1 /* Target-dependent code for GDB, the GNU debugger.
2 
3    Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4    1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5    Foundation, Inc.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 2 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; if not, write to the Free Software
21    Foundation, Inc., 59 Temple Place - Suite 330,
22    Boston, MA 02111-1307, USA.  */
23 
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "symtab.h"
28 #include "target.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "objfiles.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "regset.h"
35 #include "doublest.h"
36 #include "value.h"
37 #include "parser-defs.h"
38 #include "osabi.h"
39 #include "infcall.h"
40 
41 #include "libbfd.h"		/* for bfd_default_set_arch_mach */
42 #include "coff/internal.h"	/* for libcoff.h */
43 #include "libcoff.h"		/* for xcoff_data */
44 #include "coff/xcoff.h"
45 #include "libxcoff.h"
46 
47 #include "elf-bfd.h"
48 
49 #include "solib-svr4.h"
50 #include "ppc-tdep.h"
51 
52 #include "gdb_assert.h"
53 #include "dis-asm.h"
54 
55 #include "trad-frame.h"
56 #include "frame-unwind.h"
57 #include "frame-base.h"
58 
59 /* If the kernel has to deliver a signal, it pushes a sigcontext
60    structure on the stack and then calls the signal handler, passing
61    the address of the sigcontext in an argument register. Usually
62    the signal handler doesn't save this register, so we have to
63    access the sigcontext structure via an offset from the signal handler
64    frame.
65    The following constants were determined by experimentation on AIX 3.2.  */
66 #define SIG_FRAME_PC_OFFSET 96
67 #define SIG_FRAME_LR_OFFSET 108
68 #define SIG_FRAME_FP_OFFSET 284
69 
70 /* To be used by skip_prologue. */
71 
72 struct rs6000_framedata
73   {
74     int offset;			/* total size of frame --- the distance
75 				   by which we decrement sp to allocate
76 				   the frame */
77     int saved_gpr;		/* smallest # of saved gpr */
78     int saved_fpr;		/* smallest # of saved fpr */
79     int saved_vr;               /* smallest # of saved vr */
80     int saved_ev;               /* smallest # of saved ev */
81     int alloca_reg;		/* alloca register number (frame ptr) */
82     char frameless;		/* true if frameless functions. */
83     char nosavedpc;		/* true if pc not saved. */
84     int gpr_offset;		/* offset of saved gprs from prev sp */
85     int fpr_offset;		/* offset of saved fprs from prev sp */
86     int vr_offset;              /* offset of saved vrs from prev sp */
87     int ev_offset;              /* offset of saved evs from prev sp */
88     int lr_offset;		/* offset of saved lr */
89     int cr_offset;		/* offset of saved cr */
90     int vrsave_offset;          /* offset of saved vrsave register */
91   };
92 
93 /* Description of a single register. */
94 
95 struct reg
96   {
97     char *name;			/* name of register */
98     unsigned char sz32;		/* size on 32-bit arch, 0 if nonextant */
99     unsigned char sz64;		/* size on 64-bit arch, 0 if nonextant */
100     unsigned char fpr;		/* whether register is floating-point */
101     unsigned char pseudo;       /* whether register is pseudo */
102   };
103 
104 /* Breakpoint shadows for the single step instructions will be kept here. */
105 
106 static struct sstep_breaks
107   {
108     /* Address, or 0 if this is not in use.  */
109     CORE_ADDR address;
110     /* Shadow contents.  */
111     char data[4];
112   }
113 stepBreaks[2];
114 
115 /* Hook for determining the TOC address when calling functions in the
116    inferior under AIX. The initialization code in rs6000-nat.c sets
117    this hook to point to find_toc_address.  */
118 
119 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
120 
121 /* Hook to set the current architecture when starting a child process.
122    rs6000-nat.c sets this. */
123 
124 void (*rs6000_set_host_arch_hook) (int) = NULL;
125 
126 /* Static function prototypes */
127 
128 static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
129 			      CORE_ADDR safety);
130 static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
131                                 struct rs6000_framedata *);
132 
133 /* Is REGNO an AltiVec register?  Return 1 if so, 0 otherwise.  */
134 int
altivec_register_p(int regno)135 altivec_register_p (int regno)
136 {
137   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
138   if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
139     return 0;
140   else
141     return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
142 }
143 
144 
145 /* Return true if REGNO is an SPE register, false otherwise.  */
146 int
spe_register_p(int regno)147 spe_register_p (int regno)
148 {
149   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
150 
151   /* Is it a reference to EV0 -- EV31, and do we have those?  */
152   if (tdep->ppc_ev0_regnum >= 0
153       && tdep->ppc_ev31_regnum >= 0
154       && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
155     return 1;
156 
157   /* Is it a reference to the 64-bit accumulator, and do we have that?  */
158   if (tdep->ppc_acc_regnum >= 0
159       && tdep->ppc_acc_regnum == regno)
160     return 1;
161 
162   /* Is it a reference to the SPE floating-point status and control register,
163      and do we have that?  */
164   if (tdep->ppc_spefscr_regnum >= 0
165       && tdep->ppc_spefscr_regnum == regno)
166     return 1;
167 
168   return 0;
169 }
170 
171 
172 /* Return non-zero if the architecture described by GDBARCH has
173    floating-point registers (f0 --- f31 and fpscr).  */
174 int
ppc_floating_point_unit_p(struct gdbarch * gdbarch)175 ppc_floating_point_unit_p (struct gdbarch *gdbarch)
176 {
177   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
178 
179   return (tdep->ppc_fp0_regnum >= 0
180           && tdep->ppc_fpscr_regnum >= 0);
181 }
182 
183 
184 /* Register set support functions.  */
185 
186 static void
ppc_supply_reg(struct regcache * regcache,int regnum,const char * regs,size_t offset)187 ppc_supply_reg (struct regcache *regcache, int regnum,
188 		const char *regs, size_t offset)
189 {
190   if (regnum != -1 && offset != -1)
191     regcache_raw_supply (regcache, regnum, regs + offset);
192 }
193 
194 static void
ppc_collect_reg(const struct regcache * regcache,int regnum,char * regs,size_t offset)195 ppc_collect_reg (const struct regcache *regcache, int regnum,
196 		 char *regs, size_t offset)
197 {
198   if (regnum != -1 && offset != -1)
199     regcache_raw_collect (regcache, regnum, regs + offset);
200 }
201 
202 /* Supply register REGNUM in the general-purpose register set REGSET
203    from the buffer specified by GREGS and LEN to register cache
204    REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
205 
206 void
ppc_supply_gregset(const struct regset * regset,struct regcache * regcache,int regnum,const void * gregs,size_t len)207 ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
208 		    int regnum, const void *gregs, size_t len)
209 {
210   struct gdbarch *gdbarch = get_regcache_arch (regcache);
211   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
212   const struct ppc_reg_offsets *offsets = regset->descr;
213   size_t offset;
214   int i;
215 
216   for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
217        i < tdep->ppc_gp0_regnum + ppc_num_gprs;
218        i++, offset += 4)
219     {
220       if (regnum == -1 || regnum == i)
221 	ppc_supply_reg (regcache, i, gregs, offset);
222     }
223 
224   if (regnum == -1 || regnum == PC_REGNUM)
225     ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
226   if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
227     ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
228 		    gregs, offsets->ps_offset);
229   if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
230     ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
231 		    gregs, offsets->cr_offset);
232   if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
233     ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
234 		    gregs, offsets->lr_offset);
235   if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
236     ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
237 		    gregs, offsets->ctr_offset);
238   if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
239     ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
240 		    gregs, offsets->cr_offset);
241   if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
242     ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
243 }
244 
245 /* Supply register REGNUM in the floating-point register set REGSET
246    from the buffer specified by FPREGS and LEN to register cache
247    REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */
248 
249 void
ppc_supply_fpregset(const struct regset * regset,struct regcache * regcache,int regnum,const void * fpregs,size_t len)250 ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
251 		     int regnum, const void *fpregs, size_t len)
252 {
253   struct gdbarch *gdbarch = get_regcache_arch (regcache);
254   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
255   const struct ppc_reg_offsets *offsets = regset->descr;
256   size_t offset;
257   int i;
258 
259   gdb_assert (ppc_floating_point_unit_p (gdbarch));
260 
261   offset = offsets->f0_offset;
262   for (i = tdep->ppc_fp0_regnum;
263        i < tdep->ppc_fp0_regnum + ppc_num_fprs;
264        i++, offset += 4)
265     {
266       if (regnum == -1 || regnum == i)
267 	ppc_supply_reg (regcache, i, fpregs, offset);
268     }
269 
270   if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
271     ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
272 		    fpregs, offsets->fpscr_offset);
273 }
274 
275 /* Collect register REGNUM in the general-purpose register set
276    REGSET. from register cache REGCACHE into the buffer specified by
277    GREGS and LEN.  If REGNUM is -1, do this for all registers in
278    REGSET.  */
279 
280 void
ppc_collect_gregset(const struct regset * regset,const struct regcache * regcache,int regnum,void * gregs,size_t len)281 ppc_collect_gregset (const struct regset *regset,
282 		     const struct regcache *regcache,
283 		     int regnum, void *gregs, size_t len)
284 {
285   struct gdbarch *gdbarch = get_regcache_arch (regcache);
286   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
287   const struct ppc_reg_offsets *offsets = regset->descr;
288   size_t offset;
289   int i;
290 
291   offset = offsets->r0_offset;
292   for (i = tdep->ppc_gp0_regnum;
293        i < tdep->ppc_gp0_regnum + ppc_num_gprs;
294        i++, offset += 4)
295     {
296       if (regnum == -1 || regnum == i)
297 	ppc_collect_reg (regcache, i, gregs, offset);
298     }
299 
300   if (regnum == -1 || regnum == PC_REGNUM)
301     ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
302   if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
303     ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
304 		     gregs, offsets->ps_offset);
305   if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
306     ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
307 		     gregs, offsets->cr_offset);
308   if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
309     ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
310 		     gregs, offsets->lr_offset);
311   if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
312     ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
313 		     gregs, offsets->ctr_offset);
314   if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
315     ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
316 		     gregs, offsets->xer_offset);
317   if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
318     ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
319 		     gregs, offsets->mq_offset);
320 }
321 
322 /* Collect register REGNUM in the floating-point register set
323    REGSET. from register cache REGCACHE into the buffer specified by
324    FPREGS and LEN.  If REGNUM is -1, do this for all registers in
325    REGSET.  */
326 
327 void
ppc_collect_fpregset(const struct regset * regset,const struct regcache * regcache,int regnum,void * fpregs,size_t len)328 ppc_collect_fpregset (const struct regset *regset,
329 		      const struct regcache *regcache,
330 		      int regnum, void *fpregs, size_t len)
331 {
332   struct gdbarch *gdbarch = get_regcache_arch (regcache);
333   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
334   const struct ppc_reg_offsets *offsets = regset->descr;
335   size_t offset;
336   int i;
337 
338   gdb_assert (ppc_floating_point_unit_p (gdbarch));
339 
340   offset = offsets->f0_offset;
341   for (i = tdep->ppc_fp0_regnum;
342        i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
343        i++, offset += 4)
344     {
345       if (regnum == -1 || regnum == i)
346 	ppc_collect_reg (regcache, regnum, fpregs, offset);
347     }
348 
349   if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
350     ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
351 		     fpregs, offsets->fpscr_offset);
352 }
353 
354 
355 /* Read a LEN-byte address from debugged memory address MEMADDR. */
356 
357 static CORE_ADDR
read_memory_addr(CORE_ADDR memaddr,int len)358 read_memory_addr (CORE_ADDR memaddr, int len)
359 {
360   return read_memory_unsigned_integer (memaddr, len);
361 }
362 
363 static CORE_ADDR
rs6000_skip_prologue(CORE_ADDR pc)364 rs6000_skip_prologue (CORE_ADDR pc)
365 {
366   struct rs6000_framedata frame;
367   pc = skip_prologue (pc, 0, &frame);
368   return pc;
369 }
370 
371 
372 /* Fill in fi->saved_regs */
373 
374 struct frame_extra_info
375 {
376   /* Functions calling alloca() change the value of the stack
377      pointer. We need to use initial stack pointer (which is saved in
378      r31 by gcc) in such cases. If a compiler emits traceback table,
379      then we should use the alloca register specified in traceback
380      table. FIXME. */
381   CORE_ADDR initial_sp;		/* initial stack pointer. */
382 };
383 
384 /* Get the ith function argument for the current function.  */
385 static CORE_ADDR
rs6000_fetch_pointer_argument(struct frame_info * frame,int argi,struct type * type)386 rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
387 			       struct type *type)
388 {
389   CORE_ADDR addr;
390   get_frame_register (frame, 3 + argi, &addr);
391   return addr;
392 }
393 
394 /* Calculate the destination of a branch/jump.  Return -1 if not a branch.  */
395 
396 static CORE_ADDR
branch_dest(int opcode,int instr,CORE_ADDR pc,CORE_ADDR safety)397 branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
398 {
399   CORE_ADDR dest;
400   int immediate;
401   int absolute;
402   int ext_op;
403 
404   absolute = (int) ((instr >> 1) & 1);
405 
406   switch (opcode)
407     {
408     case 18:
409       immediate = ((instr & ~3) << 6) >> 6;	/* br unconditional */
410       if (absolute)
411 	dest = immediate;
412       else
413 	dest = pc + immediate;
414       break;
415 
416     case 16:
417       immediate = ((instr & ~3) << 16) >> 16;	/* br conditional */
418       if (absolute)
419 	dest = immediate;
420       else
421 	dest = pc + immediate;
422       break;
423 
424     case 19:
425       ext_op = (instr >> 1) & 0x3ff;
426 
427       if (ext_op == 16)		/* br conditional register */
428 	{
429           dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
430 
431 	  /* If we are about to return from a signal handler, dest is
432 	     something like 0x3c90.  The current frame is a signal handler
433 	     caller frame, upon completion of the sigreturn system call
434 	     execution will return to the saved PC in the frame.  */
435 	  if (dest < TEXT_SEGMENT_BASE)
436 	    {
437 	      struct frame_info *fi;
438 
439 	      fi = get_current_frame ();
440 	      if (fi != NULL)
441 		dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
442 					 gdbarch_tdep (current_gdbarch)->wordsize);
443 	    }
444 	}
445 
446       else if (ext_op == 528)	/* br cond to count reg */
447 	{
448           dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
449 
450 	  /* If we are about to execute a system call, dest is something
451 	     like 0x22fc or 0x3b00.  Upon completion the system call
452 	     will return to the address in the link register.  */
453 	  if (dest < TEXT_SEGMENT_BASE)
454             dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
455 	}
456       else
457 	return -1;
458       break;
459 
460     default:
461       return -1;
462     }
463   return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
464 }
465 
466 
467 /* Sequence of bytes for breakpoint instruction.  */
468 
469 const static unsigned char *
rs6000_breakpoint_from_pc(CORE_ADDR * bp_addr,int * bp_size)470 rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
471 {
472   static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
473   static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
474   *bp_size = 4;
475   if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
476     return big_breakpoint;
477   else
478     return little_breakpoint;
479 }
480 
481 
482 /* AIX does not support PT_STEP. Simulate it. */
483 
484 void
rs6000_software_single_step(enum target_signal signal,int insert_breakpoints_p)485 rs6000_software_single_step (enum target_signal signal,
486 			     int insert_breakpoints_p)
487 {
488   CORE_ADDR dummy;
489   int breakp_sz;
490   const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
491   int ii, insn;
492   CORE_ADDR loc;
493   CORE_ADDR breaks[2];
494   int opcode;
495 
496   if (insert_breakpoints_p)
497     {
498 
499       loc = read_pc ();
500 
501       insn = read_memory_integer (loc, 4);
502 
503       breaks[0] = loc + breakp_sz;
504       opcode = insn >> 26;
505       breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
506 
507       /* Don't put two breakpoints on the same address. */
508       if (breaks[1] == breaks[0])
509 	breaks[1] = -1;
510 
511       stepBreaks[1].address = 0;
512 
513       for (ii = 0; ii < 2; ++ii)
514 	{
515 
516 	  /* ignore invalid breakpoint. */
517 	  if (breaks[ii] == -1)
518 	    continue;
519 	  target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
520 	  stepBreaks[ii].address = breaks[ii];
521 	}
522 
523     }
524   else
525     {
526 
527       /* remove step breakpoints. */
528       for (ii = 0; ii < 2; ++ii)
529 	if (stepBreaks[ii].address != 0)
530 	  target_remove_breakpoint (stepBreaks[ii].address,
531 				    stepBreaks[ii].data);
532     }
533   errno = 0;			/* FIXME, don't ignore errors! */
534   /* What errors?  {read,write}_memory call error().  */
535 }
536 
537 
538 /* return pc value after skipping a function prologue and also return
539    information about a function frame.
