1 /*
2 * Host code generation
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 #include "qemu-common.h"
23
24 #define NO_CPU_IO_DEFS
25 #include "cpu.h"
26 #include "trace.h"
27 #include "disas/disas.h"
28 #include "exec/exec-all.h"
29 #include "tcg/tcg.h"
30 #if defined(CONFIG_USER_ONLY)
31 #include "qemu.h"
32 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
33 #include <sys/param.h>
34 #if __FreeBSD_version >= 700104
35 #define HAVE_KINFO_GETVMMAP
36 #define sigqueue sigqueue_freebsd /* avoid redefinition */
37 #include <sys/proc.h>
38 #include <machine/profile.h>
39 #define _KERNEL
40 #include <sys/user.h>
41 #undef _KERNEL
42 #undef sigqueue
43 #include <libutil.h>
44 #endif
45 #endif
46 #else
47 #include "exec/ram_addr.h"
48 #endif
49
50 #include "exec/cputlb.h"
51 #include "exec/tb-hash.h"
52 #include "translate-all.h"
53 #include "qemu/bitmap.h"
54 #include "qemu/error-report.h"
55 #include "qemu/qemu-print.h"
56 #include "qemu/timer.h"
57 #include "qemu/main-loop.h"
58 #include "exec/log.h"
59 #include "sysemu/cpus.h"
60 #include "sysemu/tcg.h"
61
62 /* #define DEBUG_TB_INVALIDATE */
63 /* #define DEBUG_TB_FLUSH */
64 /* make various TB consistency checks */
65 /* #define DEBUG_TB_CHECK */
66
67 #ifdef DEBUG_TB_INVALIDATE
68 #define DEBUG_TB_INVALIDATE_GATE 1
69 #else
70 #define DEBUG_TB_INVALIDATE_GATE 0
71 #endif
72
73 #ifdef DEBUG_TB_FLUSH
74 #define DEBUG_TB_FLUSH_GATE 1
75 #else
76 #define DEBUG_TB_FLUSH_GATE 0
77 #endif
78
79 #if !defined(CONFIG_USER_ONLY)
80 /* TB consistency checks only implemented for usermode emulation. */
81 #undef DEBUG_TB_CHECK
82 #endif
83
84 #ifdef DEBUG_TB_CHECK
85 #define DEBUG_TB_CHECK_GATE 1
86 #else
87 #define DEBUG_TB_CHECK_GATE 0
88 #endif
89
90 /* Access to the various translations structures need to be serialised via locks
91 * for consistency.
92 * In user-mode emulation access to the memory related structures are protected
93 * with mmap_lock.
94 * In !user-mode we use per-page locks.
95 */
96 #ifdef CONFIG_SOFTMMU
97 #define assert_memory_lock()
98 #else
99 #define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
100 #endif
101
102 #define SMC_BITMAP_USE_THRESHOLD 10
103
104 typedef struct PageDesc {
105 /* list of TBs intersecting this ram page */
106 uintptr_t first_tb;
107 #ifdef CONFIG_SOFTMMU
108 /* in order to optimize self modifying code, we count the number
109 of lookups we do to a given page to use a bitmap */
110 unsigned long *code_bitmap;
111 unsigned int code_write_count;
112 #else
113 unsigned long flags;
114 #endif
115 #ifndef CONFIG_USER_ONLY
116 QemuSpin lock;
117 #endif
118 } PageDesc;
119
120 /**
121 * struct page_entry - page descriptor entry
122 * @pd: pointer to the &struct PageDesc of the page this entry represents
123 * @index: page index of the page
124 * @locked: whether the page is locked
125 *
126 * This struct helps us keep track of the locked state of a page, without
127 * bloating &struct PageDesc.
128 *
129 * A page lock protects accesses to all fields of &struct PageDesc.
130 *
131 * See also: &struct page_collection.
132 */
133 struct page_entry {
134 PageDesc *pd;
135 tb_page_addr_t index;
136 bool locked;
137 };
138
139 /**
140 * struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
141 * @tree: Binary search tree (BST) of the pages, with key == page index
142 * @max: Pointer to the page in @tree with the highest page index
143 *
144 * To avoid deadlock we lock pages in ascending order of page index.
145 * When operating on a set of pages, we need to keep track of them so that
146 * we can lock them in order and also unlock them later. For this we collect
147 * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
148 * @tree implementation we use does not provide an O(1) operation to obtain the
149 * highest-ranked element, we use @max to keep track of the inserted page
150 * with the highest index. This is valuable because if a page is not in
151 * the tree and its index is higher than @max's, then we can lock it
152 * without breaking the locking order rule.
153 *
154 * Note on naming: 'struct page_set' would be shorter, but we already have a few
155 * page_set_*() helpers, so page_collection is used instead to avoid confusion.
156 *
157 * See also: page_collection_lock().
158 */
159 struct page_collection {
160 GTree *tree;
161 struct page_entry *max;
162 };
163
164 /* list iterators for lists of tagged pointers in TranslationBlock */
165 #define TB_FOR_EACH_TAGGED(head, tb, n, field) \
166 for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1); \
167 tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
168 tb = (TranslationBlock *)((uintptr_t)tb & ~1))
169
170 #define PAGE_FOR_EACH_TB(pagedesc, tb, n) \
171 TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
172
173 #define TB_FOR_EACH_JMP(head_tb, tb, n) \
174 TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
175
176 /* In system mode we want L1_MAP to be based on ram offsets,
177 while in user mode we want it to be based on virtual addresses. */
178 #if !defined(CONFIG_USER_ONLY)
179 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
180 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
181 #else
182 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
183 #endif
184 #else
185 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
186 #endif
187
188 /* Size of the L2 (and L3, etc) page tables. */
189 #define V_L2_BITS 10
190 #define V_L2_SIZE (1 << V_L2_BITS)
191
192 /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */
193 QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS >
194 sizeof_field(TranslationBlock, trace_vcpu_dstate)
195 * BITS_PER_BYTE);
196
197 /*
198 * L1 Mapping properties
199 */
200 static int v_l1_size;
201 static int v_l1_shift;
202 static int v_l2_levels;
203
204 /* The bottom level has pointers to PageDesc, and is indexed by
205 * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
206 */
207 #define V_L1_MIN_BITS 4
208 #define V_L1_MAX_BITS (V_L2_BITS + 3)
209 #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
210
211 static void *l1_map[V_L1_MAX_SIZE];
212
213 /* code generation context */
214 TCGContext tcg_init_ctx;
215 __thread TCGContext *tcg_ctx;
216 TBContext tb_ctx;
217 bool parallel_cpus;
218
page_table_config_init(void)219 static void page_table_config_init(void)
220 {
221 uint32_t v_l1_bits;
222
223 assert(TARGET_PAGE_BITS);
224 /* The bits remaining after N lower levels of page tables. */
225 v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
226 if (v_l1_bits < V_L1_MIN_BITS) {
227 v_l1_bits += V_L2_BITS;
228 }
229
230 v_l1_size = 1 << v_l1_bits;
231 v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
232 v_l2_levels = v_l1_shift / V_L2_BITS - 1;
233
234 assert(v_l1_bits <= V_L1_MAX_BITS);
235 assert(v_l1_shift % V_L2_BITS == 0);
236 assert(v_l2_levels >= 0);
237 }
238
cpu_gen_init(void)239 void cpu_gen_init(void)
240 {
241 tcg_context_init(&tcg_init_ctx);
242 }
243
244 /* Encode VAL as a signed leb128 sequence at P.
245 Return P incremented past the encoded value. */
encode_sleb128(uint8_t * p,target_long val)246 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
247 {
248 int more, byte;
249
250 do {
251 byte = val & 0x7f;
252 val >>= 7;
253 more = !((val == 0 && (byte & 0x40) == 0)
254 || (val == -1 && (byte & 0x40) != 0));
255 if (more) {
256 byte |= 0x80;
257 }
258 *p++ = byte;
259 } while (more);
260
261 return p;
262 }
263
264 /* Decode a signed leb128 sequence at *PP; increment *PP past the
265 decoded value. Return the decoded value. */
decode_sleb128(uint8_t ** pp)266 static target_long decode_sleb128(uint8_t **pp)
267 {
268 uint8_t *p = *pp;
269 target_long val = 0;
270 int byte, shift = 0;
271
272 do {
273 byte = *p++;
274 val |= (target_ulong)(byte & 0x7f) << shift;
275 shift += 7;
276 } while (byte & 0x80);
277 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
278 val |= -(target_ulong)1 << shift;
279 }
280
281 *pp = p;
282 return val;
283 }
284
285 /* Encode the data collected about the instructions while compiling TB.
286 Place the data at BLOCK, and return the number of bytes consumed.
287
288 The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
289 which come from the target's insn_start data, followed by a uintptr_t
290 which comes from the host pc of the end of the code implementing the insn.
291
292 Each line of the table is encoded as sleb128 deltas from the previous
293 line. The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
294 That is, the first column is seeded with the guest pc, the last column
295 with the host pc, and the middle columns with zeros. */
296
encode_search(TranslationBlock * tb,uint8_t * block)297 static int encode_search(TranslationBlock *tb, uint8_t *block)
298 {
299 uint8_t *highwater = tcg_ctx->code_gen_highwater;
300 uint8_t *p = block;
301 int i, j, n;
302
303 for (i = 0, n = tb->icount; i < n; ++i) {
304 target_ulong prev;
305
306 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
307 if (i == 0) {
308 prev = (j == 0 ? tb->pc : 0);
309 } else {
310 prev = tcg_ctx->gen_insn_data[i - 1][j];
311 }
312 p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev);
313 }
314 prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]);
315 p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev);
316
317 /* Test for (pending) buffer overflow. The assumption is that any
318 one row beginning below the high water mark cannot overrun
319 the buffer completely. Thus we can test for overflow after
320 encoding a row without having to check during encoding. */
321 if (unlikely(p > highwater)) {
322 return -1;
323 }
324 }
325
326 return p - block;
327 }
328
329 /* The cpu state corresponding to 'searched_pc' is restored.
330 * When reset_icount is true, current TB will be interrupted and
331 * icount should be recalculated.
332 */
cpu_restore_state_from_tb(CPUState * cpu,TranslationBlock * tb,uintptr_t searched_pc,bool reset_icount)333 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
334 uintptr_t searched_pc, bool reset_icount)
335 {
336 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
337 uintptr_t host_pc = (uintptr_t)tb->tc.ptr;
338 CPUArchState *env = cpu->env_ptr;
339 uint8_t *p = tb->tc.ptr + tb->tc.size;
340 int i, j, num_insns = tb->icount;
341 #ifdef CONFIG_PROFILER
342 TCGProfile *prof = &tcg_ctx->prof;
343 int64_t ti = profile_getclock();
344 #endif
345
346 searched_pc -= GETPC_ADJ;
347
348 if (searched_pc < host_pc) {
349 return -1;
350 }
351
352 /* Reconstruct the stored insn data while looking for the point at
353 which the end of the insn exceeds the searched_pc. */
354 for (i = 0; i < num_insns; ++i) {
355 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
356 data[j] += decode_sleb128(&p);
357 }
358 host_pc += decode_sleb128(&p);
359 if (host_pc > searched_pc) {
360 goto found;
361 }
362 }
363 return -1;
364
365 found:
366 if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) {
367 assert(use_icount);
368 /* Reset the cycle counter to the start of the block
369 and shift if to the number of actually executed instructions */
370 cpu_neg(cpu)->icount_decr.u16.low += num_insns - i;
371 }
372 restore_state_to_opc(env, tb, data);
373
374 #ifdef CONFIG_PROFILER
375 atomic_set(&prof->restore_time,
376 prof->restore_time + profile_getclock() - ti);
377 atomic_set(&prof->restore_count, prof->restore_count + 1);
378 #endif
379 return 0;
380 }
381
cpu_restore_state(CPUState * cpu,uintptr_t host_pc,bool will_exit)382 bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit)
383 {
384 TranslationBlock *tb;
385 bool r = false;
386 uintptr_t check_offset;
387
388 /* The host_pc has to be in the region of current code buffer. If
389 * it is not we will not be able to resolve it here. The two cases
390 * where host_pc will not be correct are:
391 *
392 * - fault during translation (instruction fetch)
393 * - fault from helper (not using GETPC() macro)
394 *
395 * Either way we need return early as we can't resolve it here.
