1 #ifdef HAVE_CONFIG_H
2 # include <config.h>
3 #endif
4
5 #include <stdlib.h> /* for malloc() */
6 #include <string.h> /* for memcpy() */
7
8 #include "private/md5.h"
9 #include "share/alloc.h"
10
11 #ifndef FLaC__INLINE
12 #define FLaC__INLINE
13 #endif
14
15 /*
16 * This code implements the MD5 message-digest algorithm.
17 * The algorithm is due to Ron Rivest. This code was
18 * written by Colin Plumb in 1993, no copyright is claimed.
19 * This code is in the public domain; do with it what you wish.
20 *
21 * Equivalent code is available from RSA Data Security, Inc.
22 * This code has been tested against that, and is equivalent,
23 * except that you don't need to include two pages of legalese
24 * with every copy.
25 *
26 * To compute the message digest of a chunk of bytes, declare an
27 * MD5Context structure, pass it to MD5Init, call MD5Update as
28 * needed on buffers full of bytes, and then call MD5Final, which
29 * will fill a supplied 16-byte array with the digest.
30 *
31 * Changed so as no longer to depend on Colin Plumb's `usual.h' header
32 * definitions; now uses stuff from dpkg's config.h.
33 * - Ian Jackson <ijackson@nyx.cs.du.edu>.
34 * Still in the public domain.
35 *
36 * Josh Coalson: made some changes to integrate with libFLAC.
37 * Still in the public domain.
38 */
39
40 /* The four core functions - F1 is optimized somewhat */
41
42 /* #define F1(x, y, z) (x & y | ~x & z) */
43 #define F1(x, y, z) (z ^ (x & (y ^ z)))
44 #define F2(x, y, z) F1(z, x, y)
45 #define F3(x, y, z) (x ^ y ^ z)
46 #define F4(x, y, z) (y ^ (x | ~z))
47
48 /* This is the central step in the MD5 algorithm. */
49 #define MD5STEP(f,w,x,y,z,in,s) \
50 (w += f(x,y,z) + in, w = (w<<s | w>>(32-s)) + x)
51
52 /*
53 * The core of the MD5 algorithm, this alters an existing MD5 hash to
54 * reflect the addition of 16 longwords of new data. MD5Update blocks
55 * the data and converts bytes into longwords for this routine.
56 */
FLAC__MD5Transform(FLAC__uint32 buf[4],FLAC__uint32 const in[16])57 static void FLAC__MD5Transform(FLAC__uint32 buf[4], FLAC__uint32 const in[16])
58 {
59 register FLAC__uint32 a, b, c, d;
60
61 a = buf[0];
62 b = buf[1];
63 c = buf[2];
64 d = buf[3];
65
66 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
67 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
68 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
69 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
70 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
71 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
72 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
73 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
74 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
75 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
76 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
77 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
78 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
79 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
80 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
81 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
82
83 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
84 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
85 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
86 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
87 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
88 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
89 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
90 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
91 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
92 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
93 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
94 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
95 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
96 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
97 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
98 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
99
100 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
101 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
102 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
103 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
104 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
105 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
106 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
107 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
108 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
109 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
110 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
111 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
112 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
113 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
114 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
115 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
116
117 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
118 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
119 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
120 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
121 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
122 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
123 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
124 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
125 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
126 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
127 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
128 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
129 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
130 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
131 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
132 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
133
134 buf[0] += a;
135 buf[1] += b;
136 buf[2] += c;
137 buf[3] += d;
138 }
139
140 #if WORDS_BIGENDIAN
141 //@@@@@@ OPT: use bswap/intrinsics
byteSwap(FLAC__uint32 * buf,unsigned words)142 static void byteSwap(FLAC__uint32 *buf, unsigned words)
143 {
144 register FLAC__uint32 x;
145 do {
146 x = *buf;
147 x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff);
148 *buf++ = (x >> 16) | (x << 16);
149 } while (--words);
150 }
byteSwapX16(FLAC__uint32 * buf)151 static void byteSwapX16(FLAC__uint32 *buf)
152 {
153 register FLAC__uint32 x;
154
155 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
156 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
157 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
158 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
159 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
160 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
161 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
162 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
163 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
164 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
165 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
166 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
167 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
168 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
169 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf++ = (x >> 16) | (x << 16);
170 x = *buf; x = ((x << 8) & 0xff00ff00) | ((x >> 8) & 0x00ff00ff); *buf = (x >> 16) | (x << 16);
171 }
172 #else
173 #define byteSwap(buf, words)
174 #define byteSwapX16(buf)
175 #endif
176
177 /*
178 * Update context to reflect the concatenation of another buffer full
179 * of bytes.