540 
541    in struct rs6000_framedata fdata:
542    - frameless is TRUE, if function does not have a frame.
543    - nosavedpc is TRUE, if function does not save %pc value in its frame.
544    - offset is the initial size of this stack frame --- the amount by
545    which we decrement the sp to allocate the frame.
546    - saved_gpr is the number of the first saved gpr.
547    - saved_fpr is the number of the first saved fpr.
548    - saved_vr is the number of the first saved vr.
549    - saved_ev is the number of the first saved ev.
550    - alloca_reg is the number of the register used for alloca() handling.
551    Otherwise -1.
552    - gpr_offset is the offset of the first saved gpr from the previous frame.
553    - fpr_offset is the offset of the first saved fpr from the previous frame.
554    - vr_offset is the offset of the first saved vr from the previous frame.
555    - ev_offset is the offset of the first saved ev from the previous frame.
556    - lr_offset is the offset of the saved lr
557    - cr_offset is the offset of the saved cr
558    - vrsave_offset is the offset of the saved vrsave register
559  */
560 
561 #define SIGNED_SHORT(x) 						\
562   ((sizeof (short) == 2)						\
563    ? ((int)(short)(x))							\
564    : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
565 
566 #define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
567 
568 /* Limit the number of skipped non-prologue instructions, as the examining
569    of the prologue is expensive.  */
570 static int max_skip_non_prologue_insns = 10;
571 
572 /* Given PC representing the starting address of a function, and
573    LIM_PC which is the (sloppy) limit to which to scan when looking
574    for a prologue, attempt to further refine this limit by using
575    the line data in the symbol table.  If successful, a better guess
576    on where the prologue ends is returned, otherwise the previous
577    value of lim_pc is returned.  */
578 
579 /* FIXME: cagney/2004-02-14: This function and logic have largely been
580    superseded by skip_prologue_using_sal.  */
581 
582 static CORE_ADDR
refine_prologue_limit(CORE_ADDR pc,CORE_ADDR lim_pc)583 refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
584 {
585   struct symtab_and_line prologue_sal;
586 
587   prologue_sal = find_pc_line (pc, 0);
588   if (prologue_sal.line != 0)
589     {
590       int i;
591       CORE_ADDR addr = prologue_sal.end;
592 
593       /* Handle the case in which compiler's optimizer/scheduler
594          has moved instructions into the prologue.  We scan ahead
595 	 in the function looking for address ranges whose corresponding
596 	 line number is less than or equal to the first one that we
597 	 found for the function.  (It can be less than when the
598 	 scheduler puts a body instruction before the first prologue
599 	 instruction.)  */
600       for (i = 2 * max_skip_non_prologue_insns;
601            i > 0 && (lim_pc == 0 || addr < lim_pc);
602 	   i--)
603         {
604 	  struct symtab_and_line sal;
605 
606 	  sal = find_pc_line (addr, 0);
607 	  if (sal.line == 0)
608 	    break;
609 	  if (sal.line <= prologue_sal.line
610 	      && sal.symtab == prologue_sal.symtab)
611 	    {
612 	      prologue_sal = sal;
613 	    }
614 	  addr = sal.end;
615 	}
616 
617       if (lim_pc == 0 || prologue_sal.end < lim_pc)
618 	lim_pc = prologue_sal.end;
619     }
620   return lim_pc;
621 }
622 
623 /* Return nonzero if the given instruction OP can be part of the prologue
624    of a function and saves a parameter on the stack.  FRAMEP should be
625    set if one of the previous instructions in the function has set the
626    Frame Pointer.  */
627 
628 static int
store_param_on_stack_p(unsigned long op,int framep,int * r0_contains_arg)629 store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
630 {
631   /* Move parameters from argument registers to temporary register.  */
632   if ((op & 0xfc0007fe) == 0x7c000378)         /* mr(.)  Rx,Ry */
633     {
634       /* Rx must be scratch register r0.  */
635       const int rx_regno = (op >> 16) & 31;
636       /* Ry: Only r3 - r10 are used for parameter passing.  */
637       const int ry_regno = GET_SRC_REG (op);
638 
639       if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
640         {
641           *r0_contains_arg = 1;
642           return 1;
643         }
644       else
645         return 0;
646     }
647 
648   /* Save a General Purpose Register on stack.  */
649 
650   if ((op & 0xfc1f0003) == 0xf8010000 ||       /* std  Rx,NUM(r1) */
651       (op & 0xfc1f0000) == 0xd8010000)         /* stfd Rx,NUM(r1) */
652     {
653       /* Rx: Only r3 - r10 are used for parameter passing.  */
654       const int rx_regno = GET_SRC_REG (op);
655 
656       return (rx_regno >= 3 && rx_regno <= 10);
657     }
658 
659   /* Save a General Purpose Register on stack via the Frame Pointer.  */
660 
661   if (framep &&
662       ((op & 0xfc1f0000) == 0x901f0000 ||     /* st rx,NUM(r31) */
663        (op & 0xfc1f0000) == 0x981f0000 ||     /* stb Rx,NUM(r31) */
664        (op & 0xfc1f0000) == 0xd81f0000))      /* stfd Rx,NUM(r31) */
665     {
666       /* Rx: Usually, only r3 - r10 are used for parameter passing.
667          However, the compiler sometimes uses r0 to hold an argument.  */
668       const int rx_regno = GET_SRC_REG (op);
669 
670       return ((rx_regno >= 3 && rx_regno <= 10)
671               || (rx_regno == 0 && *r0_contains_arg));
672     }
673 
674   if ((op & 0xfc1f0000) == 0xfc010000)         /* frsp, fp?,NUM(r1) */
675     {
676       /* Only f2 - f8 are used for parameter passing.  */
677       const int src_regno = GET_SRC_REG (op);
678 
679       return (src_regno >= 2 && src_regno <= 8);
680     }
681 
682   if (framep && ((op & 0xfc1f0000) == 0xfc1f0000))  /* frsp, fp?,NUM(r31) */
683     {
684       /* Only f2 - f8 are used for parameter passing.  */
685       const int src_regno = GET_SRC_REG (op);
686 
687       return (src_regno >= 2 && src_regno <= 8);
688     }
689 
690   /* Not an insn that saves a parameter on stack.  */
691   return 0;
692 }
693 
694 static CORE_ADDR
skip_prologue(CORE_ADDR pc,CORE_ADDR lim_pc,struct rs6000_framedata * fdata)695 skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
696 {
697   CORE_ADDR orig_pc = pc;
698   CORE_ADDR last_prologue_pc = pc;
699   CORE_ADDR li_found_pc = 0;
700   char buf[4];
701   unsigned long op;
702   long offset = 0;
703   long vr_saved_offset = 0;
704   int lr_reg = -1;
705   int cr_reg = -1;
706   int vr_reg = -1;
707   int ev_reg = -1;
708   long ev_offset = 0;
709   int vrsave_reg = -1;
710   int reg;
711   int framep = 0;
712   int minimal_toc_loaded = 0;
713   int prev_insn_was_prologue_insn = 1;
714   int num_skip_non_prologue_insns = 0;
715   int r0_contains_arg = 0;
716   const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
717   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
718 
719   /* Attempt to find the end of the prologue when no limit is specified.
720      Note that refine_prologue_limit() has been written so that it may
721      be used to "refine" the limits of non-zero PC values too, but this
722      is only safe if we 1) trust the line information provided by the
723      compiler and 2) iterate enough to actually find the end of the
724      prologue.
725 
726      It may become a good idea at some point (for both performance and
727      accuracy) to unconditionally call refine_prologue_limit().  But,
728      until we can make a clear determination that this is beneficial,
729      we'll play it safe and only use it to obtain a limit when none
730      has been specified.  */
731   if (lim_pc == 0)
732     lim_pc = refine_prologue_limit (pc, lim_pc);
733 
734   memset (fdata, 0, sizeof (struct rs6000_framedata));
735   fdata->saved_gpr = -1;
736   fdata->saved_fpr = -1;
737   fdata->saved_vr = -1;
738   fdata->saved_ev = -1;
739   fdata->alloca_reg = -1;
740   fdata->frameless = 1;
741   fdata->nosavedpc = 1;
742 
743   for (;; pc += 4)
744     {
745       /* Sometimes it isn't clear if an instruction is a prologue
746          instruction or not.  When we encounter one of these ambiguous
747 	 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
748 	 Otherwise, we'll assume that it really is a prologue instruction. */
749       if (prev_insn_was_prologue_insn)
750 	last_prologue_pc = pc;
751 
752       /* Stop scanning if we've hit the limit.  */
753       if (lim_pc != 0 && pc >= lim_pc)
754 	break;
755 
756       prev_insn_was_prologue_insn = 1;
757 
758       /* Fetch the instruction and convert it to an integer.  */
759       if (target_read_memory (pc, buf, 4))
760 	break;
761       op = extract_signed_integer (buf, 4);
762 
763       if ((op & 0xfc1fffff) == 0x7c0802a6)
764 	{			/* mflr Rx */
765 	  /* Since shared library / PIC code, which needs to get its
766 	     address at runtime, can appear to save more than one link
767 	     register vis:
768 
769 	     *INDENT-OFF*
770 	     stwu r1,-304(r1)
771 	     mflr r3
772 	     bl 0xff570d0 (blrl)
773 	     stw r30,296(r1)
774 	     mflr r30
775 	     stw r31,300(r1)
776 	     stw r3,308(r1);
777 	     ...
