1 /*
2  * Monkey's Audio lossless audio decoder
3  * Copyright (c) 2007 Benjamin Zores <ben@geexbox.org>
4  *  based upon libdemac from Dave Chapman.
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 #include <inttypes.h>
24 
25 #include "libavutil/avassert.h"
26 #include "libavutil/channel_layout.h"
27 #include "libavutil/opt.h"
28 #include "lossless_audiodsp.h"
29 #include "avcodec.h"
30 #include "bswapdsp.h"
31 #include "bytestream.h"
32 #include "internal.h"
33 #include "get_bits.h"
34 #include "unary.h"
35 
36 /**
37  * @file
38  * Monkey's Audio lossless audio decoder
39  */
40 
41 #define MAX_CHANNELS        2
42 #define MAX_BYTESPERSAMPLE  3
43 
44 #define APE_FRAMECODE_MONO_SILENCE    1
45 #define APE_FRAMECODE_STEREO_SILENCE  3
46 #define APE_FRAMECODE_PSEUDO_STEREO   4
47 
48 #define HISTORY_SIZE 512
49 #define PREDICTOR_ORDER 8
50 /** Total size of all predictor histories */
51 #define PREDICTOR_SIZE 50
52 
53 #define YDELAYA (18 + PREDICTOR_ORDER*4)
54 #define YDELAYB (18 + PREDICTOR_ORDER*3)
55 #define XDELAYA (18 + PREDICTOR_ORDER*2)
56 #define XDELAYB (18 + PREDICTOR_ORDER)
57 
58 #define YADAPTCOEFFSA 18
59 #define XADAPTCOEFFSA 14
60 #define YADAPTCOEFFSB 10
61 #define XADAPTCOEFFSB 5
62 
63 /**
64  * Possible compression levels
65  * @{
66  */
67 enum APECompressionLevel {
68     COMPRESSION_LEVEL_FAST       = 1000,
69     COMPRESSION_LEVEL_NORMAL     = 2000,
70     COMPRESSION_LEVEL_HIGH       = 3000,
71     COMPRESSION_LEVEL_EXTRA_HIGH = 4000,
72     COMPRESSION_LEVEL_INSANE     = 5000
73 };
74 /** @} */
75 
76 #define APE_FILTER_LEVELS 3
77 
78 /** Filter orders depending on compression level */
79 static const uint16_t ape_filter_orders[5][APE_FILTER_LEVELS] = {
80     {  0,   0,    0 },
81     { 16,   0,    0 },
82     { 64,   0,    0 },
83     { 32, 256,    0 },
84     { 16, 256, 1280 }
85 };
86 
87 /** Filter fraction bits depending on compression level */
88 static const uint8_t ape_filter_fracbits[5][APE_FILTER_LEVELS] = {
89     {  0,  0,  0 },
90     { 11,  0,  0 },
91     { 11,  0,  0 },
92     { 10, 13,  0 },
93     { 11, 13, 15 }
94 };
95 
96 
97 /** Filters applied to the decoded data */
98 typedef struct APEFilter {
99     int16_t *coeffs;        ///< actual coefficients used in filtering
100     int16_t *adaptcoeffs;   ///< adaptive filter coefficients used for correcting of actual filter coefficients
101     int16_t *historybuffer; ///< filter memory
102     int16_t *delay;         ///< filtered values
103 
104     int avg;
105 } APEFilter;
106 
107 typedef struct APERice {
108     uint32_t k;
109     uint32_t ksum;
110 } APERice;
111 
112 typedef struct APERangecoder {
113     uint32_t low;           ///< low end of interval
114     uint32_t range;         ///< length of interval
115     uint32_t help;          ///< bytes_to_follow resp. intermediate value
116     unsigned int buffer;    ///< buffer for input/output
117 } APERangecoder;
118 
119 /** Filter histories */
120 typedef struct APEPredictor {
121     int32_t *buf;
122 
123     int32_t lastA[2];
124 
125     int32_t filterA[2];
126     int32_t filterB[2];
127 
128     int32_t coeffsA[2][4];  ///< adaption coefficients
129     int32_t coeffsB[2][5];  ///< adaption coefficients
130     int32_t historybuffer[HISTORY_SIZE + PREDICTOR_SIZE];
131 
132     unsigned int sample_pos;
133 } APEPredictor;
134 
135 /** Decoder context */
136 typedef struct APEContext {
137     AVClass *class;                          ///< class for AVOptions
138     AVCodecContext *avctx;
139     BswapDSPContext bdsp;
140     LLAudDSPContext adsp;
141     int channels;
142     int samples;                             ///< samples left to decode in current frame
143     int bps;
144 
145     int fileversion;                         ///< codec version, very important in decoding process
146     int compression_level;                   ///< compression levels
147     int fset;                                ///< which filter set to use (calculated from compression level)
148     int flags;                               ///< global decoder flags
149 
150     uint32_t CRC;                            ///< frame CRC
151     int frameflags;                          ///< frame flags
152     APEPredictor predictor;                  ///< predictor used for final reconstruction
153 
154     int32_t *decoded_buffer;
155     int decoded_size;
156     int32_t *decoded[MAX_CHANNELS];          ///< decoded data for each channel
157     int blocks_per_loop;                     ///< maximum number of samples to decode for each call
158 
159     int16_t* filterbuf[APE_FILTER_LEVELS];   ///< filter memory
160 
161     APERangecoder rc;                        ///< rangecoder used to decode actual values
162     APERice riceX;                           ///< rice code parameters for the second channel
163     APERice riceY;                           ///< rice code parameters for the first channel
164     APEFilter filters[APE_FILTER_LEVELS][2]; ///< filters used for reconstruction
165     GetBitContext gb;
166 
167     uint8_t *data;                           ///< current frame data
168     uint8_t *data_end;                       ///< frame data end
169     int data_size;                           ///< frame data allocated size
170     const uint8_t *ptr;                      ///< current position in frame data
171 
172     int error;
173 
174     void (*entropy_decode_mono)(struct APEContext *ctx, int blockstodecode);
175     void (*entropy_decode_stereo)(struct APEContext *ctx, int blockstodecode);
176     void (*predictor_decode_mono)(struct APEContext *ctx, int count);
177     void (*predictor_decode_stereo)(struct APEContext *ctx, int count);
178 } APEContext;
179 
180 static void ape_apply_filters(APEContext *ctx, int32_t *decoded0,
181                               int32_t *decoded1, int count);
182 
183 static void entropy_decode_mono_0000(APEContext *ctx, int blockstodecode);
184 static void entropy_decode_stereo_0000(APEContext *ctx, int blockstodecode);
185 static void entropy_decode_mono_3860(APEContext *ctx, int blockstodecode);
186 static void entropy_decode_stereo_3860(APEContext *ctx, int blockstodecode);
187 static void entropy_decode_mono_3900(APEContext *ctx, int blockstodecode);
188 static void entropy_decode_stereo_3900(APEContext *ctx, int blockstodecode);
189 static void entropy_decode_stereo_3930(APEContext *ctx, int blockstodecode);
190 static void entropy_decode_mono_3990(APEContext *ctx, int blockstodecode);
191 static void entropy_decode_stereo_3990(APEContext *ctx, int blockstodecode);
192 
193 static void predictor_decode_mono_3800(APEContext *ctx, int count);
194 static void predictor_decode_stereo_3800(APEContext *ctx, int count);
195 static void predictor_decode_mono_3930(APEContext *ctx, int count);
196 static void predictor_decode_stereo_3930(APEContext *ctx, int count);
197 static void predictor_decode_mono_3950(APEContext *ctx, int count);
198 static void predictor_decode_stereo_3950(APEContext *ctx, int count);
199 
ape_decode_close(AVCodecContext * avctx)200 static av_cold int ape_decode_close(AVCodecContext *avctx)
201 {
202     APEContext *s = avctx->priv_data;
203     int i;
204 
205     for (i = 0; i < APE_FILTER_LEVELS; i++)
206         av_freep(&s->filterbuf[i]);
207 
208     av_freep(&s->decoded_buffer);
209     av_freep(&s->data);
210     s->decoded_size = s->data_size = 0;
211 
212     return 0;
213 }
214 
ape_decode_init(AVCodecContext * avctx)215 static av_cold int ape_decode_init(AVCodecContext *avctx)
216 {
217     APEContext *s = avctx->priv_data;
