1 // nbtheory.cpp - originally written and placed in the public domain by Wei Dai
2 
3 #include "pch.h"
4 
5 #ifndef CRYPTOPP_IMPORTS
6 
7 #include "nbtheory.h"
8 #include "integer.h"
9 #include "modarith.h"
10 #include "algparam.h"
11 #include "smartptr.h"
12 #include "misc.h"
13 #include "stdcpp.h"
14 
15 #ifdef _OPENMP
16 # include <omp.h>
17 #endif
18 
19 NAMESPACE_BEGIN(CryptoPP)
20 
21 const word s_lastSmallPrime = 32719;
22 
23 struct NewPrimeTable
24 {
operator ()NewPrimeTable25 	std::vector<word16> * operator()() const
26 	{
27 		const unsigned int maxPrimeTableSize = 3511;
28 
29 		member_ptr<std::vector<word16> > pPrimeTable(new std::vector<word16>);
30 		std::vector<word16> &primeTable = *pPrimeTable;
31 		primeTable.reserve(maxPrimeTableSize);
32 
33 		primeTable.push_back(2);
34 		unsigned int testEntriesEnd = 1;
35 
36 		for (unsigned int p=3; p<=s_lastSmallPrime; p+=2)
37 		{
38 			unsigned int j;
39 			for (j=1; j<testEntriesEnd; j++)
40 				if (p%primeTable[j] == 0)
41 					break;
42 			if (j == testEntriesEnd)
43 			{
44 				primeTable.push_back(word16(p));
45 				testEntriesEnd = UnsignedMin(54U, primeTable.size());
46 			}
47 		}
48 
49 		return pPrimeTable.release();
50 	}
51 };
52 
GetPrimeTable(unsigned int & size)53 const word16 * GetPrimeTable(unsigned int &size)
54 {
55 	const std::vector<word16> &primeTable = Singleton<std::vector<word16>, NewPrimeTable>().Ref();
56 	size = (unsigned int)primeTable.size();
57 	return &primeTable[0];
58 }
59 
IsSmallPrime(const Integer & p)60 bool IsSmallPrime(const Integer &p)
61 {
62 	unsigned int primeTableSize;
63 	const word16 * primeTable = GetPrimeTable(primeTableSize);
64 
65 	if (p.IsPositive() && p <= primeTable[primeTableSize-1])
66 		return std::binary_search(primeTable, primeTable+primeTableSize, (word16)p.ConvertToLong());
67 	else
68 		return false;
69 }
70 
TrialDivision(const Integer & p,unsigned bound)71 bool TrialDivision(const Integer &p, unsigned bound)
72 {
73 	unsigned int primeTableSize;
74 	const word16 * primeTable = GetPrimeTable(primeTableSize);
75 
76 	CRYPTOPP_ASSERT(primeTable[primeTableSize-1] >= bound);
77 
78 	unsigned int i;
79 	for (i = 0; primeTable[i]<bound; i++)
80 		if ((p % primeTable[i]) == 0)
81 			return true;
82 
83 	if (bound == primeTable[i])
84 		return (p % bound == 0);
85 	else
86 		return false;
87 }
88 
SmallDivisorsTest(const Integer & p)89 bool SmallDivisorsTest(const Integer &p)
90 {
91 	unsigned int primeTableSize;
92 	const word16 * primeTable = GetPrimeTable(primeTableSize);
93 	return !TrialDivision(p, primeTable[primeTableSize-1]);
94 }
95 
IsFermatProbablePrime(const Integer & n,const Integer & b)96 bool IsFermatProbablePrime(const Integer &n, const Integer &b)
97 {
98 	if (n <= 3)
99 		return n==2 || n==3;
100 
101 	CRYPTOPP_ASSERT(n>3 && b>1 && b<n-1);
102 	return a_exp_b_mod_c(b, n-1, n)==1;
103 }
104 
IsStrongProbablePrime(const Integer & n,const Integer & b)105 bool IsStrongProbablePrime(const Integer &n, const Integer &b)
106 {
107 	if (n <= 3)
108 		return n==2 || n==3;
109 
110 	CRYPTOPP_ASSERT(n>3 && b>1 && b<n-1);
111 
112 	if ((n.IsEven() && n!=2) || GCD(b, n) != 1)
113 		return false;
114 
115 	Integer nminus1 = (n-1);
116 	unsigned int a;
117 
118 	// calculate a = largest power of 2 that divides (n-1)
119 	for (a=0; ; a++)
120 		if (nminus1.GetBit(a))
121 			break;
122 	Integer m = nminus1>>a;
123 
124 	Integer z = a_exp_b_mod_c(b, m, n);
125 	if (z==1 || z==nminus1)
126 		return true;
127 	for (unsigned j=1; j<a; j++)
128 	{
129 		z = z.Squared()%n;
130 		if (z==nminus1)
131 			return true;
132 		if (z==1)
133 			return false;
134 	}
135 	return false;
136 }
137 
RabinMillerTest(RandomNumberGenerator & rng,const Integer & n,unsigned int rounds)138 bool RabinMillerTest(RandomNumberGenerator &rng, const Integer &n, unsigned int rounds)
139 {
140 	if (n <= 3)
141 		return n==2 || n==3;
142 
143 	CRYPTOPP_ASSERT(n>3);
144 
145 	Integer b;
146 	for (unsigned int i=0; i<rounds; i++)
147 	{
148 		b.Randomize(rng, 2, n-2);
149 		if (!IsStrongProbablePrime(n, b))
150 			return false;
151 	}
152 	return true;
153 }
154 