396 *
397 * We are using unsigned arithmetic so if host_pc <
398 * tcg_init_ctx.code_gen_buffer check_offset will wrap to way
399 * above the code_gen_buffer_size
400 */
401 check_offset = host_pc - (uintptr_t) tcg_init_ctx.code_gen_buffer;
402
403 if (check_offset < tcg_init_ctx.code_gen_buffer_size) {
404 tb = tcg_tb_lookup(host_pc);
405 if (tb) {
406 cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit);
407 if (tb_cflags(tb) & CF_NOCACHE) {
408 /* one-shot translation, invalidate it immediately */
409 tb_phys_invalidate(tb, -1);
410 tcg_tb_remove(tb);
411 }
412 r = true;
413 }
414 }
415
416 return r;
417 }
418
page_init(void)419 static void page_init(void)
420 {
421 page_size_init();
422 page_table_config_init();
423
424 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
425 {
426 #ifdef HAVE_KINFO_GETVMMAP
427 struct kinfo_vmentry *freep;
428 int i, cnt;
429
430 freep = kinfo_getvmmap(getpid(), &cnt);
431 if (freep) {
432 mmap_lock();
433 for (i = 0; i < cnt; i++) {
434 unsigned long startaddr, endaddr;
435
436 startaddr = freep[i].kve_start;
437 endaddr = freep[i].kve_end;
438 if (h2g_valid(startaddr)) {
439 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
440
441 if (h2g_valid(endaddr)) {
442 endaddr = h2g(endaddr);
443 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
444 } else {
445 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
446 endaddr = ~0ul;
447 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
448 #endif
449 }
450 }
451 }
452 free(freep);
453 mmap_unlock();
454 }
455 #else
456 FILE *f;
457
458 last_brk = (unsigned long)sbrk(0);
459
460 f = fopen("/compat/linux/proc/self/maps", "r");
461 if (f) {
462 mmap_lock();
463
464 do {
465 unsigned long startaddr, endaddr;
466 int n;
467
468 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
469
470 if (n == 2 && h2g_valid(startaddr)) {
471 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
472
473 if (h2g_valid(endaddr)) {
474 endaddr = h2g(endaddr);
475 } else {
476 endaddr = ~0ul;
477 }
478 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
479 }
480 } while (!feof(f));
481
482 fclose(f);
483 mmap_unlock();
484 }
485 #endif
486 }
487 #endif
488 }
489
page_find_alloc(tb_page_addr_t index,int alloc)490 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
491 {
492 PageDesc *pd;
493 void **lp;
494 int i;
495
496 /* Level 1. Always allocated. */
497 lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
498
499 /* Level 2..N-1. */
500 for (i = v_l2_levels; i > 0; i--) {
501 void **p = atomic_rcu_read(lp);
502
503 if (p == NULL) {
504 void *existing;
505
506 if (!alloc) {
507 return NULL;
508 }
509 p = g_new0(void *, V_L2_SIZE);
510 existing = atomic_cmpxchg(lp, NULL, p);
511 if (unlikely(existing)) {
512 g_free(p);
513 p = existing;
514 }
515 }
516
517 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
518 }
519
520 pd = atomic_rcu_read(lp);
521 if (pd == NULL) {
522 void *existing;
523
524 if (!alloc) {
525 return NULL;
526 }
527 pd = g_new0(PageDesc, V_L2_SIZE);
528 #ifndef CONFIG_USER_ONLY
529 {
530 int i;
531
532 for (i = 0; i < V_L2_SIZE; i++) {
533 qemu_spin_init(&pd[i].lock);
534 }
535 }
536 #endif
537 existing = atomic_cmpxchg(lp, NULL, pd);
538 if (unlikely(existing)) {
539 g_free(pd);
540 pd = existing;
541 }
542 }
543
544 return pd + (index & (V_L2_SIZE - 1));
545 }
546
page_find(tb_page_addr_t index)547 static inline PageDesc *page_find(tb_page_addr_t index)
548 {
549 return page_find_alloc(index, 0);
550 }
551
552 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
553 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc);
554
555 /* In user-mode page locks aren't used; mmap_lock is enough */
556 #ifdef CONFIG_USER_ONLY
557
558 #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
559
page_lock(PageDesc * pd)560 static inline void page_lock(PageDesc *pd)
561 { }
562
page_unlock(PageDesc * pd)563 static inline void page_unlock(PageDesc *pd)
564 { }
565
page_lock_tb(const TranslationBlock * tb)566 static inline void page_lock_tb(const TranslationBlock *tb)
567 { }
568
page_unlock_tb(const TranslationBlock * tb)569 static inline void page_unlock_tb(const TranslationBlock *tb)
570 { }
571
572 struct page_collection *
page_collection_lock(tb_page_addr_t start,tb_page_addr_t end)573 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
574 {
575 return NULL;
576 }
577
page_collection_unlock(struct page_collection * set)578 void page_collection_unlock(struct page_collection *set)
579 { }
580 #else /* !CONFIG_USER_ONLY */
581
582 #ifdef CONFIG_DEBUG_TCG
583
584 static __thread GHashTable *ht_pages_locked_debug;
585
ht_pages_locked_debug_init(void)586 static void ht_pages_locked_debug_init(void)
587 {
588 if (ht_pages_locked_debug) {
589 return;
590 }
591 ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
592 }
593
page_is_locked(const PageDesc * pd)594 static bool page_is_locked(const PageDesc *pd)
595 {
596 PageDesc *found;
597
598 ht_pages_locked_debug_init();
599 found = g_hash_table_lookup(ht_pages_locked_debug, pd);
600 return !!found;
601 }
602
page_lock__debug(PageDesc * pd)603 static void page_lock__debug(PageDesc *pd)
604 {
605 ht_pages_locked_debug_init();
606 g_assert(!page_is_locked(pd));
607 g_hash_table_insert(ht_pages_locked_debug, pd, pd);
608 }
609
page_unlock__debug(const PageDesc * pd)610 static void page_unlock__debug(const PageDesc *pd)
611 {
612 bool removed;
613
614 ht_pages_locked_debug_init();
615 g_assert(page_is_locked(pd));
616 removed = g_hash_table_remove(ht_pages_locked_debug, pd);
617 g_assert(removed);
618 }
619
620 static void
do_assert_page_locked(const PageDesc * pd,const char * file,int line)621 do_assert_page_locked(const PageDesc *pd, const char *file, int line)
622 {
623 if (unlikely(!page_is_locked(pd))) {
624 error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
625 pd, file, line);
626 abort();
627 }
628 }
629
630 #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
631
assert_no_pages_locked(void)632 void assert_no_pages_locked(void)
633 {
634 ht_pages_locked_debug_init();
635 g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
636 }
637
638 #else /* !CONFIG_DEBUG_TCG */
639
640 #define assert_page_locked(pd)
641
page_lock__debug(const PageDesc * pd)642 static inline void page_lock__debug(const PageDesc *pd)
643 {
644 }
645
page_unlock__debug(const PageDesc * pd)646 static inline void page_unlock__debug(const PageDesc *pd)
647 {
648 }
649
650 #endif /* CONFIG_DEBUG_TCG */
651
page_lock(PageDesc * pd)652 static inline void page_lock(PageDesc *pd)
653 {
654 page_lock__debug(pd);
655 qemu_spin_lock(&pd->lock);
656 }
657
page_unlock(PageDesc * pd)658 static inline void page_unlock(PageDesc *pd)
659 {
660 qemu_spin_unlock(&pd->lock);
661 page_unlock__debug(pd);
662 }
663
664 /* lock the page(s) of a TB in the correct acquisition order */
page_lock_tb(const TranslationBlock * tb)665 static inline void page_lock_tb(const TranslationBlock *tb)
666 {
667 page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0);
668 }
669
page_unlock_tb(const TranslationBlock * tb)670 static inline void page_unlock_tb(const TranslationBlock *tb)
671 {
672 PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
673
674 page_unlock(p1);
675 if (unlikely(tb->page_addr[1] != -1)) {
676 PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
677
678 if (p2 != p1) {
679 page_unlock(p2);
680 }
681 }
682 }
683
684 static inline struct page_entry *
page_entry_new(PageDesc * pd,tb_page_addr_t index)685 page_entry_new(PageDesc *pd, tb_page_addr_t index)
686 {
687 struct page_entry *pe = g_malloc(sizeof(*pe));
688
689 pe->index = index;
690 pe->pd = pd;
691 pe->locked = false;
692 return pe;
693 }
694
page_entry_destroy(gpointer p)695 static void page_entry_destroy(gpointer p)
696 {
697 struct page_entry *pe = p;
698
699 g_assert(pe->locked);
700 page_unlock(pe->pd);
701 g_free(pe);
702 }
703
704 /* returns false on success */
page_entry_trylock(struct page_entry * pe)705 static bool page_entry_trylock(struct page_entry *pe)
706 {
707 bool busy;
708
709 busy = qemu_spin_trylock(&pe->pd->lock);
710 if (!busy) {
711 g_assert(!pe->locked);
712 pe->locked = true;
713 page_lock__debug(pe->pd);
714 }
715 return busy;
716 }
717
do_page_entry_lock(struct page_entry * pe)718 static void do_page_entry_lock(struct page_entry *pe)
719 {
720 page_lock(pe->pd);
721 g_assert(!pe->locked);
722 pe->locked = true;
723 }
724
page_entry_lock(gpointer key,gpointer value,gpointer data)725 static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
726 {
727 struct page_entry *pe = value;
728
729 do_page_entry_lock(pe);
730 return FALSE;
731 }
732
page_entry_unlock(gpointer key,gpointer value,gpointer data)733 static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
734 {
735 struct page_entry *pe = value;
736
737 if (pe->locked) {
738 pe->locked = false;
739 page_unlock(pe->pd);
740 }
741 return FALSE;
742 }
743
744 /*
745 * Trylock a page, and if successful, add the page to a collection.
746 * Returns true ("busy") if the page could not be locked; false otherwise.
747 */
page_trylock_add(struct page_collection * set,tb_page_addr_t addr)748 static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
749 {
750 tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
751 struct page_entry *pe;
752 PageDesc *pd;
753
754 pe = g_tree_lookup(set->tree, &index);
755 if (pe) {
756 return false;
757 }
758
759 pd = page_find(index);
760 if (pd == NULL) {
761 return false;
762 }
763
764 pe = page_entry_new(pd, index);
765 g_tree_insert(set->tree, &pe->index, pe);
766
767 /*
768 * If this is either (1) the first insertion or (2) a page whose index
769 * is higher than any other so far, just lock the page and move on.