218     int i;
219 
220     if (avctx->extradata_size != 6) {
221         av_log(avctx, AV_LOG_ERROR, "Incorrect extradata\n");
222         return AVERROR(EINVAL);
223     }
224     if (avctx->channels > 2) {
225         av_log(avctx, AV_LOG_ERROR, "Only mono and stereo is supported\n");
226         return AVERROR(EINVAL);
227     }
228     s->bps = avctx->bits_per_coded_sample;
229     switch (s->bps) {
230     case 8:
231         avctx->sample_fmt = AV_SAMPLE_FMT_U8P;
232         break;
233     case 16:
234         avctx->sample_fmt = AV_SAMPLE_FMT_S16P;
235         break;
236     case 24:
237         avctx->sample_fmt = AV_SAMPLE_FMT_S32P;
238         break;
239     default:
240         avpriv_request_sample(avctx,
241                               "%d bits per coded sample", s->bps);
242         return AVERROR_PATCHWELCOME;
243     }
244     s->avctx             = avctx;
245     s->channels          = avctx->channels;
246     s->fileversion       = AV_RL16(avctx->extradata);
247     s->compression_level = AV_RL16(avctx->extradata + 2);
248     s->flags             = AV_RL16(avctx->extradata + 4);
249 
250     av_log(avctx, AV_LOG_DEBUG, "Compression Level: %d - Flags: %d\n",
251            s->compression_level, s->flags);
252     if (s->compression_level % 1000 || s->compression_level > COMPRESSION_LEVEL_INSANE ||
253         !s->compression_level ||
254         (s->fileversion < 3930 && s->compression_level == COMPRESSION_LEVEL_INSANE)) {
255         av_log(avctx, AV_LOG_ERROR, "Incorrect compression level %d\n",
256                s->compression_level);
257         return AVERROR_INVALIDDATA;
258     }
259     s->fset = s->compression_level / 1000 - 1;
260     for (i = 0; i < APE_FILTER_LEVELS; i++) {
261         if (!ape_filter_orders[s->fset][i])
262             break;
263 		FF_ALLOC_OR_GOTO(avctx, s->filterbuf[i],
264                          (ape_filter_orders[s->fset][i] * 3 + HISTORY_SIZE) * 4,
265                          filter_alloc_fail);
266 	}
267 
268     if (s->fileversion < 3860) {
269         s->entropy_decode_mono   = entropy_decode_mono_0000;
270         s->entropy_decode_stereo = entropy_decode_stereo_0000;
271     } else if (s->fileversion < 3900) {
272         s->entropy_decode_mono   = entropy_decode_mono_3860;
273         s->entropy_decode_stereo = entropy_decode_stereo_3860;
274     } else if (s->fileversion < 3930) {
275         s->entropy_decode_mono   = entropy_decode_mono_3900;
276         s->entropy_decode_stereo = entropy_decode_stereo_3900;
277     } else if (s->fileversion < 3990) {
278         s->entropy_decode_mono   = entropy_decode_mono_3900;
279         s->entropy_decode_stereo = entropy_decode_stereo_3930;
280     } else {
281         s->entropy_decode_mono   = entropy_decode_mono_3990;
282         s->entropy_decode_stereo = entropy_decode_stereo_3990;
283     }
284 
285     if (s->fileversion < 3930) {
286         s->predictor_decode_mono   = predictor_decode_mono_3800;
287         s->predictor_decode_stereo = predictor_decode_stereo_3800;
288     } else if (s->fileversion < 3950) {
289         s->predictor_decode_mono   = predictor_decode_mono_3930;
290         s->predictor_decode_stereo = predictor_decode_stereo_3930;
291     } else {
292         s->predictor_decode_mono   = predictor_decode_mono_3950;
293         s->predictor_decode_stereo = predictor_decode_stereo_3950;
294     }
295 
296     ff_bswapdsp_init(&s->bdsp);
297     ff_llauddsp_init(&s->adsp);
298     avctx->channel_layout = (avctx->channels==2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO;
299 
300     return 0;
301 filter_alloc_fail:
302     ape_decode_close(avctx);
303     return AVERROR(ENOMEM);
304 }
305 
306 /**
307  * @name APE range decoding functions
308  * @{
309  */
310 
311 #define CODE_BITS    32
312 #define TOP_VALUE    ((unsigned int)1 << (CODE_BITS-1))
313 #define SHIFT_BITS   (CODE_BITS - 9)
314 #define EXTRA_BITS   ((CODE_BITS-2) % 8 + 1)
315 #define BOTTOM_VALUE (TOP_VALUE >> 8)
316 
317 /** Start the decoder */
range_start_decoding(APEContext * ctx)318 static inline void range_start_decoding(APEContext *ctx)
319 {
320     ctx->rc.buffer = bytestream_get_byte(&ctx->ptr);
321     ctx->rc.low    = ctx->rc.buffer >> (8 - EXTRA_BITS);
322     ctx->rc.range  = (uint32_t) 1 << EXTRA_BITS;
323 }
324 
325 /** Perform normalization */
range_dec_normalize(APEContext * ctx)326 static inline void range_dec_normalize(APEContext *ctx)
327 {
328     while (ctx->rc.range <= BOTTOM_VALUE) {
329         ctx->rc.buffer <<= 8;
330         if(ctx->ptr < ctx->data_end) {
331             ctx->rc.buffer += *ctx->ptr;
332             ctx->ptr++;
333         } else {
334             ctx->error = 1;
335         }
336         ctx->rc.low    = (ctx->rc.low << 8)    | ((ctx->rc.buffer >> 1) & 0xFF);
337         ctx->rc.range  <<= 8;
338     }
339 }
340 
341 /**
342  * Calculate culmulative frequency for next symbol. Does NO update!
343  * @param ctx decoder context
344  * @param tot_f is the total frequency or (code_value)1<<shift
345  * @return the culmulative frequency
346  */
range_decode_culfreq(APEContext * ctx,int tot_f)347 static inline int range_decode_culfreq(APEContext *ctx, int tot_f)
348 {
349     range_dec_normalize(ctx);
350     ctx->rc.help = ctx->rc.range / tot_f;
351     return ctx->rc.low / ctx->rc.help;
352 }
353 
354 /**
355  * Decode value with given size in bits
356  * @param ctx decoder context
357  * @param shift number of bits to decode
358  */
range_decode_culshift(APEContext * ctx,int shift)359 static inline int range_decode_culshift(APEContext *ctx, int shift)
360 {
361     range_dec_normalize(ctx);
362     ctx->rc.help = ctx->rc.range >> shift;
363     return ctx->rc.low / ctx->rc.help;
364 }
365 
366 
367 /**
368  * Update decoding state
369  * @param ctx decoder context
370  * @param sy_f the interval length (frequency of the symbol)
371  * @param lt_f the lower end (frequency sum of < symbols)
372  */
range_decode_update(APEContext * ctx,int sy_f,int lt_f)373 static inline void range_decode_update(APEContext *ctx, int sy_f, int lt_f)
374 {
375     ctx->rc.low  -= ctx->rc.help * lt_f;
376     ctx->rc.range = ctx->rc.help * sy_f;
377 }
378 
379 /** Decode n bits (n <= 16) without modelling */
range_decode_bits(APEContext * ctx,int n)380 static inline int range_decode_bits(APEContext *ctx, int n)
381 {
382     int sym = range_decode_culshift(ctx, n);
383     range_decode_update(ctx, 1, sym);
384     return sym;
385 }
386 
387 
388 #define MODEL_ELEMENTS 64
389 
390 /**
391  * Fixed probabilities for symbols in Monkey Audio version 3.97
392  */
393 static const uint16_t counts_3970[22] = {
394         0, 14824, 28224, 39348, 47855, 53994, 58171, 60926,
395     62682, 63786, 64463, 64878, 65126, 65276, 65365, 65419,
396     65450, 65469, 65480, 65487, 65491, 65493,
397 };
398 
399 /**
400  * Probability ranges for symbols in Monkey Audio version 3.97
401  */
402 static const uint16_t counts_diff_3970[21] = {
403     14824, 13400, 11124, 8507, 6139, 4177, 2755, 1756,
404     1104, 677, 415, 248, 150, 89, 54, 31,
405     19, 11, 7, 4, 2,
406 };
407 
408 /**
409  * Fixed probabilities for symbols in Monkey Audio version 3.98
410  */
411 static const uint16_t counts_3980[22] = {
412         0, 19578, 36160, 48417, 56323, 60899, 63265, 64435,
413     64971, 65232, 65351, 65416, 65447, 65466, 65476, 65482,
414     65485, 65488, 65490, 65491, 65492, 65493,
415 };
416 
417 /**
418  * Probability ranges for symbols in Monkey Audio version 3.98
419  */
420 static const uint16_t counts_diff_3980[21] = {
