1 /* m32r simulator support code
2    Copyright (C) 1996, 1997, 1998, 2003 Free Software Foundation, Inc.
3    Contributed by Cygnus Support.
4 
5    This file is part of GDB, the GNU debugger.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 2, or (at your option)
10    any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License along
18    with this program; if not, write to the Free Software Foundation, Inc.,
19    59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */
20 
21 #define WANT_CPU m32rbf
22 #define WANT_CPU_M32RBF
23 
24 #include "sim-main.h"
25 #include "cgen-mem.h"
26 #include "cgen-ops.h"
27 
28 /* Decode gdb ctrl register number.  */
29 
30 int
m32r_decode_gdb_ctrl_regnum(int gdb_regnum)31 m32r_decode_gdb_ctrl_regnum (int gdb_regnum)
32 {
33   switch (gdb_regnum)
34     {
35       case PSW_REGNUM : return H_CR_PSW;
36       case CBR_REGNUM : return H_CR_CBR;
37       case SPI_REGNUM : return H_CR_SPI;
38       case SPU_REGNUM : return H_CR_SPU;
39       case BPC_REGNUM : return H_CR_BPC;
40       case BBPSW_REGNUM : return H_CR_BBPSW;
41       case BBPC_REGNUM : return H_CR_BBPC;
42       case EVB_REGNUM : return H_CR_CR5;
43     }
44   abort ();
45 }
46 
47 /* The contents of BUF are in target byte order.  */
48 
49 int
m32rbf_fetch_register(SIM_CPU * current_cpu,int rn,unsigned char * buf,int len)50 m32rbf_fetch_register (SIM_CPU *current_cpu, int rn, unsigned char *buf, int len)
51 {
52   if (rn < 16)
53     SETTWI (buf, m32rbf_h_gr_get (current_cpu, rn));
54   else
55     switch (rn)
56       {
57       case PSW_REGNUM :
58       case CBR_REGNUM :
59       case SPI_REGNUM :
60       case SPU_REGNUM :
61       case BPC_REGNUM :
62       case BBPSW_REGNUM :
63       case BBPC_REGNUM :
64 	SETTWI (buf, m32rbf_h_cr_get (current_cpu,
65 				      m32r_decode_gdb_ctrl_regnum (rn)));
66 	break;
67       case PC_REGNUM :
68 	SETTWI (buf, m32rbf_h_pc_get (current_cpu));
69 	break;
70       case ACCL_REGNUM :
71 	SETTWI (buf, GETLODI (m32rbf_h_accum_get (current_cpu)));
72 	break;
73       case ACCH_REGNUM :
74 	SETTWI (buf, GETHIDI (m32rbf_h_accum_get (current_cpu)));
75 	break;
76       default :
77 	return 0;
78       }
79 
80   return -1; /*FIXME*/
81 }
82 
83 /* The contents of BUF are in target byte order.  */
84 
85 int
m32rbf_store_register(SIM_CPU * current_cpu,int rn,unsigned char * buf,int len)86 m32rbf_store_register (SIM_CPU *current_cpu, int rn, unsigned char *buf, int len)
87 {
88   if (rn < 16)
89     m32rbf_h_gr_set (current_cpu, rn, GETTWI (buf));
90   else
91     switch (rn)
92       {
93       case PSW_REGNUM :
94       case CBR_REGNUM :
95       case SPI_REGNUM :
96       case SPU_REGNUM :
97       case BPC_REGNUM :
98       case BBPSW_REGNUM :
99       case BBPC_REGNUM :
100 	m32rbf_h_cr_set (current_cpu,
101 			 m32r_decode_gdb_ctrl_regnum (rn),
102 			 GETTWI (buf));
103 	break;
104       case PC_REGNUM :
105 	m32rbf_h_pc_set (current_cpu, GETTWI (buf));
106 	break;
107       case ACCL_REGNUM :
108 	{
109 	  DI val = m32rbf_h_accum_get (current_cpu);
110 	  SETLODI (val, GETTWI (buf));
111 	  m32rbf_h_accum_set (current_cpu, val);
112 	  break;
113 	}
114       case ACCH_REGNUM :
115 	{
116 	  DI val = m32rbf_h_accum_get (current_cpu);