IsLucasProbablePrime(const Integer & n)155 bool IsLucasProbablePrime(const Integer &n)
156 {
157 	if (n <= 1)
158 		return false;
159 
160 	if (n.IsEven())
161 		return n==2;
162 
163 	CRYPTOPP_ASSERT(n>2);
164 
165 	Integer b=3;
166 	unsigned int i=0;
167 	int j;
168 
169 	while ((j=Jacobi(b.Squared()-4, n)) == 1)
170 	{
171 		if (++i==64 && n.IsSquare())	// avoid infinite loop if n is a square
172 			return false;
173 		++b; ++b;
174 	}
175 
176 	if (j==0)
177 		return false;
178 	else
179 		return Lucas(n+1, b, n)==2;
180 }
181 
IsStrongLucasProbablePrime(const Integer & n)182 bool IsStrongLucasProbablePrime(const Integer &n)
183 {
184 	if (n <= 1)
185 		return false;
186 
187 	if (n.IsEven())
188 		return n==2;
189 
190 	CRYPTOPP_ASSERT(n>2);
191 
192 	Integer b=3;
193 	unsigned int i=0;
194 	int j;
195 
196 	while ((j=Jacobi(b.Squared()-4, n)) == 1)
197 	{
198 		if (++i==64 && n.IsSquare())	// avoid infinite loop if n is a square
199 			return false;
200 		++b; ++b;
201 	}
202 
203 	if (j==0)
204 		return false;
205 
206 	Integer n1 = n+1;
207 	unsigned int a;
208 
209 	// calculate a = largest power of 2 that divides n1
210 	for (a=0; ; a++)
211 		if (n1.GetBit(a))
212 			break;
213 	Integer m = n1>>a;
214 
215 	Integer z = Lucas(m, b, n);
216 	if (z==2 || z==n-2)
217 		return true;
218 	for (i=1; i<a; i++)
219 	{
220 		z = (z.Squared()-2)%n;
221 		if (z==n-2)
222 			return true;
223 		if (z==2)
224 			return false;
225 	}
226 	return false;
227 }
228 
229 struct NewLastSmallPrimeSquared
230 {
operator ()NewLastSmallPrimeSquared231 	Integer * operator()() const
232 	{
233 		return new Integer(Integer(s_lastSmallPrime).Squared());
234 	}
235 };
236 
IsPrime(const Integer & p)237 bool IsPrime(const Integer &p)
238 {
239 	if (p <= s_lastSmallPrime)
240 		return IsSmallPrime(p);
241 	else if (p <= Singleton<Integer, NewLastSmallPrimeSquared>().Ref())
242 		return SmallDivisorsTest(p);
243 	else
244 		return SmallDivisorsTest(p) && IsStrongProbablePrime(p, 3) && IsStrongLucasProbablePrime(p);
245 }
246 
VerifyPrime(RandomNumberGenerator & rng,const Integer & p,unsigned int level)247 bool VerifyPrime(RandomNumberGenerator &rng, const Integer &p, unsigned int level)
248 {
249 	bool pass = IsPrime(p) && RabinMillerTest(rng, p, 1);
250 	if (level >= 1)
251 		pass = pass && RabinMillerTest(rng, p, 10);
252 	return pass;
253 }
254 
PrimeSearchInterval(const Integer & max)255 unsigned int PrimeSearchInterval(const Integer &max)
256 {
257 	return max.BitCount();
258 }
259 
FastProbablePrimeTest(const Integer & n)260 static inline bool FastProbablePrimeTest(const Integer &n)
261 {
262 	return IsStrongProbablePrime(n,2);
263 }
264 
MakeParametersForTwoPrimesOfEqualSize(unsigned int productBitLength)265 AlgorithmParameters MakeParametersForTwoPrimesOfEqualSize(unsigned int productBitLength)
266 {
267 	if (productBitLength < 16)
268 		throw InvalidArgument("invalid bit length");
269 
270 	Integer minP, maxP;
271 
272 	if (productBitLength%2==0)
273 	{
274 		minP = Integer(182) << (productBitLength/2-8);
275 		maxP = Integer::Power2(productBitLength/2)-1;
276 	}
277 	else
278 	{
279 		minP = Integer::Power2((productBitLength-1)/2);
280 		maxP = Integer(181) << ((productBitLength+1)/2-8);
281 	}
282 
283 	return MakeParameters("RandomNumberType", Integer::PRIME)("Min", minP)("Max", maxP);
284 }
285 
286 class PrimeSieve
287 {
288 public:
289 	// delta == 1 or -1 means double sieve with p = 2*q + delta
290 	PrimeSieve(const Integer &first, const Integer &last, const Integer &step, signed int delta=0);
291 	bool NextCandidate(Integer &c);
292 
293 	void DoSieve();
294 	static void SieveSingle(std::vector<bool> &sieve, word16 p, const Integer &first, const Integer &step, word16 stepInv);
295 
296 	Integer m_first, m_last, m_step;
297 	signed int m_delta;
298 	word m_next;
299 	std::vector<bool> m_sieve;
300 };
301 
PrimeSieve(const Integer & first,const Integer & last,const Integer & step,signed int delta)302 PrimeSieve::PrimeSieve(const Integer &first, const Integer &last, const Integer &step, signed int delta)
303 	: m_first(first), m_last(last), m_step(step), m_delta(delta), m_next(0)
