1 /*
2  * QEMU KVM support
3  *
4  * Copyright (C) 2006-2008 Qumranet Technologies
5  * Copyright IBM, Corp. 2008
6  *
7  * Authors:
8  *  Anthony Liguori   <aliguori@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or later.
11  * See the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
19 
20 #include <linux/kvm.h>
21 #include "standard-headers/asm-x86/kvm_para.h"
22 
23 #include "cpu.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/hw_accel.h"
26 #include "sysemu/kvm_int.h"
27 #include "sysemu/reset.h"
28 #include "sysemu/runstate.h"
29 #include "kvm_i386.h"
30 #include "hyperv.h"
31 #include "hyperv-proto.h"
32 
33 #include "exec/gdbstub.h"
34 #include "qemu/host-utils.h"
35 #include "qemu/main-loop.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #include "hw/i386/x86.h"
39 #include "hw/i386/apic.h"
40 #include "hw/i386/apic_internal.h"
41 #include "hw/i386/apic-msidef.h"
42 #include "hw/i386/intel_iommu.h"
43 #include "hw/i386/x86-iommu.h"
44 #include "hw/i386/e820_memory_layout.h"
45 
46 #include "hw/pci/pci.h"
47 #include "hw/pci/msi.h"
48 #include "hw/pci/msix.h"
49 #include "migration/blocker.h"
50 #include "exec/memattrs.h"
51 #include "trace.h"
52 
53 //#define DEBUG_KVM
54 
55 #ifdef DEBUG_KVM
56 #define DPRINTF(fmt, ...) \
57     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
58 #else
59 #define DPRINTF(fmt, ...) \
60     do { } while (0)
61 #endif
62 
63 #define MSR_KVM_WALL_CLOCK  0x11
64 #define MSR_KVM_SYSTEM_TIME 0x12
65 
66 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
67  * 255 kvm_msr_entry structs */
68 #define MSR_BUF_SIZE 4096
69 
70 static void kvm_init_msrs(X86CPU *cpu);
71 
72 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
73     KVM_CAP_INFO(SET_TSS_ADDR),
74     KVM_CAP_INFO(EXT_CPUID),
75     KVM_CAP_INFO(MP_STATE),
76     KVM_CAP_LAST_INFO
77 };
78 
79 static bool has_msr_star;
80 static bool has_msr_hsave_pa;
81 static bool has_msr_tsc_aux;
82 static bool has_msr_tsc_adjust;
83 static bool has_msr_tsc_deadline;
84 static bool has_msr_feature_control;
85 static bool has_msr_misc_enable;
86 static bool has_msr_smbase;
87 static bool has_msr_bndcfgs;
88 static int lm_capable_kernel;
89 static bool has_msr_hv_hypercall;
90 static bool has_msr_hv_crash;
91 static bool has_msr_hv_reset;
92 static bool has_msr_hv_vpindex;
93 static bool hv_vpindex_settable;
94 static bool has_msr_hv_runtime;
95 static bool has_msr_hv_synic;
96 static bool has_msr_hv_stimer;
97 static bool has_msr_hv_frequencies;
98 static bool has_msr_hv_reenlightenment;
99 static bool has_msr_xss;
100 static bool has_msr_umwait;
101 static bool has_msr_spec_ctrl;
102 static bool has_msr_tsx_ctrl;
103 static bool has_msr_virt_ssbd;
104 static bool has_msr_smi_count;
105 static bool has_msr_arch_capabs;
106 static bool has_msr_core_capabs;
107 static bool has_msr_vmx_vmfunc;
108 static bool has_msr_ucode_rev;
109 static bool has_msr_vmx_procbased_ctls2;
110 
111 static uint32_t has_architectural_pmu_version;
112 static uint32_t num_architectural_pmu_gp_counters;
113 static uint32_t num_architectural_pmu_fixed_counters;
114 
115 static int has_xsave;
116 static int has_xcrs;
117 static int has_pit_state2;
118 static int has_exception_payload;
119 
120 static bool has_msr_mcg_ext_ctl;
121 
122 static struct kvm_cpuid2 *cpuid_cache;
123 static struct kvm_msr_list *kvm_feature_msrs;
124 
kvm_has_pit_state2(void)125 int kvm_has_pit_state2(void)
126 {
127     return has_pit_state2;
128 }
129 
kvm_has_smm(void)130 bool kvm_has_smm(void)
131 {
132     return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