770 */
771 if (set->max == NULL || pe->index > set->max->index) {
772 set->max = pe;
773 do_page_entry_lock(pe);
774 return false;
775 }
776 /*
777 * Try to acquire out-of-order lock; if busy, return busy so that we acquire
778 * locks in order.
779 */
780 return page_entry_trylock(pe);
781 }
782
tb_page_addr_cmp(gconstpointer ap,gconstpointer bp,gpointer udata)783 static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
784 {
785 tb_page_addr_t a = *(const tb_page_addr_t *)ap;
786 tb_page_addr_t b = *(const tb_page_addr_t *)bp;
787
788 if (a == b) {
789 return 0;
790 } else if (a < b) {
791 return -1;
792 }
793 return 1;
794 }
795
796 /*
797 * Lock a range of pages ([@start,@end[) as well as the pages of all
798 * intersecting TBs.
799 * Locking order: acquire locks in ascending order of page index.
800 */
801 struct page_collection *
page_collection_lock(tb_page_addr_t start,tb_page_addr_t end)802 page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
803 {
804 struct page_collection *set = g_malloc(sizeof(*set));
805 tb_page_addr_t index;
806 PageDesc *pd;
807
808 start >>= TARGET_PAGE_BITS;
809 end >>= TARGET_PAGE_BITS;
810 g_assert(start <= end);
811
812 set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL,
813 page_entry_destroy);
814 set->max = NULL;
815 assert_no_pages_locked();
816
817 retry:
818 g_tree_foreach(set->tree, page_entry_lock, NULL);
819
820 for (index = start; index <= end; index++) {
821 TranslationBlock *tb;
822 int n;
823
824 pd = page_find(index);
825 if (pd == NULL) {
826 continue;
827 }
828 if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
829 g_tree_foreach(set->tree, page_entry_unlock, NULL);
830 goto retry;
831 }
832 assert_page_locked(pd);
833 PAGE_FOR_EACH_TB(pd, tb, n) {
834 if (page_trylock_add(set, tb->page_addr[0]) ||
835 (tb->page_addr[1] != -1 &&
836 page_trylock_add(set, tb->page_addr[1]))) {
837 /* drop all locks, and reacquire in order */
838 g_tree_foreach(set->tree, page_entry_unlock, NULL);
839 goto retry;
840 }
841 }
842 }
843 return set;
844 }
845
page_collection_unlock(struct page_collection * set)846 void page_collection_unlock(struct page_collection *set)
847 {
848 /* entries are unlocked and freed via page_entry_destroy */
849 g_tree_destroy(set->tree);
850 g_free(set);
851 }
852
853 #endif /* !CONFIG_USER_ONLY */
854
page_lock_pair(PageDesc ** ret_p1,tb_page_addr_t phys1,PageDesc ** ret_p2,tb_page_addr_t phys2,int alloc)855 static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
856 PageDesc **ret_p2, tb_page_addr_t phys2, int alloc)
857 {
858 PageDesc *p1, *p2;
859 tb_page_addr_t page1;
860 tb_page_addr_t page2;
861
862 assert_memory_lock();
863 g_assert(phys1 != -1);
864
865 page1 = phys1 >> TARGET_PAGE_BITS;
866 page2 = phys2 >> TARGET_PAGE_BITS;
867
868 p1 = page_find_alloc(page1, alloc);
869 if (ret_p1) {
870 *ret_p1 = p1;
871 }
872 if (likely(phys2 == -1)) {
873 page_lock(p1);
874 return;
875 } else if (page1 == page2) {
876 page_lock(p1);
877 if (ret_p2) {
878 *ret_p2 = p1;
879 }
880 return;
881 }
882 p2 = page_find_alloc(page2, alloc);
883 if (ret_p2) {
884 *ret_p2 = p2;
885 }
886 if (page1 < page2) {
887 page_lock(p1);
888 page_lock(p2);
889 } else {
890 page_lock(p2);
891 page_lock(p1);
892 }
893 }
894
895 /* Minimum size of the code gen buffer. This number is randomly chosen,
896 but not so small that we can't have a fair number of TB's live. */
897 #define MIN_CODE_GEN_BUFFER_SIZE (1 * MiB)
898
899 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
900 indicated, this is constrained by the range of direct branches on the
901 host cpu, as used by the TCG implementation of goto_tb. */
902 #if defined(__x86_64__)
903 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB)
904 #elif defined(__sparc__)
905 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB)
906 #elif defined(__powerpc64__)
907 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB)
908 #elif defined(__powerpc__)
909 # define MAX_CODE_GEN_BUFFER_SIZE (32 * MiB)
910 #elif defined(__aarch64__)
911 # define MAX_CODE_GEN_BUFFER_SIZE (2 * GiB)
912 #elif defined(__s390x__)
913 /* We have a +- 4GB range on the branches; leave some slop. */
914 # define MAX_CODE_GEN_BUFFER_SIZE (3 * GiB)
915 #elif defined(__mips__)
916 /* We have a 256MB branch region, but leave room to make sure the
917 main executable is also within that region. */
918 # define MAX_CODE_GEN_BUFFER_SIZE (128 * MiB)
919 #else
920 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
921 #endif
922
923 #if TCG_TARGET_REG_BITS == 32
924 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32 * MiB)
925 #ifdef CONFIG_USER_ONLY
926 /*
927 * For user mode on smaller 32 bit systems we may run into trouble
928 * allocating big chunks of data in the right place. On these systems
929 * we utilise a static code generation buffer directly in the binary.
930 */
931 #define USE_STATIC_CODE_GEN_BUFFER
932 #endif
933 #else /* TCG_TARGET_REG_BITS == 64 */
934 #ifdef CONFIG_USER_ONLY
935 /*
936 * As user-mode emulation typically means running multiple instances
937 * of the translator don't go too nuts with our default code gen
938 * buffer lest we make things too hard for the OS.
939 */
940 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (128 * MiB)
941 #else
942 /*
943 * We expect most system emulation to run one or two guests per host.
944 * Users running large scale system emulation may want to tweak their
945 * runtime setup via the tb-size control on the command line.
946 */
947 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (1 * GiB)
948 #endif
949 #endif
950
951 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
952 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
953 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
954
size_code_gen_buffer(size_t tb_size)955 static inline size_t size_code_gen_buffer(size_t tb_size)
956 {
957 /* Size the buffer. */
958 if (tb_size == 0) {
959 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
960 }
961 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
962 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
963 }
964 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
965 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
966 }
967 return tb_size;
968 }
969
970 #ifdef __mips__
971 /* In order to use J and JAL within the code_gen_buffer, we require
972 that the buffer not cross a 256MB boundary. */
cross_256mb(void * addr,size_t size)973 static inline bool cross_256mb(void *addr, size_t size)
974 {
975 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
976 }
977
978 /* We weren't able to allocate a buffer without crossing that boundary,
979 so make do with the larger portion of the buffer that doesn't cross.
980 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
split_cross_256mb(void * buf1,size_t size1)981 static inline void *split_cross_256mb(void *buf1, size_t size1)
982 {
983 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
984 size_t size2 = buf1 + size1 - buf2;
985
986 size1 = buf2 - buf1;
987 if (size1 < size2) {
988 size1 = size2;
989 buf1 = buf2;
990 }
991
992 tcg_ctx->code_gen_buffer_size = size1;
993 return buf1;
994 }
995 #endif
996
997 #ifdef USE_STATIC_CODE_GEN_BUFFER
998 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
999 __attribute__((aligned(CODE_GEN_ALIGN)));
1000
alloc_code_gen_buffer(void)1001 static inline void *alloc_code_gen_buffer(void)
1002 {
1003 void *buf = static_code_gen_buffer;
1004 void *end = static_code_gen_buffer + sizeof(static_code_gen_buffer);
1005 size_t size;
1006
1007 /* page-align the beginning and end of the buffer */
1008 buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size);
1009 end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size);
1010
1011 size = end - buf;
1012
1013 /* Honor a command-line option limiting the size of the buffer. */
1014 if (size > tcg_ctx->code_gen_buffer_size) {
1015 size = QEMU_ALIGN_DOWN(tcg_ctx->code_gen_buffer_size,
1016 qemu_real_host_page_size);
1017 }
1018 tcg_ctx->code_gen_buffer_size = size;
1019
1020 #ifdef __mips__
1021 if (cross_256mb(buf, size)) {
1022 buf = split_cross_256mb(buf, size);
1023 size = tcg_ctx->code_gen_buffer_size;
1024 }
1025 #endif
1026
1027 if (qemu_mprotect_rwx(buf, size)) {
1028 abort();
1029 }
1030 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1031
1032 return buf;
1033 }
1034 #elif defined(_WIN32)
alloc_code_gen_buffer(void)1035 static inline void *alloc_code_gen_buffer(void)
1036 {
1037 size_t size = tcg_ctx->code_gen_buffer_size;
1038 return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT,
1039 PAGE_EXECUTE_READWRITE);
1040 }
1041 #else
alloc_code_gen_buffer(void)1042 static inline void *alloc_code_gen_buffer(void)
1043 {
1044 int prot = PROT_WRITE | PROT_READ | PROT_EXEC;
1045 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
1046 uintptr_t start = 0;
1047 size_t size = tcg_ctx->code_gen_buffer_size;
1048 void *buf;
1049
1050 /* Constrain the position of the buffer based on the host cpu.
1051 Note that these addresses are chosen in concert with the
1052 addresses assigned in the relevant linker script file. */
1053 # if defined(__PIE__) || defined(__PIC__)
1054 /* Don't bother setting a preferred location if we're building
1055 a position-independent executable. We're more likely to get
1056 an address near the main executable if we let the kernel
1057 choose the address. */
1058 # elif defined(__x86_64__) && defined(MAP_32BIT)
1059 /* Force the memory down into low memory with the executable.