778 	     *INDENT-ON*
779 
780 	     remember just the first one, but skip over additional
781 	     ones.  */
782 	  if (lr_reg < 0)
783 	    lr_reg = (op & 0x03e00000);
784           if (lr_reg == 0)
785             r0_contains_arg = 0;
786 	  continue;
787 	}
788       else if ((op & 0xfc1fffff) == 0x7c000026)
789 	{			/* mfcr Rx */
790 	  cr_reg = (op & 0x03e00000);
791           if (cr_reg == 0)
792             r0_contains_arg = 0;
793 	  continue;
794 
795 	}
796       else if ((op & 0xfc1f0000) == 0xd8010000)
797 	{			/* stfd Rx,NUM(r1) */
798 	  reg = GET_SRC_REG (op);
799 	  if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
800 	    {
801 	      fdata->saved_fpr = reg;
802 	      fdata->fpr_offset = SIGNED_SHORT (op) + offset;
803 	    }
804 	  continue;
805 
806 	}
807       else if (((op & 0xfc1f0000) == 0xbc010000) ||	/* stm Rx, NUM(r1) */
808 	       (((op & 0xfc1f0000) == 0x90010000 ||	/* st rx,NUM(r1) */
809 		 (op & 0xfc1f0003) == 0xf8010000) &&	/* std rx,NUM(r1) */
810 		(op & 0x03e00000) >= 0x01a00000))	/* rx >= r13 */
811 	{
812 
813 	  reg = GET_SRC_REG (op);
814 	  if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
815 	    {
816 	      fdata->saved_gpr = reg;
817 	      if ((op & 0xfc1f0003) == 0xf8010000)
818 		op &= ~3UL;
819 	      fdata->gpr_offset = SIGNED_SHORT (op) + offset;
820 	    }
821 	  continue;
822 
823 	}
824       else if ((op & 0xffff0000) == 0x60000000)
825         {
826 	  /* nop */
827 	  /* Allow nops in the prologue, but do not consider them to
828 	     be part of the prologue unless followed by other prologue
829 	     instructions. */
830 	  prev_insn_was_prologue_insn = 0;
831 	  continue;
832 
833 	}
834       else if ((op & 0xffff0000) == 0x3c000000)
835 	{			/* addis 0,0,NUM, used
836 				   for >= 32k frames */
837 	  fdata->offset = (op & 0x0000ffff) << 16;
838 	  fdata->frameless = 0;
839           r0_contains_arg = 0;
840 	  continue;
841 
842 	}
843       else if ((op & 0xffff0000) == 0x60000000)
844 	{			/* ori 0,0,NUM, 2nd ha
845 				   lf of >= 32k frames */
846 	  fdata->offset |= (op & 0x0000ffff);
847 	  fdata->frameless = 0;
848           r0_contains_arg = 0;
849 	  continue;
850 
851 	}
852       else if (lr_reg != -1 &&
853 	       /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
854 	       (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
855 		/* stw Rx, NUM(r1) */
856 		((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
857 		/* stwu Rx, NUM(r1) */
858 		((op & 0xffff0000) == (lr_reg | 0x94010000))))
859 	{	/* where Rx == lr */
860 	  fdata->lr_offset = offset;
861 	  fdata->nosavedpc = 0;
862 	  lr_reg = 0;
863 	  if ((op & 0xfc000003) == 0xf8000000 ||	/* std */
864 	      (op & 0xfc000000) == 0x90000000)		/* stw */
865 	    {
866 	      /* Does not update r1, so add displacement to lr_offset.  */
867 	      fdata->lr_offset += SIGNED_SHORT (op);
868 	    }
869 	  continue;
870 
871 	}
872       else if (cr_reg != -1 &&
873 	       /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
874 	       (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
875 		/* stw Rx, NUM(r1) */
876 		((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
877 		/* stwu Rx, NUM(r1) */
878 		((op & 0xffff0000) == (cr_reg | 0x94010000))))
879 	{	/* where Rx == cr */
880 	  fdata->cr_offset = offset;
881 	  cr_reg = 0;
882 	  if ((op & 0xfc000003) == 0xf8000000 ||
883 	      (op & 0xfc000000) == 0x90000000)
884 	    {
885 	      /* Does not update r1, so add displacement to cr_offset.  */
886 	      fdata->cr_offset += SIGNED_SHORT (op);
887 	    }
888 	  continue;
889 
890 	}
891       else if (op == 0x48000005)
892 	{			/* bl .+4 used in
893 				   -mrelocatable */
894 	  continue;
895 
896 	}
897       else if (op == 0x48000004)
898 	{			/* b .+4 (xlc) */
899 	  break;
900 
901 	}
902       else if ((op & 0xffff0000) == 0x3fc00000 ||  /* addis 30,0,foo@ha, used
903 						      in V.4 -mminimal-toc */
904 	       (op & 0xffff0000) == 0x3bde0000)
905 	{			/* addi 30,30,foo@l */
906 	  continue;
907 
908 	}
909       else if ((op & 0xfc000001) == 0x48000001)
910 	{			/* bl foo,
911 				   to save fprs??? */
912 
913 	  fdata->frameless = 0;
914 	  /* Don't skip over the subroutine call if it is not within
915 	     the first three instructions of the prologue.  */
916 	  if ((pc - orig_pc) > 8)
917 	    break;
918 
919 	  op = read_memory_integer (pc + 4, 4);
920 
921 	  /* At this point, make sure this is not a trampoline
922 	     function (a function that simply calls another functions,
923 	     and nothing else).  If the next is not a nop, this branch
924 	     was part of the function prologue. */
925 
926 	  if (op == 0x4def7b82 || op == 0)	/* crorc 15, 15, 15 */
927 	    break;		/* don't skip over
928 				   this branch */
929 	  continue;
930 
931 	}
932       /* update stack pointer */
933       else if ((op & 0xfc1f0000) == 0x94010000)
934 	{		/* stu rX,NUM(r1) ||  stwu rX,NUM(r1) */
935 	  fdata->frameless = 0;
936 	  fdata->offset = SIGNED_SHORT (op);
937 	  offset = fdata->offset;
938 	  continue;
939 	}
940       else if ((op & 0xfc1f016a) == 0x7c01016e)
941 	{			/* stwux rX,r1,rY */
942 	  /* no way to figure out what r1 is going to be */
943 	  fdata->frameless = 0;
944 	  offset = fdata->offset;
945 	  continue;
946 	}
947       else if ((op & 0xfc1f0003) == 0xf8010001)
948 	{			/* stdu rX,NUM(r1) */
949 	  fdata->frameless = 0;
950 	  fdata->offset = SIGNED_SHORT (op & ~3UL);
951 	  offset = fdata->offset;
952 	  continue;
953 	}
954       else if ((op & 0xfc1f016a) == 0x7c01016a)
955 	{			/* stdux rX,r1,rY */
956 	  /* no way to figure out what r1 is going to be */
957 	  fdata->frameless = 0;
958 	  offset = fdata->offset;
959 	  continue;
960 	}
961       /* Load up minimal toc pointer */
962       else if (((op >> 22) == 0x20f	||	/* l r31,... or l r30,... */
963 	       (op >> 22) == 0x3af)		/* ld r31,... or ld r30,... */
964 	       && !minimal_toc_loaded)
965 	{
966 	  minimal_toc_loaded = 1;
967 	  continue;
968 
969 	  /* move parameters from argument registers to local variable
970              registers */
971  	}
972       else if ((op & 0xfc0007fe) == 0x7c000378 &&	/* mr(.)  Rx,Ry */
973                (((op >> 21) & 31) >= 3) &&              /* R3 >= Ry >= R10 */
974                (((op >> 21) & 31) <= 10) &&
975                ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
976 	{
977 	  continue;
978 
979 	  /* store parameters in stack */
980 	}
981       /* Move parameters from argument registers to temporary register.  */
982       else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
983         {
984 	  continue;
985 
986 	  /* Set up frame pointer */
987 	}
988       else if (op == 0x603f0000	/* oril r31, r1, 0x0 */
989 	       || op == 0x7c3f0b78)
990 	{			/* mr r31, r1 */
991 	  fdata->frameless = 0;
992 	  framep = 1;
993 	  fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
994 	  continue;
995 
996 	  /* Another way to set up the frame pointer.  */
997 	}
998       else if ((op & 0xfc1fffff) == 0x38010000)
999 	{			/* addi rX, r1, 0x0 */
1000 	  fdata->frameless = 0;
1001 	  framep = 1;
1002 	  fdata->alloca_reg = (tdep->ppc_gp0_regnum
1003 			       + ((op & ~0x38010000) >> 21));
1004 	  continue;
1005 	}
1006       /* AltiVec related instructions.  */
1007       /* Store the vrsave register (spr 256) in another register for
1008 	 later manipulation, or load a register into the vrsave
1009 	 register.  2 instructions are used: mfvrsave and
1010 	 mtvrsave.  They are shorthand notation for mfspr Rn, SPR256
1011 	 and mtspr SPR256, Rn.  */
1012       /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1013 	 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110  */
1014       else if ((op & 0xfc1fffff) == 0x7c0042a6)    /* mfvrsave Rn */
1015 	{
1016           vrsave_reg = GET_SRC_REG (op);
1017 	  continue;
1018 	}
1019       else if ((op & 0xfc1fffff) == 0x7c0043a6)     /* mtvrsave Rn */
1020         {
1021           continue;
1022         }
1023       /* Store the register where vrsave was saved to onto the stack:
1024          rS is the register where vrsave was stored in a previous
1025 	 instruction.  */
1026       /* 100100 sssss 00001 dddddddd dddddddd */
1027       else if ((op & 0xfc1f0000) == 0x90010000)     /* stw rS, d(r1) */
1028         {
1029           if (vrsave_reg == GET_SRC_REG (op))
1030 	    {
1031 	      fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1032 	      vrsave_reg = -1;
1033 	    }
1034           continue;
1035         }
1036       /* Compute the new value of vrsave, by modifying the register
1037          where vrsave was saved to.  */
1038       else if (((op & 0xfc000000) == 0x64000000)    /* oris Ra, Rs, UIMM */
1039 	       || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1040 	{
1041 	  continue;
1042 	}
1043       /* li r0, SIMM (short for addi r0, 0, SIMM).  This is the first
1044 	 in a pair of insns to save the vector registers on the
1045 	 stack.  */
1046       /* 001110 00000 00000 iiii iiii iiii iiii  */
1047       /* 001110 01110 00000 iiii iiii iiii iiii  */
1048       else if ((op & 0xffff0000) == 0x38000000         /* li r0, SIMM */
1049                || (op & 0xffff0000) == 0x39c00000)     /* li r14, SIMM */
1050 	{
1051           if ((op & 0xffff0000) == 0x38000000)
1052             r0_contains_arg = 0;
1053 	  li_found_pc = pc;
1054 	  vr_saved_offset = SIGNED_SHORT (op);
1055 
1056           /* This insn by itself is not part of the prologue, unless
1057              if part of the pair of insns mentioned above. So do not
1058              record this insn as part of the prologue yet.  */
1059           prev_insn_was_prologue_insn = 0;
1060 	}
1061       /* Store vector register S at (r31+r0) aligned to 16 bytes.  */
1062       /* 011111 sssss 11111 00000 00111001110 */
1063       else if ((op & 0xfc1fffff) == 0x7c1f01ce)   /* stvx Vs, R31, R0 */
1064         {
1065 	  if (pc == (li_found_pc + 4))
1066 	    {
1067 	      vr_reg = GET_SRC_REG (op);
1068 	      /* If this is the first vector reg to be saved, or if
1069 		 it has a lower number than others previously seen,
1070 		 reupdate the frame info.  */
1071 	      if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1072 		{
1073 		  fdata->saved_vr = vr_reg;
1074 		  fdata->vr_offset = vr_saved_offset + offset;
1075 		}
1076 	      vr_saved_offset = -1;
1077 	      vr_reg = -1;
1078 	      li_found_pc = 0;
1079 	    }
1080 	}
1081       /* End AltiVec related instructions.  */
1082 
1083       /* Start BookE related instructions.  */
1084       /* Store gen register S at (r31+uimm).
1085          Any register less than r13 is volatile, so we don't care.  */
1086       /* 000100 sssss 11111 iiiii 01100100001 */
1087       else if (arch_info->mach == bfd_mach_ppc_e500
1088 	       && (op & 0xfc1f07ff) == 0x101f0321)    /* evstdd Rs,uimm(R31) */
1089 	{
1090           if ((op & 0x03e00000) >= 0x01a00000)	/* Rs >= r13 */
1091 	    {
1092               unsigned int imm;
1093 	      ev_reg = GET_SRC_REG (op);
1094               imm = (op >> 11) & 0x1f;
1095 	      ev_offset = imm * 8;
1096 	      /* If this is the first vector reg to be saved, or if
1097 		 it has a lower number than others previously seen,
1098 		 reupdate the frame info.  */
1099 	      if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1100 		{
1101 		  fdata->saved_ev = ev_reg;
1102 		  fdata->ev_offset = ev_offset + offset;
1103 		}
1104 	    }
1105           continue;
1106         }
1107       /* Store gen register rS at (r1+rB).  */
1108       /* 000100 sssss 00001 bbbbb 01100100000 */
1109       else if (arch_info->mach == bfd_mach_ppc_e500
1110 	       && (op & 0xffe007ff) == 0x13e00320)     /* evstddx RS,R1,Rb */
1111 	{
1112           if (pc == (li_found_pc + 4))
1113             {
1114               ev_reg = GET_SRC_REG (op);
1115 	      /* If this is the first vector reg to be saved, or if
1116                  it has a lower number than others previously seen,
1117                  reupdate the frame info.  */
1118               /* We know the contents of rB from the previous instruction.  */
1119 	      if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1120 		{
1121                   fdata->saved_ev = ev_reg;
1122                   fdata->ev_offset = vr_saved_offset + offset;
1123 		}
1124 	      vr_saved_offset = -1;
1125 	      ev_reg = -1;
1126 	      li_found_pc = 0;
1127             }
1128           continue;
1129         }
1130       /* Store gen register r31 at (rA+uimm).  */
1131       /* 000100 11111 aaaaa iiiii 01100100001 */
1132       else if (arch_info->mach == bfd_mach_ppc_e500
1133 	       && (op & 0xffe007ff) == 0x13e00321)   /* evstdd R31,Ra,UIMM */
1134         {
1135           /* Wwe know that the source register is 31 already, but
1136              it can't hurt to compute it.  */
1137 	  ev_reg = GET_SRC_REG (op);
1138           ev_offset = ((op >> 11) & 0x1f) * 8;
1139 	  /* If this is the first vector reg to be saved, or if
1140 	     it has a lower number than others previously seen,
1141 	     reupdate the frame info.  */
1142 	  if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1143 	    {
1144 	      fdata->saved_ev = ev_reg;
1145 	      fdata->ev_offset = ev_offset + offset;
1146 	    }
1147 
1148 	  continue;
1149       	}
1150       /* Store gen register S at (r31+r0).