133 }
134 
kvm_has_adjust_clock_stable(void)135 bool kvm_has_adjust_clock_stable(void)
136 {
137     int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
138 
139     return (ret == KVM_CLOCK_TSC_STABLE);
140 }
141 
kvm_has_exception_payload(void)142 bool kvm_has_exception_payload(void)
143 {
144     return has_exception_payload;
145 }
146 
kvm_allows_irq0_override(void)147 bool kvm_allows_irq0_override(void)
148 {
149     return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
150 }
151 
kvm_x2apic_api_set_flags(uint64_t flags)152 static bool kvm_x2apic_api_set_flags(uint64_t flags)
153 {
154     KVMState *s = KVM_STATE(current_accel());
155 
156     return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
157 }
158 
159 #define MEMORIZE(fn, _result) \
160     ({ \
161         static bool _memorized; \
162         \
163         if (_memorized) { \
164             return _result; \
165         } \
166         _memorized = true; \
167         _result = fn; \
168     })
169 
170 static bool has_x2apic_api;
171 
kvm_has_x2apic_api(void)172 bool kvm_has_x2apic_api(void)
173 {
174     return has_x2apic_api;
175 }
176 
kvm_enable_x2apic(void)177 bool kvm_enable_x2apic(void)
178 {
179     return MEMORIZE(
180              kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
181                                       KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
182              has_x2apic_api);
183 }
184 
kvm_hv_vpindex_settable(void)185 bool kvm_hv_vpindex_settable(void)
186 {
187     return hv_vpindex_settable;
188 }
189 
kvm_get_tsc(CPUState * cs)190 static int kvm_get_tsc(CPUState *cs)
191 {
192     X86CPU *cpu = X86_CPU(cs);
193     CPUX86State *env = &cpu->env;
194     struct {
195         struct kvm_msrs info;
196         struct kvm_msr_entry entries[1];
197     } msr_data = {};
198     int ret;
199 
200     if (env->tsc_valid) {
201         return 0;
202     }
203 
204     memset(&msr_data, 0, sizeof(msr_data));
205     msr_data.info.nmsrs = 1;
206     msr_data.entries[0].index = MSR_IA32_TSC;
207     env->tsc_valid = !runstate_is_running();
208 
209     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
210     if (ret < 0) {
211         return ret;
212     }
213 
214     assert(ret == 1);
215     env->tsc = msr_data.entries[0].data;
216     return 0;
217 }
218 
do_kvm_synchronize_tsc(CPUState * cpu,run_on_cpu_data arg)219 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
220 {
221     kvm_get_tsc(cpu);
222 }
223 
kvm_synchronize_all_tsc(void)224 void kvm_synchronize_all_tsc(void)
225 {
226     CPUState *cpu;
227 
228     if (kvm_enabled()) {
229         CPU_FOREACH(cpu) {
230             run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
231         }
232     }
233 }
234 
try_get_cpuid(KVMState * s,int max)235 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
236 {
237     struct kvm_cpuid2 *cpuid;
238     int r, size;
239 
240     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
241     cpuid = g_malloc0(size);
242     cpuid->nent = max;
243     r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
244     if (r == 0 && cpuid->nent >= max) {
245         r = -E2BIG;
246     }
247     if (r < 0) {
248         if (r == -E2BIG) {
249             g_free(cpuid);
250             return NULL;
251         } else {
252             fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
253                     strerror(-r));
254             exit(1);
255         }
256     }
257     return cpuid;
258 }
259 
260 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
261  * for all entries.
