1 /*
2  * Cisco router simulation platform.
3  * Copyright (c) 2007 Christophe Fillot (cf@utc.fr)
4  *
5  * Cisco C6k-MSFC1 I/O FPGA:
6  *   - Simulates a NMC93C56 Serial EEPROM.
7  *   - Simulates a DALLAS DS1620 for Temperature Sensors.
8  *   - Simulates console and AUX ports (SCN2681).
9  *
10  * This is very similar to c7200 platform.
11  */
12 
13 #include <stdio.h>
14 #include <stdlib.h>
15 #include <string.h>
16 #include <unistd.h>
17 #include <sys/types.h>
18 
19 #include <termios.h>
20 #include <fcntl.h>
21 #include <pthread.h>
22 
23 #include "ptask.h"
24 #include "cpu.h"
25 #include "vm.h"
26 #include "dynamips.h"
27 #include "memory.h"
28 #include "device.h"
29 #include "dev_vtty.h"
30 #include "nmc93cX6.h"
31 #include "dev_ds1620.h"
32 #include "dev_c6msfc1.h"
33 
34 /* Debugging flags */
35 #define DEBUG_UNKNOWN  1
36 #define DEBUG_ACCESS   0
37 #define DEBUG_LED      0
38 #define DEBUG_IO_CTL   0
39 #define DEBUG_ENVM     0
40 
41 /* DUART RX/TX status (SRA/SRB) */
42 #define DUART_RX_READY  0x01
43 #define DUART_TX_READY  0x04
44 
45 /* DUART RX/TX Interrupt Status/Mask */
46 #define DUART_TXRDYA  0x01
47 #define DUART_RXRDYA  0x02
48 #define DUART_TXRDYB  0x10
49 #define DUART_RXRDYB  0x20
50 
51 /* Definitions for CPU and Midplane Serial EEPROMs */
52 #define EEPROM_CPU_DOUT  6
53 #define EEPROM_CPU_DIN   0
54 #define EEPROM_CPU_CLK   1
55 #define EEPROM_CPU_CS    2
56 
57 #define EEPROM_MP_DOUT   7
58 #define EEPROM_MP_DIN    3
59 #define EEPROM_MP_CLK    4
60 #define EEPROM_MP_CS     5
61 
62 /* Pack the NVRAM */
63 #define NVRAM_PACKED   0x04
64 
65 /* Temperature: 22�C as default value */
66 #define C6MSFC1_DEFAULT_TEMP  22
67 #define DS1620_CHIP(d,id) (&(d)->router->ds1620_sensors[(id)])
68 
69 /* IO FPGA structure */
70 struct iofpga_data {
71    vm_obj_t vm_obj;
72    struct vdevice dev;
73    c6msfc1_t *router;
74 
75    /* Lock test */
76    pthread_mutex_t lock;
77 
78    /* Periodic task to trigger dummy DUART IRQ */
79    ptask_id_t duart_irq_tid;
80 
81    /* DUART & Console Management */
82    u_int duart_isr,duart_imr,duart_irq_seq;
83 
84    /* IO control register */
85    u_int io_ctrl_reg;
86 
87    /* Voltages */
88    u_int mux;
89 };
90 
91 #define IOFPGA_LOCK(d)   pthread_mutex_lock(&(d)->lock)
92 #define IOFPGA_UNLOCK(d) pthread_mutex_unlock(&(d)->lock)
93 
94 /* CPU EEPROM definition */
95 static const struct nmc93cX6_eeprom_def eeprom_cpu_def = {
96    EEPROM_CPU_CLK, EEPROM_CPU_CS, EEPROM_CPU_DIN, EEPROM_CPU_DOUT,
97 };
98 
99 /* Midplane EEPROM definition */
100 static const struct nmc93cX6_eeprom_def eeprom_midplane_def = {
101    EEPROM_MP_CLK, EEPROM_MP_CS, EEPROM_MP_DIN, EEPROM_MP_DOUT,
102 };
103 
104 /* IOFPGA manages simultaneously CPU and Midplane EEPROM */
105 static const struct nmc93cX6_group eeprom_cpu_midplane = {
106    EEPROM_TYPE_NMC93C56, 2, 0,
107    EEPROM_DORD_NORMAL,
108    EEPROM_DOUT_HIGH,
109    EEPROM_DEBUG_DISABLED,
110    "CPU and Midplane EEPROM",
111    { &eeprom_cpu_def, &eeprom_midplane_def },
112 };
113 
114 /* Console port input */
tty_con_input(vtty_t * vtty)115 static void tty_con_input(vtty_t *vtty)
116 {
117    struct iofpga_data *d = vtty->priv_data;
118 
119    IOFPGA_LOCK(d);
120    if (d->duart_imr & DUART_RXRDYA) {
121       d->duart_isr |= DUART_RXRDYA;
122       vm_set_irq(d->router->vm,C6MSFC1_DUART_IRQ);
