, this
25 // file does not by itself cause the resulting executable to be covered by
26 // the GNU General Public License.  This exception does not however
27 // invalidate any other reasons why the executable file might be covered by
28 // the GNU General Public License.
29 
30 /*
31  *
32  * Copyright (c) 1994
33  * Hewlett-Packard Company
34  *
35  * Permission to use, copy, modify, distribute and sell this software
36  * and its documentation for any purpose is hereby granted without fee,
37  * provided that the above copyright notice appear in all copies and
38  * that both that copyright notice and this permission notice appear
39  * in supporting documentation.  Hewlett-Packard Company makes no
40  * representations about the suitability of this software for any
41  * purpose.  It is provided "as is" without express or implied warranty.
42  *
43  *
44  * Copyright (c) 1996,1997
45  * Silicon Graphics Computer Systems, Inc.
46  *
47  * Permission to use, copy, modify, distribute and sell this software
48  * and its documentation for any purpose is hereby granted without fee,
49  * provided that the above copyright notice appear in all copies and
50  * that both that copyright notice and this permission notice appear
51  * in supporting documentation.  Silicon Graphics makes no
52  * representations about the suitability of this software for any
53  * purpose.  It is provided "as is" without express or implied warranty.
54  */
55 
56 /** @file stl_multimap.h
57  *  This is an internal header file, included by other library headers.
58  *  You should not attempt to use it directly.
59  */
60 
61 #ifndef _MULTIMAP_H
62 #define _MULTIMAP_H 1
63 
64 #include <bits/concept_check.h>
65 
66 namespace _GLIBCXX_STD
67 {
68   // Forward declaration of operators < and ==, needed for friend declaration.
69 
70   template <typename _Key, typename _Tp,
71             typename _Compare = less<_Key>,
72             typename _Alloc = allocator<pair<const _Key, _Tp> > >
73     class multimap;
74 
75   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
76     inline bool
77     operator==(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
78 	       const multimap<_Key,_Tp,_Compare,_Alloc>& __y);
79 
80   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
81     inline bool
82     operator<(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
83 	      const multimap<_Key,_Tp,_Compare,_Alloc>& __y);
84 
85   /**
86    *  @brief A standard container made up of (key,value) pairs, which can be
87    *  retrieved based on a key, in logarithmic time.
88    *
89    *  @ingroup Containers
90    *  @ingroup Assoc_containers
91    *
92    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
93    *  <a href="tables.html#66">reversible container</a>, and an
94    *  <a href="tables.html#69">associative container</a> (using equivalent
95    *  keys).  For a @c multimap<Key,T> the key_type is Key, the mapped_type
96    *  is T, and the value_type is std::pair<const Key,T>.
97    *
98    *  Multimaps support bidirectional iterators.
99    *
100    *  @if maint
101    *  The private tree data is declared exactly the same way for map and
102    *  multimap; the distinction is made entirely in how the tree functions are
103    *  called (*_unique versus *_equal, same as the standard).