117 	  SETHIDI (val, GETTWI (buf));
118 	  m32rbf_h_accum_set (current_cpu, val);
119 	  break;
120 	}
121       default :
122 	return 0;
123       }
124 
125   return -1; /*FIXME*/
126 }
127 
128 USI
m32rbf_h_cr_get_handler(SIM_CPU * current_cpu,UINT cr)129 m32rbf_h_cr_get_handler (SIM_CPU *current_cpu, UINT cr)
130 {
131   switch (cr)
132     {
133     case H_CR_PSW : /* psw */
134       return (((CPU (h_bpsw) & 0xc1) << 8)
135 	      | ((CPU (h_psw) & 0xc0) << 0)
136 	      | GET_H_COND ());
137     case H_CR_BBPSW : /* backup backup psw */
138       return CPU (h_bbpsw) & 0xc1;
139     case H_CR_CBR : /* condition bit */
140       return GET_H_COND ();
141     case H_CR_SPI : /* interrupt stack pointer */
142       if (! GET_H_SM ())
143 	return CPU (h_gr[H_GR_SP]);
144       else
145 	return CPU (h_cr[H_CR_SPI]);
146     case H_CR_SPU : /* user stack pointer */
147       if (GET_H_SM ())
148 	return CPU (h_gr[H_GR_SP]);
149       else
150 	return CPU (h_cr[H_CR_SPU]);
151     case H_CR_BPC : /* backup pc */
152       return CPU (h_cr[H_CR_BPC]) & 0xfffffffe;
153     case H_CR_BBPC : /* backup backup pc */
154       return CPU (h_cr[H_CR_BBPC]) & 0xfffffffe;
155     case 4 : /* ??? unspecified, but apparently available */
156     case 5 : /* ??? unspecified, but apparently available */
157       return CPU (h_cr[cr]);
158     default :
159       return 0;
160     }
161 }
162 
163 void
m32rbf_h_cr_set_handler(SIM_CPU * current_cpu,UINT cr,USI newval)164 m32rbf_h_cr_set_handler (SIM_CPU *current_cpu, UINT cr, USI newval)
165 {
166   switch (cr)
167     {
168     case H_CR_PSW : /* psw */
169       {
170 	int old_sm = (CPU (h_psw) & 0x80) != 0;
171 	int new_sm = (newval & 0x80) != 0;
172 	CPU (h_bpsw) = (newval >> 8) & 0xff;
173 	CPU (h_psw) = newval & 0xff;
174 	SET_H_COND (newval & 1);
175 	/* When switching stack modes, update the registers.  */
176 	if (old_sm != new_sm)
177 	  {
178 	    if (old_sm)
179 	      {
180 		/* Switching user -> system.  */
181 		CPU (h_cr[H_CR_SPU]) = CPU (h_gr[H_GR_SP]);
182 		CPU (h_gr[H_GR_SP]) = CPU (h_cr[H_CR_SPI]);
183 	      }
184 	    else
185 	      {
186 		/* Switching system -> user.  */
187 		CPU (h_cr[H_CR_SPI]) = CPU (h_gr[H_GR_SP]);
188 		CPU (h_gr[H_GR_SP]) = CPU (h_cr[H_CR_SPU]);
189 	      }
190 	  }
191 	break;
192       }
193     case H_CR_BBPSW : /* backup backup psw */
194       CPU (h_bbpsw) = newval & 0xff;
195       break;
196     case H_CR_CBR : /* condition bit */
197       SET_H_COND (newval & 1);
198       break;
199     case H_CR_SPI : /* interrupt stack pointer */
200       if (! GET_H_SM ())
201 	CPU (h_gr[H_GR_SP]) = newval;
202       else
203 	CPU (h_cr[H_CR_SPI]) = newval;
204       break;
205     case H_CR_SPU : /* user stack pointer */
206       if (GET_H_SM ())
207 	CPU (h_gr[H_GR_SP]) = newval;
208       else
209 	CPU (h_cr[H_CR_SPU]) = newval;
210       break;
211     case H_CR_BPC : /* backup pc */
212       CPU (h_cr[H_CR_BPC]) = newval;
213       break;
214     case H_CR_BBPC : /* backup backup pc */
215       CPU (h_cr[H_CR_BBPC]) = newval;
216       break;
217     case 4 : /* ??? unspecified, but apparently available */
218     case 5 : /* ??? unspecified, but apparently available */
219       CPU (h_cr[cr]) = newval;
220       break;