123    }
124    IOFPGA_UNLOCK(d);
125 }
126 
127 /* AUX port input */
tty_aux_input(vtty_t * vtty)128 static void tty_aux_input(vtty_t *vtty)
129 {
130    struct iofpga_data *d = vtty->priv_data;
131 
132    IOFPGA_LOCK(d);
133    if (d->duart_imr & DUART_RXRDYB) {
134       d->duart_isr |= DUART_RXRDYB;
135       vm_set_irq(d->router->vm,C6MSFC1_DUART_IRQ);
136    }
137    IOFPGA_UNLOCK(d);
138 }
139 
140 /* IRQ trickery for Console and AUX ports */
tty_trigger_dummy_irq(struct iofpga_data * d,void * arg)141 static int tty_trigger_dummy_irq(struct iofpga_data *d,void *arg)
142 {
143    u_int mask;
144 
145    IOFPGA_LOCK(d);
146    d->duart_irq_seq++;
147 
148    if (d->duart_irq_seq == 2) {
149       mask = DUART_TXRDYA|DUART_TXRDYB;
150       if (d->duart_imr & mask) {
151          d->duart_isr |= DUART_TXRDYA|DUART_TXRDYB;
152          vm_set_irq(d->router->vm,C6MSFC1_DUART_IRQ);
153       }
154 
155       d->duart_irq_seq = 0;
156    }
157 
158    IOFPGA_UNLOCK(d);
159    return(0);
160 }
161 
162 /*
163  * dev_c6msfc1_iofpga_access()
164  */
dev_c6msfc1_iofpga_access(cpu_gen_t * cpu,struct vdevice * dev,m_uint32_t offset,u_int op_size,u_int op_type,m_uint64_t * data)165 void *dev_c6msfc1_iofpga_access(cpu_gen_t *cpu,struct vdevice *dev,
166                                 m_uint32_t offset,u_int op_size,u_int op_type,
167                                 m_uint64_t *data)
168 {
169    struct iofpga_data *d = dev->priv_data;
170    vm_instance_t *vm = d->router->vm;
171    u_char odata;
172    int i;
173 
174    if (op_type == MTS_READ)
175       *data = 0x0;
176 
177 #if DEBUG_ACCESS
178    if (op_type == MTS_READ) {
179       cpu_log(cpu,"IO_FPGA","reading reg 0x%x at pc=0x%llx\n",
180               offset,cpu_get_pc(cpu));
181    } else {
182       cpu_log(cpu,"IO_FPGA","writing reg 0x%x at pc=0x%llx, data=0x%llx\n",
183               offset,cpu_get_pc(cpu),*data);
184    }
185 #endif
186 
187    IOFPGA_LOCK(d);
188 
189    switch(offset) {
190       /* I/O control register */
191       case 0x204:
192          if (op_type == MTS_WRITE) {
193 #if DEBUG_IO_CTL
194             vm_log(vm,"IO_FPGA","setting value 0x%llx in io_ctrl_reg\n",*data);
195 #endif
196             d->io_ctrl_reg = *data;
197          } else {
198             *data = d->io_ctrl_reg;
199             *data |= NVRAM_PACKED;              /* Packed NVRAM */
200          }
201          break;
202 
203       /* CPU/Midplane EEPROMs */
204       case 0x21c:
205          if (op_type == MTS_WRITE)
206             nmc93cX6_write(&d->router->sys_eeprom_g1,(u_int)(*data));
207          else
208             *data = nmc93cX6_read(&d->router->sys_eeprom_g1);
209          break;
210 
211       /* Watchdog */
212       case 0x234:
213          break;
214 
215       /*
216        * FPGA release/presence ? Flash SIMM size:
217        *   0x0001: 2048K  Flash (2 banks)
218        *   0x0504: 8192K  Flash (2 banks)
219        *   0x0704: 16384K Flash (2 banks)
220        *   0x0904: 32768K Flash (2 banks)
221        *   0x0B04: 65536K Flash (2 banks)
222        *   0x2001: 1024K  Flash (1 bank)
223        *   0x2504: 4096K  Flash (1 bank)
224        *   0x2704: 8192K  Flash (1 bank)
225        *   0x2904: 16384K Flash (1 bank)
226        *   0x2B04: 32768K Flash (1 bank)
227        *
228        *   Number of Flash SIMM banks + size.