1151          Store param on stack when offset from SP bigger than 4 bytes.  */
1152       /* 000100 sssss 11111 00000 01100100000 */
1153       else if (arch_info->mach == bfd_mach_ppc_e500
1154 	       && (op & 0xfc1fffff) == 0x101f0320)     /* evstddx Rs,R31,R0 */
1155 	{
1156           if (pc == (li_found_pc + 4))
1157             {
1158               if ((op & 0x03e00000) >= 0x01a00000)
1159 		{
1160 		  ev_reg = GET_SRC_REG (op);
1161 		  /* If this is the first vector reg to be saved, or if
1162 		     it has a lower number than others previously seen,
1163 		     reupdate the frame info.  */
1164                   /* We know the contents of r0 from the previous
1165                      instruction.  */
1166 		  if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1167 		    {
1168 		      fdata->saved_ev = ev_reg;
1169 		      fdata->ev_offset = vr_saved_offset + offset;
1170 		    }
1171 		  ev_reg = -1;
1172 		}
1173 	      vr_saved_offset = -1;
1174 	      li_found_pc = 0;
1175 	      continue;
1176             }
1177 	}
1178       /* End BookE related instructions.  */
1179 
1180       else
1181 	{
1182 	  /* Not a recognized prologue instruction.
1183 	     Handle optimizer code motions into the prologue by continuing
1184 	     the search if we have no valid frame yet or if the return
1185 	     address is not yet saved in the frame.  */
1186 	  if (fdata->frameless == 0
1187 	      && (lr_reg == -1 || fdata->nosavedpc == 0))
1188 	    break;
1189 
1190 	  if (op == 0x4e800020		/* blr */
1191 	      || op == 0x4e800420)	/* bctr */
1192 	    /* Do not scan past epilogue in frameless functions or
1193 	       trampolines.  */
1194 	    break;
1195 	  if ((op & 0xf4000000) == 0x40000000) /* bxx */
1196 	    /* Never skip branches.  */
1197 	    break;
1198 
1199 	  if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1200 	    /* Do not scan too many insns, scanning insns is expensive with
1201 	       remote targets.  */
1202 	    break;
1203 
1204 	  /* Continue scanning.  */
1205 	  prev_insn_was_prologue_insn = 0;
1206 	  continue;
1207 	}
1208     }
1209 
1210 #if 0
1211 /* I have problems with skipping over __main() that I need to address
1212  * sometime. Previously, I used to use misc_function_vector which
1213  * didn't work as well as I wanted to be.  -MGO */
1214 
1215   /* If the first thing after skipping a prolog is a branch to a function,
1216      this might be a call to an initializer in main(), introduced by gcc2.
1217      We'd like to skip over it as well.  Fortunately, xlc does some extra
1218      work before calling a function right after a prologue, thus we can
1219      single out such gcc2 behaviour.  */
1220 
1221 
1222   if ((op & 0xfc000001) == 0x48000001)
1223     {				/* bl foo, an initializer function? */
1224       op = read_memory_integer (pc + 4, 4);
1225 
1226       if (op == 0x4def7b82)
1227 	{			/* cror 0xf, 0xf, 0xf (nop) */
1228 
1229 	  /* Check and see if we are in main.  If so, skip over this
1230 	     initializer function as well.  */
1231 
1232 	  tmp = find_pc_misc_function (pc);
1233 	  if (tmp >= 0
1234 	      && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
1235 	    return pc + 8;
1236 	}
1237     }
1238 #endif /* 0 */
1239 
1240   fdata->offset = -fdata->offset;
1241   return last_prologue_pc;
1242 }
1243 
1244 
1245 /*************************************************************************
1246   Support for creating pushing a dummy frame into the stack, and popping
1247   frames, etc.
1248 *************************************************************************/
1249 
1250 
1251 /* All the ABI's require 16 byte alignment.  */
1252 static CORE_ADDR
rs6000_frame_align(struct gdbarch * gdbarch,CORE_ADDR addr)1253 rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1254 {
1255   return (addr & -16);
1256 }
1257 
1258 /* Pass the arguments in either registers, or in the stack. In RS/6000,
1259    the first eight words of the argument list (that might be less than
1260    eight parameters if some parameters occupy more than one word) are
1261    passed in r3..r10 registers.  float and double parameters are
1262    passed in fpr's, in addition to that.  Rest of the parameters if any
1263    are passed in user stack.  There might be cases in which half of the
1264    parameter is copied into registers, the other half is pushed into
1265    stack.
1266 
1267    Stack must be aligned on 64-bit boundaries when synthesizing
1268    function calls.
1269 
1270    If the function is returning a structure, then the return address is passed
1271    in r3, then the first 7 words of the parameters can be passed in registers,
1272    starting from r4.  */
1273 
1274 static CORE_ADDR
rs6000_push_dummy_call(struct gdbarch * gdbarch,struct value * function,struct regcache * regcache,CORE_ADDR bp_addr,int nargs,struct value ** args,CORE_ADDR sp,int struct_return,CORE_ADDR struct_addr)1275 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1276 			struct regcache *regcache, CORE_ADDR bp_addr,
1277 			int nargs, struct value **args, CORE_ADDR sp,
1278 			int struct_return, CORE_ADDR struct_addr)
1279 {
1280   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1281   int ii;
1282   int len = 0;
1283   int argno;			/* current argument number */
1284   int argbytes;			/* current argument byte */
1285   char tmp_buffer[50];
1286   int f_argno = 0;		/* current floating point argno */
1287   int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
1288   CORE_ADDR func_addr = find_function_addr (function, NULL);
1289 
1290   struct value *arg = 0;
1291   struct type *type;
1292 
1293   CORE_ADDR saved_sp;
1294 
1295   /* The calling convention this function implements assumes the
1296      processor has floating-point registers.  We shouldn't be using it
1297      on PPC variants that lack them.  */
1298   gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1299 
1300   /* The first eight words of ther arguments are passed in registers.
1301      Copy them appropriately.  */
1302   ii = 0;
1303 
1304   /* If the function is returning a `struct', then the first word
1305      (which will be passed in r3) is used for struct return address.
1306      In that case we should advance one word and start from r4
1307      register to copy parameters.  */
1308   if (struct_return)
1309     {
1310       regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1311 				   struct_addr);
1312       ii++;
1313     }
1314 
1315 /*
1316    effectively indirect call... gcc does...
1317 
1318    return_val example( float, int);
1319 
1320    eabi:
1321    float in fp0, int in r3
1322    offset of stack on overflow 8/16
1323    for varargs, must go by type.
1324    power open:
1325    float in r3&r4, int in r5
1326    offset of stack on overflow different
1327    both:
1328    return in r3 or f0.  If no float, must study how gcc emulates floats;
1329    pay attention to arg promotion.
1330    User may have to cast\args to handle promotion correctly
1331    since gdb won't know if prototype supplied or not.
1332  */
1333 
1334   for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1335     {
1336       int reg_size = DEPRECATED_REGISTER_RAW_SIZE (ii + 3);
1337 
1338       arg = args[argno];
1339       type = check_typedef (VALUE_TYPE (arg));
1340       len = TYPE_LENGTH (type);
1341 
1342       if (TYPE_CODE (type) == TYPE_CODE_FLT)
1343 	{
1344 
1345 	  /* Floating point arguments are passed in fpr's, as well as gpr's.
1346 	     There are 13 fpr's reserved for passing parameters. At this point
1347 	     there is no way we would run out of them.  */
1348 
1349 	  if (len > 8)
1350 	    printf_unfiltered ("Fatal Error: a floating point parameter "
1351                                "#%d with a size > 8 is found!\n", argno);
1352 
1353 	  memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE
1354                                         (tdep->ppc_fp0_regnum + 1 + f_argno)],
1355 		  VALUE_CONTENTS (arg),
1356 		  len);
1357 	  ++f_argno;
1358 	}
1359 
1360       if (len > reg_size)
1361 	{
1362 
1363 	  /* Argument takes more than one register.  */
1364 	  while (argbytes < len)
1365 	    {
1366 	      memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0,
1367 		      reg_size);
1368 	      memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)],
1369 		      ((char *) VALUE_CONTENTS (arg)) + argbytes,
1370 		      (len - argbytes) > reg_size
1371 		        ? reg_size : len - argbytes);
1372 	      ++ii, argbytes += reg_size;
1373 
1374 	      if (ii >= 8)
1375 		goto ran_out_of_registers_for_arguments;
1376 	    }
1377 	  argbytes = 0;
1378 	  --ii;
1379 	}
1380       else
1381 	{
1382 	  /* Argument can fit in one register.  No problem.  */
1383 	  int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
1384 	  memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0, reg_size);
1385 	  memcpy ((char *)&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)] + adj,
1386 	          VALUE_CONTENTS (arg), len);
1387 	}
1388       ++argno;
1389     }
1390 
1391 ran_out_of_registers_for_arguments:
1392 
1393   saved_sp = read_sp ();
1394 
1395   /* Location for 8 parameters are always reserved.  */
1396   sp -= wordsize * 8;
1397 
1398   /* Another six words for back chain, TOC register, link register, etc.  */
1399   sp -= wordsize * 6;
1400 
1401   /* Stack pointer must be quadword aligned.  */
1402   sp &= -16;
1403 
1404   /* If there are more arguments, allocate space for them in
1405      the stack, then push them starting from the ninth one.  */
1406 
1407   if ((argno < nargs) || argbytes)
1408     {
1409       int space = 0, jj;
1410 
1411       if (argbytes)
1412 	{
1413 	  space += ((len - argbytes + 3) & -4);
1414 	  jj = argno + 1;
1415 	}
1416       else
1417 	jj = argno;
1418 
1419       for (; jj < nargs; ++jj)
1420 	{
1421 	  struct value *val = args[jj];
1422 	  space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1423 	}
1424 
1425       /* Add location required for the rest of the parameters.  */
1426       space = (space + 15) & -16;
1427       sp -= space;
1428 
1429       /* This is another instance we need to be concerned about
1430          securing our stack space. If we write anything underneath %sp
1431          (r1), we might conflict with the kernel who thinks he is free
1432          to use this area.  So, update %sp first before doing anything
1433          else.  */
1434 
1435       regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1436 
1437       /* If the last argument copied into the registers didn't fit there
1438          completely, push the rest of it into stack.  */
1439 
1440       if (argbytes)
1441 	{
1442 	  write_memory (sp + 24 + (ii * 4),
1443 			((char *) VALUE_CONTENTS (arg)) + argbytes,
1444 			len - argbytes);
1445 	  ++argno;
1446 	  ii += ((len - argbytes + 3) & -4) / 4;
1447 	}
1448 
1449       /* Push the rest of the arguments into stack.  */
1450       for (; argno < nargs; ++argno)
1451 	{
1452 
1453 	  arg = args[argno];
1454 	  type = check_typedef (VALUE_TYPE (arg));
1455 	  len = TYPE_LENGTH (type);
1456 
1457 
1458 	  /* Float types should be passed in fpr's, as well as in the
1459              stack.  */
1460 	  if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1461 	    {
1462 
1463 	      if (len > 8)
1464 		printf_unfiltered ("Fatal Error: a floating point parameter"
1465                                    " #%d with a size > 8 is found!\n", argno);
1466 
1467 	      memcpy (&(deprecated_registers
1468                         [DEPRECATED_REGISTER_BYTE
1469                          (tdep->ppc_fp0_regnum + 1 + f_argno)]),
1470 		      VALUE_CONTENTS (arg),
1471 		      len);
1472 	      ++f_argno;
1473 	    }
1474 
1475 	  write_memory (sp + 24 + (ii * 4),
1476                         (char *) VALUE_CONTENTS (arg),
1477                         len);
1478 	  ii += ((len + 3) & -4) / 4;
1479 	}
1480     }
1481 
1482   /* Set the stack pointer.  According to the ABI, the SP is meant to
1483      be set _before_ the corresponding stack space is used.  On AIX,
1484      this even applies when the target has been completely stopped!
1485      Not doing this can lead to conflicts with the kernel which thinks
1486      that it still has control over this not-yet-allocated stack
1487      region.  */
1488   regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1489 
1490   /* Set back chain properly.  */
1491   store_unsigned_integer (tmp_buffer, 4, saved_sp);
1492   write_memory (sp, tmp_buffer, 4);
1493 
1494   /* Point the inferior function call's return address at the dummy's
1495      breakpoint.  */
1496   regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1497 
1498   /* Set the TOC register, get the value from the objfile reader
1499      which, in turn, gets it from the VMAP table.  */
1500   if (rs6000_find_toc_address_hook != NULL)
1501     {
1502       CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1503       regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1504     }
1505 
1506   target_store_registers (-1);
1507   return sp;
1508 }
1509 
1510 /* PowerOpen always puts structures in memory.  Vectors, which were
1511    added later, do get returned in a register though.  */
1512 
1513 static int
rs6000_use_struct_convention(int gcc_p,struct type * value_type)1514 rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1515 {
1516   if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1517       && TYPE_VECTOR (value_type))
1518     return 0;
1519   return 1;
1520 }
1521 
1522 static void
rs6000_extract_return_value(struct type * valtype,char * regbuf,char * valbuf)1523 rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1524 {
1525   int offset = 0;
1526   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1527 
1528   /* The calling convention this function implements assumes the
1529      processor has floating-point registers.  We shouldn't be using it
1530      on PPC variants that lack them.  */
1531   gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1532 
1533   if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1534     {
1535 
1536       /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1537          We need to truncate the return value into float size (4 byte) if
1538          necessary.  */
1539 
1540       convert_typed_floating (&regbuf[DEPRECATED_REGISTER_BYTE
1541                                       (tdep->ppc_fp0_regnum + 1)],
1542                               builtin_type_double,
1543                               valbuf,
1544                               valtype);
1545     }
1546   else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1547            && TYPE_LENGTH (valtype) == 16
1548            && TYPE_VECTOR (valtype))
1549     {
1550       memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1551 	      TYPE_LENGTH (valtype));
1552     }
1553   else
1554     {
1555       /* return value is copied starting from r3. */
1556       if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1557 	  && TYPE_LENGTH (valtype) < DEPRECATED_REGISTER_RAW_SIZE (3))
1558 	offset = DEPRECATED_REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1559 
1560       memcpy (valbuf,
1561 	      regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
1562 	      TYPE_LENGTH (valtype));
1563     }
1564 }
1565 
1566 /* Return whether handle_inferior_event() should proceed through code
1567    starting at PC in function NAME when stepping.