1060 Leave the choice of exact location with the kernel. */
1061 flags |= MAP_32BIT;
1062 /* Cannot expect to map more than 800MB in low memory. */
1063 if (size > 800u * 1024 * 1024) {
1064 tcg_ctx->code_gen_buffer_size = size = 800u * 1024 * 1024;
1065 }
1066 # elif defined(__sparc__)
1067 start = 0x40000000ul;
1068 # elif defined(__s390x__)
1069 start = 0x90000000ul;
1070 # elif defined(__mips__)
1071 # if _MIPS_SIM == _ABI64
1072 start = 0x128000000ul;
1073 # else
1074 start = 0x08000000ul;
1075 # endif
1076 # endif
1077
1078 buf = mmap((void *)start, size, prot, flags, -1, 0);
1079 if (buf == MAP_FAILED) {
1080 return NULL;
1081 }
1082
1083 #ifdef __mips__
1084 if (cross_256mb(buf, size)) {
1085 /* Try again, with the original still mapped, to avoid re-acquiring
1086 that 256mb crossing. This time don't specify an address. */
1087 size_t size2;
1088 void *buf2 = mmap(NULL, size, prot, flags, -1, 0);
1089 switch ((int)(buf2 != MAP_FAILED)) {
1090 case 1:
1091 if (!cross_256mb(buf2, size)) {
1092 /* Success! Use the new buffer. */
1093 munmap(buf, size);
1094 break;
1095 }
1096 /* Failure. Work with what we had. */
1097 munmap(buf2, size);
1098 /* fallthru */
1099 default:
1100 /* Split the original buffer. Free the smaller half. */
1101 buf2 = split_cross_256mb(buf, size);
1102 size2 = tcg_ctx->code_gen_buffer_size;
1103 if (buf == buf2) {
1104 munmap(buf + size2, size - size2);
1105 } else {
1106 munmap(buf, size - size2);
1107 }
1108 size = size2;
1109 break;
1110 }
1111 buf = buf2;
1112 }
1113 #endif
1114
1115 /* Request large pages for the buffer. */
1116 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
1117
1118 return buf;
1119 }
1120 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
1121
code_gen_alloc(size_t tb_size)1122 static inline void code_gen_alloc(size_t tb_size)
1123 {
1124 tcg_ctx->code_gen_buffer_size = size_code_gen_buffer(tb_size);
1125 tcg_ctx->code_gen_buffer = alloc_code_gen_buffer();
1126 if (tcg_ctx->code_gen_buffer == NULL) {
1127 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
1128 exit(1);
1129 }
1130 }
1131
tb_cmp(const void * ap,const void * bp)1132 static bool tb_cmp(const void *ap, const void *bp)
1133 {
1134 const TranslationBlock *a = ap;
1135 const TranslationBlock *b = bp;
1136
1137 return a->pc == b->pc &&
1138 a->cs_base == b->cs_base &&
1139 a->flags == b->flags &&
1140 (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) &&
1141 a->trace_vcpu_dstate == b->trace_vcpu_dstate &&
1142 a->page_addr[0] == b->page_addr[0] &&
1143 a->page_addr[1] == b->page_addr[1];
1144 }
1145
tb_htable_init(void)1146 static void tb_htable_init(void)
1147 {
1148 unsigned int mode = QHT_MODE_AUTO_RESIZE;
1149
1150 qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
1151 }
1152
1153 /* Must be called before using the QEMU cpus. 'tb_size' is the size
1154 (in bytes) allocated to the translation buffer. Zero means default
1155 size. */
tcg_exec_init(unsigned long tb_size)1156 void tcg_exec_init(unsigned long tb_size)
1157 {
1158 tcg_allowed = true;
1159 cpu_gen_init();
1160 page_init();
1161 tb_htable_init();
1162 code_gen_alloc(tb_size);
1163 #if defined(CONFIG_SOFTMMU)
1164 /* There's no guest base to take into account, so go ahead and
1165 initialize the prologue now. */
1166 tcg_prologue_init(tcg_ctx);
1167 #endif
1168 }
1169
1170 /* call with @p->lock held */
invalidate_page_bitmap(PageDesc * p)1171 static inline void invalidate_page_bitmap(PageDesc *p)
1172 {
1173 assert_page_locked(p);
1174 #ifdef CONFIG_SOFTMMU
1175 g_free(p->code_bitmap);
1176 p->code_bitmap = NULL;
1177 p->code_write_count = 0;
1178 #endif
1179 }
1180
1181 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
page_flush_tb_1(int level,void ** lp)1182 static void page_flush_tb_1(int level, void **lp)
1183 {
1184 int i;
1185
1186 if (*lp == NULL) {
1187 return;
1188 }
1189 if (level == 0) {
1190 PageDesc *pd = *lp;
1191
1192 for (i = 0; i < V_L2_SIZE; ++i) {
1193 page_lock(&pd[i]);
1194 pd[i].first_tb = (uintptr_t)NULL;
1195 invalidate_page_bitmap(pd + i);
1196 page_unlock(&pd[i]);
1197 }
1198 } else {
1199 void **pp = *lp;
1200
1201 for (i = 0; i < V_L2_SIZE; ++i) {
1202 page_flush_tb_1(level - 1, pp + i);
1203 }
1204 }
1205 }
1206
page_flush_tb(void)1207 static void page_flush_tb(void)
1208 {
1209 int i, l1_sz = v_l1_size;
1210
1211 for (i = 0; i < l1_sz; i++) {
1212 page_flush_tb_1(v_l2_levels, l1_map + i);
1213 }
1214 }
1215
tb_host_size_iter(gpointer key,gpointer value,gpointer data)1216 static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data)
1217 {
1218 const TranslationBlock *tb = value;
1219 size_t *size = data;
1220
1221 *size += tb->tc.size;
1222 return false;
1223 }
1224
1225 void flush_tcg_on_log_instr_chage(void);
flush_tcg_on_log_instr_chage(void)1226 void flush_tcg_on_log_instr_chage(void) {
1227 warn_report("Calling real %s\r", __func__);
1228 CPUState *cpu;
1229 int cpu_index = 0;
1230 CPU_FOREACH(cpu) {
1231 warn_report("Flushing TCG for CPU %d\r", cpu_index++);
1232 tb_flush(cpu);
1233 }
1234 }
1235
1236 /* flush all the translation blocks */
do_tb_flush(CPUState * cpu,run_on_cpu_data tb_flush_count)1237 static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
1238 {
1239 bool did_flush = false;
1240
1241 mmap_lock();
1242 /* If it is already been done on request of another CPU,
1243 * just retry.
1244 */
1245 if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
1246 goto done;
1247 }
1248 did_flush = true;
1249
1250 if (DEBUG_TB_FLUSH_GATE) {
1251 size_t nb_tbs = tcg_nb_tbs();
1252 size_t host_size = 0;
1253
1254 tcg_tb_foreach(tb_host_size_iter, &host_size);
1255 printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n",
1256 tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0);
1257 }
1258
1259 CPU_FOREACH(cpu) {
1260 cpu_tb_jmp_cache_clear(cpu);
1261 }
1262
1263 qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
1264 page_flush_tb();
1265
1266 tcg_region_reset_all();
1267 /* XXX: flush processor icache at this point if cache flush is
1268 expensive */
1269 atomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1);
1270
1271 done:
1272 mmap_unlock();
1273 if (did_flush) {
1274 qemu_plugin_flush_cb();
1275 }
1276 }
1277
tb_flush(CPUState * cpu)1278 void tb_flush(CPUState *cpu)
1279 {
1280 if (tcg_enabled()) {
1281 unsigned tb_flush_count = atomic_mb_read(&tb_ctx.tb_flush_count);
1282
1283 if (cpu_in_exclusive_context(cpu)) {
1284 do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count));
1285 } else {
1286 async_safe_run_on_cpu(cpu, do_tb_flush,
1287 RUN_ON_CPU_HOST_INT(tb_flush_count));
1288 }
1289 }
1290 }
1291
1292 /*
1293 * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only,
1294 * so in order to prevent bit rot we compile them unconditionally in user-mode,
1295 * and let the optimizer get rid of them by wrapping their user-only callers
1296 * with if (DEBUG_TB_CHECK_GATE).
1297 */
1298 #ifdef CONFIG_USER_ONLY
1299
do_tb_invalidate_check(void * p,uint32_t hash,void * userp)1300 static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp)
1301 {
1302 TranslationBlock *tb = p;
1303 target_ulong addr = *(target_ulong *)userp;
1304
1305 if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
1306 printf("ERROR invalidate: address=" TARGET_FMT_lx
1307 " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
1308 }
1309 }
1310
1311 /* verify that all the pages have correct rights for code
1312 *
1313 * Called with mmap_lock held.
1314 */
tb_invalidate_check(target_ulong address)1315 static void tb_invalidate_check(target_ulong address)
1316 {
1317 address &= TARGET_PAGE_MASK;
1318 qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address);
1319 }
1320
do_tb_page_check(void * p,uint32_t hash,void * userp)1321 static void do_tb_page_check(void *p, uint32_t hash, void *userp)
1322 {
1323 TranslationBlock *tb = p;
1324 int flags1, flags2;
1325
1326 flags1 = page_get_flags(tb->pc);
1327 flags2 = page_get_flags(tb->pc + tb->size - 1);
1328 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
1329 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
1330 (long)tb->pc, tb->size, flags1, flags2);
1331 }
1332 }
1333
1334 /* verify that all the pages have correct rights for code */
tb_page_check(void)1335 static void tb_page_check(void)
1336 {
1337 qht_iter(&tb_ctx.htable, do_tb_page_check, NULL);
1338 }
1339
1340 #endif /* CONFIG_USER_ONLY */
1341
1342 /*
1343 * user-mode: call with mmap_lock held
1344 * !user-mode: call with @pd->lock held
1345 */
tb_page_remove(PageDesc * pd,TranslationBlock * tb)1346 static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
1347 {
1348 TranslationBlock *tb1;
1349 uintptr_t *pprev;
1350 unsigned int n1;
1351
1352 assert_page_locked(pd);
1353 pprev = &pd->first_tb;
1354 PAGE_FOR_EACH_TB(pd, tb1, n1) {
1355 if (tb1 == tb) {
1356 *pprev = tb1->page_next[n1];
1357 return;
1358 }
1359 pprev = &tb1->page_next[n1];
1360 }
1361 g_assert_not_reached();
1362 }
1363
1364 /* remove @orig from its @n_orig-th jump list */
tb_remove_from_jmp_list(TranslationBlock * orig,int n_orig)1365 static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
1366 {
1367 uintptr_t ptr, ptr_locked;
1368 TranslationBlock *dest;
1369 TranslationBlock *tb;
1370 uintptr_t *pprev;
1371 int n;
1372
1373 /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
1374 ptr = atomic_or_fetch(&orig->jmp_dest[n_orig], 1);
1375 dest = (TranslationBlock *)(ptr & ~1);
1376 if (dest == NULL) {
1377 return;
1378 }
1379
1380 qemu_spin_lock(&dest->jmp_lock);
1381 /*
1382 * While acquiring the lock, the jump might have been removed if the
1383 * destination TB was invalidated; check again.
1384 */
1385 ptr_locked = atomic_read(&orig->jmp_dest[n_orig]);
1386 if (ptr_locked != ptr) {
1387 qemu_spin_unlock(&dest->jmp_lock);
1388 /*
1389 * The only possibility is that the jump was unlinked via
1390 * tb_jump_unlink(dest). Seeing here another destination would be a bug,
1391 * because we set the LSB above.
1392 */
1393 g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
1394 return;
1395 }
1396 /*
1397 * We first acquired the lock, and since the destination pointer matches,
1398 * we know for sure that @orig is in the jmp list.
1399 */
1400 pprev = &dest->jmp_list_head;
1401 TB_FOR_EACH_JMP(dest, tb, n) {
1402 if (tb == orig && n == n_orig) {
1403 *pprev = tb->jmp_list_next[n];
1404 /* no need to set orig->jmp_dest[n]; setting the LSB was enough */
1405 qemu_spin_unlock(&dest->jmp_lock);
1406 return;
1407 }
1408 pprev = &tb->jmp_list_next[n];
1409 }
1410 g_assert_not_reached();
1411 }
1412
1413 /* reset the jump entry 'n' of a TB so that it is not chained to
1414 another TB */
tb_reset_jump(TranslationBlock * tb,int n)1415 static inline void tb_reset_jump(TranslationBlock *tb, int n)
1416 {
1417 uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
1418 tb_set_jmp_target(tb, n, addr);
1419 }
1420
1421 /* remove any jumps to the TB */
tb_jmp_unlink(TranslationBlock * dest)1422 static inline void tb_jmp_unlink(TranslationBlock *dest)
1423 {
1424 TranslationBlock *tb;
1425 int n;
1426
1427 qemu_spin_lock(&dest->jmp_lock);
1428
1429 TB_FOR_EACH_JMP(dest, tb, n) {
1430 tb_reset_jump(tb, n);
1431 atomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
1432 /* No need to clear the list entry; setting the dest ptr is enough */
1433 }
1434 dest->jmp_list_head = (uintptr_t)NULL;
1435
1436 qemu_spin_unlock(&dest->jmp_lock);
1437 }
1438
1439 /*
1440 * In user-mode, call with mmap_lock held.