421     19578, 16582, 12257, 7906, 4576, 2366, 1170, 536,
422     261, 119, 65, 31, 19, 10, 6, 3,
423     3, 2, 1, 1, 1,
424 };
425 
426 /**
427  * Decode symbol
428  * @param ctx decoder context
429  * @param counts probability range start position
430  * @param counts_diff probability range widths
431  */
range_get_symbol(APEContext * ctx,const uint16_t counts[],const uint16_t counts_diff[])432 static inline int range_get_symbol(APEContext *ctx,
433                                    const uint16_t counts[],
434                                    const uint16_t counts_diff[])
435 {
436     int symbol, cf;
437 
438     cf = range_decode_culshift(ctx, 16);
439 
440     if(cf > 65492){
441         symbol= cf - 65535 + 63;
442         range_decode_update(ctx, 1, cf);
443         if(cf > 65535)
444             ctx->error=1;
445         return symbol;
446     }
447     /* figure out the symbol inefficiently; a binary search would be much better */
448     for (symbol = 0; counts[symbol + 1] <= cf; symbol++);
449 
450     range_decode_update(ctx, counts_diff[symbol], counts[symbol]);
451 
452     return symbol;
453 }
454 /** @} */ // group rangecoder
455 
update_rice(APERice * rice,unsigned int x)456 static inline void update_rice(APERice *rice, unsigned int x)
457 {
458     int lim = rice->k ? (1 << (rice->k + 4)) : 0;
459     rice->ksum += ((x + 1) / 2) - ((rice->ksum + 16) >> 5);
460 
461     if (rice->ksum < lim)
462         rice->k--;
463     else if (rice->ksum >= (1 << (rice->k + 5)))
464         rice->k++;
465 }
466 
get_rice_ook(GetBitContext * gb,int k)467 static inline int get_rice_ook(GetBitContext *gb, int k)
468 {
469     unsigned int x;
470 
471     x = get_unary(gb, 1, get_bits_left(gb));
472 
473     if (k)
474         x = (x << k) | get_bits(gb, k);
475 
476     return x;
477 }
478 
ape_decode_value_3860(APEContext * ctx,GetBitContext * gb,APERice * rice)479 static inline int ape_decode_value_3860(APEContext *ctx, GetBitContext *gb,
480                                         APERice *rice)
481 {
482     unsigned int x, overflow;
483 
484     overflow = get_unary(gb, 1, get_bits_left(gb));
485 
486     if (ctx->fileversion > 3880) {
487         while (overflow >= 16) {
488             overflow -= 16;
489             rice->k  += 4;
490         }
491     }
492 
493     if (!rice->k)
494         x = overflow;
495     else if(rice->k <= MIN_CACHE_BITS) {
496         x = (overflow << rice->k) + get_bits(gb, rice->k);
497     } else {
498         av_log(ctx->avctx, AV_LOG_ERROR, "Too many bits: %d\n", rice->k);
499         return AVERROR_INVALIDDATA;
500     }
501     rice->ksum += x - (rice->ksum + 8 >> 4);
502     if (rice->ksum < (rice->k ? 1 << (rice->k + 4) : 0))
503         rice->k--;
504     else if (rice->ksum >= (1 << (rice->k + 5)) && rice->k < 24)
505         rice->k++;
506 
507     /* Convert to signed */
508     if (x & 1)
509         return (x >> 1) + 1;
510     else
511         return -(x >> 1);
512 }
513 
ape_decode_value_3900(APEContext * ctx,APERice * rice)514 static inline int ape_decode_value_3900(APEContext *ctx, APERice *rice)
515 {
516     unsigned int x, overflow;
517     int tmpk;
518 
519     overflow = range_get_symbol(ctx, counts_3970, counts_diff_3970);
520 
521     if (overflow == (MODEL_ELEMENTS - 1)) {
522         tmpk = range_decode_bits(ctx, 5);
523         overflow = 0;
524     } else
525         tmpk = (rice->k < 1) ? 0 : rice->k - 1;
526 
527     if (tmpk <= 16 || ctx->fileversion < 3910) {
528         if (tmpk > 23) {
529             av_log(ctx->avctx, AV_LOG_ERROR, "Too many bits: %d\n", tmpk);
530             return AVERROR_INVALIDDATA;
531         }
532         x = range_decode_bits(ctx, tmpk);
533     } else if (tmpk <= 31) {
534         x = range_decode_bits(ctx, 16);
535         x |= (range_decode_bits(ctx, tmpk - 16) << 16);
536     } else {
537         av_log(ctx->avctx, AV_LOG_ERROR, "Too many bits: %d\n", tmpk);
538         return AVERROR_INVALIDDATA;
539     }
540     x += overflow << tmpk;
541 
542     update_rice(rice, x);
543 
544     /* Convert to signed */
545     if (x & 1)
546         return (x >> 1) + 1;
547     else
548         return -(x >> 1);
549 }
550 
ape_decode_value_3990(APEContext * ctx,APERice * rice)551 static inline int ape_decode_value_3990(APEContext *ctx, APERice *rice)
552 {
553     unsigned int x, overflow;
554     int base, pivot;
555 
556     pivot = rice->ksum >> 5;
557     if (pivot == 0)
558         pivot = 1;
559 
560     overflow = range_get_symbol(ctx, counts_3980, counts_diff_3980);
561 
562     if (overflow == (MODEL_ELEMENTS - 1)) {
563         overflow  = range_decode_bits(ctx, 16) << 16;
564         overflow |= range_decode_bits(ctx, 16);
565     }
566 
567     if (pivot < 0x10000) {
568         base = range_decode_culfreq(ctx, pivot);
569         range_decode_update(ctx, 1, base);
570     } else {
571         int base_hi = pivot, base_lo;
572         int bbits = 0;
573 
574         while (base_hi & ~0xFFFF) {
575             base_hi >>= 1;
576             bbits++;
577         }
578         base_hi = range_decode_culfreq(ctx, base_hi + 1);
579         range_decode_update(ctx, 1, base_hi);
580         base_lo = range_decode_culfreq(ctx, 1 << bbits);
581         range_decode_update(ctx, 1, base_lo);
582 
583         base = (base_hi << bbits) + base_lo;
584     }
585 
586     x = base + overflow * pivot;
587 
588     update_rice(rice, x);
589 
590     /* Convert to signed */
591     if (x & 1)
592         return (x >> 1) + 1;
593     else
594         return -(x >> 1);
595 }
596 
decode_array_0000(APEContext * ctx,GetBitContext * gb,int32_t * out,APERice * rice,int blockstodecode)597 static void decode_array_0000(APEContext *ctx, GetBitContext *gb,
598                               int32_t *out, APERice *rice, int blockstodecode)
599 {
600     int i;
601     int ksummax, ksummin;
602 
603     rice->ksum = 0;
604     for (i = 0; i < 5; i++) {
605         out[i] = get_rice_ook(&ctx->gb, 10);
606         rice->ksum += out[i];
607     }
608     rice->k = av_log2(rice->ksum / 10) + 1;
609     if (rice->k >= 24)
610         return;
611     for (; i < 64; i++) {
612         out[i] = get_rice_ook(&ctx->gb, rice->k);
613         rice->ksum += out[i];
614         rice->k = av_log2(rice->ksum / ((i + 1) * 2)) + 1;
615         if (rice->k >= 24)
616             return;
617     }
618     ksummax = 1 << rice->k + 7;
619     ksummin = rice->k ? (1 << rice->k + 6) : 0;
620     for (; i < blockstodecode; i++) {
621         out[i] = get_rice_ook(&ctx->gb, rice->k);
622         rice->ksum += out[i] - out[i - 64];
623         while (rice->ksum < ksummin) {
624             rice->k--;
625             ksummin = rice->k ? ksummin >> 1 : 0;
626             ksummax >>= 1;
627         }
628         while (rice->ksum >= ksummax) {
629             rice->k++;
630             if (rice->k > 24)
631                 return;
632             ksummax <<= 1;
633             ksummin = ksummin ? ksummin << 1 : 128;
634         }
635     }
636 
637     for (i = 0; i < blockstodecode; i++) {
638         if (out[i] & 1)
639             out[i] = (out[i] >> 1) + 1;
640         else
641             out[i] = -(out[i] >> 1);
642     }
643 }
644 
entropy_decode_mono_0000(APEContext * ctx,int blockstodecode)645 static void entropy_decode_mono_0000(APEContext *ctx, int blockstodecode)
646 {
647     decode_array_0000(ctx, &ctx->gb, ctx->decoded[0], &ctx->riceY,
648                       blockstodecode);
649 }
650 
entropy_decode_stereo_0000(APEContext * ctx,int blockstodecode)651 static void entropy_decode_stereo_0000(APEContext *ctx, int blockstodecode)