1568 
1569    The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1570    handle memory references that are too distant to fit in instructions
1571    generated by the compiler.  For example, if 'foo' in the following
1572    instruction:
1573 
1574      lwz r9,foo(r2)
1575 
1576    is greater than 32767, the linker might replace the lwz with a branch to
1577    somewhere in @FIX1 that does the load in 2 instructions and then branches
1578    back to where execution should continue.
1579 
1580    GDB should silently step over @FIX code, just like AIX dbx does.
1581    Unfortunately, the linker uses the "b" instruction for the branches,
1582    meaning that the link register doesn't get set.  Therefore, GDB's usual
1583    step_over_function() mechanism won't work.
1584 
1585    Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1586    in handle_inferior_event() to skip past @FIX code.  */
1587 
1588 int
rs6000_in_solib_return_trampoline(CORE_ADDR pc,char * name)1589 rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1590 {
1591   return name && !strncmp (name, "@FIX", 4);
1592 }
1593 
1594 /* Skip code that the user doesn't want to see when stepping:
1595 
1596    1. Indirect function calls use a piece of trampoline code to do context
1597    switching, i.e. to set the new TOC table.  Skip such code if we are on
1598    its first instruction (as when we have single-stepped to here).
1599 
1600    2. Skip shared library trampoline code (which is different from
1601    indirect function call trampolines).
1602 
1603    3. Skip bigtoc fixup code.
1604 
1605    Result is desired PC to step until, or NULL if we are not in
1606    code that should be skipped.  */
1607 
1608 CORE_ADDR
rs6000_skip_trampoline_code(CORE_ADDR pc)1609 rs6000_skip_trampoline_code (CORE_ADDR pc)
1610 {
1611   unsigned int ii, op;
1612   int rel;
1613   CORE_ADDR solib_target_pc;
1614   struct minimal_symbol *msymbol;
1615 
1616   static unsigned trampoline_code[] =
1617   {
1618     0x800b0000,			/*     l   r0,0x0(r11)  */
1619     0x90410014,			/*    st   r2,0x14(r1)  */
1620     0x7c0903a6,			/* mtctr   r0           */
1621     0x804b0004,			/*     l   r2,0x4(r11)  */
1622     0x816b0008,			/*     l  r11,0x8(r11)  */
1623     0x4e800420,			/*  bctr                */
1624     0x4e800020,			/*    br                */
1625     0
1626   };
1627 
1628   /* Check for bigtoc fixup code.  */
1629   msymbol = lookup_minimal_symbol_by_pc (pc);
1630   if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
1631     {
1632       /* Double-check that the third instruction from PC is relative "b".  */
1633       op = read_memory_integer (pc + 8, 4);
1634       if ((op & 0xfc000003) == 0x48000000)
1635 	{
1636 	  /* Extract bits 6-29 as a signed 24-bit relative word address and
1637 	     add it to the containing PC.  */
1638 	  rel = ((int)(op << 6) >> 6);
1639 	  return pc + 8 + rel;
1640 	}
1641     }
1642 
1643   /* If pc is in a shared library trampoline, return its target.  */
1644   solib_target_pc = find_solib_trampoline_target (pc);
1645   if (solib_target_pc)
1646     return solib_target_pc;
1647 
1648   for (ii = 0; trampoline_code[ii]; ++ii)
1649     {
1650       op = read_memory_integer (pc + (ii * 4), 4);
1651       if (op != trampoline_code[ii])
1652 	return 0;
1653     }
1654   ii = read_register (11);	/* r11 holds destination addr   */
1655   pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
1656   return pc;
1657 }
1658 
1659 /* Return the size of register REG when words are WORDSIZE bytes long.  If REG
1660    isn't available with that word size, return 0.  */
1661 
1662 static int
regsize(const struct reg * reg,int wordsize)1663 regsize (const struct reg *reg, int wordsize)
1664 {
1665   return wordsize == 8 ? reg->sz64 : reg->sz32;
1666 }
1667 
1668 /* Return the name of register number N, or null if no such register exists
1669    in the current architecture.  */
1670 
1671 static const char *
rs6000_register_name(int n)1672 rs6000_register_name (int n)
1673 {
1674   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1675   const struct reg *reg = tdep->regs + n;
1676 
1677   if (!regsize (reg, tdep->wordsize))
1678     return NULL;
1679   return reg->name;
1680 }
1681 
1682 /* Return the GDB type object for the "standard" data type
1683    of data in register N.  */
1684 
1685 static struct type *
rs6000_register_type(struct gdbarch * gdbarch,int n)1686 rs6000_register_type (struct gdbarch *gdbarch, int n)
1687 {
1688   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1689   const struct reg *reg = tdep->regs + n;
1690 
1691   if (reg->fpr)
1692     return builtin_type_double;
1693   else
1694     {
1695       int size = regsize (reg, tdep->wordsize);
1696       switch (size)
1697 	{
1698 	case 0:
1699 	  return builtin_type_int0;
1700 	case 4:
1701 	  return builtin_type_uint32;
1702 	case 8:
1703 	  if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1704 	    return builtin_type_vec64;
1705 	  else
1706 	    return builtin_type_uint64;
1707 	  break;
1708 	case 16:
1709 	  return builtin_type_vec128;
1710 	  break;
1711 	default:
1712 	  internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
1713 			  n, size);
1714 	}
1715     }
1716 }
1717 
1718 /* The register format for RS/6000 floating point registers is always
1719    double, we need a conversion if the memory format is float.  */
1720 
1721 static int
rs6000_convert_register_p(int regnum,struct type * type)1722 rs6000_convert_register_p (int regnum, struct type *type)
1723 {
1724   const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1725 
1726   return (reg->fpr
1727           && TYPE_CODE (type) == TYPE_CODE_FLT
1728           && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
1729 }
1730 
1731 static void
rs6000_register_to_value(struct frame_info * frame,int regnum,struct type * type,void * to)1732 rs6000_register_to_value (struct frame_info *frame,
1733                           int regnum,
1734                           struct type *type,
1735                           void *to)
1736 {
1737   const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1738   char from[MAX_REGISTER_SIZE];
1739 
1740   gdb_assert (reg->fpr);
1741   gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
1742 
1743   get_frame_register (frame, regnum, from);
1744   convert_typed_floating (from, builtin_type_double, to, type);
1745 }
1746 
1747 static void
rs6000_value_to_register(struct frame_info * frame,int regnum,struct type * type,const void * from)1748 rs6000_value_to_register (struct frame_info *frame,
1749                           int regnum,
1750                           struct type *type,
1751                           const void *from)
1752 {
1753   const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1754   char to[MAX_REGISTER_SIZE];
1755 
1756   gdb_assert (reg->fpr);
1757   gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
1758 
1759   convert_typed_floating (from, type, to, builtin_type_double);
1760   put_frame_register (frame, regnum, to);
1761 }
1762 
1763 static void
e500_pseudo_register_read(struct gdbarch * gdbarch,struct regcache * regcache,int reg_nr,void * buffer)1764 e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1765 			   int reg_nr, void *buffer)
1766 {
1767   int base_regnum;
1768   int offset = 0;
1769   char temp_buffer[MAX_REGISTER_SIZE];
1770   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1771 
1772   if (reg_nr >= tdep->ppc_gp0_regnum
1773       && reg_nr < tdep->ppc_gp0_regnum + ppc_num_gprs)
1774     {
1775       base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1776 
1777       /* Build the value in the provided buffer.  */
1778       /* Read the raw register of which this one is the lower portion.  */
1779       regcache_raw_read (regcache, base_regnum, temp_buffer);
1780       if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1781 	offset = 4;
1782       memcpy ((char *) buffer, temp_buffer + offset, 4);
1783     }
1784 }
1785 
1786 static void
e500_pseudo_register_write(struct gdbarch * gdbarch,struct regcache * regcache,int reg_nr,const void * buffer)1787 e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1788 			    int reg_nr, const void *buffer)
1789 {
1790   int base_regnum;
1791   int offset = 0;
1792   char temp_buffer[MAX_REGISTER_SIZE];
1793   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1794 
1795   if (reg_nr >= tdep->ppc_gp0_regnum
1796       && reg_nr < tdep->ppc_gp0_regnum + ppc_num_gprs)
1797     {
1798       base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1799       /* reg_nr is 32 bit here, and base_regnum is 64 bits.  */
1800       if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1801 	offset = 4;
1802 
1803       /* Let's read the value of the base register into a temporary
1804 	 buffer, so that overwriting the last four bytes with the new
1805 	 value of the pseudo will leave the upper 4 bytes unchanged.  */
1806       regcache_raw_read (regcache, base_regnum, temp_buffer);
1807 
1808       /* Write as an 8 byte quantity.  */
1809       memcpy (temp_buffer + offset, (char *) buffer, 4);
1810       regcache_raw_write (regcache, base_regnum, temp_buffer);
1811     }
1812 }
1813 
1814 /* Convert a DBX STABS register number to a GDB register number.  */
1815 static int
rs6000_stab_reg_to_regnum(int num)1816 rs6000_stab_reg_to_regnum (int num)
1817 {
1818   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1819 
1820   if (0 <= num && num <= 31)
1821     return tdep->ppc_gp0_regnum + num;
1822   else if (32 <= num && num <= 63)
1823     /* FIXME: jimb/2004-05-05: What should we do when the debug info
1824        specifies registers the architecture doesn't have?  Our
1825        callers don't check the value we return.  */
1826     return tdep->ppc_fp0_regnum + (num - 32);
1827   else if (77 <= num && num <= 108)
1828     return tdep->ppc_vr0_regnum + (num - 77);
1829   else if (1200 <= num && num < 1200 + 32)
1830     return tdep->ppc_ev0_regnum + (num - 1200);
1831   else
1832     switch (num)
1833       {
1834       case 64:
1835         return tdep->ppc_mq_regnum;
1836       case 65:
1837         return tdep->ppc_lr_regnum;
1838       case 66:
1839         return tdep->ppc_ctr_regnum;
1840       case 76:
1841         return tdep->ppc_xer_regnum;
1842       case 109:
1843         return tdep->ppc_vrsave_regnum;
1844       case 110:
1845         return tdep->ppc_vrsave_regnum - 1; /* vscr */
1846       case 111:
1847         return tdep->ppc_acc_regnum;
1848       case 112:
1849         return tdep->ppc_spefscr_regnum;
1850       default:
1851         return num;
1852       }
1853 }
1854 
1855 
1856 /* Convert a Dwarf 2 register number to a GDB register number.  */
1857 static int
rs6000_dwarf2_reg_to_regnum(int num)1858 rs6000_dwarf2_reg_to_regnum (int num)
1859 {
1860   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1861 
1862   if (0 <= num && num <= 31)
1863     return tdep->ppc_gp0_regnum + num;
1864   else if (32 <= num && num <= 63)
1865     /* FIXME: jimb/2004-05-05: What should we do when the debug info
1866        specifies registers the architecture doesn't have?  Our
1867        callers don't check the value we return.  */
1868     return tdep->ppc_fp0_regnum + (num - 32);
1869   else if (1124 <= num && num < 1124 + 32)
1870     return tdep->ppc_vr0_regnum + (num - 1124);
1871   else if (1200 <= num && num < 1200 + 32)
1872     return tdep->ppc_ev0_regnum + (num - 1200);
1873   else
1874     switch (num)
1875       {
1876       case 67:
1877         return tdep->ppc_vrsave_regnum - 1; /* vscr */
1878       case 99:
1879         return tdep->ppc_acc_regnum;
1880       case 100:
1881         return tdep->ppc_mq_regnum;
1882       case 101:
1883         return tdep->ppc_xer_regnum;
1884       case 108:
1885         return tdep->ppc_lr_regnum;
1886       case 109:
1887         return tdep->ppc_ctr_regnum;
1888       case 356:
1889         return tdep->ppc_vrsave_regnum;
1890       case 612:
1891         return tdep->ppc_spefscr_regnum;
1892       default:
1893         return num;
1894       }
1895 }
1896 
1897 
1898 static void
rs6000_store_return_value(struct type * type,struct regcache * regcache,const void * valbuf)1899 rs6000_store_return_value (struct type *type,
1900                            struct regcache *regcache,
1901                            const void *valbuf)
1902 {
1903   struct gdbarch *gdbarch = get_regcache_arch (regcache);
1904   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1905   int regnum = -1;
1906 
1907   /* The calling convention this function implements assumes the
1908      processor has floating-point registers.  We shouldn't be using it
1909      on PPC variants that lack them.  */
1910   gdb_assert (ppc_floating_point_unit_p (gdbarch));
1911 
1912   if (TYPE_CODE (type) == TYPE_CODE_FLT)
1913     /* Floating point values are returned starting from FPR1 and up.