1441 * In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
1442 * locks held.
1443 */
do_tb_phys_invalidate(TranslationBlock * tb,bool rm_from_page_list)1444 static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
1445 {
1446 CPUState *cpu;
1447 PageDesc *p;
1448 uint32_t h;
1449 tb_page_addr_t phys_pc;
1450
1451 assert_memory_lock();
1452
1453 /* make sure no further incoming jumps will be chained to this TB */
1454 qemu_spin_lock(&tb->jmp_lock);
1455 atomic_set(&tb->cflags, tb->cflags | CF_INVALID);
1456 qemu_spin_unlock(&tb->jmp_lock);
1457
1458 /* remove the TB from the hash list */
1459 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1460 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK,
1461 tb->trace_vcpu_dstate);
1462 if (!(tb->cflags & CF_NOCACHE) &&
1463 !qht_remove(&tb_ctx.htable, tb, h)) {
1464 return;
1465 }
1466
1467 /* remove the TB from the page list */
1468 if (rm_from_page_list) {
1469 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
1470 tb_page_remove(p, tb);
1471 invalidate_page_bitmap(p);
1472 if (tb->page_addr[1] != -1) {
1473 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
1474 tb_page_remove(p, tb);
1475 invalidate_page_bitmap(p);
1476 }
1477 }
1478
1479 /* remove the TB from the hash list */
1480 h = tb_jmp_cache_hash_func(tb->pc);
1481 CPU_FOREACH(cpu) {
1482 if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
1483 atomic_set(&cpu->tb_jmp_cache[h], NULL);
1484 }
1485 }
1486
1487 /* suppress this TB from the two jump lists */
1488 tb_remove_from_jmp_list(tb, 0);
1489 tb_remove_from_jmp_list(tb, 1);
1490
1491 /* suppress any remaining jumps to this TB */
1492 tb_jmp_unlink(tb);
1493
1494 atomic_set(&tcg_ctx->tb_phys_invalidate_count,
1495 tcg_ctx->tb_phys_invalidate_count + 1);
1496 }
1497
tb_phys_invalidate__locked(TranslationBlock * tb)1498 static void tb_phys_invalidate__locked(TranslationBlock *tb)
1499 {
1500 do_tb_phys_invalidate(tb, true);
1501 }
1502
1503 /* invalidate one TB
1504 *
1505 * Called with mmap_lock held in user-mode.
1506 */
tb_phys_invalidate(TranslationBlock * tb,tb_page_addr_t page_addr)1507 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
1508 {
1509 if (page_addr == -1 && tb->page_addr[0] != -1) {
1510 page_lock_tb(tb);
1511 do_tb_phys_invalidate(tb, true);
1512 page_unlock_tb(tb);
1513 } else {
1514 do_tb_phys_invalidate(tb, false);
1515 }
1516 }
1517
1518 #ifdef CONFIG_SOFTMMU
1519 /* call with @p->lock held */
build_page_bitmap(PageDesc * p)1520 static void build_page_bitmap(PageDesc *p)
1521 {
1522 int n, tb_start, tb_end;
1523 TranslationBlock *tb;
1524
1525 assert_page_locked(p);
1526 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1527
1528 PAGE_FOR_EACH_TB(p, tb, n) {
1529 /* NOTE: this is subtle as a TB may span two physical pages */
1530 if (n == 0) {
1531 /* NOTE: tb_end may be after the end of the page, but
1532 it is not a problem */
1533 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1534 tb_end = tb_start + tb->size;
1535 if (tb_end > TARGET_PAGE_SIZE) {
1536 tb_end = TARGET_PAGE_SIZE;
1537 }
1538 } else {
1539 tb_start = 0;
1540 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1541 }
1542 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1543 }
1544 }
1545 #endif
1546
1547 /* add the tb in the target page and protect it if necessary
1548 *
1549 * Called with mmap_lock held for user-mode emulation.
1550 * Called with @p->lock held in !user-mode.
1551 */
tb_page_add(PageDesc * p,TranslationBlock * tb,unsigned int n,tb_page_addr_t page_addr)1552 static inline void tb_page_add(PageDesc *p, TranslationBlock *tb,
1553 unsigned int n, tb_page_addr_t page_addr)
1554 {
1555 #ifndef CONFIG_USER_ONLY
1556 bool page_already_protected;
1557 #endif
1558
1559 assert_page_locked(p);
1560
1561 tb->page_addr[n] = page_addr;
1562 tb->page_next[n] = p->first_tb;
1563 #ifndef CONFIG_USER_ONLY
1564 page_already_protected = p->first_tb != (uintptr_t)NULL;
1565 #endif
1566 p->first_tb = (uintptr_t)tb | n;
1567 invalidate_page_bitmap(p);
1568
1569 #if defined(CONFIG_USER_ONLY)
1570 if (p->flags & PAGE_WRITE) {
1571 target_ulong addr;
1572 PageDesc *p2;
1573 int prot;
1574
1575 /* force the host page as non writable (writes will have a
1576 page fault + mprotect overhead) */
1577 page_addr &= qemu_host_page_mask;
1578 prot = 0;
1579 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1580 addr += TARGET_PAGE_SIZE) {
1581
1582 p2 = page_find(addr >> TARGET_PAGE_BITS);
1583 if (!p2) {
1584 continue;
1585 }
1586 prot |= p2->flags;
1587 p2->flags &= ~PAGE_WRITE;
1588 }
1589 mprotect(g2h(page_addr), qemu_host_page_size,
1590 (prot & PAGE_BITS) & ~PAGE_WRITE);
1591 if (DEBUG_TB_INVALIDATE_GATE) {
1592 printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr);
1593 }
1594 }
1595 #else
1596 /* if some code is already present, then the pages are already
1597 protected. So we handle the case where only the first TB is
1598 allocated in a physical page */
1599 if (!page_already_protected) {
1600 tlb_protect_code(page_addr);
1601 }
1602 #endif
1603 }
1604
1605 /* add a new TB and link it to the physical page tables. phys_page2 is
1606 * (-1) to indicate that only one page contains the TB.
1607 *
1608 * Called with mmap_lock held for user-mode emulation.
1609 *
1610 * Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
1611 * Note that in !user-mode, another thread might have already added a TB
1612 * for the same block of guest code that @tb corresponds to. In that case,
1613 * the caller should discard the original @tb, and use instead the returned TB.
1614 */
1615 static TranslationBlock *
tb_link_page(TranslationBlock * tb,tb_page_addr_t phys_pc,tb_page_addr_t phys_page2)1616 tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1617 tb_page_addr_t phys_page2)
1618 {
1619 PageDesc *p;
1620 PageDesc *p2 = NULL;
1621
1622 assert_memory_lock();
1623
1624 if (phys_pc == -1) {
1625 /*
1626 * If the TB is not associated with a physical RAM page then
1627 * it must be a temporary one-insn TB, and we have nothing to do
1628 * except fill in the page_addr[] fields.
1629 */
1630 assert(tb->cflags & CF_NOCACHE);
1631 tb->page_addr[0] = tb->page_addr[1] = -1;
1632 return tb;
1633 }
1634
1635 /*
1636 * Add the TB to the page list, acquiring first the pages's locks.
1637 * We keep the locks held until after inserting the TB in the hash table,
1638 * so that if the insertion fails we know for sure that the TBs are still
1639 * in the page descriptors.
1640 * Note that inserting into the hash table first isn't an option, since
1641 * we can only insert TBs that are fully initialized.
1642 */
1643 page_lock_pair(&p, phys_pc, &p2, phys_page2, 1);
1644 tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK);
1645 if (p2) {
1646 tb_page_add(p2, tb, 1, phys_page2);
1647 } else {
1648 tb->page_addr[1] = -1;
1649 }
1650
1651 if (!(tb->cflags & CF_NOCACHE)) {
1652 void *existing_tb = NULL;
1653 uint32_t h;
1654
1655 /* add in the hash table */
1656 h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK,
1657 tb->trace_vcpu_dstate);
1658 qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
1659
1660 /* remove TB from the page(s) if we couldn't insert it */
1661 if (unlikely(existing_tb)) {
1662 tb_page_remove(p, tb);
1663 invalidate_page_bitmap(p);
1664 if (p2) {
1665 tb_page_remove(p2, tb);
1666 invalidate_page_bitmap(p2);
1667 }
1668 tb = existing_tb;
1669 }
1670 }
1671
1672 if (p2 && p2 != p) {
1673 page_unlock(p2);
1674 }
1675 page_unlock(p);
1676
1677 #ifdef CONFIG_USER_ONLY
1678 if (DEBUG_TB_CHECK_GATE) {
1679 tb_page_check();
1680 }
1681 #endif
1682 return tb;
1683 }
1684
1685 /* Called with mmap_lock held for user mode emulation. */
tb_gen_code(CPUState * cpu,target_ulong pc,target_ulong cs_base,uint32_t flags,int cflags)1686 TranslationBlock *tb_gen_code(CPUState *cpu,
1687 target_ulong pc, target_ulong cs_base,
1688 uint32_t flags, int cflags)
1689 {
1690 CPUArchState *env = cpu->env_ptr;
1691 TranslationBlock *tb, *existing_tb;
1692 tb_page_addr_t phys_pc, phys_page2;
1693 target_ulong virt_page2;
1694 tcg_insn_unit *gen_code_buf;
1695 int gen_code_size, search_size, max_insns;
1696 #ifdef CONFIG_PROFILER
1697 TCGProfile *prof = &tcg_ctx->prof;
1698 int64_t ti;
1699 #endif
1700
1701 assert_memory_lock();
1702
1703 phys_pc = get_page_addr_code(env, pc);
1704
1705 if (phys_pc == -1) {
1706 /* Generate a temporary TB with 1 insn in it */
1707 cflags &= ~CF_COUNT_MASK;
1708 cflags |= CF_NOCACHE | 1;
1709 }
1710
1711 cflags &= ~CF_CLUSTER_MASK;
1712 cflags |= cpu->cluster_index << CF_CLUSTER_SHIFT;
1713
1714 max_insns = cflags & CF_COUNT_MASK;
1715 if (max_insns == 0) {
1716 max_insns = CF_COUNT_MASK;
1717 }
1718 if (max_insns > TCG_MAX_INSNS) {
1719 max_insns = TCG_MAX_INSNS;
1720 }
1721 if (cpu->singlestep_enabled || singlestep) {
1722 max_insns = 1;
1723 }
1724
1725 buffer_overflow:
1726 tb = tcg_tb_alloc(tcg_ctx);
1727 if (unlikely(!tb)) {
1728 /* flush must be done */
1729 tb_flush(cpu);
1730 mmap_unlock();
1731 /* Make the execution loop process the flush as soon as possible. */
1732 cpu->exception_index = EXCP_INTERRUPT;
1733 cpu_loop_exit(cpu);
1734 }
1735
1736 gen_code_buf = tcg_ctx->code_gen_ptr;
1737 tb->tc.ptr = gen_code_buf;
1738 tb->pc = pc;
1739 tb->cs_base = cs_base;
1740 tb->flags = flags;
1741 tb->cflags = cflags;
1742 tb->orig_tb = NULL;
1743 tb->trace_vcpu_dstate = *cpu->trace_dstate;
1744 tcg_ctx->tb_cflags = cflags;
1745 tb_overflow:
1746
1747 #ifdef CONFIG_PROFILER
1748 /* includes aborted translations because of exceptions */
1749 atomic_set(&prof->tb_count1, prof->tb_count1 + 1);
1750 ti = profile_getclock();
1751 #endif
1752
1753 tcg_func_start(tcg_ctx);
1754
1755 tcg_ctx->cpu = env_cpu(env);
1756 gen_intermediate_code(cpu, tb, max_insns);
1757 tcg_ctx->cpu = NULL;
1758
1759 trace_translate_block(tb, tb->pc, tb->tc.ptr);
1760
1761 /* generate machine code */
1762 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1763 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1764 tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset;
1765 if (TCG_TARGET_HAS_direct_jump) {
1766 tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg;
1767 tcg_ctx->tb_jmp_target_addr = NULL;
1768 } else {
1769 tcg_ctx->tb_jmp_insn_offset = NULL;
1770 tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg;
1771 }
1772
1773 #ifdef CONFIG_PROFILER
1774 atomic_set(&prof->tb_count, prof->tb_count + 1);
1775 atomic_set(&prof->interm_time, prof->interm_time + profile_getclock() - ti);
1776 ti = profile_getclock();
1777 #endif
1778
1779 gen_code_size = tcg_gen_code(tcg_ctx, tb);
1780 if (unlikely(gen_code_size < 0)) {
1781 switch (gen_code_size) {
1782 case -1:
1783 /*
1784 * Overflow of code_gen_buffer, or the current slice of it.