304 {
305 	DoSieve();
306 }
307 
NextCandidate(Integer & c)308 bool PrimeSieve::NextCandidate(Integer &c)
309 {
310 	bool safe = SafeConvert(std::find(m_sieve.begin()+m_next, m_sieve.end(), false) - m_sieve.begin(), m_next);
311 	CRYPTOPP_UNUSED(safe); CRYPTOPP_ASSERT(safe);
312 	if (m_next == m_sieve.size())
313 	{
314 		m_first += long(m_sieve.size())*m_step;
315 		if (m_first > m_last)
316 			return false;
317 		else
318 		{
319 			m_next = 0;
320 			DoSieve();
321 			return NextCandidate(c);
322 		}
323 	}
324 	else
325 	{
326 		c = m_first + long(m_next)*m_step;
327 		++m_next;
328 		return true;
329 	}
330 }
331 
SieveSingle(std::vector<bool> & sieve,word16 p,const Integer & first,const Integer & step,word16 stepInv)332 void PrimeSieve::SieveSingle(std::vector<bool> &sieve, word16 p, const Integer &first, const Integer &step, word16 stepInv)
333 {
334 	if (stepInv)
335 	{
336 		size_t sieveSize = sieve.size();
337 		size_t j = (word32(p-(first%p))*stepInv) % p;
338 		// if the first multiple of p is p, skip it
339 		if (first.WordCount() <= 1 && first + step*long(j) == p)
340 			j += p;
341 		for (; j < sieveSize; j += p)
342 			sieve[j] = true;
343 	}
344 }
345 
DoSieve()346 void PrimeSieve::DoSieve()
347 {
348 	unsigned int primeTableSize;
349 	const word16 * primeTable = GetPrimeTable(primeTableSize);
350 
351 	const unsigned int maxSieveSize = 32768;
352 	unsigned int sieveSize = STDMIN(Integer(maxSieveSize), (m_last-m_first)/m_step+1).ConvertToLong();
353 
354 	m_sieve.clear();
355 	m_sieve.resize(sieveSize, false);
356 
357 	if (m_delta == 0)
358 	{
359 		for (unsigned int i = 0; i < primeTableSize; ++i)
360 			SieveSingle(m_sieve, primeTable[i], m_first, m_step, (word16)m_step.InverseMod(primeTable[i]));
361 	}
362 	else
363 	{
364 		CRYPTOPP_ASSERT(m_step%2==0);
365 		Integer qFirst = (m_first-m_delta) >> 1;
366 		Integer halfStep = m_step >> 1;
367 		for (unsigned int i = 0; i < primeTableSize; ++i)
368 		{
369 			word16 p = primeTable[i];
370 			word16 stepInv = (word16)m_step.InverseMod(p);
371 			SieveSingle(m_sieve, p, m_first, m_step, stepInv);
372 
373 			word16 halfStepInv = 2*stepInv < p ? 2*stepInv : 2*stepInv-p;
374 			SieveSingle(m_sieve, p, qFirst, halfStep, halfStepInv);
375 		}
376 	}
377 }
378 
FirstPrime(Integer & p,const Integer & max,const Integer & equiv,const Integer & mod,const PrimeSelector * pSelector)379 bool FirstPrime(Integer &p, const Integer &max, const Integer &equiv, const Integer &mod, const PrimeSelector *pSelector)
380 {
381 	CRYPTOPP_ASSERT(!equiv.IsNegative() && equiv < mod);
382 
383 	Integer gcd = GCD(equiv, mod);
384 	if (gcd != Integer::One())
385 	{
386 		// the only possible prime p such that p%mod==equiv where GCD(mod,equiv)!=1 is GCD(mod,equiv)
387 		if (p <= gcd && gcd <= max && IsPrime(gcd) && (!pSelector || pSelector->IsAcceptable(gcd)))
388 		{
389 			p = gcd;
390 			return true;
391 		}
392 		else
393 			return false;
394 	}
395 
396 	unsigned int primeTableSize;
397 	const word16 * primeTable = GetPrimeTable(primeTableSize);
398 
399 	if (p <= primeTable[primeTableSize-1])
400 	{
401 		const word16 *pItr;
402 
403 		--p;
404 		if (p.IsPositive())
405 			pItr = std::upper_bound(primeTable, primeTable+primeTableSize, (word)p.ConvertToLong());
406 		else
407 			pItr = primeTable;
408 
409 		while (pItr < primeTable+primeTableSize && !(*pItr%mod == equiv && (!pSelector || pSelector->IsAcceptable(*pItr))))
410 			++pItr;
411 
412 		if (pItr < primeTable+primeTableSize)
413 		{
414 			p = *pItr;
415 			return p <= max;
416 		}
417 
418 		p = primeTable[primeTableSize-1]+1;
419 	}
420 
421 	CRYPTOPP_ASSERT(p > primeTable[primeTableSize-1]);
422 
423 	if (mod.IsOdd())
424 		return FirstPrime(p, max, CRT(equiv, mod, 1, 2, 1), mod<<1, pSelector);
425 
426 	p += (equiv-p)%mod;
427 
428 	if (p>max)
429 		return false;
430 
431 	PrimeSieve sieve(p, max, mod);
432 
433 	while (sieve.NextCandidate(p))
434 	{
435 		if ((!pSelector || pSelector->IsAcceptable(p)) && FastProbablePrimeTest(p) && IsPrime(p))
436 			return true;
437 	}
438 
439 	return false;
440 }
441 