104    *  @endif
105   */
106   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
107     class multimap
108     {
109       // concept requirements
110       __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
111       __glibcxx_class_requires4(_Compare, bool, _Key, _Key,
112 				_BinaryFunctionConcept)
113 
114     public:
115       typedef _Key                                          key_type;
116       typedef _Tp                                           mapped_type;
117       typedef pair<const _Key, _Tp>                         value_type;
118       typedef _Compare                                      key_compare;
119 
120       class value_compare
121       : public binary_function<value_type, value_type, bool>
122       {
123 	friend class multimap<_Key,_Tp,_Compare,_Alloc>;
124       protected:
125 	_Compare comp;
126 
value_compare(_Compare __c)127 	value_compare(_Compare __c)
128 	: comp(__c) { }
129 
130       public:
operator()131 	bool operator()(const value_type& __x, const value_type& __y) const
132 	{ return comp(__x.first, __y.first); }
133       };
134 
135     private:
136       /// @if maint  This turns a red-black tree into a [multi]map.  @endif
137       typedef _Rb_tree<key_type, value_type,
138 		       _Select1st<value_type>, key_compare, _Alloc> _Rep_type;
139       /// @if maint  The actual tree structure.  @endif
140       _Rep_type _M_t;
141 
142     public:
143       // many of these are specified differently in ISO, but the following are
144       // "functionally equivalent"
145       typedef typename _Alloc::pointer                   pointer;
146       typedef typename _Alloc::const_pointer             const_pointer;
147       typedef typename _Alloc::reference                 reference;
148       typedef typename _Alloc::const_reference           const_reference;
149       typedef typename _Rep_type::allocator_type         allocator_type;
150       typedef typename _Rep_type::iterator               iterator;
151       typedef typename _Rep_type::const_iterator         const_iterator;
152       typedef typename _Rep_type::size_type              size_type;
153       typedef typename _Rep_type::difference_type        difference_type;
154       typedef typename _Rep_type::reverse_iterator       reverse_iterator;
155       typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
156 
157       // [23.3.2] construct/copy/destroy
158       // (get_allocator() is also listed in this section)
159       /**
160        *  @brief  Default constructor creates no elements.
161        */
multimap()162       multimap()
163       : _M_t(_Compare(), allocator_type()) { }
164 
165       // for some reason this was made a separate function
166       /**
167        *  @brief  Default constructor creates no elements.
168        */
169       explicit
170       multimap(const _Compare& __comp,
171 	       const allocator_type& __a = allocator_type())
_M_t(__comp,__a)172       : _M_t(__comp, __a) { }
173 
174       /**
175        *  @brief  %Multimap copy constructor.
176        *  @param  x  A %multimap of identical element and allocator types.
177        *
178        *  The newly-created %multimap uses a copy of the allocation object used
179        *  by @a x.
180        */
multimap(const multimap & __x)181       multimap(const multimap& __x)
182       : _M_t(__x._M_t) { }
183 
184       /**
185        *  @brief  Builds a %multimap from a range.
186        *  @param  first  An input iterator.
187        *  @param  last  An input iterator.
188        *
189        *  Create a %multimap consisting of copies of the elements from
190        *  [first,last).  This is linear in N if the range is already sorted,
191        *  and NlogN otherwise (where N is distance(first,last)).
192        */
193       template <typename _InputIterator>
multimap(_InputIterator __first,_InputIterator __last)194         multimap(_InputIterator __first, _InputIterator __last)
195 	: _M_t(_Compare(), allocator_type())
196         { _M_t.insert_equal(__first, __last); }
197 
198       /**
199        *  @brief  Builds a %multimap from a range.
200        *  @param  first  An input iterator.
201        *  @param  last  An input iterator.
202        *  @param  comp  A comparison functor.
203        *  @param  a  An allocator object.
204        *
205        *  Create a %multimap consisting of copies of the elements from
206        *  [first,last).  This is linear in N if the range is already sorted,
207        *  and NlogN otherwise (where N is distance(first,last)).
208        */
209       template <typename _InputIterator>
210         multimap(_InputIterator __first, _InputIterator __last,
211 		 const _Compare& __comp,
212 		 const allocator_type& __a = allocator_type())
_M_t(__comp,__a)213         : _M_t(__comp, __a)
214         { _M_t.insert_equal(__first, __last); }
215 
216       // FIXME There is no dtor declared, but we should have something generated
217       // by Doxygen.  I don't know what tags to add to this paragraph to make
218       // that happen:
219       /**
220        *  The dtor only erases the elements, and note that if the elements
221        *  themselves are pointers, the pointed-to memory is not touched in any
222        *  way.  Managing the pointer is the user's responsibilty.
223        */
224 
225       /**
226        *  @brief  %Multimap assignment operator.
227        *  @param  x  A %multimap of identical element and allocator types.
228        *
229        *  All the elements of @a x are copied, but unlike the copy constructor,
230        *  the allocator object is not copied.
231        */
232       multimap&
233       operator=(const multimap& __x)
234       {
235 	_M_t = __x._M_t;
236 	return *this;
237       }
238 
239       /// Get a copy of the memory allocation object.