262  */
get_supported_cpuid(KVMState * s)263 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
264 {
265     struct kvm_cpuid2 *cpuid;
266     int max = 1;
267 
268     if (cpuid_cache != NULL) {
269         return cpuid_cache;
270     }
271     while ((cpuid = try_get_cpuid(s, max)) == NULL) {
272         max *= 2;
273     }
274     cpuid_cache = cpuid;
275     return cpuid;
276 }
277 
278 static const struct kvm_para_features {
279     int cap;
280     int feature;
281 } para_features[] = {
282     { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
283     { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
284     { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
285     { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
286 };
287 
get_para_features(KVMState * s)288 static int get_para_features(KVMState *s)
289 {
290     int i, features = 0;
291 
292     for (i = 0; i < ARRAY_SIZE(para_features); i++) {
293         if (kvm_check_extension(s, para_features[i].cap)) {
294             features |= (1 << para_features[i].feature);
295         }
296     }
297 
298     return features;
299 }
300 
host_tsx_blacklisted(void)301 static bool host_tsx_blacklisted(void)
302 {
303     int family, model, stepping;\
304     char vendor[CPUID_VENDOR_SZ + 1];
305 
306     host_vendor_fms(vendor, &family, &model, &stepping);
307 
308     /* Check if we are running on a Haswell host known to have broken TSX */
309     return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
310            (family == 6) &&
311            ((model == 63 && stepping < 4) ||
312             model == 60 || model == 69 || model == 70);
313 }
314 
315 /* Returns the value for a specific register on the cpuid entry
316  */
cpuid_entry_get_reg(struct kvm_cpuid_entry2 * entry,int reg)317 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
318 {
319     uint32_t ret = 0;
320     switch (reg) {
321     case R_EAX:
322         ret = entry->eax;
323         break;
324     case R_EBX:
325         ret = entry->ebx;
326         break;
327     case R_ECX:
328         ret = entry->ecx;
329         break;
330     case R_EDX:
331         ret = entry->edx;
332         break;
333     }
334     return ret;
335 }
336 
337 /* Find matching entry for function/index on kvm_cpuid2 struct
338  */
cpuid_find_entry(struct kvm_cpuid2 * cpuid,uint32_t function,uint32_t index)339 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
340                                                  uint32_t function,
341                                                  uint32_t index)
342 {
343     int i;
344     for (i = 0; i < cpuid->nent; ++i) {
345         if (cpuid->entries[i].function == function &&
346             cpuid->entries[i].index == index) {
347             return &cpuid->entries[i];
348         }
349     }
350     /* not found: */
351     return NULL;
352 }
353 
kvm_arch_get_supported_cpuid(KVMState * s,uint32_t function,uint32_t index,int reg)354 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
355                                       uint32_t index, int reg)
356 {
357     struct kvm_cpuid2 *cpuid;
358     uint32_t ret = 0;
359     uint32_t cpuid_1_edx;
360     bool found = false;
361 
362     cpuid = get_supported_cpuid(s);
363 
364     struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
365     if (entry) {
366         found = true;
367         ret = cpuid_entry_get_reg(entry, reg);
368     }
369 
370     /* Fixups for the data returned by KVM, below */
371 
372     if (function == 1 && reg == R_EDX) {
373         /* KVM before 2.6.30 misreports the following features */
374         ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
375     } else if (function == 1 && reg == R_ECX) {
376         /* We can set the hypervisor flag, even if KVM does not return it on
377          * GET_SUPPORTED_CPUID
378          */
379         ret |= CPUID_EXT_HYPERVISOR;
380         /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
381          * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
382          * and the irqchip is in the kernel.
383          */
384         if (kvm_irqchip_in_kernel() &&
385                 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
386             ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
387         }
388 
389         /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
390          * without the in-kernel irqchip
391          */
392         if (!kvm_irqchip_in_kernel()) {
393             ret &= ~CPUID_EXT_X2APIC;
394         }
395 
396         if (enable_cpu_pm) {
397             int disable_exits = kvm_check_extension(s,
398                                                     KVM_CAP_X86_DISABLE_EXITS);
399 
400             if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
401                 ret |= CPUID_EXT_MONITOR;
402             }
403         }
404     } else if (function == 6 && reg == R_EAX) {
405         ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
406     } else if (function == 7 && index == 0 && reg == R_EBX) {
407         if (host_tsx_blacklisted()) {
408             ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
409         }
410     } else if (function == 7 && index == 0 && reg == R_EDX) {
411         /*
412          * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
413          * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
414          * returned by KVM_GET_MSR_INDEX_LIST.