180 */
FLAC__MD5Update(FLAC__MD5Context * ctx,FLAC__byte const * buf,unsigned len)181 static void FLAC__MD5Update(FLAC__MD5Context *ctx, FLAC__byte const *buf, unsigned len)
182 {
183 FLAC__uint32 t;
184
185 /* Update byte count */
186
187 t = ctx->bytes[0];
188 if ((ctx->bytes[0] = t + len) < t)
189 ctx->bytes[1]++; /* Carry from low to high */
190
191 t = 64 - (t & 0x3f); /* Space available in ctx->in (at least 1) */
192 if (t > len) {
193 memcpy((FLAC__byte *)ctx->in + 64 - t, buf, len);
194 return;
195 }
196 /* First chunk is an odd size */
197 memcpy((FLAC__byte *)ctx->in + 64 - t, buf, t);
198 byteSwapX16(ctx->in);
199 FLAC__MD5Transform(ctx->buf, ctx->in);
200 buf += t;
201 len -= t;
202
203 /* Process data in 64-byte chunks */
204 while (len >= 64) {
205 memcpy(ctx->in, buf, 64);
206 byteSwapX16(ctx->in);
207 FLAC__MD5Transform(ctx->buf, ctx->in);
208 buf += 64;
209 len -= 64;
210 }
211
212 /* Handle any remaining bytes of data. */
213 memcpy(ctx->in, buf, len);
214 }
215
216 /*
217 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
218 * initialization constants.
219 */
FLAC__MD5Init(FLAC__MD5Context * ctx)220 void FLAC__MD5Init(FLAC__MD5Context *ctx)
221 {
222 ctx->buf[0] = 0x67452301;
223 ctx->buf[1] = 0xefcdab89;
224 ctx->buf[2] = 0x98badcfe;
225 ctx->buf[3] = 0x10325476;
226
227 ctx->bytes[0] = 0;
228 ctx->bytes[1] = 0;
229
230 ctx->internal_buf = 0;
231 ctx->capacity = 0;
232 }
233
234 /*
235 * Final wrapup - pad to 64-byte boundary with the bit pattern
236 * 1 0* (64-bit count of bits processed, MSB-first)
237 */
FLAC__MD5Final(FLAC__byte digest[16],FLAC__MD5Context * ctx)238 void FLAC__MD5Final(FLAC__byte digest[16], FLAC__MD5Context *ctx)
239 {
240 int count = ctx->bytes[0] & 0x3f; /* Number of bytes in ctx->in */
241 FLAC__byte *p = (FLAC__byte *)ctx->in + count;
242
243 /* Set the first char of padding to 0x80. There is always room. */
244 *p++ = 0x80;
245
246 /* Bytes of padding needed to make 56 bytes (-8..55) */
247 count = 56 - 1 - count;
248
249 if (count < 0) { /* Padding forces an extra block */
250 memset(p, 0, count + 8);
251 byteSwapX16(ctx->in);
252 FLAC__MD5Transform(ctx->buf, ctx->in);
253 p = (FLAC__byte *)ctx->in;
254 count = 56;
255 }
256 memset(p, 0, count);
257 byteSwap(ctx->in, 14);
258
259 /* Append length in bits and transform */
260 ctx->in[14] = ctx->bytes[0] << 3;
261 ctx->in[15] = ctx->bytes[1] << 3 | ctx->bytes[0] >> 29;
262 FLAC__MD5Transform(ctx->buf, ctx->in);
263
264 byteSwap(ctx->buf, 4);
265 memcpy(digest, ctx->buf, 16);
266 if(0 != ctx->internal_buf) {
267 free(ctx->internal_buf);
268 ctx->internal_buf = 0;
269 ctx->capacity = 0;
270 }
271 memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */
272 }
273
274 /*
275 * Convert the incoming audio signal to a byte stream
276 */
format_input_(FLAC__byte * buf,const FLAC__int32 * const signal[],unsigned channels,unsigned samples,unsigned bytes_per_sample)277 static void format_input_(FLAC__byte *buf, const FLAC__int32 * const signal[], unsigned channels, unsigned samples, unsigned bytes_per_sample)
278 {
279 unsigned channel, sample;
280 register FLAC__int32 a_word;
281 register FLAC__byte *buf_ = buf;
282
283 #if WORDS_BIGENDIAN
284 #else
285 if(channels == 2 && bytes_per_sample == 2) {
286 FLAC__int16 *buf1_ = ((FLAC__int16*)buf_) + 1;
287 memcpy(buf_, signal[0], sizeof(FLAC__int32) * samples);
288 for(sample = 0; sample < samples; sample++, buf1_+=2)
289 *buf1_ = (FLAC__int16)signal[1][sample];
290 }
291 else if(channels == 1 && bytes_per_sample == 2) {
292 FLAC__int16 *buf1_ = (FLAC__int16*)buf_;
293 for(sample = 0; sample < samples; sample++)
294 *buf1_++ = (FLAC__int16)signal[0][sample];
295 }
296 else
297 #endif
298 if(bytes_per_sample == 2) {
299 if(channels == 2) {
300 for(sample = 0; sample < samples; sample++) {
301 a_word = signal[0][sample];
302 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
303 *buf_++ = (FLAC__byte)a_word;
304 a_word = signal[1][sample];