1914        Say a double_double_double type could be returned in
1915        FPR1/FPR2/FPR3 triple.  */
1916     regnum = tdep->ppc_fp0_regnum + 1;
1917   else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1918     {
1919       if (TYPE_LENGTH (type) == 16
1920           && TYPE_VECTOR (type))
1921         regnum = tdep->ppc_vr0_regnum + 2;
1922       else
1923         gdb_assert (0);
1924     }
1925   else
1926     /* Everything else is returned in GPR3 and up.  */
1927     regnum = tdep->ppc_gp0_regnum + 3;
1928 
1929   {
1930     size_t bytes_written = 0;
1931 
1932     while (bytes_written < TYPE_LENGTH (type))
1933       {
1934         /* How much of this value can we write to this register?  */
1935         size_t bytes_to_write = min (TYPE_LENGTH (type) - bytes_written,
1936                                      register_size (gdbarch, regnum));
1937         regcache_cooked_write_part (regcache, regnum,
1938                                     0, bytes_to_write,
1939                                     (char *) valbuf + bytes_written);
1940         regnum++;
1941         bytes_written += bytes_to_write;
1942       }
1943   }
1944 }
1945 
1946 
1947 /* Extract from an array REGBUF containing the (raw) register state
1948    the address in which a function should return its structure value,
1949    as a CORE_ADDR (or an expression that can be used as one).  */
1950 
1951 static CORE_ADDR
rs6000_extract_struct_value_address(struct regcache * regcache)1952 rs6000_extract_struct_value_address (struct regcache *regcache)
1953 {
1954   /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
1955      function call GDB knows the address of the struct return value
1956      and hence, should not need to call this function.  Unfortunately,
1957      the current call_function_by_hand() code only saves the most
1958      recent struct address leading to occasional calls.  The code
1959      should instead maintain a stack of such addresses (in the dummy
1960      frame object).  */
1961   /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
1962      really got no idea where the return value is being stored.  While
1963      r3, on function entry, contained the address it will have since
1964      been reused (scratch) and hence wouldn't be valid */
1965   return 0;
1966 }
1967 
1968 /* Hook called when a new child process is started.  */
1969 
1970 void
rs6000_create_inferior(int pid)1971 rs6000_create_inferior (int pid)
1972 {
1973   if (rs6000_set_host_arch_hook)
1974     rs6000_set_host_arch_hook (pid);
1975 }
1976 
1977 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
1978 
1979    Usually a function pointer's representation is simply the address
1980    of the function. On the RS/6000 however, a function pointer is
1981    represented by a pointer to a TOC entry. This TOC entry contains
1982    three words, the first word is the address of the function, the
1983    second word is the TOC pointer (r2), and the third word is the
1984    static chain value.  Throughout GDB it is currently assumed that a
1985    function pointer contains the address of the function, which is not
1986    easy to fix.  In addition, the conversion of a function address to
1987    a function pointer would require allocation of a TOC entry in the
1988    inferior's memory space, with all its drawbacks.  To be able to
1989    call C++ virtual methods in the inferior (which are called via
1990    function pointers), find_function_addr uses this function to get the
1991    function address from a function pointer.  */
1992 
1993 /* Return real function address if ADDR (a function pointer) is in the data
1994    space and is therefore a special function pointer.  */
1995 
1996 static CORE_ADDR
rs6000_convert_from_func_ptr_addr(struct gdbarch * gdbarch,CORE_ADDR addr,struct target_ops * targ)1997 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
1998 				   CORE_ADDR addr,
1999 				   struct target_ops *targ)
2000 {
2001   struct obj_section *s;
2002 
2003   s = find_pc_section (addr);
2004   if (s && s->the_bfd_section->flags & SEC_CODE)
2005     return addr;
2006 
2007   /* ADDR is in the data space, so it's a special function pointer. */
2008   return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
2009 }
2010 
2011 
2012 /* Handling the various POWER/PowerPC variants.  */
2013 
2014 
2015 /* The arrays here called registers_MUMBLE hold information about available
2016    registers.
2017 
2018    For each family of PPC variants, I've tried to isolate out the
2019    common registers and put them up front, so that as long as you get
2020    the general family right, GDB will correctly identify the registers
2021    common to that family.  The common register sets are:
2022 
2023    For the 60x family: hid0 hid1 iabr dabr pir
2024 
2025    For the 505 and 860 family: eie eid nri
2026 
2027    For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
2028    tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2029    pbu1 pbl2 pbu2
2030 
2031    Most of these register groups aren't anything formal.  I arrived at
2032    them by looking at the registers that occurred in more than one
2033    processor.
2034 
2035    Note: kevinb/2002-04-30: Support for the fpscr register was added
2036    during April, 2002.  Slot 70 is being used for PowerPC and slot 71
2037    for Power.  For PowerPC, slot 70 was unused and was already in the
2038    PPC_UISA_SPRS which is ideally where fpscr should go.  For Power,
2039    slot 70 was being used for "mq", so the next available slot (71)
2040    was chosen.  It would have been nice to be able to make the
2041    register numbers the same across processor cores, but this wasn't
2042    possible without either 1) renumbering some registers for some
2043    processors or 2) assigning fpscr to a really high slot that's
2044    larger than any current register number.  Doing (1) is bad because
2045    existing stubs would break.  Doing (2) is undesirable because it
2046    would introduce a really large gap between fpscr and the rest of
2047    the registers for most processors.  */
2048 
2049 /* Convenience macros for populating register arrays.  */
2050 
2051 /* Within another macro, convert S to a string.  */
2052 
2053 #define STR(s)	#s
2054 
2055 /* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2056    and 64 bits on 64-bit systems.  */
2057 #define R(name)		{ STR(name), 4, 8, 0, 0 }
2058 
2059 /* Return a struct reg defining register NAME that's 32 bits on all
2060    systems.  */
2061 #define R4(name)	{ STR(name), 4, 4, 0, 0 }
2062 
2063 /* Return a struct reg defining register NAME that's 64 bits on all
2064    systems.  */
2065 #define R8(name)	{ STR(name), 8, 8, 0, 0 }
2066 
2067 /* Return a struct reg defining register NAME that's 128 bits on all
2068    systems.  */
2069 #define R16(name)       { STR(name), 16, 16, 0, 0 }
2070 
2071 /* Return a struct reg defining floating-point register NAME.  */
2072 #define F(name)		{ STR(name), 8, 8, 1, 0 }
2073 
2074 /* Return a struct reg defining a pseudo register NAME.  */
2075 #define P(name)		{ STR(name), 4, 8, 0, 1}
2076 
2077 /* Return a struct reg defining register NAME that's 32 bits on 32-bit
2078    systems and that doesn't exist on 64-bit systems.  */
2079 #define R32(name)	{ STR(name), 4, 0, 0, 0 }
2080 
2081 /* Return a struct reg defining register NAME that's 64 bits on 64-bit
2082    systems and that doesn't exist on 32-bit systems.  */
2083 #define R64(name)	{ STR(name), 0, 8, 0, 0 }
2084 
2085 /* Return a struct reg placeholder for a register that doesn't exist.  */
2086 #define R0		{ 0, 0, 0, 0, 0 }
2087 
2088 /* UISA registers common across all architectures, including POWER.  */
2089 
2090 #define COMMON_UISA_REGS \
2091   /*  0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7),  \
2092   /*  8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2093   /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2094   /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2095   /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7),  \
2096   /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2097   /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2098   /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2099   /* 64 */ R(pc), R(ps)
2100 
2101 #define COMMON_UISA_NOFP_REGS \
2102   /*  0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7),  \
2103   /*  8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2104   /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2105   /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2106   /* 32 */ R0,    R0,    R0,    R0,    R0,    R0,    R0,    R0,     \
2107   /* 40 */ R0,    R0,    R0,    R0,    R0,    R0,    R0,    R0,     \
2108   /* 48 */ R0,    R0,    R0,    R0,    R0,    R0,    R0,    R0,     \
2109   /* 56 */ R0,    R0,    R0,    R0,    R0,    R0,    R0,    R0,     \
2110   /* 64 */ R(pc), R(ps)
2111 
2112 /* UISA-level SPRs for PowerPC.  */
2113 #define PPC_UISA_SPRS \
2114   /* 66 */ R4(cr),  R(lr), R(ctr), R4(xer), R4(fpscr)
2115 
2116 /* UISA-level SPRs for PowerPC without floating point support.  */
2117 #define PPC_UISA_NOFP_SPRS \
2118   /* 66 */ R4(cr),  R(lr), R(ctr), R4(xer), R0
2119 
2120 /* Segment registers, for PowerPC.  */
2121 #define PPC_SEGMENT_REGS \
2122   /* 71 */ R32(sr0),  R32(sr1),  R32(sr2),  R32(sr3),  \
2123   /* 75 */ R32(sr4),  R32(sr5),  R32(sr6),  R32(sr7),  \
2124   /* 79 */ R32(sr8),  R32(sr9),  R32(sr10), R32(sr11), \
2125   /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2126 
2127 /* OEA SPRs for PowerPC.  */
2128 #define PPC_OEA_SPRS \
2129   /*  87 */ R4(pvr), \
2130   /*  88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2131   /*  92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2132   /*  96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2133   /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2134   /* 104 */ R(sdr1),   R64(asr),  R(dar),    R4(dsisr), \
2135   /* 108 */ R(sprg0),  R(sprg1),  R(sprg2),  R(sprg3),  \
2136   /* 112 */ R(srr0),   R(srr1),   R(tbl),    R(tbu),    \
2137   /* 116 */ R4(dec),   R(dabr),   R4(ear)
2138 
2139 /* AltiVec registers.  */
2140 #define PPC_ALTIVEC_REGS \
2141   /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7),  \
2142   /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2143   /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2144   /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2145   /*151*/R4(vscr), R4(vrsave)
2146 
2147 /* Vectors of hi-lo general purpose registers.  */
2148 #define PPC_EV_REGS \
2149   /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7),  \
2150   /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2151   /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2152   /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2153 
2154 /* Lower half of the EV registers.  */
2155 #define PPC_GPRS_PSEUDO_REGS \
2156   /*  0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7),  \
2157   /*  8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2158   /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
2159   /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
2160 
2161 /* IBM POWER (pre-PowerPC) architecture, user-level view.  We only cover
2162    user-level SPR's.  */
2163 static const struct reg registers_power[] =
2164 {
2165   COMMON_UISA_REGS,
2166   /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2167   /* 71 */ R4(fpscr)
2168 };
2169 
2170 /* PowerPC UISA - a PPC processor as viewed by user-level code.  A UISA-only
2171    view of the PowerPC.  */
2172 static const struct reg registers_powerpc[] =
2173 {
2174   COMMON_UISA_REGS,
2175   PPC_UISA_SPRS,
2176   PPC_ALTIVEC_REGS
2177 };
2178 
2179 /* IBM PowerPC 403.  */
2180 static const struct reg registers_403[] =
2181 {
2182   COMMON_UISA_REGS,
2183   PPC_UISA_SPRS,
2184   PPC_SEGMENT_REGS,
2185   PPC_OEA_SPRS,
2186   /* 119 */ R(icdbdr), R(esr),  R(dear), R(evpr),
2187   /* 123 */ R(cdbcr),  R(tsr),  R(tcr),  R(pit),
2188   /* 127 */ R(tbhi),   R(tblo), R(srr2), R(srr3),
2189   /* 131 */ R(dbsr),   R(dbcr), R(iac1), R(iac2),
2190   /* 135 */ R(dac1),   R(dac2), R(dccr), R(iccr),
2191   /* 139 */ R(pbl1),   R(pbu1), R(pbl2), R(pbu2)
2192 };
2193 
2194 /* IBM PowerPC 403GC.  */
2195 static const struct reg registers_403GC[] =
2196 {
2197   COMMON_UISA_REGS,
2198   PPC_UISA_SPRS,
2199   PPC_SEGMENT_REGS,
2200   PPC_OEA_SPRS,
2201   /* 119 */ R(icdbdr), R(esr),  R(dear), R(evpr),
2202   /* 123 */ R(cdbcr),  R(tsr),  R(tcr),  R(pit),
2203   /* 127 */ R(tbhi),   R(tblo), R(srr2), R(srr3),
2204   /* 131 */ R(dbsr),   R(dbcr), R(iac1), R(iac2),
2205   /* 135 */ R(dac1),   R(dac2), R(dccr), R(iccr),
2206   /* 139 */ R(pbl1),   R(pbu1), R(pbl2), R(pbu2),
2207   /* 143 */ R(zpr),    R(pid),  R(sgr),  R(dcwr),
2208   /* 147 */ R(tbhu),   R(tblu)
2209 };
2210 
2211 /* Motorola PowerPC 505.  */
2212 static const struct reg registers_505[] =
2213 {
2214   COMMON_UISA_REGS,
2215   PPC_UISA_SPRS,
2216   PPC_SEGMENT_REGS,
2217   PPC_OEA_SPRS,
2218   /* 119 */ R(eie), R(eid), R(nri)
2219 };
2220 
2221 /* Motorola PowerPC 860 or 850.  */
2222 static const struct reg registers_860[] =
2223 {
2224   COMMON_UISA_REGS,
2225   PPC_UISA_SPRS,
2226   PPC_SEGMENT_REGS,
2227   PPC_OEA_SPRS,
2228   /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2229   /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2230   /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2231   /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2232   /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2233   /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2234   /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2235   /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2236   /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2237   /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2238   /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2239   /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
2240 };
2241 
2242 /* Motorola PowerPC 601.  Note that the 601 has different register numbers
2243    for reading and writing RTCU and RTCL.  However, how one reads and writes a
2244    register is the stub's problem.  */
2245 static const struct reg registers_601[] =
2246 {
2247   COMMON_UISA_REGS,
2248   PPC_UISA_SPRS,
2249   PPC_SEGMENT_REGS,
2250   PPC_OEA_SPRS,
2251   /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2252   /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
2253 };
2254 
2255 /* Motorola PowerPC 602.  */
2256 static const struct reg registers_602[] =
2257 {
2258   COMMON_UISA_REGS,
2259   PPC_UISA_SPRS,
2260   PPC_SEGMENT_REGS,
2261   PPC_OEA_SPRS,
2262   /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2263   /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2264   /* 127 */ R(sebr), R(ser), R(sp), R(lt)
2265 };
2266 
2267 /* Motorola/IBM PowerPC 603 or 603e.  */
2268 static const struct reg registers_603[] =
2269 {
2270   COMMON_UISA_REGS,
2271   PPC_UISA_SPRS,
2272   PPC_SEGMENT_REGS,
2273   PPC_OEA_SPRS,
2274   /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2275   /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2276   /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
2277 };
2278 
2279 /* Motorola PowerPC 604 or 604e.  */
2280 static const struct reg registers_604[] =
2281 {
2282   COMMON_UISA_REGS,
2283   PPC_UISA_SPRS,
2284   PPC_SEGMENT_REGS,
2285   PPC_OEA_SPRS,
2286   /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2287   /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2288   /* 127 */ R(sia), R(sda)
2289 };
2290 
2291 /* Motorola/IBM PowerPC 750 or 740.  */
2292 static const struct reg registers_750[] =
2293 {
2294   COMMON_UISA_REGS,
2295   PPC_UISA_SPRS,
2296   PPC_SEGMENT_REGS,
2297   PPC_OEA_SPRS,
2298   /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2299   /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2300   /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2301   /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2302   /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2303   /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
2304 };
2305 
2306 