1785 *
1786 * TODO: We don't need to re-do gen_intermediate_code, nor
1787 * should we re-do the tcg optimization currently hidden
1788 * inside tcg_gen_code. All that should be required is to
1789 * flush the TBs, allocate a new TB, re-initialize it per
1790 * above, and re-do the actual code generation.
1791 */
1792 goto buffer_overflow;
1793
1794 case -2:
1795 /*
1796 * The code generated for the TranslationBlock is too large.
1797 * The maximum size allowed by the unwind info is 64k.
1798 * There may be stricter constraints from relocations
1799 * in the tcg backend.
1800 *
1801 * Try again with half as many insns as we attempted this time.
1802 * If a single insn overflows, there's a bug somewhere...
1803 */
1804 max_insns = tb->icount;
1805 assert(max_insns > 1);
1806 max_insns /= 2;
1807 goto tb_overflow;
1808
1809 default:
1810 g_assert_not_reached();
1811 }
1812 }
1813 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1814 if (unlikely(search_size < 0)) {
1815 goto buffer_overflow;
1816 }
1817 tb->tc.size = gen_code_size;
1818
1819 #ifdef CONFIG_PROFILER
1820 atomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti);
1821 atomic_set(&prof->code_in_len, prof->code_in_len + tb->size);
1822 atomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size);
1823 atomic_set(&prof->search_out_len, prof->search_out_len + search_size);
1824 #endif
1825
1826 #ifdef DEBUG_DISAS
1827 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1828 qemu_log_in_addr_range(tb->pc)) {
1829 FILE *logfile = qemu_log_lock();
1830 qemu_log("OUT: [size=%d]\n", gen_code_size);
1831 if (tcg_ctx->data_gen_ptr) {
1832 size_t code_size = tcg_ctx->data_gen_ptr - tb->tc.ptr;
1833 size_t data_size = gen_code_size - code_size;
1834 size_t i;
1835
1836 log_disas(tb->tc.ptr, code_size);
1837
1838 for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) {
1839 if (sizeof(tcg_target_ulong) == 8) {
1840 qemu_log("0x%08" PRIxPTR ": .quad 0x%016" PRIx64 "\n",
1841 (uintptr_t)tcg_ctx->data_gen_ptr + i,
1842 *(uint64_t *)(tcg_ctx->data_gen_ptr + i));
1843 } else {
1844 qemu_log("0x%08" PRIxPTR ": .long 0x%08x\n",
1845 (uintptr_t)tcg_ctx->data_gen_ptr + i,
1846 *(uint32_t *)(tcg_ctx->data_gen_ptr + i));
1847 }
1848 }
1849 } else {
1850 log_disas(tb->tc.ptr, gen_code_size);
1851 }
1852 qemu_log("\n");
1853 qemu_log_flush();
1854 qemu_log_unlock(logfile);
1855 }
1856 #endif
1857
1858 atomic_set(&tcg_ctx->code_gen_ptr, (void *)
1859 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1860 CODE_GEN_ALIGN));
1861
1862 /* init jump list */
1863 qemu_spin_init(&tb->jmp_lock);
1864 tb->jmp_list_head = (uintptr_t)NULL;
1865 tb->jmp_list_next[0] = (uintptr_t)NULL;
1866 tb->jmp_list_next[1] = (uintptr_t)NULL;
1867 tb->jmp_dest[0] = (uintptr_t)NULL;
1868 tb->jmp_dest[1] = (uintptr_t)NULL;
1869
1870 /* init original jump addresses which have been set during tcg_gen_code() */
1871 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1872 tb_reset_jump(tb, 0);
1873 }
1874 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1875 tb_reset_jump(tb, 1);
1876 }
1877
1878 /* check next page if needed */
1879 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1880 phys_page2 = -1;
1881 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1882 phys_page2 = get_page_addr_code(env, virt_page2);
1883 }
1884 /*
1885 * No explicit memory barrier is required -- tb_link_page() makes the
1886 * TB visible in a consistent state.
1887 */
1888 existing_tb = tb_link_page(tb, phys_pc, phys_page2);
1889 /* if the TB already exists, discard what we just translated */
1890 if (unlikely(existing_tb != tb)) {
1891 uintptr_t orig_aligned = (uintptr_t)gen_code_buf;
1892
1893 orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize);
1894 atomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned);
1895 return existing_tb;
1896 }
1897 tcg_tb_insert(tb);
1898 return tb;
1899 }
1900
1901 /*
1902 * @p must be non-NULL.
1903 * user-mode: call with mmap_lock held.
1904 * !user-mode: call with all @pages locked.
1905 */
1906 static void
tb_invalidate_phys_page_range__locked(struct page_collection * pages,PageDesc * p,tb_page_addr_t start,tb_page_addr_t end,uintptr_t retaddr)1907 tb_invalidate_phys_page_range__locked(struct page_collection *pages,
1908 PageDesc *p, tb_page_addr_t start,
1909 tb_page_addr_t end,
1910 uintptr_t retaddr)
1911 {
1912 TranslationBlock *tb;
1913 tb_page_addr_t tb_start, tb_end;
1914 int n;
1915 #ifdef TARGET_HAS_PRECISE_SMC
1916 CPUState *cpu = current_cpu;
1917 CPUArchState *env = NULL;
1918 bool current_tb_not_found = retaddr != 0;
1919 bool current_tb_modified = false;
1920 TranslationBlock *current_tb = NULL;
1921 target_ulong current_pc = 0;
1922 target_ulong current_cs_base = 0;
1923 uint32_t current_flags = 0;
1924 #endif /* TARGET_HAS_PRECISE_SMC */
1925
1926 assert_page_locked(p);
1927
1928 #if defined(TARGET_HAS_PRECISE_SMC)
1929 if (cpu != NULL) {
1930 env = cpu->env_ptr;
1931 }
1932 #endif
1933
1934 /* we remove all the TBs in the range [start, end[ */
1935 /* XXX: see if in some cases it could be faster to invalidate all
1936 the code */
1937 PAGE_FOR_EACH_TB(p, tb, n) {
1938 assert_page_locked(p);
1939 /* NOTE: this is subtle as a TB may span two physical pages */
1940 if (n == 0) {
1941 /* NOTE: tb_end may be after the end of the page, but
1942 it is not a problem */
1943 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1944 tb_end = tb_start + tb->size;
1945 } else {
1946 tb_start = tb->page_addr[1];
1947 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1948 }
1949 if (!(tb_end <= start || tb_start >= end)) {
1950 #ifdef TARGET_HAS_PRECISE_SMC
1951 if (current_tb_not_found) {
1952 current_tb_not_found = false;
1953 /* now we have a real cpu fault */
1954 current_tb = tcg_tb_lookup(retaddr);
1955 }
1956 if (current_tb == tb &&
1957 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
1958 /*
1959 * If we are modifying the current TB, we must stop
1960 * its execution. We could be more precise by checking
1961 * that the modification is after the current PC, but it
1962 * would require a specialized function to partially
1963 * restore the CPU state.
1964 */
1965 current_tb_modified = true;
1966 cpu_restore_state_from_tb(cpu, current_tb, retaddr, true);
1967 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
1968 ¤t_flags);
1969 }
1970 #endif /* TARGET_HAS_PRECISE_SMC */
1971 tb_phys_invalidate__locked(tb);
1972 }
1973 }
1974 #if !defined(CONFIG_USER_ONLY)
1975 /* if no code remaining, no need to continue to use slow writes */
1976 if (!p->first_tb) {
1977 invalidate_page_bitmap(p);
1978 tlb_unprotect_code(start);
1979 }
1980 #endif
1981 #ifdef TARGET_HAS_PRECISE_SMC
1982 if (current_tb_modified) {
1983 page_collection_unlock(pages);
1984 /* Force execution of one insn next time. */
1985 cpu->cflags_next_tb = 1 | curr_cflags();
1986 mmap_unlock();
1987 cpu_loop_exit_noexc(cpu);
1988 }
1989 #endif
1990 }
1991
1992 /*
1993 * Invalidate all TBs which intersect with the target physical address range
1994 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1995 * 'is_cpu_write_access' should be true if called from a real cpu write
1996 * access: the virtual CPU will exit the current TB if code is modified inside
1997 * this TB.
1998 *
1999 * Called with mmap_lock held for user-mode emulation
2000 */
tb_invalidate_phys_page_range(tb_page_addr_t start,tb_page_addr_t end)2001 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end)
2002 {
2003 struct page_collection *pages;
2004 PageDesc *p;
2005
2006 assert_memory_lock();
2007
2008 p = page_find(start >> TARGET_PAGE_BITS);
2009 if (p == NULL) {
2010 return;
2011 }
2012 pages = page_collection_lock(start, end);
2013 tb_invalidate_phys_page_range__locked(pages, p, start, end, 0);
2014 page_collection_unlock(pages);
2015 }
2016
2017 /*
2018 * Invalidate all TBs which intersect with the target physical address range
2019 * [start;end[. NOTE: start and end may refer to *different* physical pages.
2020 * 'is_cpu_write_access' should be true if called from a real cpu write
2021 * access: the virtual CPU will exit the current TB if code is modified inside
2022 * this TB.
2023 *
2024 * Called with mmap_lock held for user-mode emulation.
2025 */
2026 #ifdef CONFIG_SOFTMMU
tb_invalidate_phys_range(ram_addr_t start,ram_addr_t end)2027 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end)
2028 #else
2029 void tb_invalidate_phys_range(target_ulong start, target_ulong end)
2030 #endif
2031 {
2032 struct page_collection *pages;
2033 tb_page_addr_t next;
2034
2035 assert_memory_lock();
2036
2037 pages = page_collection_lock(start, end);
2038 for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
2039 start < end;
2040 start = next, next += TARGET_PAGE_SIZE) {
2041 PageDesc *pd = page_find(start >> TARGET_PAGE_BITS);
2042 tb_page_addr_t bound = MIN(next, end);
2043
2044 if (pd == NULL) {
2045 continue;
2046 }
2047 tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0);
2048 }
2049 page_collection_unlock(pages);
2050 }
2051
2052 #ifdef CONFIG_SOFTMMU
2053 /* len must be <= 8 and start must be a multiple of len.