305 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
306 *buf_++ = (FLAC__byte)a_word;
307 }
308 }
309 else if(channels == 1) {
310 for(sample = 0; sample < samples; sample++) {
311 a_word = signal[0][sample];
312 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
313 *buf_++ = (FLAC__byte)a_word;
314 }
315 }
316 else {
317 for(sample = 0; sample < samples; sample++) {
318 for(channel = 0; channel < channels; channel++) {
319 a_word = signal[channel][sample];
320 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
321 *buf_++ = (FLAC__byte)a_word;
322 }
323 }
324 }
325 }
326 else if(bytes_per_sample == 3) {
327 if(channels == 2) {
328 for(sample = 0; sample < samples; sample++) {
329 a_word = signal[0][sample];
330 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
331 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
332 *buf_++ = (FLAC__byte)a_word;
333 a_word = signal[1][sample];
334 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
335 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
336 *buf_++ = (FLAC__byte)a_word;
337 }
338 }
339 else if(channels == 1) {
340 for(sample = 0; sample < samples; sample++) {
341 a_word = signal[0][sample];
342 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
343 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
344 *buf_++ = (FLAC__byte)a_word;
345 }
346 }
347 else {
348 for(sample = 0; sample < samples; sample++) {
349 for(channel = 0; channel < channels; channel++) {
350 a_word = signal[channel][sample];
351 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
352 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
353 *buf_++ = (FLAC__byte)a_word;
354 }
355 }
356 }
357 }
358 else if(bytes_per_sample == 1) {
359 if(channels == 2) {
360 for(sample = 0; sample < samples; sample++) {
361 a_word = signal[0][sample];
362 *buf_++ = (FLAC__byte)a_word;
363 a_word = signal[1][sample];
364 *buf_++ = (FLAC__byte)a_word;
365 }
366 }
367 else if(channels == 1) {
368 for(sample = 0; sample < samples; sample++) {
369 a_word = signal[0][sample];
370 *buf_++ = (FLAC__byte)a_word;
371 }
372 }
373 else {
374 for(sample = 0; sample < samples; sample++) {
375 for(channel = 0; channel < channels; channel++) {
376 a_word = signal[channel][sample];
377 *buf_++ = (FLAC__byte)a_word;
378 }
379 }
380 }
381 }
382 else { /* bytes_per_sample == 4, maybe optimize more later */
383 for(sample = 0; sample < samples; sample++) {
384 for(channel = 0; channel < channels; channel++) {
385 a_word = signal[channel][sample];
386 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
387 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
388 *buf_++ = (FLAC__byte)a_word; a_word >>= 8;
389 *buf_++ = (FLAC__byte)a_word;
390 }
391 }
392 }
393 }
394
395 /*
396 * Convert the incoming audio signal to a byte stream and FLAC__MD5Update it.
397 */
FLAC__MD5Accumulate(FLAC__MD5Context * ctx,const FLAC__int32 * const signal[],unsigned channels,unsigned samples,unsigned bytes_per_sample)398 FLAC__bool FLAC__MD5Accumulate(FLAC__MD5Context *ctx, const FLAC__int32 * const signal[], unsigned channels, unsigned samples, unsigned bytes_per_sample)
399 {
400 const size_t bytes_needed = (size_t)channels * (size_t)samples * (size_t)bytes_per_sample;
401
402 /* overflow check */
403 if((size_t)channels > SIZE_MAX / (size_t)bytes_per_sample)
404 return false;
405 if((size_t)channels * (size_t)bytes_per_sample > SIZE_MAX / (size_t)samples)
406 return false;
407
408 if(ctx->capacity < bytes_needed) {
409 FLAC__byte *tmp = (FLAC__byte*)realloc(ctx->internal_buf, bytes_needed);
410 if(0 == tmp) {
411 free(ctx->internal_buf);
412 if(0 == (ctx->internal_buf = (FLAC__byte*)safe_malloc_(bytes_needed)))
413 return false;
414 }
415 ctx->internal_buf = tmp;
416 ctx->capacity = bytes_needed;
417 }
418
419 format_input_(ctx->internal_buf, signal, channels, samples, bytes_per_sample);
420
421 FLAC__MD5Update(ctx, ctx->internal_buf, bytes_needed);
422
423 return true;
424 }
425