415          */
416         if (!has_msr_arch_capabs) {
417             ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
418         }
419     } else if (function == 0x80000001 && reg == R_ECX) {
420         /*
421          * It's safe to enable TOPOEXT even if it's not returned by
422          * GET_SUPPORTED_CPUID.  Unconditionally enabling TOPOEXT here allows
423          * us to keep CPU models including TOPOEXT runnable on older kernels.
424          */
425         ret |= CPUID_EXT3_TOPOEXT;
426     } else if (function == 0x80000001 && reg == R_EDX) {
427         /* On Intel, kvm returns cpuid according to the Intel spec,
428          * so add missing bits according to the AMD spec:
429          */
430         cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
431         ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
432     } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
433         /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
434          * be enabled without the in-kernel irqchip
435          */
436         if (!kvm_irqchip_in_kernel()) {
437             ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
438         }
439     } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
440         ret |= 1U << KVM_HINTS_REALTIME;
441         found = 1;
442     }
443 
444     /* fallback for older kernels */
445     if ((function == KVM_CPUID_FEATURES) && !found) {
446         ret = get_para_features(s);
447     }
448 
449     return ret;
450 }
451 
kvm_arch_get_supported_msr_feature(KVMState * s,uint32_t index)452 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
453 {
454     struct {
455         struct kvm_msrs info;
456         struct kvm_msr_entry entries[1];
457     } msr_data = {};
458     uint64_t value;
459     uint32_t ret, can_be_one, must_be_one;
460 
461     if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
462         return 0;
463     }
464 
465     /* Check if requested MSR is supported feature MSR */
466     int i;
467     for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
468         if (kvm_feature_msrs->indices[i] == index) {
469             break;
470         }
471     if (i == kvm_feature_msrs->nmsrs) {
472         return 0; /* if the feature MSR is not supported, simply return 0 */
473     }
474 
475     msr_data.info.nmsrs = 1;
476     msr_data.entries[0].index = index;
477 
478     ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
479     if (ret != 1) {
480         error_report("KVM get MSR (index=0x%x) feature failed, %s",
481             index, strerror(-ret));
482         exit(1);
483     }
484 
485     value = msr_data.entries[0].data;
486     switch (index) {
487     case MSR_IA32_VMX_PROCBASED_CTLS2:
488         if (!has_msr_vmx_procbased_ctls2) {
489             /* KVM forgot to add these bits for some time, do this ourselves. */
490             if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
491                 CPUID_XSAVE_XSAVES) {
492                 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
493             }
494             if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
495                 CPUID_EXT_RDRAND) {
496                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
497             }
498             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
499                 CPUID_7_0_EBX_INVPCID) {
500                 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
501             }
502             if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
503                 CPUID_7_0_EBX_RDSEED) {
504                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
505             }
506             if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
507                 CPUID_EXT2_RDTSCP) {
508                 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
509             }
510         }
511         /* fall through */
512     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
513     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
514     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
515     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
516         /*
517          * Return true for bits that can be one, but do not have to be one.
518          * The SDM tells us which bits could have a "must be one" setting,
519          * so we can do the opposite transformation in make_vmx_msr_value.