240       allocator_type
get_allocator()241       get_allocator() const
242       { return _M_t.get_allocator(); }
243 
244       // iterators
245       /**
246        *  Returns a read/write iterator that points to the first pair in the
247        *  %multimap.  Iteration is done in ascending order according to the
248        *  keys.
249        */
250       iterator
begin()251       begin()
252       { return _M_t.begin(); }
253 
254       /**
255        *  Returns a read-only (constant) iterator that points to the first pair
256        *  in the %multimap.  Iteration is done in ascending order according to
257        *  the keys.
258        */
259       const_iterator
begin()260       begin() const
261       { return _M_t.begin(); }
262 
263       /**
264        *  Returns a read/write iterator that points one past the last pair in
265        *  the %multimap.  Iteration is done in ascending order according to the
266        *  keys.
267        */
268       iterator
end()269       end()
270       { return _M_t.end(); }
271 
272       /**
273        *  Returns a read-only (constant) iterator that points one past the last
274        *  pair in the %multimap.  Iteration is done in ascending order according
275        *  to the keys.
276        */
277       const_iterator
end()278       end() const
279       { return _M_t.end(); }
280 
281       /**
282        *  Returns a read/write reverse iterator that points to the last pair in
283        *  the %multimap.  Iteration is done in descending order according to the
284        *  keys.
285        */
286       reverse_iterator
rbegin()287       rbegin()
288       { return _M_t.rbegin(); }
289 
290       /**
291        *  Returns a read-only (constant) reverse iterator that points to the
292        *  last pair in the %multimap.  Iteration is done in descending order
293        *  according to the keys.
294        */
295       const_reverse_iterator
rbegin()296       rbegin() const
297       { return _M_t.rbegin(); }
298 
299       /**
300        *  Returns a read/write reverse iterator that points to one before the
301        *  first pair in the %multimap.  Iteration is done in descending order
302        *  according to the keys.
303        */
304       reverse_iterator
rend()305       rend()
306       { return _M_t.rend(); }
307 
308       /**
309        *  Returns a read-only (constant) reverse iterator that points to one
310        *  before the first pair in the %multimap.  Iteration is done in
311        *  descending order according to the keys.
312        */
313       const_reverse_iterator
rend()314       rend() const
315       { return _M_t.rend(); }
316 
317       // capacity
318       /** Returns true if the %multimap is empty.  */
319       bool
empty()320       empty() const
321       { return _M_t.empty(); }
322 
323       /** Returns the size of the %multimap.  */
324       size_type
size()325       size() const
326       { return _M_t.size(); }
327 
328       /** Returns the maximum size of the %multimap.  */
329       size_type
max_size()330       max_size() const
331       { return _M_t.max_size(); }
332 
333       // modifiers
334       /**
335        *  @brief Inserts a std::pair into the %multimap.
336        *  @param  x  Pair to be inserted (see std::make_pair for easy creation
337        *             of pairs).
338        *  @return An iterator that points to the inserted (key,value) pair.
339        *
340        *  This function inserts a (key, value) pair into the %multimap.
341        *  Contrary to a std::map the %multimap does not rely on unique keys and
342        *  thus multiple pairs with the same key can be inserted.
343        *
344        *  Insertion requires logarithmic time.
345        */
346       iterator
insert(const value_type & __x)347       insert(const value_type& __x)
348       { return _M_t.insert_equal(__x); }
349 
350       /**
351        *  @brief Inserts a std::pair into the %multimap.
352        *  @param  position  An iterator that serves as a hint as to where the
353        *                    pair should be inserted.
354        *  @param  x  Pair to be inserted (see std::make_pair for easy creation
355        *             of pairs).
356        *  @return An iterator that points to the inserted (key,value) pair.
357        *
358        *  This function inserts a (key, value) pair into the %multimap.
359        *  Contrary to a std::map the %multimap does not rely on unique keys and
360        *  thus multiple pairs with the same key can be inserted.