221     default :
222       /* ignore */
223       break;
224     }
225 }
226 
227 /* Cover fns to access h-psw.  */
228 
229 UQI
m32rbf_h_psw_get_handler(SIM_CPU * current_cpu)230 m32rbf_h_psw_get_handler (SIM_CPU *current_cpu)
231 {
232   return (CPU (h_psw) & 0xfe) | (CPU (h_cond) & 1);
233 }
234 
235 void
m32rbf_h_psw_set_handler(SIM_CPU * current_cpu,UQI newval)236 m32rbf_h_psw_set_handler (SIM_CPU *current_cpu, UQI newval)
237 {
238   CPU (h_psw) = newval;
239   CPU (h_cond) = newval & 1;
240 }
241 
242 /* Cover fns to access h-accum.  */
243 
244 DI
m32rbf_h_accum_get_handler(SIM_CPU * current_cpu)245 m32rbf_h_accum_get_handler (SIM_CPU *current_cpu)
246 {
247   /* Sign extend the top 8 bits.  */
248   DI r;
249 #if 1
250   r = ANDDI (CPU (h_accum), MAKEDI (0xffffff, 0xffffffff));
251   r = XORDI (r, MAKEDI (0x800000, 0));
252   r = SUBDI (r, MAKEDI (0x800000, 0));
253 #else
254   SI hi,lo;
255   r = CPU (h_accum);
256   hi = GETHIDI (r);
257   lo = GETLODI (r);
258   hi = ((hi & 0xffffff) ^ 0x800000) - 0x800000;
259   r = MAKEDI (hi, lo);
260 #endif
261   return r;
262 }
263 
264 void
m32rbf_h_accum_set_handler(SIM_CPU * current_cpu,DI newval)265 m32rbf_h_accum_set_handler (SIM_CPU *current_cpu, DI newval)
266 {
267   CPU (h_accum) = newval;
268 }
269 
270 #if WITH_PROFILE_MODEL_P
271 
272 /* FIXME: Some of these should be inline or macros.  Later.  */
273 
274 /* Initialize cycle counting for an insn.
275    FIRST_P is non-zero if this is the first insn in a set of parallel
276    insns.  */
277 
278 void
m32rbf_model_insn_before(SIM_CPU * cpu,int first_p)279 m32rbf_model_insn_before (SIM_CPU *cpu, int first_p)
280 {
281   M32R_MISC_PROFILE *mp = CPU_M32R_MISC_PROFILE (cpu);
282   mp->cti_stall = 0;
283   mp->load_stall = 0;
284   if (first_p)
285     {
286       mp->load_regs_pending = 0;
287       mp->biggest_cycles = 0;
288     }
289 }
290 
291 /* Record the cycles computed for an insn.
292    LAST_P is non-zero if this is the last insn in a set of parallel insns,
293    and we update the total cycle count.
294    CYCLES is the cycle count of the insn.  */
295 
296 void
m32rbf_model_insn_after(SIM_CPU * cpu,int last_p,int cycles)297 m32rbf_model_insn_after (SIM_CPU *cpu, int last_p, int cycles)
298 {
299   PROFILE_DATA *p = CPU_PROFILE_DATA (cpu);
300   M32R_MISC_PROFILE *mp = CPU_M32R_MISC_PROFILE (cpu);
301   unsigned long total = cycles + mp->cti_stall + mp->load_stall;
302 
303   if (last_p)
304     {
305       unsigned long biggest = total > mp->biggest_cycles ? total : mp->biggest_cycles;
306       PROFILE_MODEL_TOTAL_CYCLES (p) += biggest;
307       PROFILE_MODEL_CUR_INSN_CYCLES (p) = total;
308     }
309   else
310     {
311       /* Here we take advantage of the fact that !last_p -> first_p.  */
312       mp->biggest_cycles = total;
313       PROFILE_MODEL_CUR_INSN_CYCLES (p) = total;
314     }
315 
316   /* Branch and load stall counts are recorded independently of the
317      total cycle count.  */
318   PROFILE_MODEL_CTI_STALL_CYCLES (p) += mp->cti_stall;
319   PROFILE_MODEL_LOAD_STALL_CYCLES (p) += mp->load_stall;
320 
321   mp->load_regs = mp->load_regs_pending;
322 }
323 
324 static INLINE void
check_load_stall(SIM_CPU * cpu,int regno)325 check_load_stall (SIM_CPU *cpu, int regno)