2307 /* Motorola PowerPC 7400.  */
2308 static const struct reg registers_7400[] =
2309 {
2310   /* gpr0-gpr31, fpr0-fpr31 */
2311   COMMON_UISA_REGS,
2312   /* cr, lr, ctr, xer, fpscr */
2313   PPC_UISA_SPRS,
2314   /* sr0-sr15 */
2315   PPC_SEGMENT_REGS,
2316   PPC_OEA_SPRS,
2317   /* vr0-vr31, vrsave, vscr */
2318   PPC_ALTIVEC_REGS
2319   /* FIXME? Add more registers? */
2320 };
2321 
2322 /* Motorola e500.  */
2323 static const struct reg registers_e500[] =
2324 {
2325   R(pc), R(ps),
2326   /* cr, lr, ctr, xer, "" */
2327   PPC_UISA_NOFP_SPRS,
2328   /* 7...38 */
2329   PPC_EV_REGS,
2330   R8(acc), R(spefscr),
2331   /* NOTE: Add new registers here the end of the raw register
2332      list and just before the first pseudo register.  */
2333   /* 41...72 */
2334   PPC_GPRS_PSEUDO_REGS
2335 };
2336 
2337 /* Information about a particular processor variant.  */
2338 
2339 struct variant
2340   {
2341     /* Name of this variant.  */
2342     char *name;
2343 
2344     /* English description of the variant.  */
2345     char *description;
2346 
2347     /* bfd_arch_info.arch corresponding to variant.  */
2348     enum bfd_architecture arch;
2349 
2350     /* bfd_arch_info.mach corresponding to variant.  */
2351     unsigned long mach;
2352 
2353     /* Number of real registers.  */
2354     int nregs;
2355 
2356     /* Number of pseudo registers.  */
2357     int npregs;
2358 
2359     /* Number of total registers (the sum of nregs and npregs).  */
2360     int num_tot_regs;
2361 
2362     /* Table of register names; registers[R] is the name of the register
2363        number R.  */
2364     const struct reg *regs;
2365   };
2366 
2367 #define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2368 
2369 static int
num_registers(const struct reg * reg_list,int num_tot_regs)2370 num_registers (const struct reg *reg_list, int num_tot_regs)
2371 {
2372   int i;
2373   int nregs = 0;
2374 
2375   for (i = 0; i < num_tot_regs; i++)
2376     if (!reg_list[i].pseudo)
2377       nregs++;
2378 
2379   return nregs;
2380 }
2381 
2382 static int
num_pseudo_registers(const struct reg * reg_list,int num_tot_regs)2383 num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2384 {
2385   int i;
2386   int npregs = 0;
2387 
2388   for (i = 0; i < num_tot_regs; i++)
2389     if (reg_list[i].pseudo)
2390       npregs ++;
2391 
2392   return npregs;
2393 }
2394 
2395 /* Information in this table comes from the following web sites:
2396    IBM:       http://www.chips.ibm.com:80/products/embedded/
2397    Motorola:  http://www.mot.com/SPS/PowerPC/
2398 
2399    I'm sure I've got some of the variant descriptions not quite right.
2400    Please report any inaccuracies you find to GDB's maintainer.
2401 
2402    If you add entries to this table, please be sure to allow the new
2403    value as an argument to the --with-cpu flag, in configure.in.  */
2404 
2405 static struct variant variants[] =
2406 {
2407 
2408   {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2409    bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2410    registers_powerpc},
2411   {"power", "POWER user-level", bfd_arch_rs6000,
2412    bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2413    registers_power},
2414   {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2415    bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2416    registers_403},
2417   {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2418    bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2419    registers_601},
2420   {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2421    bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2422    registers_602},
2423   {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2424    bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2425    registers_603},
2426   {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2427    604, -1, -1, tot_num_registers (registers_604),
2428    registers_604},
2429   {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2430    bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2431    registers_403GC},
2432   {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2433    bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2434    registers_505},
2435   {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2436    bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2437    registers_860},
2438   {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2439    bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2440    registers_750},
2441   {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2442    bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2443    registers_7400},
2444   {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2445    bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2446    registers_e500},
2447 
2448   /* 64-bit */
2449   {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
2450    bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2451    registers_powerpc},
2452   {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2453    bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2454    registers_powerpc},
2455   {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
2456    bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2457    registers_powerpc},
2458   {"a35", "PowerPC A35", bfd_arch_powerpc,
2459    bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2460    registers_powerpc},
2461   {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
2462    bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2463    registers_powerpc},
2464   {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
2465    bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2466    registers_powerpc},
2467 
2468   /* FIXME: I haven't checked the register sets of the following.  */
2469   {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2470    bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2471    registers_power},
2472   {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2473    bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2474    registers_power},
2475   {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2476    bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2477    registers_power},
2478 
2479   {0, 0, 0, 0, 0, 0, 0, 0}
2480 };
2481 
2482 /* Initialize the number of registers and pseudo registers in each variant.  */
2483 
2484 static void
init_variants(void)2485 init_variants (void)
2486 {
2487   struct variant *v;
2488 
2489   for (v = variants; v->name; v++)
2490     {
2491       if (v->nregs == -1)
2492         v->nregs = num_registers (v->regs, v->num_tot_regs);
2493       if (v->npregs == -1)
2494         v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2495     }
2496 }
2497 
2498 /* Return the variant corresponding to architecture ARCH and machine number
2499    MACH.  If no such variant exists, return null.  */
2500 
2501 static const struct variant *
find_variant_by_arch(enum bfd_architecture arch,unsigned long mach)2502 find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
2503 {
2504   const struct variant *v;
2505 
2506   for (v = variants; v->name; v++)
2507     if (arch == v->arch && mach == v->mach)
2508       return v;
2509 
2510   return NULL;
2511 }
2512 
2513 static int
gdb_print_insn_powerpc(bfd_vma memaddr,disassemble_info * info)2514 gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2515 {
2516   if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2517     return print_insn_big_powerpc (memaddr, info);
2518   else
2519     return print_insn_little_powerpc (memaddr, info);
2520 }
2521 
2522 static CORE_ADDR
rs6000_unwind_pc(struct gdbarch * gdbarch,struct frame_info * next_frame)2523 rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2524 {
2525   return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2526 }
2527 
2528 static struct frame_id
rs6000_unwind_dummy_id(struct gdbarch * gdbarch,struct frame_info * next_frame)2529 rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2530 {
2531   return frame_id_build (frame_unwind_register_unsigned (next_frame,
2532 							 SP_REGNUM),
2533 			 frame_pc_unwind (next_frame));
2534 }
2535 
2536 struct rs6000_frame_cache
2537 {
2538   CORE_ADDR base;
2539   CORE_ADDR initial_sp;
2540   struct trad_frame_saved_reg *saved_regs;
2541 };
2542 
2543 static struct rs6000_frame_cache *
rs6000_frame_cache(struct frame_info * next_frame,void ** this_cache)2544 rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2545 {
2546   struct rs6000_frame_cache *cache;
2547   struct gdbarch *gdbarch = get_frame_arch (next_frame);
2548   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2549   struct rs6000_framedata fdata;
2550   int wordsize = tdep->wordsize;
2551 
2552   if ((*this_cache) != NULL)
2553     return (*this_cache);
2554   cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2555   (*this_cache) = cache;
2556   cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2557 
2558   skip_prologue (frame_func_unwind (next_frame), frame_pc_unwind (next_frame),
2559 		 &fdata);
2560 
2561   /* If there were any saved registers, figure out parent's stack
2562      pointer.  */
2563   /* The following is true only if the frame doesn't have a call to
2564      alloca(), FIXME.  */
2565 
2566   if (fdata.saved_fpr == 0
2567       && fdata.saved_gpr == 0
2568       && fdata.saved_vr == 0
2569       && fdata.saved_ev == 0
2570       && fdata.lr_offset == 0
2571       && fdata.cr_offset == 0
2572       && fdata.vr_offset == 0
2573       && fdata.ev_offset == 0)
2574     cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2575   else
2576     {
2577       /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2578 	 address of the current frame.  Things might be easier if the
2579 	 ->frame pointed to the outer-most address of the frame.  In
2580 	 the mean time, the address of the prev frame is used as the
2581 	 base address of this frame.  */
2582       cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2583       if (!fdata.frameless)
2584 	/* Frameless really means stackless.  */
2585 	cache->base = read_memory_addr (cache->base, wordsize);
2586     }
2587   trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
2588 
2589   /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
2590      All fpr's from saved_fpr to fp31 are saved.  */
2591 
2592   if (fdata.saved_fpr >= 0)
2593     {
2594       int i;
2595       CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
2596 
2597       /* If skip_prologue says floating-point registers were saved,
2598          but the current architecture has no floating-point registers,
2599          then that's strange.  But we have no indices to even record
2600          the addresses under, so we just ignore it.  */
2601       if (ppc_floating_point_unit_p (gdbarch))
2602         for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
2603           {
2604             cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
2605             fpr_addr += 8;
2606           }
2607     }
2608 
2609   /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
2610      All gpr's from saved_gpr to gpr31 are saved.  */
2611 
2612   if (fdata.saved_gpr >= 0)
2613     {
2614       int i;
2615       CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
2616       for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
2617 	{
2618 	  cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
2619 	  gpr_addr += wordsize;
2620 	}
2621     }
2622 
2623   /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
2624      All vr's from saved_vr to vr31 are saved.  */
2625   if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
2626     {
2627       if (fdata.saved_vr >= 0)
2628 	{
2629 	  int i;
2630 	  CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
2631 	  for (i = fdata.saved_vr; i < 32; i++)
2632 	    {
2633 	      cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
2634 	      vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
2635 	    }
2636 	}
2637     }
2638 
2639   /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
2640      All vr's from saved_ev to ev31 are saved. ????? */
2641   if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
2642     {
2643       if (fdata.saved_ev >= 0)
2644 	{
2645 	  int i;
2646 	  CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
2647 	  for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
2648 	    {
2649 	      cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
2650               cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
2651 	      ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
2652             }
2653 	}
2654     }
2655 
2656   /* If != 0, fdata.cr_offset is the offset from the frame that
2657      holds the CR.  */
2658   if (fdata.cr_offset != 0)
2659     cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
2660 
2661   /* If != 0, fdata.lr_offset is the offset from the frame that
2662      holds the LR.  */
2663   if (fdata.lr_offset != 0)
2664     cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
2665   /* The PC is found in the link register.  */
2666   cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
2667 
2668   /* If != 0, fdata.vrsave_offset is the offset from the frame that
2669      holds the VRSAVE.  */
2670   if (fdata.vrsave_offset != 0)
2671     cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
2672 
2673   if (fdata.alloca_reg < 0)
2674     /* If no alloca register used, then fi->frame is the value of the
2675        %sp for this frame, and it is good enough.  */
2676     cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2677   else
2678     cache->initial_sp = frame_unwind_register_unsigned (next_frame,
2679 							fdata.alloca_reg);
2680 
2681   return cache;
2682 }
2683 
2684 static void
rs6000_frame_this_id(struct frame_info * next_frame,void ** this_cache,struct frame_id * this_id)2685 rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
2686 		      struct frame_id *this_id)
2687 {
2688   struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2689 							this_cache);
2690   (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2691 }
2692 
2693 static void
rs6000_frame_prev_register(struct frame_info * next_frame,void ** this_cache,int regnum,int * optimizedp,enum lval_type * lvalp,CORE_ADDR * addrp,int * realnump,void * valuep)2694 rs6000_frame_prev_register (struct frame_info *next_frame,
2695 				 void **this_cache,
2696 				 int regnum, int *optimizedp,
2697 				 enum lval_type *lvalp, CORE_ADDR *addrp,
2698 				 int *realnump, void *valuep)
2699 {
2700   struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2701 							this_cache);
2702   trad_frame_prev_register (next_frame, info->saved_regs, regnum,
2703 			    optimizedp, lvalp, addrp, realnump, valuep);
2704 }
2705 
2706 static const struct frame_unwind rs6000_frame_unwind =
2707 {
2708   NORMAL_FRAME,
2709   rs6000_frame_this_id,
2710   rs6000_frame_prev_register
2711 };
2712 
2713 static const struct frame_unwind *
rs6000_frame_sniffer(struct frame_info * next_frame)2714 rs6000_frame_sniffer (struct frame_info *next_frame)
2715 {
2716   return &rs6000_frame_unwind;
2717 }
2718 
2719 
2720 
2721 static CORE_ADDR
rs6000_frame_base_address(struct frame_info * next_frame,void ** this_cache)2722 rs6000_frame_base_address (struct frame_info *next_frame,
2723 				void **this_cache)
2724 {
2725   struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2726 							this_cache);
2727   return info->initial_sp;
2728 }
2729 
2730 static const struct frame_base rs6000_frame_base = {
2731   &rs6000_frame_unwind,
2732   rs6000_frame_base_address,
2733   rs6000_frame_base_address,
2734   rs6000_frame_base_address
2735 };
2736 
2737 static const struct frame_base *
rs6000_frame_base_sniffer(struct frame_info * next_frame)2738 rs6000_frame_base_sniffer (struct frame_info *next_frame)
2739 {
2740   return &rs6000_frame_base;
2741 }
2742 
2743 /* Initialize the current architecture based on INFO.  If possible, re-use an
2744    architecture from ARCHES, which is a list of architectures already created
2745    during this debugging session.