229        *   Touching some lower bits causes problems with environmental monitor.
230        *
231        * It is displayed by command "sh bootflash: chips"
232        */
233       case 0x23c:
234          if (op_type == MTS_READ)
235             *data = 0x2704;
236          break;
237 
238       /* LEDs */
239       case 0x244:
240 #if DEBUG_LED
241          vm_log(vm,"IO_FPGA","LED register is now 0x%x (0x%x)\n",
242                 *data,(~*data) & 0x0F);
243 #endif
244          break;
245 
246       /* ==== DUART SCN2681 (console/aux) ==== */
247       case 0x404:   /* Mode Register A (MRA) */
248          break;
249 
250       case 0x40c:   /* Status Register A (SRA) */
251          if (op_type == MTS_READ) {
252             odata = 0;
253 
254             if (vtty_is_char_avail(vm->vtty_con))
255                odata |= DUART_RX_READY;
256 
257             odata |= DUART_TX_READY;
258 
259             vm_clear_irq(vm,C6MSFC1_DUART_IRQ);
260             *data = odata;
261          }
262          break;
263 
264       case 0x414:   /* Command Register A (CRA) */
265          /* Disable TX = High */
266          if ((op_type == MTS_WRITE) && (*data & 0x8)) {
267             vm->vtty_con->managed_flush = TRUE;
268             vtty_flush(vm->vtty_con);
269          }
270          break;
271 
272       case 0x41c:   /* RX/TX Holding Register A (RHRA/THRA) */
273          if (op_type == MTS_WRITE) {
274             vtty_put_char(vm->vtty_con,(char)*data);
275             d->duart_isr &= ~DUART_TXRDYA;
276          } else {
277             *data = vtty_get_char(vm->vtty_con);
278             d->duart_isr &= ~DUART_RXRDYA;
279          }
280          break;
281 
282       case 0x424:   /* WRITE: Aux Control Register (ACR) */
283          break;
284 
285       case 0x42c:   /* Interrupt Status/Mask Register (ISR/IMR) */
286          if (op_type == MTS_WRITE) {
287             d->duart_imr = *data;
288          } else
289             *data = d->duart_isr;
290          break;
291 
292       case 0x434:   /* Counter/Timer Upper Value (CTU) */
293       case 0x43c:   /* Counter/Timer Lower Value (CTL) */
294       case 0x444:   /* Mode Register B (MRB) */
295          break;
296 
297       case 0x44c:   /* Status Register B (SRB) */
298          if (op_type == MTS_READ) {
299             odata = 0;
300 
301             if (vtty_is_char_avail(vm->vtty_aux))
302                odata |= DUART_RX_READY;
303 
304             odata |= DUART_TX_READY;
305 
306             //vm_clear_irq(vm,C6MSFC1_DUART_IRQ);
307             *data = odata;
308          }
309          break;
310 
311       case 0x454:   /* Command Register B (CRB) */
312          /* Disable TX = High */
313          if ((op_type == MTS_WRITE) && (*data & 0x8)) {
314             vm->vtty_aux->managed_flush = TRUE;
315             vtty_flush(vm->vtty_aux);
316          }
317          break;
318 
319       case 0x45c:   /* RX/TX Holding Register B (RHRB/THRB) */
320          if (op_type == MTS_WRITE) {
321             vtty_put_char(vm->vtty_aux,(char)*data);
322             d->duart_isr &= ~DUART_TXRDYA;
323          } else {
324             *data = vtty_get_char(vm->vtty_aux);
325             d->duart_isr &= ~DUART_RXRDYB;
326          }
327          break;
328 
329       case 0x46c:   /* WRITE: Output Port Configuration Register (OPCR) */
330       case 0x474:   /* READ: Start Counter Command; */
331                     /* WRITE: Set Output Port Bits Command */
332       case 0x47c:   /* WRITE: Reset Output Port Bits Command */
333          break;
334 
335       /* ==== DS 1620 (temp sensors) ==== */
336       case 0x20c:   /* Temperature Control */
337          if (op_type == MTS_WRITE) {
338             for(i=0;i<C6MSFC1_TEMP_SENSORS;i++) {
339                ds1620_set_rst_bit(DS1620_CHIP(d,i),(*data >> i) & 0x01);
