1 #ifdef HAVE_CONFIG_H
2 #  include <config.h>
3 #endif
4 
5 #include <stdlib.h>		/* for malloc() */
6 #include <string.h>		/* for memcpy() */
7 
8 #include "private/md5.h"
9 #include "share/alloc.h"
10 
11 #ifndef FLaC__INLINE
12 #define FLaC__INLINE
13 #endif
14 
15 /*
16  * This code implements the MD5 message-digest algorithm.
17  * The algorithm is due to Ron Rivest.  This code was
18  * written by Colin Plumb in 1993, no copyright is claimed.
19  * This code is in the public domain; do with it what you wish.
20  *
21  * Equivalent code is available from RSA Data Security, Inc.
22  * This code has been tested against that, and is equivalent,
23  * except that you don't need to include two pages of legalese
24  * with every copy.
25  *
26  * To compute the message digest of a chunk of bytes, declare an
27  * MD5Context structure, pass it to MD5Init, call MD5Update as
28  * needed on buffers full of bytes, and then call MD5Final, which
29  * will fill a supplied 16-byte array with the digest.
30  *
31  * Changed so as no longer to depend on Colin Plumb's `usual.h' header
32  * definitions; now uses stuff from dpkg's config.h.
33  *  - Ian Jackson <ijackson@nyx.cs.du.edu>.
34  * Still in the public domain.
35  *
36  * Josh Coalson: made some changes to integrate with libFLAC.
37  * Still in the public domain.
38  */
39 
40 /* The four core functions - F1 is optimized somewhat */
41 
42 /* #define F1(x, y, z) (x & y | ~x & z) */
43 #define F1(x, y, z) (z ^ (x & (y ^ z)))
44 #define F2(x, y, z) F1(z, x, y)
45 #define F3(x, y, z) (x ^ y ^ z)
46 #define F4(x, y, z) (y ^ (x | ~z))
47 
48 /* This is the central step in the MD5 algorithm. */
49 #define MD5STEP(f,w,x,y,z,in,s) \
50 	 (w += f(x,y,z) + in, w = (w<<s | w>>(32-s)) + x)
51 
52 /*
53  * The core of the MD5 algorithm, this alters an existing MD5 hash to
54  * reflect the addition of 16 longwords of new data.  MD5Update blocks
55  * the data and converts bytes into longwords for this routine.
56  */
FLAC__MD5Transform(FLAC__uint32 buf[4],FLAC__uint32 const in[16])57 static void FLAC__MD5Transform(FLAC__uint32 buf[4], FLAC__uint32 const in[16])
58 {
59 	register FLAC__uint32 a, b, c, d;
60 
61 	a = buf[0];
62 	b = buf[1];
63 	c = buf[2];
64 	d = buf[3];
65 
66 	MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
67 	MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
68 	MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
69 	MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
70 	MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
71 	MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
72 	MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
73 	MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
74 	MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
75 	MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
76 	MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
77 	MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
78 	MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
79 	MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
80 	MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
81 	MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
82 
83 	MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
84 	MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
85 	MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
86 	MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
87 	MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
88 	MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
89 	MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
90 	MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
91 	MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
92 	MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
93 	MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
94 	MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
95 	MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
96 	MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
97 	MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
98 	MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
99 
100 	MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
101 	MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
102 	MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
103 	MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
104 	MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
105 	MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
106 	MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
107 	MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
108 	MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
109 	MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
110 	MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
111 	MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
112 	MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
113 	MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
114 	MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
115 	MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
116 
117 	MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
118 	MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
119 	MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
120 	MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
121 	MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
122 	MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
123 	MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
124 	MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
125 	MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
126 	MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
127 	MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
128 	MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
129 	MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
130 	MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
131 	MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
132 	MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
133 
134 	buf[0] += a;
135 	buf[1] += b;
136 	buf[2] += c;
137 	buf[3] += d;
138 }
139 
140 #if WORDS_BIGENDIAN
141 //@@@@@@ OPT: use bswap/intrinsics
byteSwap(FLAC__uint32 * buf,unsigned words)142 static void byteSwap(FLAC__uint32 *buf, unsigned words)
143 {
144 	register FLAC__uint32 x;
145 	do {
146 		x = *buf;
147 		x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff);
148 		*buf++ = (x >> 16) | (x << 16);
149 	} while (--words);
150 }
byteSwapX16(FLAC__uint32 * buf)151 static void byteSwapX16(FLAC__uint32 *buf)
152 {
153 	register FLAC__uint32 x;
154 
155 	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
156 	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
157 	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
158 	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
159 	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
160 	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
161 	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
162 	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
163 	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
164 	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
165 	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
166 	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
167 	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
168 	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
169 	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
170 	x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf   = (x >> 16) | (x << 16);
171 }
172 #else
173 #define byteSwap(buf, words)
174 #define byteSwapX16(buf)
175 #endif
176 
177 /*
178  * Update context to reflect the concatenation of another buffer full
179  * of bytes.