2746 
2747    Called e.g. at program startup, when reading a core file, and when reading
2748    a binary file.  */
2749 
2750 static struct gdbarch *
rs6000_gdbarch_init(struct gdbarch_info info,struct gdbarch_list * arches)2751 rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2752 {
2753   struct gdbarch *gdbarch;
2754   struct gdbarch_tdep *tdep;
2755   int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
2756   struct reg *regs;
2757   const struct variant *v;
2758   enum bfd_architecture arch;
2759   unsigned long mach;
2760   bfd abfd;
2761   int sysv_abi;
2762   asection *sect;
2763 
2764   from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
2765     bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2766 
2767   from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2768     bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2769 
2770   sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2771 
2772   /* Check word size.  If INFO is from a binary file, infer it from
2773      that, else choose a likely default.  */
2774   if (from_xcoff_exec)
2775     {
2776       if (bfd_xcoff_is_xcoff64 (info.abfd))
2777 	wordsize = 8;
2778       else
2779 	wordsize = 4;
2780     }
2781   else if (from_elf_exec)
2782     {
2783       if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2784 	wordsize = 8;
2785       else
2786 	wordsize = 4;
2787     }
2788   else
2789     {
2790       if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2791 	wordsize = info.bfd_arch_info->bits_per_word /
2792 	  info.bfd_arch_info->bits_per_byte;
2793       else
2794 	wordsize = 4;
2795     }
2796 
2797   /* Find a candidate among extant architectures.  */
2798   for (arches = gdbarch_list_lookup_by_info (arches, &info);
2799        arches != NULL;
2800        arches = gdbarch_list_lookup_by_info (arches->next, &info))
2801     {
2802       /* Word size in the various PowerPC bfd_arch_info structs isn't
2803          meaningful, because 64-bit CPUs can run in 32-bit mode.  So, perform
2804          separate word size check.  */
2805       tdep = gdbarch_tdep (arches->gdbarch);
2806       if (tdep && tdep->wordsize == wordsize)
2807 	return arches->gdbarch;
2808     }
2809 
2810   /* None found, create a new architecture from INFO, whose bfd_arch_info
2811      validity depends on the source:
2812        - executable		useless
2813        - rs6000_host_arch()	good
2814        - core file		good
2815        - "set arch"		trust blindly
2816        - GDB startup		useless but harmless */
2817 
2818   if (!from_xcoff_exec)
2819     {
2820       arch = info.bfd_arch_info->arch;
2821       mach = info.bfd_arch_info->mach;
2822     }
2823   else
2824     {
2825       arch = bfd_arch_powerpc;
2826       bfd_default_set_arch_mach (&abfd, arch, 0);
2827       info.bfd_arch_info = bfd_get_arch_info (&abfd);
2828       mach = info.bfd_arch_info->mach;
2829     }
2830   tdep = xmalloc (sizeof (struct gdbarch_tdep));
2831   tdep->wordsize = wordsize;
2832 
2833   /* For e500 executables, the apuinfo section is of help here.  Such
2834      section contains the identifier and revision number of each
2835      Application-specific Processing Unit that is present on the
2836      chip.  The content of the section is determined by the assembler
2837      which looks at each instruction and determines which unit (and
2838      which version of it) can execute it. In our case we just look for
2839      the existance of the section.  */
2840 
2841   if (info.abfd)
2842     {
2843       sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2844       if (sect)
2845 	{
2846 	  arch = info.bfd_arch_info->arch;
2847 	  mach = bfd_mach_ppc_e500;
2848 	  bfd_default_set_arch_mach (&abfd, arch, mach);
2849 	  info.bfd_arch_info = bfd_get_arch_info (&abfd);
2850 	}
2851     }
2852 
2853   gdbarch = gdbarch_alloc (&info, tdep);
2854   power = arch == bfd_arch_rs6000;
2855 
2856   /* Initialize the number of real and pseudo registers in each variant.  */
2857   init_variants ();
2858 
2859   /* Choose variant.  */
2860   v = find_variant_by_arch (arch, mach);
2861   if (!v)
2862     return NULL;
2863 
2864   tdep->regs = v->regs;
2865 
2866   tdep->ppc_gp0_regnum = 0;
2867   tdep->ppc_gprs_pseudo_p = 0;
2868   tdep->ppc_toc_regnum = 2;
2869   tdep->ppc_ps_regnum = 65;
2870   tdep->ppc_cr_regnum = 66;
2871   tdep->ppc_lr_regnum = 67;
2872   tdep->ppc_ctr_regnum = 68;
2873   tdep->ppc_xer_regnum = 69;
2874   if (v->mach == bfd_mach_ppc_601)
2875     tdep->ppc_mq_regnum = 124;
2876   else if (power)
2877     tdep->ppc_mq_regnum = 70;
2878   else
2879     tdep->ppc_mq_regnum = -1;
2880   tdep->ppc_fp0_regnum = 32;
2881   tdep->ppc_fpscr_regnum = power ? 71 : 70;
2882   tdep->ppc_vr0_regnum = -1;
2883   tdep->ppc_vrsave_regnum = -1;
2884   tdep->ppc_ev0_regnum = -1;
2885   tdep->ppc_ev31_regnum = -1;
2886   tdep->ppc_acc_regnum = -1;
2887   tdep->ppc_spefscr_regnum = -1;
2888 
2889   set_gdbarch_pc_regnum (gdbarch, 64);
2890   set_gdbarch_sp_regnum (gdbarch, 1);
2891   set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
2892   if (sysv_abi && wordsize == 8)
2893     set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
2894   else if (sysv_abi && wordsize == 4)
2895     set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
2896   else
2897     {
2898       set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
2899       set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
2900     }
2901 
2902   /* Set lr_frame_offset.  */
2903   if (wordsize == 8)
2904     tdep->lr_frame_offset = 16;
2905   else if (sysv_abi)
2906     tdep->lr_frame_offset = 4;
2907   else
2908     tdep->lr_frame_offset = 8;
2909 
2910   if (v->arch == bfd_arch_powerpc)
2911     switch (v->mach)
2912       {
2913       case bfd_mach_ppc:
2914 	tdep->ppc_vr0_regnum = 71;
2915 	tdep->ppc_vrsave_regnum = 104;
2916 	break;
2917       case bfd_mach_ppc_7400:
2918 	tdep->ppc_vr0_regnum = 119;
2919 	tdep->ppc_vrsave_regnum = 152;
2920 	break;
2921       case bfd_mach_ppc_e500:
2922         tdep->ppc_gp0_regnum = 41;
2923         tdep->ppc_gprs_pseudo_p = 1;
2924         tdep->ppc_toc_regnum = -1;
2925         tdep->ppc_ps_regnum = 1;
2926         tdep->ppc_cr_regnum = 2;
2927         tdep->ppc_lr_regnum = 3;
2928         tdep->ppc_ctr_regnum = 4;
2929         tdep->ppc_xer_regnum = 5;
2930 	tdep->ppc_ev0_regnum = 7;
2931 	tdep->ppc_ev31_regnum = 38;
2932         tdep->ppc_fp0_regnum = -1;
2933         tdep->ppc_fpscr_regnum = -1;
2934         tdep->ppc_acc_regnum = 39;
2935         tdep->ppc_spefscr_regnum = 40;
2936         set_gdbarch_pc_regnum (gdbarch, 0);
2937         set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2938         set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2939         set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2940         set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
2941 	break;
2942       }
2943 
2944   /* Sanity check on registers.  */
2945   gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
2946 
2947   /* Select instruction printer.  */
2948   if (arch == power)
2949     set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
2950   else
2951     set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
2952 
2953   set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2954 
2955   set_gdbarch_num_regs (gdbarch, v->nregs);
2956   set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
2957   set_gdbarch_register_name (gdbarch, rs6000_register_name);
2958   set_gdbarch_register_type (gdbarch, rs6000_register_type);
2959 
2960   set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2961   set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2962   set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2963   set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2964   set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2965   set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2966   set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2967   if (sysv_abi)
2968     set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
2969   else
2970     set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2971   set_gdbarch_char_signed (gdbarch, 0);
2972 
2973   set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
2974   if (sysv_abi && wordsize == 8)
2975     /* PPC64 SYSV.  */
2976     set_gdbarch_frame_red_zone_size (gdbarch, 288);
2977   else if (!sysv_abi && wordsize == 4)
2978     /* PowerOpen / AIX 32 bit.  The saved area or red zone consists of
2979        19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
2980        Problem is, 220 isn't frame (16 byte) aligned.  Round it up to
2981        224.  */
2982     set_gdbarch_frame_red_zone_size (gdbarch, 224);
2983 
2984   set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
2985   set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
2986   set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
2987 
2988   set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2989   set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
2990   /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2991      is correct for the SysV ABI when the wordsize is 8, but I'm also
2992      fairly certain that ppc_sysv_abi_push_arguments() will give even
2993      worse results since it only works for 32-bit code.  So, for the moment,
2994      we're better off calling rs6000_push_arguments() since it works for
2995      64-bit code.  At some point in the future, this matter needs to be
2996      revisited.  */
2997   if (sysv_abi && wordsize == 4)
2998     set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
2999   else if (sysv_abi && wordsize == 8)
3000     set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
3001   else
3002     set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
3003 
3004   set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
3005 
3006   set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3007   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3008   set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3009 
3010   /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3011      for the descriptor and ".FN" for the entry-point -- a user
3012      specifying "break FN" will unexpectedly end up with a breakpoint
3013      on the descriptor and not the function.  This architecture method
3014      transforms any breakpoints on descriptors into breakpoints on the
3015      corresponding entry point.  */
3016   if (sysv_abi && wordsize == 8)
3017     set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3018 
3019   /* Not sure on this. FIXMEmgo */
3020   set_gdbarch_frame_args_skip (gdbarch, 8);
3021 
3022   if (!sysv_abi)
3023     set_gdbarch_deprecated_use_struct_convention (gdbarch, rs6000_use_struct_convention);
3024 
3025   if (!sysv_abi)
3026     {
3027       /* Handle RS/6000 function pointers (which are really function
3028          descriptors).  */
3029       set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3030 	rs6000_convert_from_func_ptr_addr);
3031     }
3032 
3033   /* Helpers for function argument information.  */
3034   set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3035 
3036   /* Hook in ABI-specific overrides, if they have been registered.  */
3037   gdbarch_init_osabi (info, gdbarch);
3038 
3039   switch (info.osabi)
3040     {
3041     case GDB_OSABI_NETBSD_AOUT:
3042     case GDB_OSABI_NETBSD_ELF:
3043     case GDB_OSABI_UNKNOWN:
3044     case GDB_OSABI_LINUX:
3045       set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3046       frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3047       set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3048       frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3049       break;
3050     default:
3051       set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3052 
3053       set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3054       frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3055       set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3056       frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3057     }
3058 
3059   if (from_xcoff_exec)
3060     {
3061       /* NOTE: jimix/2003-06-09: This test should really check for
3062 	 GDB_OSABI_AIX when that is defined and becomes
3063 	 available. (Actually, once things are properly split apart,
3064 	 the test goes away.) */
3065        /* RS6000/AIX does not support PT_STEP.  Has to be simulated.  */
3066        set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
3067     }
3068 
3069   return gdbarch;
3070 }
3071 
3072 static void
rs6000_dump_tdep(struct gdbarch * current_gdbarch,struct ui_file * file)3073 rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3074 {
3075   struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3076 
3077   if (tdep == NULL)
3078     return;
3079 
3080   /* FIXME: Dump gdbarch_tdep.  */
3081 }
3082 
3083 static struct cmd_list_element *info_powerpc_cmdlist = NULL;
3084 
3085 static void
rs6000_info_powerpc_command(char * args,int from_tty)3086 rs6000_info_powerpc_command (char *args, int from_tty)
3087 {
3088   help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
3089 }
3090 
3091 /* Initialization code.  */
3092 
3093 extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
3094 
3095 void
_initialize_rs6000_tdep(void)3096 _initialize_rs6000_tdep (void)
3097 {
3098   gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3099   gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
3100 
3101   /* Add root prefix command for "info powerpc" commands */
3102   add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
3103 		  "Various POWERPC info specific commands.",
3104 		  &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
3105 }
3106