361        *  Note that the first parameter is only a hint and can potentially
362        *  improve the performance of the insertion process.  A bad hint would
363        *  cause no gains in efficiency.
364        *
365        *  See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4
366        *  for more on "hinting".
367        *
368        *  Insertion requires logarithmic time (if the hint is not taken).
369        */
370       iterator
insert(iterator __position,const value_type & __x)371       insert(iterator __position, const value_type& __x)
372       { return _M_t.insert_equal(__position, __x); }
373 
374       /**
375        *  @brief A template function that attemps to insert a range of elements.
376        *  @param  first  Iterator pointing to the start of the range to be
377        *                 inserted.
378        *  @param  last  Iterator pointing to the end of the range.
379        *
380        *  Complexity similar to that of the range constructor.
381        */
382       template <typename _InputIterator>
383         void
insert(_InputIterator __first,_InputIterator __last)384         insert(_InputIterator __first, _InputIterator __last)
385         { _M_t.insert_equal(__first, __last); }
386 
387       /**
388        *  @brief Erases an element from a %multimap.
389        *  @param  position  An iterator pointing to the element to be erased.
390        *
391        *  This function erases an element, pointed to by the given iterator,
392        *  from a %multimap.  Note that this function only erases the element,
393        *  and that if the element is itself a pointer, the pointed-to memory is
394        *  not touched in any way.  Managing the pointer is the user's
395        *  responsibilty.
396        */
397       void
erase(iterator __position)398       erase(iterator __position)
399       { _M_t.erase(__position); }
400 
401       /**
402        *  @brief Erases elements according to the provided key.
403        *  @param  x  Key of element to be erased.
404        *  @return  The number of elements erased.
405        *
406        *  This function erases all elements located by the given key from a
407        *  %multimap.
408        *  Note that this function only erases the element, and that if
409        *  the element is itself a pointer, the pointed-to memory is not touched
410        *  in any way.  Managing the pointer is the user's responsibilty.
411        */
412       size_type
erase(const key_type & __x)413       erase(const key_type& __x)
414       { return _M_t.erase(__x); }
415 
416       /**
417        *  @brief Erases a [first,last) range of elements from a %multimap.
418        *  @param  first  Iterator pointing to the start of the range to be
419        *                 erased.
420        *  @param  last  Iterator pointing to the end of the range to be erased.
421        *
422        *  This function erases a sequence of elements from a %multimap.
423        *  Note that this function only erases the elements, and that if
424        *  the elements themselves are pointers, the pointed-to memory is not
425        *  touched in any way.  Managing the pointer is the user's responsibilty.
426        */
427       void
erase(iterator __first,iterator __last)428       erase(iterator __first, iterator __last)
429       { _M_t.erase(__first, __last); }
430 
431       /**
432        *  @brief  Swaps data with another %multimap.
433        *  @param  x  A %multimap of the same element and allocator types.
434        *
435        *  This exchanges the elements between two multimaps in constant time.
436        *  (It is only swapping a pointer, an integer, and an instance of
437        *  the @c Compare type (which itself is often stateless and empty), so it
438        *  should be quite fast.)
439        *  Note that the global std::swap() function is specialized such that
440        *  std::swap(m1,m2) will feed to this function.
441        */
442       void
swap(multimap & __x)443       swap(multimap& __x)
444       { _M_t.swap(__x._M_t); }
445 
446       /**
447        *  Erases all elements in a %multimap.  Note that this function only
448        *  erases the elements, and that if the elements themselves are pointers,
449        *  the pointed-to memory is not touched in any way.  Managing the pointer
450        *  is the user's responsibilty.
451        */
452       void
clear()453       clear()
454       { _M_t.clear(); }
455 
456       // observers
457       /**
458        *  Returns the key comparison object out of which the %multimap
459        *  was constructed.
460        */
461       key_compare
key_comp()462       key_comp() const
463       { return _M_t.key_comp(); }
464 
465       /**
466        *  Returns a value comparison object, built from the key comparison
467        *  object out of which the %multimap was constructed.