652 {
653     decode_array_0000(ctx, &ctx->gb, ctx->decoded[0], &ctx->riceY,
654                       blockstodecode);
655     decode_array_0000(ctx, &ctx->gb, ctx->decoded[1], &ctx->riceX,
656                       blockstodecode);
657 }
658 
entropy_decode_mono_3860(APEContext * ctx,int blockstodecode)659 static void entropy_decode_mono_3860(APEContext *ctx, int blockstodecode)
660 {
661     int32_t *decoded0 = ctx->decoded[0];
662 
663     while (blockstodecode--)
664         *decoded0++ = ape_decode_value_3860(ctx, &ctx->gb, &ctx->riceY);
665 }
666 
entropy_decode_stereo_3860(APEContext * ctx,int blockstodecode)667 static void entropy_decode_stereo_3860(APEContext *ctx, int blockstodecode)
668 {
669     int32_t *decoded0 = ctx->decoded[0];
670     int32_t *decoded1 = ctx->decoded[1];
671     int blocks = blockstodecode;
672 
673     while (blockstodecode--)
674         *decoded0++ = ape_decode_value_3860(ctx, &ctx->gb, &ctx->riceY);
675     while (blocks--)
676         *decoded1++ = ape_decode_value_3860(ctx, &ctx->gb, &ctx->riceX);
677 }
678 
entropy_decode_mono_3900(APEContext * ctx,int blockstodecode)679 static void entropy_decode_mono_3900(APEContext *ctx, int blockstodecode)
680 {
681     int32_t *decoded0 = ctx->decoded[0];
682 
683     while (blockstodecode--)
684         *decoded0++ = ape_decode_value_3900(ctx, &ctx->riceY);
685 }
686 
entropy_decode_stereo_3900(APEContext * ctx,int blockstodecode)687 static void entropy_decode_stereo_3900(APEContext *ctx, int blockstodecode)
688 {
689     int32_t *decoded0 = ctx->decoded[0];
690     int32_t *decoded1 = ctx->decoded[1];
691     int blocks = blockstodecode;
692 
693     while (blockstodecode--)
694         *decoded0++ = ape_decode_value_3900(ctx, &ctx->riceY);
695     range_dec_normalize(ctx);
696     // because of some implementation peculiarities we need to backpedal here
697     ctx->ptr -= 1;
698     range_start_decoding(ctx);
699     while (blocks--)
700         *decoded1++ = ape_decode_value_3900(ctx, &ctx->riceX);
701 }
702 
entropy_decode_stereo_3930(APEContext * ctx,int blockstodecode)703 static void entropy_decode_stereo_3930(APEContext *ctx, int blockstodecode)
704 {
705     int32_t *decoded0 = ctx->decoded[0];
706     int32_t *decoded1 = ctx->decoded[1];
707 
708     while (blockstodecode--) {
709         *decoded0++ = ape_decode_value_3900(ctx, &ctx->riceY);
710         *decoded1++ = ape_decode_value_3900(ctx, &ctx->riceX);
711     }
712 }
713 
entropy_decode_mono_3990(APEContext * ctx,int blockstodecode)714 static void entropy_decode_mono_3990(APEContext *ctx, int blockstodecode)
715 {
716     int32_t *decoded0 = ctx->decoded[0];
717 
718     while (blockstodecode--)
719         *decoded0++ = ape_decode_value_3990(ctx, &ctx->riceY);
720 }
721 
entropy_decode_stereo_3990(APEContext * ctx,int blockstodecode)722 static void entropy_decode_stereo_3990(APEContext *ctx, int blockstodecode)
723 {
724     int32_t *decoded0 = ctx->decoded[0];
725     int32_t *decoded1 = ctx->decoded[1];
726 
727     while (blockstodecode--) {
728         *decoded0++ = ape_decode_value_3990(ctx, &ctx->riceY);
729         *decoded1++ = ape_decode_value_3990(ctx, &ctx->riceX);
730     }
731 }
732 
init_entropy_decoder(APEContext * ctx)733 static int init_entropy_decoder(APEContext *ctx)
734 {
735     /* Read the CRC */
736     if (ctx->fileversion >= 3900) {
737         if (ctx->data_end - ctx->ptr < 6)
738             return AVERROR_INVALIDDATA;
739         ctx->CRC = bytestream_get_be32(&ctx->ptr);
740     } else {
741         ctx->CRC = get_bits_long(&ctx->gb, 32);
742     }
743 
744     /* Read the frame flags if they exist */
745     ctx->frameflags = 0;
746     if ((ctx->fileversion > 3820) && (ctx->CRC & 0x80000000)) {
747         ctx->CRC &= ~0x80000000;
748 
749         if (ctx->data_end - ctx->ptr < 6)
750             return AVERROR_INVALIDDATA;
751         ctx->frameflags = bytestream_get_be32(&ctx->ptr);
752     }
753 
754     /* Initialize the rice structs */
755     ctx->riceX.k = 10;
756     ctx->riceX.ksum = (1 << ctx->riceX.k) * 16;
757     ctx->riceY.k = 10;
758     ctx->riceY.ksum = (1 << ctx->riceY.k) * 16;
759 
760     if (ctx->fileversion >= 3900) {
761         /* The first 8 bits of input are ignored. */
762         ctx->ptr++;
763 
764         range_start_decoding(ctx);
765     }
766 
767     return 0;
768 }
769 
770 static const int32_t initial_coeffs_fast_3320[1] = {
771     375,
772 };
773 
774 static const int32_t initial_coeffs_a_3800[3] = {
775     64, 115, 64,
776 };
777 
778 static const int32_t initial_coeffs_b_3800[2] = {
779     740, 0
780 };
781 
782 static const int32_t initial_coeffs_3930[4] = {
783     360, 317, -109, 98
784 };
785 
init_predictor_decoder(APEContext * ctx)786 static void init_predictor_decoder(APEContext *ctx)
787 {
788     APEPredictor *p = &ctx->predictor;
789 
790     /* Zero the history buffers */
791     memset(p->historybuffer, 0, PREDICTOR_SIZE * sizeof(*p->historybuffer));
792     p->buf = p->historybuffer;
793 
794     /* Initialize and zero the coefficients */
795     if (ctx->fileversion < 3930) {
796         if (ctx->compression_level == COMPRESSION_LEVEL_FAST) {
797             memcpy(p->coeffsA[0], initial_coeffs_fast_3320,
798                    sizeof(initial_coeffs_fast_3320));
799             memcpy(p->coeffsA[1], initial_coeffs_fast_3320,
800                    sizeof(initial_coeffs_fast_3320));
801         } else {
802             memcpy(p->coeffsA[0], initial_coeffs_a_3800,
803                    sizeof(initial_coeffs_a_3800));
804             memcpy(p->coeffsA[1], initial_coeffs_a_3800,
805                    sizeof(initial_coeffs_a_3800));
806         }
807     } else {
808         memcpy(p->coeffsA[0], initial_coeffs_3930, sizeof(initial_coeffs_3930));
809         memcpy(p->coeffsA[1], initial_coeffs_3930, sizeof(initial_coeffs_3930));
810     }
811     memset(p->coeffsB, 0, sizeof(p->coeffsB));
812     if (ctx->fileversion < 3930) {
813         memcpy(p->coeffsB[0], initial_coeffs_b_3800,
814                sizeof(initial_coeffs_b_3800));
815         memcpy(p->coeffsB[1], initial_coeffs_b_3800,
816                sizeof(initial_coeffs_b_3800));
817     }
818 
819     p->filterA[0] = p->filterA[1] = 0;
820     p->filterB[0] = p->filterB[1] = 0;
821     p->lastA[0]   = p->lastA[1]   = 0;
822 
823     p->sample_pos = 0;
824 }
825 
826 /** Get inverse sign of integer (-1 for positive, 1 for negative and 0 for zero) */
APESIGN(int32_t x)827 static inline int APESIGN(int32_t x) {
828     return (x < 0) - (x > 0);
829 }
830 
filter_fast_3320(APEPredictor * p,const int decoded,const int filter,const int delayA)831 static av_always_inline int filter_fast_3320(APEPredictor *p,
832                                              const int decoded, const int filter,
833                                              const int delayA)
834 {
835     int32_t predictionA;
836 
837     p->buf[delayA] = p->lastA[filter];
838     if (p->sample_pos < 3) {
839         p->lastA[filter]   = decoded;
840         p->filterA[filter] = decoded;
841         return decoded;
842     }
843 
844     predictionA = p->buf[delayA] * 2 - p->buf[delayA - 1];
845     p->lastA[filter] = decoded + (predictionA  * p->coeffsA[filter][0] >> 9);
846 
847     if ((decoded ^ predictionA) > 0)
848         p->coeffsA[filter][0]++;
849     else
850         p->coeffsA[filter][0]--;
851 
852     p->filterA[filter] += p->lastA[filter];
853 
854     return p->filterA[filter];
855 }
856 