520          */
521         must_be_one = (uint32_t)value;
522         can_be_one = (uint32_t)(value >> 32);
523         return can_be_one & ~must_be_one;
524 
525     default:
526         return value;
527     }
528 }
529 
530 
531 typedef struct HWPoisonPage {
532     ram_addr_t ram_addr;
533     QLIST_ENTRY(HWPoisonPage) list;
534 } HWPoisonPage;
535 
536 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
537     QLIST_HEAD_INITIALIZER(hwpoison_page_list);
538 
kvm_unpoison_all(void * param)539 static void kvm_unpoison_all(void *param)
540 {
541     HWPoisonPage *page, *next_page;
542 
543     QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
544         QLIST_REMOVE(page, list);
545         qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
546         g_free(page);
547     }
548 }
549 
kvm_hwpoison_page_add(ram_addr_t ram_addr)550 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
551 {
552     HWPoisonPage *page;
553 
554     QLIST_FOREACH(page, &hwpoison_page_list, list) {
555         if (page->ram_addr == ram_addr) {
556             return;
557         }
558     }
559     page = g_new(HWPoisonPage, 1);
560     page->ram_addr = ram_addr;
561     QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
562 }
563 
kvm_get_mce_cap_supported(KVMState * s,uint64_t * mce_cap,int * max_banks)564 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
565                                      int *max_banks)
566 {
567     int r;
568 
569     r = kvm_check_extension(s, KVM_CAP_MCE);
570     if (r > 0) {
571         *max_banks = r;
572         return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
573     }
574     return -ENOSYS;
575 }
576 
kvm_mce_inject(X86CPU * cpu,hwaddr paddr,int code)577 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
578 {
579     CPUState *cs = CPU(cpu);
580     CPUX86State *env = &cpu->env;
581     uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
582                       MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
583     uint64_t mcg_status = MCG_STATUS_MCIP;
584     int flags = 0;
585 
586     if (code == BUS_MCEERR_AR) {
587         status |= MCI_STATUS_AR | 0x134;
588         mcg_status |= MCG_STATUS_EIPV;
589     } else {
590         status |= 0xc0;
591         mcg_status |= MCG_STATUS_RIPV;
592     }
593 
594     flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
595     /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
596      * guest kernel back into env->mcg_ext_ctl.
597      */
598     cpu_synchronize_state(cs);
599     if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
600         mcg_status |= MCG_STATUS_LMCE;
601         flags = 0;
602     }
603 
604     cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
605                        (MCM_ADDR_PHYS << 6) | 0xc, flags);
606 }
607 
hardware_memory_error(void * host_addr)608 static void hardware_memory_error(void *host_addr)
609 {
610     error_report("QEMU got Hardware memory error at addr %p", host_addr);
611     exit(1);
612 }
613 
kvm_arch_on_sigbus_vcpu(CPUState * c,int code,void * addr)614 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
615 {
616     X86CPU *cpu = X86_CPU(c);
617     CPUX86State *env = &cpu->env;
618     ram_addr_t ram_addr;
619     hwaddr paddr;
620 
621     /* If we get an action required MCE, it has been injected by KVM
622      * while the VM was running.  An action optional MCE instead should
623      * be coming from the main thread, which qemu_init_sigbus identifies
624      * as the "early kill" thread.
625      */
626     assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
627 
628     if ((env->mcg_cap & MCG_SER_P) && addr) {
629         ram_addr = qemu_ram_addr_from_host(addr);
630         if (ram_addr != RAM_ADDR_INVALID &&
631             kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
632             kvm_hwpoison_page_add(ram_addr);
633             kvm_mce_inject(cpu, paddr, code);
634 
635             /*
636              * Use different logging severity based on error type.
637              * If there is additional MCE reporting on the hypervisor, QEMU VA
638              * could be another source to identify the PA and MCE details.