180  */
FLAC__MD5Update(FLAC__MD5Context * ctx,FLAC__byte const * buf,unsigned len)181 static void FLAC__MD5Update(FLAC__MD5Context *ctx, FLAC__byte const *buf, unsigned len)
182 {
183 	FLAC__uint32 t;
184 
185 	/* Update byte count */
186 
187 	t = ctx->bytes[0];
188 	if ((ctx->bytes[0] = t + len) < t)
189 		ctx->bytes[1]++;	/* Carry from low to high */
190 
191 	t = 64 - (t & 0x3f);	/* Space available in ctx->in (at least 1) */
192 	if (t > len) {
193 		memcpy((FLAC__byte *)ctx->in + 64 - t, buf, len);
194 		return;
195 	}
196 	/* First chunk is an odd size */
197 	memcpy((FLAC__byte *)ctx->in + 64 - t, buf, t);
198 	byteSwapX16(ctx->in);
199 	FLAC__MD5Transform(ctx->buf, ctx->in);
200 	buf += t;
201 	len -= t;
202 
203 	/* Process data in 64-byte chunks */
204 	while (len >= 64) {
205 		memcpy(ctx->in, buf, 64);
206 		byteSwapX16(ctx->in);
207 		FLAC__MD5Transform(ctx->buf, ctx->in);
208 		buf += 64;
209 		len -= 64;
210 	}
211 
212 	/* Handle any remaining bytes of data. */
213 	memcpy(ctx->in, buf, len);
214 }
215 
216 /*
217  * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
218  * initialization constants.
219  */
FLAC__MD5Init(FLAC__MD5Context * ctx)220 void FLAC__MD5Init(FLAC__MD5Context *ctx)
221 {
222 	ctx->buf[0] = 0x67452301;
223 	ctx->buf[1] = 0xefcdab89;
224 	ctx->buf[2] = 0x98badcfe;
225 	ctx->buf[3] = 0x10325476;
226 
227 	ctx->bytes[0] = 0;
228 	ctx->bytes[1] = 0;
229 
230 	ctx->internal_buf = 0;
231 	ctx->capacity = 0;
232 }
233 
234 /*
235  * Final wrapup - pad to 64-byte boundary with the bit pattern
236  * 1 0* (64-bit count of bits processed, MSB-first)
237  */
FLAC__MD5Final(FLAC__byte digest[16],FLAC__MD5Context * ctx)238 void FLAC__MD5Final(FLAC__byte digest[16], FLAC__MD5Context *ctx)
239 {
240 	int count = ctx->bytes[0] & 0x3f;	/* Number of bytes in ctx->in */
241 	FLAC__byte *p = (FLAC__byte *)ctx->in + count;
242 
243 	/* Set the first char of padding to 0x80.  There is always room. */
244 	*p++ = 0x80;
245 
246 	/* Bytes of padding needed to make 56 bytes (-8..55) */
247 	count = 56 - 1 - count;
248 
249 	if (count < 0) {	/* Padding forces an extra block */
250 		memset(p, 0, count + 8);
251 		byteSwapX16(ctx->in);
252 		FLAC__MD5Transform(ctx->buf, ctx->in);
253 		p = (FLAC__byte *)ctx->in;
254 		count = 56;
255 	}
256 	memset(p, 0, count);
257 	byteSwap(ctx->in, 14);
258 
259 	/* Append length in bits and transform */
260 	ctx->in[14] = ctx->bytes[0] << 3;
261 	ctx->in[15] = ctx->bytes[1] << 3 | ctx->bytes[0] >> 29;
262 	FLAC__MD5Transform(ctx->buf, ctx->in);
263 
264 	byteSwap(ctx->buf, 4);
265 	memcpy(digest, ctx->buf, 16);
266 	if(0 != ctx->internal_buf) {
267 		free(ctx->internal_buf);
268 		ctx->internal_buf = 0;
269 		ctx->capacity = 0;
270 	}
271 	memset(ctx, 0, sizeof(*ctx));	/* In case it's sensitive */
272 }
273 
274 /*
275  * Convert the incoming audio signal to a byte stream
276  */
format_input_(FLAC__byte * buf,const FLAC__int32 * const signal[],unsigned channels,unsigned samples,unsigned bytes_per_sample)277 static void format_input_(FLAC__byte *buf, const FLAC__int32 * const signal[], unsigned channels, unsigned samples, unsigned bytes_per_sample)
278 {
279 	unsigned channel, sample;
280 	register FLAC__int32 a_word;
281 	register FLAC__byte *buf_ = buf;
282 
283 #if WORDS_BIGENDIAN
284 #else
285 	if(channels == 2 && bytes_per_sample == 2) {
286 		FLAC__int16 *buf1_ = ((FLAC__int16*)buf_) + 1;
287 		memcpy(buf_, signal[0], sizeof(FLAC__int32) * samples);
288 		for(sample = 0; sample < samples; sample++, buf1_+=2)
289 			*buf1_ = (FLAC__int16)signal[1][sample];
290 	}
291 	else if(channels == 1 && bytes_per_sample == 2) {
292 		FLAC__int16 *buf1_ = (FLAC__int16*)buf_;
293 		for(sample = 0; sample < samples; sample++)
294 			*buf1_++ = (FLAC__int16)signal[0][sample];
295 	}
296 	else
297 #endif
298 	if(bytes_per_sample == 2) {
299 		if(channels == 2) {
300 			for(sample = 0; sample < samples; sample++) {
301 				a_word = signal[0][sample];
302 				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
303 				*buf_++ = (FLAC__byte)a_word;
304 				a_word = signal[1][sample];
305 				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
306 				*buf_++ = (FLAC__byte)a_word;