filter_3800(APEPredictor * p,const int decoded,const int filter,const int delayA,const int delayB,const int start,const int shift)857 static av_always_inline int filter_3800(APEPredictor *p,
858                                         const int decoded, const int filter,
859                                         const int delayA,  const int delayB,
860                                         const int start,   const int shift)
861 {
862     int32_t predictionA, predictionB, sign;
863     int32_t d0, d1, d2, d3, d4;
864 
865     p->buf[delayA] = p->lastA[filter];
866     p->buf[delayB] = p->filterB[filter];
867     if (p->sample_pos < start) {
868         predictionA = decoded + p->filterA[filter];
869         p->lastA[filter]   = decoded;
870         p->filterB[filter] = decoded;
871         p->filterA[filter] = predictionA;
872         return predictionA;
873     }
874     d2 =  p->buf[delayA];
875     d1 = (p->buf[delayA] - p->buf[delayA - 1]) << 1;
876     d0 =  p->buf[delayA] + ((p->buf[delayA - 2] - p->buf[delayA - 1]) << 3);
877     d3 =  p->buf[delayB] * 2 - p->buf[delayB - 1];
878     d4 =  p->buf[delayB];
879 
880     predictionA = d0 * p->coeffsA[filter][0] +
881                   d1 * p->coeffsA[filter][1] +
882                   d2 * p->coeffsA[filter][2];
883 
884     sign = APESIGN(decoded);
885     p->coeffsA[filter][0] += (((d0 >> 30) & 2) - 1) * sign;
886     p->coeffsA[filter][1] += (((d1 >> 28) & 8) - 4) * sign;
887     p->coeffsA[filter][2] += (((d2 >> 28) & 8) - 4) * sign;
888 
889     predictionB = d3 * p->coeffsB[filter][0] -
890                   d4 * p->coeffsB[filter][1];
891     p->lastA[filter] = decoded + (predictionA >> 11);
892     sign = APESIGN(p->lastA[filter]);
893     p->coeffsB[filter][0] += (((d3 >> 29) & 4) - 2) * sign;
894     p->coeffsB[filter][1] -= (((d4 >> 30) & 2) - 1) * sign;
895 
896     p->filterB[filter] = p->lastA[filter] + (predictionB >> shift);
897     p->filterA[filter] = p->filterB[filter] + ((p->filterA[filter] * 31) >> 5);
898 
899     return p->filterA[filter];
900 }
901 
long_filter_high_3800(int32_t * buffer,int order,int shift,int32_t * coeffs,int32_t * delay,int length)902 static void long_filter_high_3800(int32_t *buffer, int order, int shift,
903                                   int32_t *coeffs, int32_t *delay, int length)
904 {
905     int i, j;
906     int32_t dotprod, sign;
907 
908     memset(coeffs, 0, order * sizeof(*coeffs));
909     for (i = 0; i < order; i++)
910         delay[i] = buffer[i];
911     for (i = order; i < length; i++) {
912         dotprod = 0;
913         sign = APESIGN(buffer[i]);
914         for (j = 0; j < order; j++) {
915             dotprod += delay[j] * coeffs[j];
916             coeffs[j] += ((delay[j] >> 31) | 1) * sign;
917         }
918         buffer[i] -= dotprod >> shift;
919         for (j = 0; j < order - 1; j++)
920             delay[j] = delay[j + 1];
921         delay[order - 1] = buffer[i];
922     }
923 }
924 
long_filter_ehigh_3830(int32_t * buffer,int length)925 static void long_filter_ehigh_3830(int32_t *buffer, int length)
926 {
927     int i, j;
928     int32_t dotprod, sign;
929     int32_t coeffs[8] = { 0 }, delay[8] = { 0 };
930 
931     for (i = 0; i < length; i++) {
932         dotprod = 0;
933         sign = APESIGN(buffer[i]);
934         for (j = 7; j >= 0; j--) {
935             dotprod += delay[j] * coeffs[j];
936             coeffs[j] += ((delay[j] >> 31) | 1) * sign;
937         }
938         for (j = 7; j > 0; j--)
939             delay[j] = delay[j - 1];
940         delay[0] = buffer[i];
941         buffer[i] -= dotprod >> 9;
942     }
943 }
944 
predictor_decode_stereo_3800(APEContext * ctx,int count)945 static void predictor_decode_stereo_3800(APEContext *ctx, int count)
946 {
947     APEPredictor *p = &ctx->predictor;
948     int32_t *decoded0 = ctx->decoded[0];
949     int32_t *decoded1 = ctx->decoded[1];
950     int32_t coeffs[256], delay[256];
951     int start = 4, shift = 10;
952 
953     if (ctx->compression_level == COMPRESSION_LEVEL_HIGH) {
954         start = 16;
955         long_filter_high_3800(decoded0, 16, 9, coeffs, delay, count);
956         long_filter_high_3800(decoded1, 16, 9, coeffs, delay, count);
957     } else if (ctx->compression_level == COMPRESSION_LEVEL_EXTRA_HIGH) {
958         int order = 128, shift2 = 11;
959 
960         if (ctx->fileversion >= 3830) {
961             order <<= 1;
962             shift++;
963             shift2++;
964             long_filter_ehigh_3830(decoded0 + order, count - order);
965             long_filter_ehigh_3830(decoded1 + order, count - order);
966         }
967         start = order;
968         long_filter_high_3800(decoded0, order, shift2, coeffs, delay, count);
969         long_filter_high_3800(decoded1, order, shift2, coeffs, delay, count);
970     }
971 
972     while (count--) {
973         int X = *decoded0, Y = *decoded1;
974         if (ctx->compression_level == COMPRESSION_LEVEL_FAST) {
975             *decoded0 = filter_fast_3320(p, Y, 0, YDELAYA);
976             decoded0++;
977             *decoded1 = filter_fast_3320(p, X, 1, XDELAYA);
978             decoded1++;
979         } else {
980             *decoded0 = filter_3800(p, Y, 0, YDELAYA, YDELAYB,
981                                     start, shift);
982             decoded0++;
983             *decoded1 = filter_3800(p, X, 1, XDELAYA, XDELAYB,
984                                     start, shift);
985             decoded1++;
986         }
987 
988         /* Combined */
989         p->buf++;
990         p->sample_pos++;
991 
992         /* Have we filled the history buffer? */
993         if (p->buf == p->historybuffer + HISTORY_SIZE) {
994             memmove(p->historybuffer, p->buf,
995                     PREDICTOR_SIZE * sizeof(*p->historybuffer));
996             p->buf = p->historybuffer;
997         }
998     }
999 }
1000 
predictor_decode_mono_3800(APEContext * ctx,int count)1001 static void predictor_decode_mono_3800(APEContext *ctx, int count)
1002 {
1003     APEPredictor *p = &ctx->predictor;
1004     int32_t *decoded0 = ctx->decoded[0];
1005     int32_t coeffs[256], delay[256];
1006     int start = 4, shift = 10;
1007 
1008     if (ctx->compression_level == COMPRESSION_LEVEL_HIGH) {
1009         start = 16;
1010         long_filter_high_3800(decoded0, 16, 9, coeffs, delay, count);
1011     } else if (ctx->compression_level == COMPRESSION_LEVEL_EXTRA_HIGH) {
1012         int order = 128, shift2 = 11;
1013 
1014         if (ctx->fileversion >= 3830) {
1015             order <<= 1;
1016             shift++;
1017             shift2++;
1018             long_filter_ehigh_3830(decoded0 + order, count - order);
1019         }
1020         start = order;
1021         long_filter_high_3800(decoded0, order, shift2, coeffs, delay, count);
1022     }
1023 
1024     while (count--) {
1025         if (ctx->compression_level == COMPRESSION_LEVEL_FAST) {
1026             *decoded0 = filter_fast_3320(p, *decoded0, 0, YDELAYA);
1027             decoded0++;
1028         } else {
1029             *decoded0 = filter_3800(p, *decoded0, 0, YDELAYA, YDELAYB,
1030                                     start, shift);
1031             decoded0++;
1032         }
1033 
1034         /* Combined */
1035         p->buf++;
1036         p->sample_pos++;
1037 
1038         /* Have we filled the history buffer? */
1039         if (p->buf == p->historybuffer + HISTORY_SIZE) {
1040             memmove(p->historybuffer, p->buf,
1041                     PREDICTOR_SIZE * sizeof(*p->historybuffer));
1042             p->buf = p->historybuffer;