639              */
640             if (code == BUS_MCEERR_AR) {
641                 error_report("Guest MCE Memory Error at QEMU addr %p and "
642                     "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
643                     addr, paddr, "BUS_MCEERR_AR");
644             } else {
645                  warn_report("Guest MCE Memory Error at QEMU addr %p and "
646                      "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
647                      addr, paddr, "BUS_MCEERR_AO");
648             }
649 
650             return;
651         }
652 
653         if (code == BUS_MCEERR_AO) {
654             warn_report("Hardware memory error at addr %p of type %s "
655                 "for memory used by QEMU itself instead of guest system!",
656                  addr, "BUS_MCEERR_AO");
657         }
658     }
659 
660     if (code == BUS_MCEERR_AR) {
661         hardware_memory_error(addr);
662     }
663 
664     /* Hope we are lucky for AO MCE */
665 }
666 
kvm_reset_exception(CPUX86State * env)667 static void kvm_reset_exception(CPUX86State *env)
668 {
669     env->exception_nr = -1;
670     env->exception_pending = 0;
671     env->exception_injected = 0;
672     env->exception_has_payload = false;
673     env->exception_payload = 0;
674 }
675 
kvm_queue_exception(CPUX86State * env,int32_t exception_nr,uint8_t exception_has_payload,uint64_t exception_payload)676 static void kvm_queue_exception(CPUX86State *env,
677                                 int32_t exception_nr,
678                                 uint8_t exception_has_payload,
679                                 uint64_t exception_payload)
680 {
681     assert(env->exception_nr == -1);
682     assert(!env->exception_pending);
683     assert(!env->exception_injected);
684     assert(!env->exception_has_payload);
685 
686     env->exception_nr = exception_nr;
687 
688     if (has_exception_payload) {
689         env->exception_pending = 1;
690 
691         env->exception_has_payload = exception_has_payload;
692         env->exception_payload = exception_payload;
693     } else {
694         env->exception_injected = 1;
695 
696         if (exception_nr == EXCP01_DB) {
697             assert(exception_has_payload);
698             env->dr[6] = exception_payload;
699         } else if (exception_nr == EXCP0E_PAGE) {
700             assert(exception_has_payload);
701             env->cr[2] = exception_payload;
702         } else {
703             assert(!exception_has_payload);
704         }
705     }
706 }
707 
kvm_inject_mce_oldstyle(X86CPU * cpu)708 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
709 {
710     CPUX86State *env = &cpu->env;
711 
712     if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
713         unsigned int bank, bank_num = env->mcg_cap & 0xff;
714         struct kvm_x86_mce mce;
715 
716         kvm_reset_exception(env);
717 
718         /*
719          * There must be at least one bank in use if an MCE is pending.
720          * Find it and use its values for the event injection.
721          */
722         for (bank = 0; bank < bank_num; bank++) {
723             if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
724                 break;
725             }
726         }
727         assert(bank < bank_num);
728 
729         mce.bank = bank;
730         mce.status = env->mce_banks[bank * 4 + 1];
731         mce.mcg_status = env->mcg_status;
732         mce.addr = env->mce_banks[bank * 4 + 2];
733         mce.misc = env->mce_banks[bank * 4 + 3];
734 
735         return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
736     }
737     return 0;
738 }
739 
cpu_update_state(void * opaque,int running,RunState state)740 static void cpu_update_state(void *opaque, int running, RunState state)
741 {
742     CPUX86State *env = opaque;
743 
744     if (running) {
745         env->tsc_valid = false;
746     }
747 }
748 
kvm_arch_vcpu_id(CPUState * cs)749 unsigned long kvm_arch_vcpu_id(CPUState *cs)
750 {
751     X86CPU *cpu = X86_CPU(cs);
752     return cpu->apic_id;
753 }
754 
755 #ifndef KVM_CPUID_SIGNATURE_NEXT
756 #define KVM_CPUID_SIGNATURE_NEXT                0x40000100
757 #endif
758 
hyperv_enabled(X86CPU * cpu)759 static bool hyperv_enabled(X86CPU *cpu)
760 {
761     CPUState *cs = CPU(cpu);
762     return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
763         ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) ||
764          cpu->hyperv_features || cpu->hyperv_passthrough);
765 }
766 
kvm_arch_set_tsc_khz(CPUState * cs)767 static int kvm_arch_set_tsc_khz(CPUState *cs)
768 {
769     X86CPU *cpu = X86_CPU(cs);
770     CPUX86State *env = &cpu->env;
771     int r;
772 
773     if (!env->tsc_khz) {
774         return 0;
775     }
776 
777     r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ?
778         kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
779         -ENOTSUP;
780     if (r < 0) {
781         /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
782          * TSC frequency doesn't match the one we want.