2054 * Called via softmmu_template.h when code areas are written to with
2055 * iothread mutex not held.
2056 *
2057 * Call with all @pages in the range [@start, @start + len[ locked.
2058 */
tb_invalidate_phys_page_fast(struct page_collection * pages,tb_page_addr_t start,int len,uintptr_t retaddr)2059 void tb_invalidate_phys_page_fast(struct page_collection *pages,
2060 tb_page_addr_t start, int len,
2061 uintptr_t retaddr)
2062 {
2063 PageDesc *p;
2064
2065 assert_memory_lock();
2066
2067 p = page_find(start >> TARGET_PAGE_BITS);
2068 if (!p) {
2069 return;
2070 }
2071
2072 assert_page_locked(p);
2073 if (!p->code_bitmap &&
2074 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
2075 build_page_bitmap(p);
2076 }
2077 if (p->code_bitmap) {
2078 unsigned int nr;
2079 unsigned long b;
2080
2081 nr = start & ~TARGET_PAGE_MASK;
2082 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
2083 if (b & ((1 << len) - 1)) {
2084 goto do_invalidate;
2085 }
2086 } else {
2087 do_invalidate:
2088 tb_invalidate_phys_page_range__locked(pages, p, start, start + len,
2089 retaddr);
2090 }
2091 }
2092 #else
2093 /* Called with mmap_lock held. If pc is not 0 then it indicates the
2094 * host PC of the faulting store instruction that caused this invalidate.
2095 * Returns true if the caller needs to abort execution of the current
2096 * TB (because it was modified by this store and the guest CPU has
2097 * precise-SMC semantics).
2098 */
tb_invalidate_phys_page(tb_page_addr_t addr,uintptr_t pc)2099 static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
2100 {
2101 TranslationBlock *tb;
2102 PageDesc *p;
2103 int n;
2104 #ifdef TARGET_HAS_PRECISE_SMC
2105 TranslationBlock *current_tb = NULL;
2106 CPUState *cpu = current_cpu;
2107 CPUArchState *env = NULL;
2108 int current_tb_modified = 0;
2109 target_ulong current_pc = 0;
2110 target_ulong current_cs_base = 0;
2111 uint32_t current_flags = 0;
2112 #endif
2113
2114 assert_memory_lock();
2115
2116 addr &= TARGET_PAGE_MASK;
2117 p = page_find(addr >> TARGET_PAGE_BITS);
2118 if (!p) {
2119 return false;
2120 }
2121
2122 #ifdef TARGET_HAS_PRECISE_SMC
2123 if (p->first_tb && pc != 0) {
2124 current_tb = tcg_tb_lookup(pc);
2125 }
2126 if (cpu != NULL) {
2127 env = cpu->env_ptr;
2128 }
2129 #endif
2130 assert_page_locked(p);
2131 PAGE_FOR_EACH_TB(p, tb, n) {
2132 #ifdef TARGET_HAS_PRECISE_SMC
2133 if (current_tb == tb &&
2134 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
2135 /* If we are modifying the current TB, we must stop
2136 its execution. We could be more precise by checking
2137 that the modification is after the current PC, but it
2138 would require a specialized function to partially
2139 restore the CPU state */
2140
2141 current_tb_modified = 1;
2142 cpu_restore_state_from_tb(cpu, current_tb, pc, true);
2143 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
2144 ¤t_flags);
2145 }
2146 #endif /* TARGET_HAS_PRECISE_SMC */
2147 tb_phys_invalidate(tb, addr);
2148 }
2149 p->first_tb = (uintptr_t)NULL;
2150 #ifdef TARGET_HAS_PRECISE_SMC
2151 if (current_tb_modified) {
2152 /* Force execution of one insn next time. */
2153 cpu->cflags_next_tb = 1 | curr_cflags();
2154 return true;
2155 }
2156 #endif
2157
2158 return false;
2159 }
2160 #endif
2161
2162 /* user-mode: call with mmap_lock held */
tb_check_watchpoint(CPUState * cpu,uintptr_t retaddr)2163 void tb_check_watchpoint(CPUState *cpu, uintptr_t retaddr)
2164 {
2165 TranslationBlock *tb;
2166
2167 assert_memory_lock();
2168
2169 tb = tcg_tb_lookup(retaddr);
2170 if (tb) {
2171 /* We can use retranslation to find the PC. */
2172 cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2173 tb_phys_invalidate(tb, -1);
2174 } else {
2175 /* The exception probably happened in a helper. The CPU state should
2176 have been saved before calling it. Fetch the PC from there. */
2177 CPUArchState *env = cpu->env_ptr;
2178 target_ulong pc, cs_base;
2179 tb_page_addr_t addr;
2180 uint32_t flags;
2181
2182 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
2183 addr = get_page_addr_code(env, pc);
2184 if (addr != -1) {
2185 tb_invalidate_phys_range(addr, addr + 1);
2186 }
2187 }
2188 }
2189
2190 #ifndef CONFIG_USER_ONLY
2191 /* in deterministic execution mode, instructions doing device I/Os
2192 * must be at the end of the TB.
2193 *
2194 * Called by softmmu_template.h, with iothread mutex not held.
2195 */
cpu_io_recompile(CPUState * cpu,uintptr_t retaddr)2196 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
2197 {
2198 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
2199 CPUArchState *env = cpu->env_ptr;
2200 #endif
2201 TranslationBlock *tb;
2202 uint32_t n;
2203
2204 tb = tcg_tb_lookup(retaddr);
2205 if (!tb) {
2206 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
2207 (void *)retaddr);
2208 }
2209 cpu_restore_state_from_tb(cpu, tb, retaddr, true);
2210
2211 /* On MIPS and SH, delay slot instructions can only be restarted if
2212 they were already the first instruction in the TB. If this is not
2213 the first instruction in a TB then re-execute the preceding
2214 branch. */
2215 n = 1;
2216 #if defined(TARGET_MIPS)
2217 if ((env->hflags & MIPS_HFLAG_BMASK) != 0
2218 && PC_ADDR(env) != tb->pc) {
2219 #ifdef TARGET_CHERI
2220 env->active_tc.PCC._cr_cursor -=
2221 #else
2222 env->active_tc.PC -=
2223 #endif
2224 (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
2225 cpu_neg(cpu)->icount_decr.u16.low++;
2226 env->hflags &= ~MIPS_HFLAG_BMASK;
2227 n = 2;
2228 }
2229 #elif defined(TARGET_SH4)
2230 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
2231 && env->pc != tb->pc) {
2232 env->pc -= 2;
2233 cpu_neg(cpu)->icount_decr.u16.low++;
2234 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
2235 n = 2;
2236 }
2237 #endif
2238
2239 /* Generate a new TB executing the I/O insn. */
2240 cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n;
2241
2242 if (tb_cflags(tb) & CF_NOCACHE) {
2243 if (tb->orig_tb) {
2244 /* Invalidate original TB if this TB was generated in
2245 * cpu_exec_nocache() */
2246 tb_phys_invalidate(tb->orig_tb, -1);
2247 }
2248 tcg_tb_remove(tb);
2249 }
2250
2251 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2252 * the first in the TB) then we end up generating a whole new TB and
2253 * repeating the fault, which is horribly inefficient.
2254 * Better would be to execute just this insn uncached, or generate a
2255 * second new TB.
2256 */
2257 cpu_loop_exit_noexc(cpu);
2258 }
2259
tb_jmp_cache_clear_page(CPUState * cpu,target_ulong page_addr)2260 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
2261 {
2262 unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
2263
2264 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
2265 atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
2266 }
2267 }
2268
tb_flush_jmp_cache(CPUState * cpu,target_ulong addr)2269 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
2270 {
2271 /* Discard jump cache entries for any tb which might potentially
2272 overlap the flushed page. */
2273 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
2274 tb_jmp_cache_clear_page(cpu, addr);
2275 }
2276
print_qht_statistics(struct qht_stats hst)2277 static void print_qht_statistics(struct qht_stats hst)
2278 {
2279 uint32_t hgram_opts;
2280 size_t hgram_bins;
2281 char *hgram;
2282
2283 if (!hst.head_buckets) {
2284 return;
2285 }
2286 qemu_printf("TB hash buckets %zu/%zu (%0.2f%% head buckets used)\n",
2287 hst.used_head_buckets, hst.head_buckets,
2288 (double)hst.used_head_buckets / hst.head_buckets * 100);
2289
2290 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2291 hgram_opts |= QDIST_PR_100X | QDIST_PR_PERCENT;
2292 if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
2293 hgram_opts |= QDIST_PR_NODECIMAL;
2294 }
2295 hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
2296 qemu_printf("TB hash occupancy %0.2f%% avg chain occ. Histogram: %s\n",
2297 qdist_avg(&hst.occupancy) * 100, hgram);
2298 g_free(hgram);
2299
2300 hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
2301 hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
2302 if (hgram_bins > 10) {
2303 hgram_bins = 10;
2304 } else {
2305 hgram_bins = 0;
2306 hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
2307 }
2308 hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
2309 qemu_printf("TB hash avg chain %0.3f buckets. Histogram: %s\n",
2310 qdist_avg(&hst.chain), hgram);
2311 g_free(hgram);
2312 }
2313
2314 struct tb_tree_stats {
2315 size_t nb_tbs;
2316 size_t host_size;
2317 size_t target_size;
2318 size_t max_target_size;
2319 size_t direct_jmp_count;
2320 size_t direct_jmp2_count;
2321 size_t cross_page;
2322 };
2323
tb_tree_stats_iter(gpointer key,gpointer value,gpointer data)2324 static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data)
2325 {
2326 const TranslationBlock *tb = value;
2327 struct tb_tree_stats *tst = data;
2328
2329 tst->nb_tbs++;
2330 tst->host_size += tb->tc.size;
2331 tst->target_size += tb->size;
2332 if (tb->size > tst->max_target_size) {
2333 tst->max_target_size = tb->size;
2334 }
2335 if (tb->page_addr[1] != -1) {
2336 tst->cross_page++;
2337 }
2338 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
2339 tst->direct_jmp_count++;
2340 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
2341 tst->direct_jmp2_count++;
2342 }
2343 }
2344 return false;
2345 }
2346
dump_exec_info(void)2347 void dump_exec_info(void)
2348 {
2349 struct tb_tree_stats tst = {};
2350 struct qht_stats hst;
2351 size_t nb_tbs, flush_full, flush_part, flush_elide;
2352
2353 tcg_tb_foreach(tb_tree_stats_iter, &tst);
2354 nb_tbs = tst.nb_tbs;
2355 /* XXX: avoid using doubles ? */
2356 qemu_printf("Translation buffer state:\n");
2357 /*
2358 * Report total code size including the padding and TB structs;
2359 * otherwise users might think "-tb-size" is not honoured.
2360 * For avg host size we use the precise numbers from tb_tree_stats though.