442 // the following two functions are based on code and comments provided by Preda Mihailescu
ProvePrime(const Integer & p,const Integer & q)443 static bool ProvePrime(const Integer &p, const Integer &q)
444 {
445 	CRYPTOPP_ASSERT(p < q*q*q);
446 	CRYPTOPP_ASSERT(p % q == 1);
447 
448 // this is the Quisquater test. Numbers p having passed the Lucas - Lehmer test
449 // for q and verifying p < q^3 can only be built up of two factors, both = 1 mod q,
450 // or be prime. The next two lines build the discriminant of a quadratic equation
451 // which holds iff p is built up of two factors (exercise ... )
452 
453 	Integer r = (p-1)/q;
454 	if (((r%q).Squared()-4*(r/q)).IsSquare())
455 		return false;
456 
457 	unsigned int primeTableSize;
458 	const word16 * primeTable = GetPrimeTable(primeTableSize);
459 
460 	CRYPTOPP_ASSERT(primeTableSize >= 50);
461 	for (int i=0; i<50; i++)
462 	{
463 		Integer b = a_exp_b_mod_c(primeTable[i], r, p);
464 		if (b != 1)
465 			return a_exp_b_mod_c(b, q, p) == 1;
466 	}
467 	return false;
468 }
469 
MihailescuProvablePrime(RandomNumberGenerator & rng,unsigned int pbits)470 Integer MihailescuProvablePrime(RandomNumberGenerator &rng, unsigned int pbits)
471 {
472 	Integer p;
473 	Integer minP = Integer::Power2(pbits-1);
474 	Integer maxP = Integer::Power2(pbits) - 1;
475 
476 	if (maxP <= Integer(s_lastSmallPrime).Squared())
477 	{
478 		// Randomize() will generate a prime provable by trial division
479 		p.Randomize(rng, minP, maxP, Integer::PRIME);
480 		return p;
481 	}
482 
483 	unsigned int qbits = (pbits+2)/3 + 1 + rng.GenerateWord32(0, pbits/36);
484 	Integer q = MihailescuProvablePrime(rng, qbits);
485 	Integer q2 = q<<1;
486 
487 	while (true)
488 	{
489 		// this initializes the sieve to search in the arithmetic
490 		// progression p = p_0 + \lambda * q2 = p_0 + 2 * \lambda * q,
491 		// with q the recursively generated prime above. We will be able
492 		// to use Lucas tets for proving primality. A trick of Quisquater
493 		// allows taking q > cubic_root(p) rather than square_root: this
494 		// decreases the recursion.
495 
496 		p.Randomize(rng, minP, maxP, Integer::ANY, 1, q2);
497 		PrimeSieve sieve(p, STDMIN(p+PrimeSearchInterval(maxP)*q2, maxP), q2);
498 
499 		while (sieve.NextCandidate(p))
500 		{
501 			if (FastProbablePrimeTest(p) && ProvePrime(p, q))
502 				return p;
503 		}
504 	}
505 
506 	// not reached
507 	return p;
508 }
509 
MaurerProvablePrime(RandomNumberGenerator & rng,unsigned int bits)510 Integer MaurerProvablePrime(RandomNumberGenerator &rng, unsigned int bits)
511 {
512 	const unsigned smallPrimeBound = 29, c_opt=10;
513 	Integer p;
514 
515 	unsigned int primeTableSize;
516 	const word16 * primeTable = GetPrimeTable(primeTableSize);
517 
518 	if (bits < smallPrimeBound)
519 	{
520 		do
521 			p.Randomize(rng, Integer::Power2(bits-1), Integer::Power2(bits)-1, Integer::ANY, 1, 2);
522 		while (TrialDivision(p, 1 << ((bits+1)/2)));
523 	}
524 	else
525 	{
526 		const unsigned margin = bits > 50 ? 20 : (bits-10)/2;
527 		double relativeSize;
528 		do
529 			relativeSize = std::pow(2.0, double(rng.GenerateWord32())/0xffffffff - 1);
530 		while (bits * relativeSize >= bits - margin);
531 
532 		Integer a,b;
533 		Integer q = MaurerProvablePrime(rng, unsigned(bits*relativeSize));
534 		Integer I = Integer::Power2(bits-2)/q;
535 		Integer I2 = I << 1;
536 		unsigned int trialDivisorBound = (unsigned int)STDMIN((unsigned long)primeTable[primeTableSize-1], (unsigned long)bits*bits/c_opt);
537 		bool success = false;
538 		while (!success)
539 		{
540 			p.Randomize(rng, I, I2, Integer::ANY);
541 			p *= q; p <<= 1; ++p;
542 			if (!TrialDivision(p, trialDivisorBound))
543 			{
544 				a.Randomize(rng, 2, p-1, Integer::ANY);
545 				b = a_exp_b_mod_c(a, (p-1)/q, p);
546 				success = (GCD(b-1, p) == 1) && (a_exp_b_mod_c(b, q, p) == 1);
547 			}
548 		}
549 	}
550 	return p;
551 }
552 
CRT(const Integer & xp,const Integer & p,const Integer & xq,const Integer & q,const Integer & u)553 Integer CRT(const Integer &xp, const Integer &p, const Integer &xq, const Integer &q, const Integer &u)
554 {
555 	// isn't operator overloading great?