326 {
327   UINT h_gr = CPU_M32R_MISC_PROFILE (cpu)->load_regs;
328 
329   if (regno != -1
330       && (h_gr & (1 << regno)) != 0)
331     {
332       CPU_M32R_MISC_PROFILE (cpu)->load_stall += 2;
333       if (TRACE_INSN_P (cpu))
334 	cgen_trace_printf (cpu, " ; Load stall of 2 cycles.");
335     }
336 }
337 
338 int
m32rbf_model_m32r_d_u_exec(SIM_CPU * cpu,const IDESC * idesc,int unit_num,int referenced,INT sr,INT sr2,INT dr)339 m32rbf_model_m32r_d_u_exec (SIM_CPU *cpu, const IDESC *idesc,
340 			    int unit_num, int referenced,
341 			    INT sr, INT sr2, INT dr)
342 {
343   check_load_stall (cpu, sr);
344   check_load_stall (cpu, sr2);
345   return idesc->timing->units[unit_num].done;
346 }
347 
348 int
m32rbf_model_m32r_d_u_cmp(SIM_CPU * cpu,const IDESC * idesc,int unit_num,int referenced,INT src1,INT src2)349 m32rbf_model_m32r_d_u_cmp (SIM_CPU *cpu, const IDESC *idesc,
350 			   int unit_num, int referenced,
351 			   INT src1, INT src2)
352 {
353   check_load_stall (cpu, src1);
354   check_load_stall (cpu, src2);
355   return idesc->timing->units[unit_num].done;
356 }
357 
358 int
m32rbf_model_m32r_d_u_mac(SIM_CPU * cpu,const IDESC * idesc,int unit_num,int referenced,INT src1,INT src2)359 m32rbf_model_m32r_d_u_mac (SIM_CPU *cpu, const IDESC *idesc,
360 			   int unit_num, int referenced,
361 			   INT src1, INT src2)
362 {
363   check_load_stall (cpu, src1);
364   check_load_stall (cpu, src2);
365   return idesc->timing->units[unit_num].done;
366 }
367 
368 int
m32rbf_model_m32r_d_u_cti(SIM_CPU * cpu,const IDESC * idesc,int unit_num,int referenced,INT sr)369 m32rbf_model_m32r_d_u_cti (SIM_CPU *cpu, const IDESC *idesc,
370 			   int unit_num, int referenced,
371 			   INT sr)
372 {
373   PROFILE_DATA *profile = CPU_PROFILE_DATA (cpu);
374   int taken_p = (referenced & (1 << 1)) != 0;
375 
376   check_load_stall (cpu, sr);
377   if (taken_p)
378     {
379       CPU_M32R_MISC_PROFILE (cpu)->cti_stall += 2;
380       PROFILE_MODEL_TAKEN_COUNT (profile) += 1;
381     }
382   else
383     PROFILE_MODEL_UNTAKEN_COUNT (profile) += 1;
384   return idesc->timing->units[unit_num].done;
385 }
386 
387 int
m32rbf_model_m32r_d_u_load(SIM_CPU * cpu,const IDESC * idesc,int unit_num,int referenced,INT sr,INT dr)388 m32rbf_model_m32r_d_u_load (SIM_CPU *cpu, const IDESC *idesc,
389 			    int unit_num, int referenced,
390 			    INT sr, INT dr)
391 {
392   CPU_M32R_MISC_PROFILE (cpu)->load_regs_pending |= (1 << dr);
393   check_load_stall (cpu, sr);
394   return idesc->timing->units[unit_num].done;
395 }
396 
397 int
m32rbf_model_m32r_d_u_store(SIM_CPU * cpu,const IDESC * idesc,int unit_num,int referenced,INT src1,INT src2)398 m32rbf_model_m32r_d_u_store (SIM_CPU *cpu, const IDESC *idesc,
399 			     int unit_num, int referenced,
400 			     INT src1, INT src2)
401 {
402   check_load_stall (cpu, src1);
403   check_load_stall (cpu, src2);
404   return idesc->timing->units[unit_num].done;
405 }
406 
407 int
m32rbf_model_test_u_exec(SIM_CPU * cpu,const IDESC * idesc,int unit_num,int referenced)408 m32rbf_model_test_u_exec (SIM_CPU *cpu, const IDESC *idesc,
409 			  int unit_num, int referenced)
410 {
411   return idesc->timing->units[unit_num].done;
412 }
413 
414 #endif /* WITH_PROFILE_MODEL_P */
415