1043         }
1044     }
1045 }
1046 
predictor_update_3930(APEPredictor * p,const int decoded,const int filter,const int delayA)1047 static av_always_inline int predictor_update_3930(APEPredictor *p,
1048                                                   const int decoded, const int filter,
1049                                                   const int delayA)
1050 {
1051     int32_t predictionA, sign;
1052     int32_t d0, d1, d2, d3;
1053 
1054     p->buf[delayA]     = p->lastA[filter];
1055     d0 = p->buf[delayA    ];
1056     d1 = p->buf[delayA    ] - p->buf[delayA - 1];
1057     d2 = p->buf[delayA - 1] - p->buf[delayA - 2];
1058     d3 = p->buf[delayA - 2] - p->buf[delayA - 3];
1059 
1060     predictionA = d0 * p->coeffsA[filter][0] +
1061                   d1 * p->coeffsA[filter][1] +
1062                   d2 * p->coeffsA[filter][2] +
1063                   d3 * p->coeffsA[filter][3];
1064 
1065     p->lastA[filter] = decoded + (predictionA >> 9);
1066     p->filterA[filter] = p->lastA[filter] + ((p->filterA[filter] * 31) >> 5);
1067 
1068     sign = APESIGN(decoded);
1069     p->coeffsA[filter][0] += ((d0 < 0) * 2 - 1) * sign;
1070     p->coeffsA[filter][1] += ((d1 < 0) * 2 - 1) * sign;
1071     p->coeffsA[filter][2] += ((d2 < 0) * 2 - 1) * sign;
1072     p->coeffsA[filter][3] += ((d3 < 0) * 2 - 1) * sign;
1073 
1074     return p->filterA[filter];
1075 }
1076 
predictor_decode_stereo_3930(APEContext * ctx,int count)1077 static void predictor_decode_stereo_3930(APEContext *ctx, int count)
1078 {
1079     APEPredictor *p = &ctx->predictor;
1080     int32_t *decoded0 = ctx->decoded[0];
1081     int32_t *decoded1 = ctx->decoded[1];
1082 
1083     ape_apply_filters(ctx, ctx->decoded[0], ctx->decoded[1], count);
1084 
1085     while (count--) {
1086         /* Predictor Y */
1087         int Y = *decoded1, X = *decoded0;
1088         *decoded0 = predictor_update_3930(p, Y, 0, YDELAYA);
1089         decoded0++;
1090         *decoded1 = predictor_update_3930(p, X, 1, XDELAYA);
1091         decoded1++;
1092 
1093         /* Combined */
1094         p->buf++;
1095 
1096         /* Have we filled the history buffer? */
1097         if (p->buf == p->historybuffer + HISTORY_SIZE) {
1098             memmove(p->historybuffer, p->buf,
1099                     PREDICTOR_SIZE * sizeof(*p->historybuffer));
1100             p->buf = p->historybuffer;
1101         }
1102     }
1103 }
1104 
predictor_decode_mono_3930(APEContext * ctx,int count)1105 static void predictor_decode_mono_3930(APEContext *ctx, int count)
1106 {
1107     APEPredictor *p = &ctx->predictor;
1108     int32_t *decoded0 = ctx->decoded[0];
1109 
1110     ape_apply_filters(ctx, ctx->decoded[0], NULL, count);
1111 
1112     while (count--) {
1113         *decoded0 = predictor_update_3930(p, *decoded0, 0, YDELAYA);
1114         decoded0++;
1115 
1116         p->buf++;
1117 
1118         /* Have we filled the history buffer? */
1119         if (p->buf == p->historybuffer + HISTORY_SIZE) {
1120             memmove(p->historybuffer, p->buf,
1121                     PREDICTOR_SIZE * sizeof(*p->historybuffer));
1122             p->buf = p->historybuffer;
1123         }
1124     }
1125 }
1126 
predictor_update_filter(APEPredictor * p,const int decoded,const int filter,const int delayA,const int delayB,const int adaptA,const int adaptB)1127 static av_always_inline int predictor_update_filter(APEPredictor *p,
1128                                                     const int decoded, const int filter,
1129                                                     const int delayA,  const int delayB,
1130                                                     const int adaptA,  const int adaptB)
1131 {
1132     int32_t predictionA, predictionB, sign;
1133 
1134     p->buf[delayA]     = p->lastA[filter];
1135     p->buf[adaptA]     = APESIGN(p->buf[delayA]);
1136     p->buf[delayA - 1] = p->buf[delayA] - p->buf[delayA - 1];
1137     p->buf[adaptA - 1] = APESIGN(p->buf[delayA - 1]);
1138 
1139     predictionA = p->buf[delayA    ] * p->coeffsA[filter][0] +
1140                   p->buf[delayA - 1] * p->coeffsA[filter][1] +
1141                   p->buf[delayA - 2] * p->coeffsA[filter][2] +
1142                   p->buf[delayA - 3] * p->coeffsA[filter][3];
1143 
1144     /*  Apply a scaled first-order filter compression */
1145     p->buf[delayB]     = p->filterA[filter ^ 1] - ((p->filterB[filter] * 31) >> 5);
1146     p->buf[adaptB]     = APESIGN(p->buf[delayB]);
1147     p->buf[delayB - 1] = p->buf[delayB] - p->buf[delayB - 1];
1148     p->buf[adaptB - 1] = APESIGN(p->buf[delayB - 1]);
1149     p->filterB[filter] = p->filterA[filter ^ 1];
1150 
1151     predictionB = p->buf[delayB    ] * p->coeffsB[filter][0] +
1152                   p->buf[delayB - 1] * p->coeffsB[filter][1] +
1153                   p->buf[delayB - 2] * p->coeffsB[filter][2] +
1154                   p->buf[delayB - 3] * p->coeffsB[filter][3] +
1155                   p->buf[delayB - 4] * p->coeffsB[filter][4];
1156 
1157     p->lastA[filter] = decoded + ((predictionA + (predictionB >> 1)) >> 10);
1158     p->filterA[filter] = p->lastA[filter] + ((p->filterA[filter] * 31) >> 5);
1159 
1160     sign = APESIGN(decoded);
1161     p->coeffsA[filter][0] += p->buf[adaptA    ] * sign;
1162     p->coeffsA[filter][1] += p->buf[adaptA - 1] * sign;
1163     p->coeffsA[filter][2] += p->buf[adaptA - 2] * sign;
1164     p->coeffsA[filter][3] += p->buf[adaptA - 3] * sign;
1165     p->coeffsB[filter][0] += p->buf[adaptB    ] * sign;
1166     p->coeffsB[filter][1] += p->buf[adaptB - 1] * sign;
1167     p->coeffsB[filter][2] += p->buf[adaptB - 2] * sign;
1168     p->coeffsB[filter][3] += p->buf[adaptB - 3] * sign;
1169     p->coeffsB[filter][4] += p->buf[adaptB - 4] * sign;
1170 
1171     return p->filterA[filter];
1172 }
1173 
predictor_decode_stereo_3950(APEContext * ctx,int count)1174 static void predictor_decode_stereo_3950(APEContext *ctx, int count)
1175 {
1176     APEPredictor *p = &ctx->predictor;
1177     int32_t *decoded0 = ctx->decoded[0];
1178     int32_t *decoded1 = ctx->decoded[1];
1179 
1180     ape_apply_filters(ctx, ctx->decoded[0], ctx->decoded[1], count);
1181 
1182     while (count--) {
1183         /* Predictor Y */
1184         *decoded0 = predictor_update_filter(p, *decoded0, 0, YDELAYA, YDELAYB,
1185                                             YADAPTCOEFFSA, YADAPTCOEFFSB);
1186         decoded0++;
1187         *decoded1 = predictor_update_filter(p, *decoded1, 1, XDELAYA, XDELAYB,
1188                                             XADAPTCOEFFSA, XADAPTCOEFFSB);
1189         decoded1++;
1190 
1191         /* Combined */
1192         p->buf++;
1193 
1194         /* Have we filled the history buffer? */
1195         if (p->buf == p->historybuffer + HISTORY_SIZE) {
1196             memmove(p->historybuffer, p->buf,
1197                     PREDICTOR_SIZE * sizeof(*p->historybuffer));
1198             p->buf = p->historybuffer;
1199         }
1200     }
1201 }
1202 
predictor_decode_mono_3950(APEContext * ctx,int count)1203 static void predictor_decode_mono_3950(APEContext *ctx, int count)
1204 {
1205     APEPredictor *p = &ctx->predictor;
1206     int32_t *decoded0 = ctx->decoded[0];
1207     int32_t predictionA, currentA, A, sign;
1208 
1209     ape_apply_filters(ctx, ctx->decoded[0], NULL, count);
1210 
1211     currentA = p->lastA[0];
1212 
1213     while (count--) {
1214         A = *decoded0;
1215 
1216         p->buf[YDELAYA] = currentA;
1217         p->buf[YDELAYA - 1] = p->buf[YDELAYA] - p->buf[YDELAYA - 1];
1218 