556 	return p * (u * (xq-xp) % q) + xp;
557 /*
558 	Integer t1 = xq-xp;
559 	cout << hex << t1 << endl;
560 	Integer t2 = u * t1;
561 	cout << hex << t2 << endl;
562 	Integer t3 = t2 % q;
563 	cout << hex << t3 << endl;
564 	Integer t4 = p * t3;
565 	cout << hex << t4 << endl;
566 	Integer t5 = t4 + xp;
567 	cout << hex << t5 << endl;
568 	return t5;
569 */
570 }
571 
ModularSquareRoot(const Integer & a,const Integer & p)572 Integer ModularSquareRoot(const Integer &a, const Integer &p)
573 {
574 	if (p%4 == 3)
575 		return a_exp_b_mod_c(a, (p+1)/4, p);
576 
577 	Integer q=p-1;
578 	unsigned int r=0;
579 	while (q.IsEven())
580 	{
581 		r++;
582 		q >>= 1;
583 	}
584 
585 	Integer n=2;
586 	while (Jacobi(n, p) != -1)
587 		++n;
588 
589 	Integer y = a_exp_b_mod_c(n, q, p);
590 	Integer x = a_exp_b_mod_c(a, (q-1)/2, p);
591 	Integer b = (x.Squared()%p)*a%p;
592 	x = a*x%p;
593 	Integer tempb, t;
594 
595 	while (b != 1)
596 	{
597 		unsigned m=0;
598 		tempb = b;
599 		do
600 		{
601 			m++;
602 			b = b.Squared()%p;
603 			if (m==r)
604 				return Integer::Zero();
605 		}
606 		while (b != 1);
607 
608 		t = y;
609 		for (unsigned i=0; i<r-m-1; i++)
610 			t = t.Squared()%p;
611 		y = t.Squared()%p;
612 		r = m;
613 		x = x*t%p;
614 		b = tempb*y%p;
615 	}
616 
617 	CRYPTOPP_ASSERT(x.Squared()%p == a);
618 	return x;
619 }
620 
SolveModularQuadraticEquation(Integer & r1,Integer & r2,const Integer & a,const Integer & b,const Integer & c,const Integer & p)621 bool SolveModularQuadraticEquation(Integer &r1, Integer &r2, const Integer &a, const Integer &b, const Integer &c, const Integer &p)
622 {
623 	Integer D = (b.Squared() - 4*a*c) % p;
624 	switch (Jacobi(D, p))
625 	{
626 	default:
627 		CRYPTOPP_ASSERT(false);	// not reached
628 		return false;
629 	case -1:
630 		return false;
631 	case 0:
632 		r1 = r2 = (-b*(a+a).InverseMod(p)) % p;
633 		CRYPTOPP_ASSERT(((r1.Squared()*a + r1*b + c) % p).IsZero());
634 		return true;
635 	case 1:
636 		Integer s = ModularSquareRoot(D, p);
637 		Integer t = (a+a).InverseMod(p);
638 		r1 = (s-b)*t % p;
639 		r2 = (-s-b)*t % p;
640 		CRYPTOPP_ASSERT(((r1.Squared()*a + r1*b + c) % p).IsZero());
641 		CRYPTOPP_ASSERT(((r2.Squared()*a + r2*b + c) % p).IsZero());
642 		return true;
643 	}
644 }
645 
ModularRoot(const Integer & a,const Integer & dp,const Integer & dq,const Integer & p,const Integer & q,const Integer & u)646 Integer ModularRoot(const Integer &a, const Integer &dp, const Integer &dq,
647 					const Integer &p, const Integer &q, const Integer &u)
648 {
649 	// GCC warning bug, https://stackoverflow.com/q/12842306/608639
650 #ifdef _OPENMP
651 	Integer p2, q2;
652 	#pragma omp parallel
653 		#pragma omp sections
654 		{
655 			#pragma omp section
656 				p2 = ModularExponentiation((a % p), dp, p);
657 			#pragma omp section
658 				q2 = ModularExponentiation((a % q), dq, q);
659 		}
660 #else
661 	const Integer p2 = ModularExponentiation((a % p), dp, p);
662 	const Integer q2 = ModularExponentiation((a % q), dq, q);
663 #endif
664 
665 	return CRT(p2, p, q2, q, u);
666 }
667 
ModularRoot(const Integer & a,const Integer & e,const Integer & p,const Integer & q)668 Integer ModularRoot(const Integer &a, const Integer &e,
669 					const Integer &p, const Integer &q)
670 {
671 	Integer dp = EuclideanMultiplicativeInverse(e, p-1);
672 	Integer dq = EuclideanMultiplicativeInverse(e, q-1);
673 	Integer u = EuclideanMultiplicativeInverse(p, q);
674 	CRYPTOPP_ASSERT(!!dp && !!dq && !!u);
675 	return ModularRoot(a, dp, dq, p, q, u);
676 }
677 
678 /*