2361 */
2362 qemu_printf("gen code size %zu/%zu\n",
2363 tcg_code_size(), tcg_code_capacity());
2364 qemu_printf("TB count %zu\n", nb_tbs);
2365 qemu_printf("TB avg target size %zu max=%zu bytes\n",
2366 nb_tbs ? tst.target_size / nb_tbs : 0,
2367 tst.max_target_size);
2368 qemu_printf("TB avg host size %zu bytes (expansion ratio: %0.1f)\n",
2369 nb_tbs ? tst.host_size / nb_tbs : 0,
2370 tst.target_size ? (double)tst.host_size / tst.target_size : 0);
2371 qemu_printf("cross page TB count %zu (%zu%%)\n", tst.cross_page,
2372 nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0);
2373 qemu_printf("direct jump count %zu (%zu%%) (2 jumps=%zu %zu%%)\n",
2374 tst.direct_jmp_count,
2375 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0,
2376 tst.direct_jmp2_count,
2377 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0);
2378
2379 qht_statistics_init(&tb_ctx.htable, &hst);
2380 print_qht_statistics(hst);
2381 qht_statistics_destroy(&hst);
2382
2383 qemu_printf("\nStatistics:\n");
2384 qemu_printf("TB flush count %u\n",
2385 atomic_read(&tb_ctx.tb_flush_count));
2386 qemu_printf("TB invalidate count %zu\n",
2387 tcg_tb_phys_invalidate_count());
2388
2389 tlb_flush_counts(&flush_full, &flush_part, &flush_elide);
2390 qemu_printf("TLB full flushes %zu\n", flush_full);
2391 qemu_printf("TLB partial flushes %zu\n", flush_part);
2392 qemu_printf("TLB elided flushes %zu\n", flush_elide);
2393 tcg_dump_info();
2394 }
2395
dump_opcount_info(void)2396 void dump_opcount_info(void)
2397 {
2398 tcg_dump_op_count();
2399 }
2400
2401 #else /* CONFIG_USER_ONLY */
2402
cpu_interrupt(CPUState * cpu,int mask)2403 void cpu_interrupt(CPUState *cpu, int mask)
2404 {
2405 g_assert(qemu_mutex_iothread_locked());
2406 cpu->interrupt_request |= mask;
2407 atomic_set(&cpu_neg(cpu)->icount_decr.u16.high, -1);
2408 }
2409
2410 /*
2411 * Walks guest process memory "regions" one by one
2412 * and calls callback function 'fn' for each region.
2413 */
2414 struct walk_memory_regions_data {
2415 walk_memory_regions_fn fn;
2416 void *priv;
2417 target_ulong start;
2418 int prot;
2419 };
2420
walk_memory_regions_end(struct walk_memory_regions_data * data,target_ulong end,int new_prot)2421 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2422 target_ulong end, int new_prot)
2423 {
2424 if (data->start != -1u) {
2425 int rc = data->fn(data->priv, data->start, end, data->prot);
2426 if (rc != 0) {
2427 return rc;
2428 }
2429 }
2430
2431 data->start = (new_prot ? end : -1u);
2432 data->prot = new_prot;
2433
2434 return 0;
2435 }
2436
walk_memory_regions_1(struct walk_memory_regions_data * data,target_ulong base,int level,void ** lp)2437 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2438 target_ulong base, int level, void **lp)
2439 {
2440 target_ulong pa;
2441 int i, rc;
2442
2443 if (*lp == NULL) {
2444 return walk_memory_regions_end(data, base, 0);
2445 }
2446
2447 if (level == 0) {
2448 PageDesc *pd = *lp;
2449
2450 for (i = 0; i < V_L2_SIZE; ++i) {
2451 int prot = pd[i].flags;
2452
2453 pa = base | (i << TARGET_PAGE_BITS);
2454 if (prot != data->prot) {
2455 rc = walk_memory_regions_end(data, pa, prot);
2456 if (rc != 0) {
2457 return rc;
2458 }
2459 }
2460 }
2461 } else {
2462 void **pp = *lp;
2463
2464 for (i = 0; i < V_L2_SIZE; ++i) {
2465 pa = base | ((target_ulong)i <<
2466 (TARGET_PAGE_BITS + V_L2_BITS * level));
2467 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2468 if (rc != 0) {
2469 return rc;
2470 }
2471 }
2472 }
2473
2474 return 0;
2475 }
2476
walk_memory_regions(void * priv,walk_memory_regions_fn fn)2477 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2478 {
2479 struct walk_memory_regions_data data;
2480 uintptr_t i, l1_sz = v_l1_size;
2481
2482 data.fn = fn;
2483 data.priv = priv;
2484 data.start = -1u;
2485 data.prot = 0;
2486
2487 for (i = 0; i < l1_sz; i++) {
2488 target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
2489 int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
2490 if (rc != 0) {
2491 return rc;
2492 }
2493 }
2494
2495 return walk_memory_regions_end(&data, 0, 0);
2496 }
2497
dump_region(void * priv,target_ulong start,target_ulong end,unsigned long prot)2498 static int dump_region(void *priv, target_ulong start,
2499 target_ulong end, unsigned long prot)
2500 {
2501 FILE *f = (FILE *)priv;
2502
2503 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
2504 " "TARGET_FMT_lx" %c%c%c\n",
2505 start, end, end - start,
2506 ((prot & PAGE_READ) ? 'r' : '-'),
2507 ((prot & PAGE_WRITE) ? 'w' : '-'),
2508 ((prot & PAGE_EXEC) ? 'x' : '-'));
2509
2510 return 0;
2511 }
2512
2513 /* dump memory mappings */
page_dump(FILE * f)2514 void page_dump(FILE *f)
2515 {
2516 const int length = sizeof(target_ulong) * 2;
2517 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
2518 length, "start", length, "end", length, "size", "prot");
2519 walk_memory_regions(f, dump_region);
2520 }
2521
page_get_flags(target_ulong address)2522 int page_get_flags(target_ulong address)
2523 {
2524 PageDesc *p;
2525
2526 p = page_find(address >> TARGET_PAGE_BITS);
2527 if (!p) {
2528 return 0;
2529 }
2530 return p->flags;
2531 }
2532
2533 /* Modify the flags of a page and invalidate the code if necessary.
2534 The flag PAGE_WRITE_ORG is positioned automatically depending
2535 on PAGE_WRITE. The mmap_lock should already be held. */
page_set_flags(target_ulong start,target_ulong end,int flags)2536 void page_set_flags(target_ulong start, target_ulong end, int flags)
2537 {
2538 target_ulong addr, len;
2539
2540 /* This function should never be called with addresses outside the
2541 guest address space. If this assert fires, it probably indicates
2542 a missing call to h2g_valid. */
2543 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2544 assert(end <= ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2545 #endif
2546 assert(start < end);
2547 assert_memory_lock();
2548
2549 start = start & TARGET_PAGE_MASK;
2550 end = TARGET_PAGE_ALIGN(end);
2551
2552 if (flags & PAGE_WRITE) {
2553 flags |= PAGE_WRITE_ORG;
2554 }
2555
2556 for (addr = start, len = end - start;
2557 len != 0;
2558 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2559 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2560
2561 /* If the write protection bit is set, then we invalidate
2562 the code inside. */
2563 if (!(p->flags & PAGE_WRITE) &&
2564 (flags & PAGE_WRITE) &&
2565 p->first_tb) {
2566 tb_invalidate_phys_page(addr, 0);
2567 }
2568 p->flags = flags;
2569 }
2570 }
2571
page_check_range(target_ulong start,target_ulong len,int flags)2572 int page_check_range(target_ulong start, target_ulong len, int flags)
2573 {
2574 PageDesc *p;
2575 target_ulong end;
2576 target_ulong addr;
2577
2578 /* This function should never be called with addresses outside the
2579 guest address space. If this assert fires, it probably indicates
2580 a missing call to h2g_valid. */
2581 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2582 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2583 #endif
2584
2585 if (len == 0) {
2586 return 0;
2587 }
2588 if (start + len - 1 < start) {
2589 /* We've wrapped around. */
2590 return -1;
2591 }
2592
2593 /* must do before we loose bits in the next step */
2594 end = TARGET_PAGE_ALIGN(start + len);
2595 start = start & TARGET_PAGE_MASK;
2596
2597 for (addr = start, len = end - start;
2598 len != 0;
2599 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2600 p = page_find(addr >> TARGET_PAGE_BITS);
2601 if (!p) {
2602 return -1;
2603 }
2604 if (!(p->flags & PAGE_VALID)) {
2605 return -1;
2606 }
2607
2608 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
2609 return -1;
2610 }
2611 if (flags & PAGE_WRITE) {
2612 if (!(p->flags & PAGE_WRITE_ORG)) {
2613 return -1;
2614 }
2615 /* unprotect the page if it was put read-only because it
2616 contains translated code */
2617 if (!(p->flags & PAGE_WRITE)) {
2618 if (!page_unprotect(addr, 0)) {
2619 return -1;
2620 }
2621 }
2622 }
2623 }
2624 return 0;
2625 }
2626
2627 /* called from signal handler: invalidate the code and unprotect the
2628 * page. Return 0 if the fault was not handled, 1 if it was handled,
2629 * and 2 if it was handled but the caller must cause the TB to be
2630 * immediately exited. (We can only return 2 if the 'pc' argument is
2631 * non-zero.)
2632 */
page_unprotect(target_ulong address,uintptr_t pc)2633 int page_unprotect(target_ulong address, uintptr_t pc)
2634 {
2635 unsigned int prot;
2636 bool current_tb_invalidated;
2637 PageDesc *p;
2638 target_ulong host_start, host_end, addr;
2639
2640 /* Technically this isn't safe inside a signal handler. However we
2641 know this only ever happens in a synchronous SEGV handler, so in
2642 practice it seems to be ok. */
2643 mmap_lock();
2644
2645 p = page_find(address >> TARGET_PAGE_BITS);
2646 if (!p) {
2647 mmap_unlock();
2648 return 0;
2649 }
2650
2651 /* if the page was really writable, then we change its
2652 protection back to writable */
2653 if (p->flags & PAGE_WRITE_ORG) {
2654 current_tb_invalidated = false;
2655 if (p->flags & PAGE_WRITE) {
2656 /* If the page is actually marked WRITE then assume this is because
2657 * this thread raced with another one which got here first and
2658 * set the page to PAGE_WRITE and did the TB invalidate for us.
2659 */
2660 #ifdef TARGET_HAS_PRECISE_SMC
2661 TranslationBlock *current_tb = tcg_tb_lookup(pc);
2662 if (current_tb) {
2663 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
2664 }
2665 #endif
2666 } else {
2667 host_start = address & qemu_host_page_mask;
2668 host_end = host_start + qemu_host_page_size;
2669
2670 prot = 0;
2671 for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) {
2672 p = page_find(addr >> TARGET_PAGE_BITS);
2673 p->flags |= PAGE_WRITE;
2674 prot |= p->flags;
2675
2676 /* and since the content will be modified, we must invalidate
2677 the corresponding translated code. */
2678 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
2679 #ifdef CONFIG_USER_ONLY
2680 if (DEBUG_TB_CHECK_GATE) {
2681 tb_invalidate_check(addr);
2682 }
2683 #endif
2684 }
2685 mprotect((void *)g2h(host_start), qemu_host_page_size,
2686 prot & PAGE_BITS);
2687 }
2688 mmap_unlock();
2689 /* If current TB was invalidated return to main loop */
2690 return current_tb_invalidated ? 2 : 1;
2691 }
2692 mmap_unlock();
2693 return 0;
2694 }
2695 #endif /* CONFIG_USER_ONLY */
2696
2697 /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
tcg_flush_softmmu_tlb(CPUState * cs)2698 void tcg_flush_softmmu_tlb(CPUState *cs)
2699 {
2700 #ifdef CONFIG_SOFTMMU
2701 tlb_flush(cs);
2702 #endif
2703 }
2704