307 			}
308 		}
309 		else if(channels == 1) {
310 			for(sample = 0; sample < samples; sample++) {
311 				a_word = signal[0][sample];
312 				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
313 				*buf_++ = (FLAC__byte)a_word;
314 			}
315 		}
316 		else {
317 			for(sample = 0; sample < samples; sample++) {
318 				for(channel = 0; channel < channels; channel++) {
319 					a_word = signal[channel][sample];
320 					*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
321 					*buf_++ = (FLAC__byte)a_word;
322 				}
323 			}
324 		}
325 	}
326 	else if(bytes_per_sample == 3) {
327 		if(channels == 2) {
328 			for(sample = 0; sample < samples; sample++) {
329 				a_word = signal[0][sample];
330 				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
331 				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
332 				*buf_++ = (FLAC__byte)a_word;
333 				a_word = signal[1][sample];
334 				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
335 				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
336 				*buf_++ = (FLAC__byte)a_word;
337 			}
338 		}
339 		else if(channels == 1) {
340 			for(sample = 0; sample < samples; sample++) {
341 				a_word = signal[0][sample];
342 				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
343 				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
344 				*buf_++ = (FLAC__byte)a_word;
345 			}
346 		}
347 		else {
348 			for(sample = 0; sample < samples; sample++) {
349 				for(channel = 0; channel < channels; channel++) {
350 					a_word = signal[channel][sample];
351 					*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
352 					*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
353 					*buf_++ = (FLAC__byte)a_word;
354 				}
355 			}
356 		}
357 	}
358 	else if(bytes_per_sample == 1) {
359 		if(channels == 2) {
360 			for(sample = 0; sample < samples; sample++) {
361 				a_word = signal[0][sample];
362 				*buf_++ = (FLAC__byte)a_word;
363 				a_word = signal[1][sample];
364 				*buf_++ = (FLAC__byte)a_word;
365 			}
366 		}
367 		else if(channels == 1) {
368 			for(sample = 0; sample < samples; sample++) {
369 				a_word = signal[0][sample];
370 				*buf_++ = (FLAC__byte)a_word;
371 			}
372 		}
373 		else {
374 			for(sample = 0; sample < samples; sample++) {
375 				for(channel = 0; channel < channels; channel++) {
376 					a_word = signal[channel][sample];
377 					*buf_++ = (FLAC__byte)a_word;
378 				}
379 			}
380 		}
381 	}
382 	else { /* bytes_per_sample == 4, maybe optimize more later */
383 		for(sample = 0; sample < samples; sample++) {
384 			for(channel = 0; channel < channels; channel++) {
385 				a_word = signal[channel][sample];
386 				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
387 				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
388 				*buf_++ = (FLAC__byte)a_word; a_word >>= 8;
389 				*buf_++ = (FLAC__byte)a_word;
390 			}
391 		}
392 	}
393 }
394 
395 /*
396  * Convert the incoming audio signal to a byte stream and FLAC__MD5Update it.
397  */
FLAC__MD5Accumulate(FLAC__MD5Context * ctx,const FLAC__int32 * const signal[],unsigned channels,unsigned samples,unsigned bytes_per_sample)398 FLAC__bool FLAC__MD5Accumulate(FLAC__MD5Context *ctx, const FLAC__int32 * const signal[], unsigned channels, unsigned samples, unsigned bytes_per_sample)
399 {
400 	const size_t bytes_needed = (size_t)channels * (size_t)samples * (size_t)bytes_per_sample;
401 
402 	/* overflow check */
403 	if((size_t)channels > SIZE_MAX / (size_t)bytes_per_sample)
404 		return false;
405 	if((size_t)channels * (size_t)bytes_per_sample > SIZE_MAX / (size_t)samples)
406 		return false;
407 
408 	if(ctx->capacity < bytes_needed) {
409 		FLAC__byte *tmp = (FLAC__byte*)realloc(ctx->internal_buf, bytes_needed);
410 		if(0 == tmp) {
411 			free(ctx->internal_buf);
412 			if(0 == (ctx->internal_buf = (FLAC__byte*)safe_malloc_(bytes_needed)))
413 				return false;
414 		}
415 		ctx->internal_buf = tmp;
416 		ctx->capacity = bytes_needed;
417 	}
418 
419 	format_input_(ctx->internal_buf, signal, channels, samples, bytes_per_sample);
420 
421 	FLAC__MD5Update(ctx, ctx->internal_buf, bytes_needed);
422 
423 	return true;
424 }
425