679 Integer GCDI(const Integer &x, const Integer &y)
680 {
681 	Integer a=x, b=y;
682 	unsigned k=0;
683 
684 	CRYPTOPP_ASSERT(!!a && !!b);
685 
686 	while (a[0]==0 && b[0]==0)
687 	{
688 		a >>= 1;
689 		b >>= 1;
690 		k++;
691 	}
692 
693 	while (a[0]==0)
694 		a >>= 1;
695 
696 	while (b[0]==0)
697 		b >>= 1;
698 
699 	while (1)
700 	{
701 		switch (a.Compare(b))
702 		{
703 			case -1:
704 				b -= a;
705 				while (b[0]==0)
706 					b >>= 1;
707 				break;
708 
709 			case 0:
710 				return (a <<= k);
711 
712 			case 1:
713 				a -= b;
714 				while (a[0]==0)
715 					a >>= 1;
716 				break;
717 
718 			default:
719 				CRYPTOPP_ASSERT(false);
720 		}
721 	}
722 }
723 
724 Integer EuclideanMultiplicativeInverse(const Integer &a, const Integer &b)
725 {
726 	CRYPTOPP_ASSERT(b.Positive());
727 
728 	if (a.Negative())
729 		return EuclideanMultiplicativeInverse(a%b, b);
730 
731 	if (b[0]==0)
732 	{
733 		if (!b || a[0]==0)
734 			return Integer::Zero();       // no inverse
735 		if (a==1)
736 			return 1;
737 		Integer u = EuclideanMultiplicativeInverse(b, a);
738 		if (!u)
739 			return Integer::Zero();       // no inverse
740 		else
741 			return (b*(a-u)+1)/a;
742 	}
743 
744 	Integer u=1, d=a, v1=b, v3=b, t1, t3, b2=(b+1)>>1;
745 
746 	if (a[0])
747 	{
748 		t1 = Integer::Zero();
749 		t3 = -b;
750 	}
751 	else
752 	{
753 		t1 = b2;
754 		t3 = a>>1;
755 	}
756 
757 	while (!!t3)
758 	{
759 		while (t3[0]==0)
760 		{
761 			t3 >>= 1;
762 			if (t1[0]==0)
763 				t1 >>= 1;
764 			else
765 			{
766 				t1 >>= 1;
767 				t1 += b2;
768 			}
769 		}
770 		if (t3.Positive())
771 		{
772 			u = t1;
773 			d = t3;
774 		}
775 		else
776 		{
777 			v1 = b-t1;
778 			v3 = -t3;
779 		}
780 		t1 = u-v1;
781 		t3 = d-v3;
782 		if (t1.Negative())
783 			t1 += b;
784 	}
785 	if (d==1)
786 		return u;
787 	else
788 		return Integer::Zero();   // no inverse
789 }
790 */
791 
Jacobi(const Integer & aIn,const Integer & bIn)792 int Jacobi(const Integer &aIn, const Integer &bIn)
793 {
794 	CRYPTOPP_ASSERT(bIn.IsOdd());
795 
796 	Integer b = bIn, a = aIn%bIn;
797 	int result = 1;
798 
799 	while (!!a)
800 	{
801 		unsigned i=0;
802 		while (a.GetBit(i)==0)
803 			i++;
804 		a>>=i;
805 
806 		if (i%2==1 && (b%8==3 || b%8==5))
807 			result = -result;
808 
809 		if (a%4==3 && b%4==3)
810 			result = -result;
811 
812 		std::swap(a, b);
813 		a %= b;
814 	}
815 
816 	return (b==1) ? result : 0;
817 }
818 
Lucas(const Integer & e,const Integer & pIn,const Integer & n)819 Integer Lucas(const Integer &e, const Integer &pIn, const Integer &n)
820 {
821 	unsigned i = e.BitCount();
822 	if (i==0)
823 		return Integer::Two();
824 
825 	MontgomeryRepresentation m(n);
826 	Integer p=m.ConvertIn(pIn%n), two=m.ConvertIn(Integer::Two());
827 	Integer v=p, v1=m.Subtract(m.Square(p), two);
828 
829 	i--;
830 	while (i--)
831 	{
832 		if (e.GetBit(i))
833 		{
834 			// v = (v*v1 - p) % m;
835 			v = m.Subtract(m.Multiply(v,v1), p);
836 			// v1 = (v1*v1 - 2) % m;
837 			v1 = m.Subtract(m.Square(v1), two);
838 		}
839 		else
840 		{
841 			// v1 = (v*v1 - p) % m;
842 			v1 = m.Subtract(m.Multiply(v,v1), p);
843 			// v = (v*v - 2) % m;
844 			v = m.Subtract(m.Square(v), two);
845 		}
846 	}
847 	return m.ConvertOut(v);
848 }
849 
850 // This is Peter Montgomery's unpublished Lucas sequence evalutation algorithm.
851 // The total number of multiplies and squares used is less than the binary
852 // algorithm (see above).  Unfortunately I can't get it to run as fast as
853 // the binary algorithm because of the extra overhead.