340                ds1620_set_clk_bit(DS1620_CHIP(d,i),(*data >> 4) & 0x01);
341             }
342          }
343          break;
344 
345       case 0x214:   /* Temperature data write */
346          if (op_type == MTS_WRITE) {
347             d->mux = *data;
348 
349             for(i=0;i<C6MSFC1_TEMP_SENSORS;i++)
350                ds1620_write_data_bit(DS1620_CHIP(d,i),*data & 0x01);
351          }
352          break;
353 
354       case 0x22c:   /* Temperature data read */
355          if (op_type == MTS_READ) {
356             *data = 0;
357 
358             for(i=0;i<C6MSFC1_TEMP_SENSORS;i++)
359                *data |= ds1620_read_data_bit(DS1620_CHIP(d,i)) << i;
360          }
361          break;
362 
363 #if DEBUG_UNKNOWN
364       default:
365          if (op_type == MTS_READ) {
366             cpu_log(cpu,"IO_FPGA","read from addr 0x%x, pc=0x%llx (size=%u)\n",
367                     offset,cpu_get_pc(cpu),op_size);
368          } else {
369             cpu_log(cpu,"IO_FPGA","write to addr 0x%x, value=0x%llx, "
370                     "pc=0x%llx (size=%u)\n",
371                     offset,*data,cpu_get_pc(cpu),op_size);
372          }
373 #endif
374    }
375 
376    IOFPGA_UNLOCK(d);
377    return NULL;
378 }
379 
380 /* Initialize EEPROM groups */
c6msfc1_init_eeprom_groups(c6msfc1_t * router)381 void c6msfc1_init_eeprom_groups(c6msfc1_t *router)
382 {
383    router->sys_eeprom_g1 = eeprom_cpu_midplane;
384    router->sys_eeprom_g1.eeprom[0] = &router->cpu_eeprom;
385    router->sys_eeprom_g1.eeprom[1] = &router->mp_eeprom;
386 }
387 
388 /* Shutdown the IO FPGA device */
dev_c6msfc1_iofpga_shutdown(vm_instance_t * vm,struct iofpga_data * d)389 void dev_c6msfc1_iofpga_shutdown(vm_instance_t *vm,struct iofpga_data *d)
390 {
391    if (d != NULL) {
392       IOFPGA_LOCK(d);
393       vm->vtty_con->read_notifier = NULL;
394       vm->vtty_aux->read_notifier = NULL;
395       IOFPGA_UNLOCK(d);
396 
397       /* Remove the dummy IRQ periodic task */
398       ptask_remove(d->duart_irq_tid);
399 
400       /* Remove the device */
401       dev_remove(vm,&d->dev);
402 
403       /* Free the structure itself */
404       free(d);
405    }
406 }
407 
408 /*
409  * dev_c6msfc1_iofpga_init()
410  */
dev_c6msfc1_iofpga_init(c6msfc1_t * router,m_uint64_t paddr,m_uint32_t len)411 int dev_c6msfc1_iofpga_init(c6msfc1_t *router,m_uint64_t paddr,m_uint32_t len)
412 {
413    vm_instance_t *vm = router->vm;
414    struct iofpga_data *d;
415    u_int i;
416 
417    /* Allocate private data structure */
418    if (!(d = malloc(sizeof(*d)))) {
419       fprintf(stderr,"IO_FPGA: out of memory\n");
420       return(-1);
421    }
422 
423    memset(d,0,sizeof(*d));
424 
425    pthread_mutex_init(&d->lock,NULL);
426    d->router = router;
427 
428    for(i=0;i<C6MSFC1_TEMP_SENSORS;i++)
429       ds1620_init(DS1620_CHIP(d,i),C6MSFC1_DEFAULT_TEMP);
430 
431    vm_object_init(&d->vm_obj);
432    d->vm_obj.name = "io_fpga";
433    d->vm_obj.data = d;
434    d->vm_obj.shutdown = (vm_shutdown_t)dev_c6msfc1_iofpga_shutdown;
435 
436    /* Set device properties */
437    dev_init(&d->dev);
438    d->dev.name      = "io_fpga";
439    d->dev.phys_addr = paddr;
440    d->dev.phys_len  = len;
441    d->dev.handler   = dev_c6msfc1_iofpga_access;
442    d->dev.priv_data = d;
443 
444    /* Set console and AUX port notifying functions */
445    vm->vtty_con->priv_data = d;
446    vm->vtty_aux->priv_data = d;
447    vm->vtty_con->read_notifier = tty_con_input;
448    vm->vtty_aux->read_notifier = tty_aux_input;
449 
450    /* Trigger periodically a dummy IRQ to flush buffers */
451    d->duart_irq_tid = ptask_add((ptask_callback)tty_trigger_dummy_irq,
452                                 d,NULL);
453 
454    /* Map this device to the VM */
455    vm_bind_device(vm,&d->dev);
456    vm_object_add(vm,&d->vm_obj);
457    return(0);
458 }
459