1219         predictionA = p->buf[YDELAYA    ] * p->coeffsA[0][0] +
1220                       p->buf[YDELAYA - 1] * p->coeffsA[0][1] +
1221                       p->buf[YDELAYA - 2] * p->coeffsA[0][2] +
1222                       p->buf[YDELAYA - 3] * p->coeffsA[0][3];
1223 
1224         currentA = A + (predictionA >> 10);
1225 
1226         p->buf[YADAPTCOEFFSA]     = APESIGN(p->buf[YDELAYA    ]);
1227         p->buf[YADAPTCOEFFSA - 1] = APESIGN(p->buf[YDELAYA - 1]);
1228 
1229         sign = APESIGN(A);
1230         p->coeffsA[0][0] += p->buf[YADAPTCOEFFSA    ] * sign;
1231         p->coeffsA[0][1] += p->buf[YADAPTCOEFFSA - 1] * sign;
1232         p->coeffsA[0][2] += p->buf[YADAPTCOEFFSA - 2] * sign;
1233         p->coeffsA[0][3] += p->buf[YADAPTCOEFFSA - 3] * sign;
1234 
1235         p->buf++;
1236 
1237         /* Have we filled the history buffer? */
1238         if (p->buf == p->historybuffer + HISTORY_SIZE) {
1239             memmove(p->historybuffer, p->buf,
1240                     PREDICTOR_SIZE * sizeof(*p->historybuffer));
1241             p->buf = p->historybuffer;
1242         }
1243 
1244         p->filterA[0] = currentA + ((p->filterA[0] * 31) >> 5);
1245         *(decoded0++) = p->filterA[0];
1246     }
1247 
1248     p->lastA[0] = currentA;
1249 }
1250 
do_init_filter(APEFilter * f,int16_t * buf,int order)1251 static void do_init_filter(APEFilter *f, int16_t *buf, int order)
1252 {
1253     f->coeffs = buf;
1254     f->historybuffer = buf + order;
1255     f->delay       = f->historybuffer + order * 2;
1256     f->adaptcoeffs = f->historybuffer + order;
1257 
1258     memset(f->historybuffer, 0, (order * 2) * sizeof(*f->historybuffer));
1259     memset(f->coeffs, 0, order * sizeof(*f->coeffs));
1260     f->avg = 0;
1261 }
1262 
init_filter(APEContext * ctx,APEFilter * f,int16_t * buf,int order)1263 static void init_filter(APEContext *ctx, APEFilter *f, int16_t *buf, int order)
1264 {
1265     do_init_filter(&f[0], buf, order);
1266     do_init_filter(&f[1], buf + order * 3 + HISTORY_SIZE, order);
1267 }
1268 
do_apply_filter(APEContext * ctx,int version,APEFilter * f,int32_t * data,int count,int order,int fracbits)1269 static void do_apply_filter(APEContext *ctx, int version, APEFilter *f,
1270                             int32_t *data, int count, int order, int fracbits)
1271 {
1272     int res;
1273     int absres;
1274 
1275     while (count--) {
1276         /* round fixedpoint scalar product */
1277         res = ctx->adsp.scalarproduct_and_madd_int16(f->coeffs,
1278                                                      f->delay - order,
1279                                                      f->adaptcoeffs - order,
1280                                                      order, APESIGN(*data));
1281         res = (res + (1 << (fracbits - 1))) >> fracbits;
1282         res += *data;
1283         *data++ = res;
1284 
1285         /* Update the output history */
1286         *f->delay++ = av_clip_int16(res);
1287 
1288         if (version < 3980) {
1289             /* Version ??? to < 3.98 files (untested) */
1290             f->adaptcoeffs[0]  = (res == 0) ? 0 : ((res >> 28) & 8) - 4;
1291             f->adaptcoeffs[-4] >>= 1;
1292             f->adaptcoeffs[-8] >>= 1;
1293         } else {
1294             /* Version 3.98 and later files */
1295 
1296             /* Update the adaption coefficients */
1297             absres = FFABS(res);
1298             if (absres)
1299                 *f->adaptcoeffs = ((res & (-1<<31)) ^ (-1<<30)) >>
1300                                   (25 + (absres <= f->avg*3) + (absres <= f->avg*4/3));
1301             else
1302                 *f->adaptcoeffs = 0;
1303 
1304             f->avg += (absres - f->avg) / 16;
1305 
1306             f->adaptcoeffs[-1] >>= 1;
1307             f->adaptcoeffs[-2] >>= 1;
1308             f->adaptcoeffs[-8] >>= 1;
1309         }
1310 
1311         f->adaptcoeffs++;
1312 
1313         /* Have we filled the history buffer? */
1314         if (f->delay == f->historybuffer + HISTORY_SIZE + (order * 2)) {
1315             memmove(f->historybuffer, f->delay - (order * 2),
1316                     (order * 2) * sizeof(*f->historybuffer));
1317             f->delay = f->historybuffer + order * 2;
1318             f->adaptcoeffs = f->historybuffer + order;
1319         }
1320     }
1321 }
1322 
apply_filter(APEContext * ctx,APEFilter * f,int32_t * data0,int32_t * data1,int count,int order,int fracbits)1323 static void apply_filter(APEContext *ctx, APEFilter *f,
1324                          int32_t *data0, int32_t *data1,
1325                          int count, int order, int fracbits)
1326 {
1327     do_apply_filter(ctx, ctx->fileversion, &f[0], data0, count, order, fracbits);
1328     if (data1)
1329         do_apply_filter(ctx, ctx->fileversion, &f[1], data1, count, order, fracbits);
1330 }
1331 
ape_apply_filters(APEContext * ctx,int32_t * decoded0,int32_t * decoded1,int count)1332 static void ape_apply_filters(APEContext *ctx, int32_t *decoded0,
1333                               int32_t *decoded1, int count)
1334 {
1335     int i;
1336 
1337     for (i = 0; i < APE_FILTER_LEVELS; i++) {
1338         if (!ape_filter_orders[ctx->fset][i])
1339             break;
1340         apply_filter(ctx, ctx->filters[i], decoded0, decoded1, count,
1341                      ape_filter_orders[ctx->fset][i],
1342                      ape_filter_fracbits[ctx->fset][i]);
1343     }
1344 }
1345 
init_frame_decoder(APEContext * ctx)1346 static int init_frame_decoder(APEContext *ctx)
1347 {
1348     int i, ret;
1349     if ((ret = init_entropy_decoder(ctx)) < 0)
1350         return ret;
1351     init_predictor_decoder(ctx);
1352 
1353     for (i = 0; i < APE_FILTER_LEVELS; i++) {
1354         if (!ape_filter_orders[ctx->fset][i])
1355             break;
1356         init_filter(ctx, ctx->filters[i], ctx->filterbuf[i],
1357                     ape_filter_orders[ctx->fset][i]);
1358     }
1359     return 0;
1360 }
1361 
ape_unpack_mono(APEContext * ctx,int count)1362 static void ape_unpack_mono(APEContext *ctx, int count)
1363 {
1364     if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) {
1365         /* We are pure silence, so we're done. */
1366         av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence mono\n");
1367         return;
1368     }
1369 
1370     ctx->entropy_decode_mono(ctx, count);
1371 
1372     /* Now apply the predictor decoding */
1373     ctx->predictor_decode_mono(ctx, count);
1374 
1375     /* Pseudo-stereo - just copy left channel to right channel */
1376     if (ctx->channels == 2) {
1377         memcpy(ctx->decoded[1], ctx->decoded[0], count * sizeof(*ctx->decoded[1]));
1378     }
1379 }
1380 
ape_unpack_stereo(APEContext * ctx,int count)1381 static void ape_unpack_stereo(APEContext *ctx, int count)
1382 {
1383     int32_t left, right;
1384     int32_t *decoded0 = ctx->decoded[0];
1385     int32_t *decoded1 = ctx->decoded[1];
1386 
1387     if (ctx->frameflags & APE_FRAMECODE_STEREO_SILENCE) {
1388         /* We are pure silence, so we're done. */
1389         av_log(ctx->avctx, AV_LOG_DEBUG, "pure silence stereo\n");
1390         return;
1391     }
1392 
1393     ctx->entropy_decode_stereo(ctx, count);
1394 
1395     /* Now apply the predictor decoding */
1396     ctx->predictor_decode_stereo(ctx, count);
1397 
1398     /* Decorrelate and scale to output depth */
1399     while (count--) {
1400         left = *decoded1 - (*decoded0 / 2);
1401         right = left + *decoded0;
1402 
1403         *(decoded0++) = left;
1404         *(decoded1++) = right;