854 /*
855 Integer Lucas(const Integer &n, const Integer &P, const Integer &modulus)
856 {
857 	if (!n)
858 		return 2;
859 
860 #define f(A, B, C)	m.Subtract(m.Multiply(A, B), C)
861 #define X2(A) m.Subtract(m.Square(A), two)
862 #define X3(A) m.Multiply(A, m.Subtract(m.Square(A), three))
863 
864 	MontgomeryRepresentation m(modulus);
865 	Integer two=m.ConvertIn(2), three=m.ConvertIn(3);
866 	Integer A=m.ConvertIn(P), B, C, p, d=n, e, r, t, T, U;
867 
868 	while (d!=1)
869 	{
870 		p = d;
871 		unsigned int b = WORD_BITS * p.WordCount();
872 		Integer alpha = (Integer(5)<<(2*b-2)).SquareRoot() - Integer::Power2(b-1);
873 		r = (p*alpha)>>b;
874 		e = d-r;
875 		B = A;
876 		C = two;
877 		d = r;
878 
879 		while (d!=e)
880 		{
881 			if (d<e)
882 			{
883 				swap(d, e);
884 				swap(A, B);
885 			}
886 
887 			unsigned int dm2 = d[0], em2 = e[0];
888 			unsigned int dm3 = d%3, em3 = e%3;
889 
890 //			if ((dm6+em6)%3 == 0 && d <= e + (e>>2))
891 			if ((dm3+em3==0 || dm3+em3==3) && (t = e, t >>= 2, t += e, d <= t))
892 			{
893 				// #1
894 //				t = (d+d-e)/3;
895 //				t = d; t += d; t -= e; t /= 3;
896 //				e = (e+e-d)/3;
897 //				e += e; e -= d; e /= 3;
898 //				d = t;
899 
900 //				t = (d+e)/3
901 				t = d; t += e; t /= 3;
902 				e -= t;
903 				d -= t;
904 
905 				T = f(A, B, C);
906 				U = f(T, A, B);
907 				B = f(T, B, A);
908 				A = U;
909 				continue;
910 			}
911 
912 //			if (dm6 == em6 && d <= e + (e>>2))
913 			if (dm3 == em3 && dm2 == em2 && (t = e, t >>= 2, t += e, d <= t))
914 			{
915 				// #2
916 //				d = (d-e)>>1;
917 				d -= e; d >>= 1;
918 				B = f(A, B, C);
919 				A = X2(A);
920 				continue;
921 			}
922 
923 //			if (d <= (e<<2))
924 			if (d <= (t = e, t <<= 2))
925 			{
926 				// #3
927 				d -= e;
928 				C = f(A, B, C);
929 				swap(B, C);
930 				continue;
931 			}
932 
933 			if (dm2 == em2)
934 			{
935 				// #4
936 //				d = (d-e)>>1;
937 				d -= e; d >>= 1;
938 				B = f(A, B, C);
939 				A = X2(A);
940 				continue;
941 			}
942 
943 			if (dm2 == 0)
944 			{
945 				// #5
946 				d >>= 1;
947 				C = f(A, C, B);
948 				A = X2(A);
949 				continue;
950 			}
951 
952 			if (dm3 == 0)
953 			{
954 				// #6
955 //				d = d/3 - e;
956 				d /= 3; d -= e;
957 				T = X2(A);
958 				C = f(T, f(A, B, C), C);
959 				swap(B, C);
960 				A = f(T, A, A);
961 				continue;
962 			}
963 
964 			if (dm3+em3==0 || dm3+em3==3)
965 			{
966 				// #7
967 //				d = (d-e-e)/3;
968 				d -= e; d -= e; d /= 3;
969 				T = f(A, B, C);
970 				B = f(T, A, B);
971 				A = X3(A);
972 				continue;
973 			}
974 
975 			if (dm3 == em3)
976 			{
977 				// #8
978 //				d = (d-e)/3;
979 				d -= e; d /= 3;
980 				T = f(A, B, C);
981 				C = f(A, C, B);
982 				B = T;
983 				A = X3(A);
984 				continue;
985 			}
986 
987 			CRYPTOPP_ASSERT(em2 == 0);
988 			// #9
989 			e >>= 1;
990 			C = f(C, B, A);
991 			B = X2(B);
992 		}
993 
994 		A = f(A, B, C);
995 	}
996 
997 #undef f
998 #undef X2
999 #undef X3
1000 
1001 	return m.ConvertOut(A);
1002 }
1003 */
1004 
InverseLucas(const Integer & e,const Integer & m,const Integer & p,const Integer & q,const Integer & u)1005 Integer InverseLucas(const Integer &e, const Integer &m, const Integer &p, const Integer &q, const Integer &u)
1006 {
1007 
1008 	// GCC warning bug, https://stackoverflow.com/q/12842306/608639
1009 #ifdef _OPENMP
1010 	Integer d = (m*m-4), p2, q2;
1011 	#pragma omp parallel
1012 		#pragma omp sections
1013 		{
1014 			#pragma omp section
1015 			{
1016 				p2 = p-Jacobi(d,p);
1017 				p2 = Lucas(EuclideanMultiplicativeInverse(e,p2), m, p);
1018 			}
1019 			#pragma omp section
1020 			{
1021 				q2 = q-Jacobi(d,q);
1022 				q2 = Lucas(EuclideanMultiplicativeInverse(e,q2), m, q);
1023 			}
1024 		}
1025 #else
1026 	const Integer d = (m*m-4);
1027 	const Integer t1 = p-Jacobi(d,p);