468        */
469       value_compare
value_comp()470       value_comp() const
471       { return value_compare(_M_t.key_comp()); }
472 
473       // multimap operations
474       /**
475        *  @brief Tries to locate an element in a %multimap.
476        *  @param  x  Key of (key, value) pair to be located.
477        *  @return  Iterator pointing to sought-after element,
478        *           or end() if not found.
479        *
480        *  This function takes a key and tries to locate the element with which
481        *  the key matches.  If successful the function returns an iterator
482        *  pointing to the sought after %pair.  If unsuccessful it returns the
483        *  past-the-end ( @c end() ) iterator.
484        */
485       iterator
find(const key_type & __x)486       find(const key_type& __x)
487       { return _M_t.find(__x); }
488 
489       /**
490        *  @brief Tries to locate an element in a %multimap.
491        *  @param  x  Key of (key, value) pair to be located.
492        *  @return  Read-only (constant) iterator pointing to sought-after
493        *           element, or end() if not found.
494        *
495        *  This function takes a key and tries to locate the element with which
496        *  the key matches.  If successful the function returns a constant
497        *  iterator pointing to the sought after %pair.  If unsuccessful it
498        *  returns the past-the-end ( @c end() ) iterator.
499        */
500       const_iterator
find(const key_type & __x)501       find(const key_type& __x) const
502       { return _M_t.find(__x); }
503 
504       /**
505        *  @brief Finds the number of elements with given key.
506        *  @param  x  Key of (key, value) pairs to be located.
507        *  @return Number of elements with specified key.
508        */
509       size_type
count(const key_type & __x)510       count(const key_type& __x) const
511       { return _M_t.count(__x); }
512 
513       /**
514        *  @brief Finds the beginning of a subsequence matching given key.
515        *  @param  x  Key of (key, value) pair to be located.
516        *  @return  Iterator pointing to first element equal to or greater
517        *           than key, or end().
518        *
519        *  This function returns the first element of a subsequence of elements
520        *  that matches the given key.  If unsuccessful it returns an iterator
521        *  pointing to the first element that has a greater value than given key
522        *  or end() if no such element exists.
523        */
524       iterator
lower_bound(const key_type & __x)525       lower_bound(const key_type& __x)
526       { return _M_t.lower_bound(__x); }
527 
528       /**
529        *  @brief Finds the beginning of a subsequence matching given key.
530        *  @param  x  Key of (key, value) pair to be located.
531        *  @return  Read-only (constant) iterator pointing to first element
532        *           equal to or greater than key, or end().
533        *
534        *  This function returns the first element of a subsequence of elements
535        *  that matches the given key.  If unsuccessful the iterator will point
536        *  to the next greatest element or, if no such greater element exists, to
537        *  end().
538        */
539       const_iterator
lower_bound(const key_type & __x)540       lower_bound(const key_type& __x) const
541       { return _M_t.lower_bound(__x); }
542 
543       /**
544        *  @brief Finds the end of a subsequence matching given key.
545        *  @param  x  Key of (key, value) pair to be located.
546        *  @return Iterator pointing to the first element
547        *          greater than key, or end().
548        */
549       iterator
upper_bound(const key_type & __x)550       upper_bound(const key_type& __x)
551       { return _M_t.upper_bound(__x); }
552 
553       /**
554        *  @brief Finds the end of a subsequence matching given key.
555        *  @param  x  Key of (key, value) pair to be located.
556        *  @return  Read-only (constant) iterator pointing to first iterator
557        *           greater than key, or end().
558        */
559       const_iterator
upper_bound(const key_type & __x)560       upper_bound(const key_type& __x) const
561       { return _M_t.upper_bound(__x); }
562 
563       /**
564        *  @brief Finds a subsequence matching given key.
565        *  @param  x  Key of (key, value) pairs to be located.
566        *  @return  Pair of iterators that possibly points to the subsequence
567        *           matching given key.
568        *
569        *  This function is equivalent to
570        *  @code
571        *    std::make_pair(c.lower_bound(val),
572        *                   c.upper_bound(val))
573        *  @endcode
574        *  (but is faster than making the calls separately).