1405     }
1406 }
1407 
ape_decode_frame(AVCodecContext * avctx,void * data,int * got_frame_ptr,AVPacket * avpkt)1408 static int ape_decode_frame(AVCodecContext *avctx, void *data,
1409                             int *got_frame_ptr, AVPacket *avpkt)
1410 {
1411     AVFrame *frame     = data;
1412     const uint8_t *buf = avpkt->data;
1413     APEContext *s = avctx->priv_data;
1414     uint8_t *sample8;
1415     int16_t *sample16;
1416     int32_t *sample24;
1417     int i, ch, ret;
1418     int blockstodecode;
1419 
1420     /* this should never be negative, but bad things will happen if it is, so
1421        check it just to make sure. */
1422     av_assert0(s->samples >= 0);
1423 
1424     if(!s->samples){
1425         uint32_t nblocks, offset;
1426         int buf_size;
1427 
1428         if (!avpkt->size) {
1429             *got_frame_ptr = 0;
1430             return 0;
1431         }
1432         if (avpkt->size < 8) {
1433             av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
1434             return AVERROR_INVALIDDATA;
1435         }
1436         buf_size = avpkt->size & ~3;
1437         if (buf_size != avpkt->size) {
1438             av_log(avctx, AV_LOG_WARNING, "packet size is not a multiple of 4. "
1439                    "extra bytes at the end will be skipped.\n");
1440         }
1441         if (s->fileversion < 3950) // previous versions overread two bytes
1442             buf_size += 2;
1443         av_fast_padded_malloc(&s->data, &s->data_size, buf_size);
1444         if (!s->data)
1445             return AVERROR(ENOMEM);
1446         s->bdsp.bswap_buf((uint32_t *) s->data, (const uint32_t *) buf,
1447                           buf_size >> 2);
1448         memset(s->data + (buf_size & ~3), 0, buf_size & 3);
1449         s->ptr = s->data;
1450         s->data_end = s->data + buf_size;
1451 
1452         nblocks = bytestream_get_be32(&s->ptr);
1453         offset  = bytestream_get_be32(&s->ptr);
1454         if (s->fileversion >= 3900) {
1455             if (offset > 3) {
1456                 av_log(avctx, AV_LOG_ERROR, "Incorrect offset passed\n");
1457                 s->data = NULL;
1458                 return AVERROR_INVALIDDATA;
1459             }
1460             if (s->data_end - s->ptr < offset) {
1461                 av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
1462                 return AVERROR_INVALIDDATA;
1463             }
1464             s->ptr += offset;
1465         } else {
1466             if ((ret = init_get_bits8(&s->gb, s->ptr, s->data_end - s->ptr)) < 0)
1467                 return ret;
1468             if (s->fileversion > 3800)
1469                 skip_bits_long(&s->gb, offset * 8);
1470             else
1471                 skip_bits_long(&s->gb, offset);
1472         }
1473 
1474         if (!nblocks || nblocks > INT_MAX) {
1475             av_log(avctx, AV_LOG_ERROR, "Invalid sample count: %"PRIu32".\n",
1476                    nblocks);
1477             return AVERROR_INVALIDDATA;
1478         }
1479         s->samples = nblocks;
1480 
1481         /* Initialize the frame decoder */
1482         if (init_frame_decoder(s) < 0) {
1483             av_log(avctx, AV_LOG_ERROR, "Error reading frame header\n");
1484             return AVERROR_INVALIDDATA;
1485         }
1486     }
1487 
1488     if (!s->data) {
1489         *got_frame_ptr = 0;
1490         return avpkt->size;
1491     }
1492 
1493     blockstodecode = FFMIN(s->blocks_per_loop, s->samples);
1494     // for old files coefficients were not interleaved,
1495     // so we need to decode all of them at once
1496     if (s->fileversion < 3930)
1497         blockstodecode = s->samples;
1498 
1499     /* reallocate decoded sample buffer if needed */
1500     av_fast_malloc(&s->decoded_buffer, &s->decoded_size,
1501                    2 * FFALIGN(blockstodecode, 8) * sizeof(*s->decoded_buffer));
1502     if (!s->decoded_buffer)
1503         return AVERROR(ENOMEM);
1504     memset(s->decoded_buffer, 0, s->decoded_size);
1505     s->decoded[0] = s->decoded_buffer;
1506     s->decoded[1] = s->decoded_buffer + FFALIGN(blockstodecode, 8);
1507 
1508     /* get output buffer */
1509     frame->nb_samples = blockstodecode;
1510     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1511         return ret;
1512 
1513     s->error=0;
1514 
1515     if ((s->channels == 1) || (s->frameflags & APE_FRAMECODE_PSEUDO_STEREO))
1516         ape_unpack_mono(s, blockstodecode);
1517     else
1518         ape_unpack_stereo(s, blockstodecode);
1519     emms_c();
1520 
1521     if (s->error) {
1522         s->samples=0;
1523         av_log(avctx, AV_LOG_ERROR, "Error decoding frame\n");
1524         return AVERROR_INVALIDDATA;
1525     }
1526 
1527     switch (s->bps) {
1528     case 8:
1529         for (ch = 0; ch < s->channels; ch++) {
1530             sample8 = (uint8_t *)frame->data[ch];
1531             for (i = 0; i < blockstodecode; i++)
1532                 *sample8++ = (s->decoded[ch][i] + 0x80) & 0xff;
1533         }
1534         break;
1535     case 16:
1536         for (ch = 0; ch < s->channels; ch++) {
1537             sample16 = (int16_t *)frame->data[ch];
1538             for (i = 0; i < blockstodecode; i++)
1539                 *sample16++ = s->decoded[ch][i];
1540         }
1541         break;
1542     case 24:
1543         for (ch = 0; ch < s->channels; ch++) {
1544             sample24 = (int32_t *)frame->data[ch];
1545             for (i = 0; i < blockstodecode; i++)
1546                 *sample24++ = s->decoded[ch][i] << 8;
1547         }
1548         break;
1549     }
1550 
1551     s->samples -= blockstodecode;
1552 
1553     *got_frame_ptr = 1;
1554 
1555     return !s->samples ? avpkt->size : 0;
1556 }
1557 
ape_flush(AVCodecContext * avctx)1558 static void ape_flush(AVCodecContext *avctx)
1559 {
1560     APEContext *s = avctx->priv_data;
1561     s->samples= 0;
1562 }
1563 
1564 #define OFFSET(x) offsetof(APEContext, x)
1565 #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM)
1566 static const AVOption options[] = {
1567 	{ "max_samples", "maximum number of samples decoded per call",             OFFSET(blocks_per_loop), AV_OPT_TYPE_INT,   { .i64 = 4608 },    1,       INT_MAX, PAR, "max_samples" },
1568     { "all",         "no maximum. decode all samples for each packet at once", 0,                       AV_OPT_TYPE_CONST, { .i64 = INT_MAX }, INT_MIN, INT_MAX, PAR, "max_samples" },
1569 	{ NULL},
1570 };
1571 
1572 static const AVClass ape_decoder_class = {
1573 	.class_name = "APE decoder",
1574     .item_name  = av_default_item_name,
1575     .option     = options,
1576     .version    = LIBAVUTIL_VERSION_INT,
1577 };
1578 
1579 AVCodec ff_ape_decoder = {
1580 	.name           = "ape",
1581     .long_name      = NULL_IF_CONFIG_SMALL("Monkey's Audio"),
1582     .type           = AVMEDIA_TYPE_AUDIO,
1583     .id             = AV_CODEC_ID_APE,
1584     .priv_data_size = sizeof(APEContext),
1585     .init           = ape_decode_init,
1586     .close          = ape_decode_close,
1587     .decode         = ape_decode_frame,
1588     .capabilities   = CODEC_CAP_SUBFRAMES | CODEC_CAP_DELAY | CODEC_CAP_DR1,
1589     .flush          = ape_flush,
1590     .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_U8P,
1591                                                       AV_SAMPLE_FMT_S16P,
1592                                                       AV_SAMPLE_FMT_S32P,
1593                                                       AV_SAMPLE_FMT_NONE },
1594     .priv_class     = &ape_decoder_class,
1595 };
1596