1028 	const Integer p2 = Lucas(EuclideanMultiplicativeInverse(e,t1), m, p);
1029 
1030 	const Integer t2 = q-Jacobi(d,q);
1031 	const Integer q2 = Lucas(EuclideanMultiplicativeInverse(e,t2), m, q);
1032 #endif
1033 
1034 	return CRT(p2, p, q2, q, u);
1035 }
1036 
FactoringWorkFactor(unsigned int n)1037 unsigned int FactoringWorkFactor(unsigned int n)
1038 {
1039 	// extrapolated from the table in Odlyzko's "The Future of Integer Factorization"
1040 	// updated to reflect the factoring of RSA-130
1041 	if (n<5) return 0;
1042 	else return (unsigned int)(2.4 * std::pow((double)n, 1.0/3.0) * std::pow(log(double(n)), 2.0/3.0) - 5);
1043 }
1044 
DiscreteLogWorkFactor(unsigned int n)1045 unsigned int DiscreteLogWorkFactor(unsigned int n)
1046 {
1047 	// assuming discrete log takes about the same time as factoring
1048 	if (n<5) return 0;
1049 	else return (unsigned int)(2.4 * std::pow((double)n, 1.0/3.0) * std::pow(log(double(n)), 2.0/3.0) - 5);
1050 }
1051 
1052 // ********************************************************
1053 
Generate(signed int delta,RandomNumberGenerator & rng,unsigned int pbits,unsigned int qbits)1054 void PrimeAndGenerator::Generate(signed int delta, RandomNumberGenerator &rng, unsigned int pbits, unsigned int qbits)
1055 {
1056 	// no prime exists for delta = -1, qbits = 4, and pbits = 5
1057 	CRYPTOPP_ASSERT(qbits > 4);
1058 	CRYPTOPP_ASSERT(pbits > qbits);
1059 
1060 	if (qbits+1 == pbits)
1061 	{
1062 		Integer minP = Integer::Power2(pbits-1);
1063 		Integer maxP = Integer::Power2(pbits) - 1;
1064 		bool success = false;
1065 
1066 		while (!success)
1067 		{
1068 			p.Randomize(rng, minP, maxP, Integer::ANY, 6+5*delta, 12);
1069 			PrimeSieve sieve(p, STDMIN(p+PrimeSearchInterval(maxP)*12, maxP), 12, delta);
1070 
1071 			while (sieve.NextCandidate(p))
1072 			{
1073 				CRYPTOPP_ASSERT(IsSmallPrime(p) || SmallDivisorsTest(p));
1074 				q = (p-delta) >> 1;
1075 				CRYPTOPP_ASSERT(IsSmallPrime(q) || SmallDivisorsTest(q));
1076 				if (FastProbablePrimeTest(q) && FastProbablePrimeTest(p) && IsPrime(q) && IsPrime(p))
1077 				{
1078 					success = true;
1079 					break;
1080 				}
1081 			}
1082 		}
1083 
1084 		if (delta == 1)
1085 		{
1086 			// find g such that g is a quadratic residue mod p, then g has order q
1087 			// g=4 always works, but this way we get the smallest quadratic residue (other than 1)
1088 			for (g=2; Jacobi(g, p) != 1; ++g) {}
1089 			// contributed by Walt Tuvell: g should be the following according to the Law of Quadratic Reciprocity
1090 			CRYPTOPP_ASSERT((p%8==1 || p%8==7) ? g==2 : (p%12==1 || p%12==11) ? g==3 : g==4);
1091 		}
1092 		else
1093 		{
1094 			CRYPTOPP_ASSERT(delta == -1);
1095 			// find g such that g*g-4 is a quadratic non-residue,
1096 			// and such that g has order q
1097 			for (g=3; ; ++g)
1098 				if (Jacobi(g*g-4, p)==-1 && Lucas(q, g, p)==2)
1099 					break;
1100 		}
1101 	}
1102 	else
1103 	{
1104 		Integer minQ = Integer::Power2(qbits-1);
1105 		Integer maxQ = Integer::Power2(qbits) - 1;
1106 		Integer minP = Integer::Power2(pbits-1);
1107 		Integer maxP = Integer::Power2(pbits) - 1;
1108 
1109 		do
1110 		{
1111 			q.Randomize(rng, minQ, maxQ, Integer::PRIME);
1112 		} while (!p.Randomize(rng, minP, maxP, Integer::PRIME, delta%q, q));
1113 
1114 		// find a random g of order q
1115 		if (delta==1)
1116 		{
1117 			do
1118 			{
1119 				Integer h(rng, 2, p-2, Integer::ANY);
1120 				g = a_exp_b_mod_c(h, (p-1)/q, p);
1121 			} while (g <= 1);
1122 			CRYPTOPP_ASSERT(a_exp_b_mod_c(g, q, p)==1);
1123 		}
1124 		else
1125 		{
1126 			CRYPTOPP_ASSERT(delta==-1);
1127 			do
1128 			{
1129 				Integer h(rng, 3, p-1, Integer::ANY);
1130 				if (Jacobi(h*h-4, p)==1)
1131 					continue;
1132 				g = Lucas((p+1)/q, h, p);
1133 			} while (g <= 2);
1134 			CRYPTOPP_ASSERT(Lucas(q, g, p) == 2);
1135 		}
1136 	}
1137 }
1138 
1139 NAMESPACE_END
1140 
1141 #endif
1142