575        */
576       pair<iterator,iterator>
equal_range(const key_type & __x)577       equal_range(const key_type& __x)
578       { return _M_t.equal_range(__x); }
579 
580       /**
581        *  @brief Finds a subsequence matching given key.
582        *  @param  x  Key of (key, value) pairs to be located.
583        *  @return  Pair of read-only (constant) iterators that possibly points
584        *           to the subsequence matching given key.
585        *
586        *  This function is equivalent to
587        *  @code
588        *    std::make_pair(c.lower_bound(val),
589        *                   c.upper_bound(val))
590        *  @endcode
591        *  (but is faster than making the calls separately).
592        */
593       pair<const_iterator,const_iterator>
equal_range(const key_type & __x)594       equal_range(const key_type& __x) const
595       { return _M_t.equal_range(__x); }
596 
597       template <typename _K1, typename _T1, typename _C1, typename _A1>
598         friend bool
599         operator== (const multimap<_K1,_T1,_C1,_A1>&,
600 		    const multimap<_K1,_T1,_C1,_A1>&);
601 
602       template <typename _K1, typename _T1, typename _C1, typename _A1>
603         friend bool
604         operator< (const multimap<_K1,_T1,_C1,_A1>&,
605 		   const multimap<_K1,_T1,_C1,_A1>&);
606   };
607 
608   /**
609    *  @brief  Multimap equality comparison.
610    *  @param  x  A %multimap.
611    *  @param  y  A %multimap of the same type as @a x.
612    *  @return  True iff the size and elements of the maps are equal.
613    *
614    *  This is an equivalence relation.  It is linear in the size of the
615    *  multimaps.  Multimaps are considered equivalent if their sizes are equal,
616    *  and if corresponding elements compare equal.
617   */
618   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
619     inline bool
620     operator==(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
621                const multimap<_Key,_Tp,_Compare,_Alloc>& __y)
622     { return __x._M_t == __y._M_t; }
623 
624   /**
625    *  @brief  Multimap ordering relation.
626    *  @param  x  A %multimap.
627    *  @param  y  A %multimap of the same type as @a x.
628    *  @return  True iff @a x is lexicographically less than @a y.
629    *
630    *  This is a total ordering relation.  It is linear in the size of the
631    *  multimaps.  The elements must be comparable with @c <.
632    *
633    *  See std::lexicographical_compare() for how the determination is made.
634   */
635   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
636     inline bool
637     operator<(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
638               const multimap<_Key,_Tp,_Compare,_Alloc>& __y)
639     { return __x._M_t < __y._M_t; }
640 
641   /// Based on operator==
642   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
643     inline bool
644     operator!=(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
645                const multimap<_Key,_Tp,_Compare,_Alloc>& __y)
646     { return !(__x == __y); }
647 
648   /// Based on operator<
649   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
650     inline bool
651     operator>(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
652               const multimap<_Key,_Tp,_Compare,_Alloc>& __y)
653     { return __y < __x; }
654 
655   /// Based on operator<
656   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
657     inline bool
658     operator<=(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
659                const multimap<_Key,_Tp,_Compare,_Alloc>& __y)
660     { return !(__y < __x); }
661 
662   /// Based on operator<
663   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
664     inline bool
665     operator>=(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
666                const multimap<_Key,_Tp,_Compare,_Alloc>& __y)
667     { return !(__x < __y); }
668 
669   /// See std::multimap::swap().
670   template <typename _Key, typename _Tp, typename _Compare, typename _Alloc>
671     inline void
swap(multimap<_Key,_Tp,_Compare,_Alloc> & __x,multimap<_Key,_Tp,_Compare,_Alloc> & __y)672     swap(multimap<_Key,_Tp,_Compare,_Alloc>& __x,
673          multimap<_Key,_Tp,_Compare,_Alloc>& __y)
674     { __x.swap(__y); }
675 } // namespace std
676 
677 #endif /* _MULTIMAP_H */
678