783          */
784         int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
785                        kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
786                        -ENOTSUP;
787         if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
788             warn_report("TSC frequency mismatch between "
789                         "VM (%" PRId64 " kHz) and host (%d kHz), "
790                         "and TSC scaling unavailable",
791                         env->tsc_khz, cur_freq);
792             return r;
793         }
794     }
795 
796     return 0;
797 }
798 
tsc_is_stable_and_known(CPUX86State * env)799 static bool tsc_is_stable_and_known(CPUX86State *env)
800 {
801     if (!env->tsc_khz) {
802         return false;
803     }
804     return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
805         || env->user_tsc_khz;
806 }
807 
808 static struct {
809     const char *desc;
810     struct {
811         uint32_t fw;
812         uint32_t bits;
813     } flags[2];
814     uint64_t dependencies;
815 } kvm_hyperv_properties[] = {
816     [HYPERV_FEAT_RELAXED] = {
817         .desc = "relaxed timing (hv-relaxed)",
818         .flags = {
819             {.fw = FEAT_HYPERV_EAX,
820              .bits = HV_HYPERCALL_AVAILABLE},
821             {.fw = FEAT_HV_RECOMM_EAX,
822              .bits = HV_RELAXED_TIMING_RECOMMENDED}
823         }
824     },
825     [HYPERV_FEAT_VAPIC] = {
826         .desc = "virtual APIC (hv-vapic)",
827         .flags = {
828             {.fw = FEAT_HYPERV_EAX,
829              .bits = HV_HYPERCALL_AVAILABLE | HV_APIC_ACCESS_AVAILABLE},
830             {.fw = FEAT_HV_RECOMM_EAX,
831              .bits = HV_APIC_ACCESS_RECOMMENDED}
832         }
833     },
834     [HYPERV_FEAT_TIME] = {
835         .desc = "clocksources (hv-time)",
836         .flags = {
837             {.fw = FEAT_HYPERV_EAX,
838              .bits = HV_HYPERCALL_AVAILABLE | HV_TIME_REF_COUNT_AVAILABLE |
839              HV_REFERENCE_TSC_AVAILABLE}
840         }
841     },
842     [HYPERV_FEAT_CRASH] = {
843         .desc = "crash MSRs (hv-crash)",
844         .flags = {
845             {.fw = FEAT_HYPERV_EDX,
846              .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
847         }
848     },
849     [HYPERV_FEAT_RESET] = {
850         .desc = "reset MSR (hv-reset)",
851         .flags = {
852             {.fw = FEAT_HYPERV_EAX,
853              .bits = HV_RESET_AVAILABLE}
854         }
855     },
856     [HYPERV_FEAT_VPINDEX] = {
857         .desc = "VP_INDEX MSR (hv-vpindex)",
858         .flags = {
859             {.fw = FEAT_HYPERV_EAX,
860              .bits = HV_VP_INDEX_AVAILABLE}
861         }
862     },
863     [HYPERV_FEAT_RUNTIME] = {
864         .desc = "VP_RUNTIME MSR (hv-runtime)",
865         .flags = {
866             {.fw = FEAT_HYPERV_EAX,
867              .bits = HV_VP_RUNTIME_AVAILABLE}
868         }
869     },
870     [HYPERV_FEAT_SYNIC] = {
871         .desc = "synthetic interrupt controller (hv-synic)",
872         .flags = {
873             {.fw = FEAT_HYPERV_EAX,
874              .bits = HV_SYNIC_AVAILABLE}
875         }
876     },
877     [HYPERV_FEAT_STIMER] = {
878         .desc = "synthetic timers (hv-stimer)",
879         .flags = {
880             {.fw = FEAT_HYPERV_EAX,
881              .bits = HV_SYNTIMERS_AVAILABLE}
882         },
883         .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
884     },
885     [HYPERV_FEAT_FREQUENCIES] = {
886         .desc = "frequency MSRs (hv-frequencies)",
887         .flags = {
888             {.fw = FEAT_HYPERV_EAX,
889              .bits = HV_ACCESS_FREQUENCY_MSRS},
890             {.fw = FEAT_HYPERV_EDX,
891              .bits = HV_FREQUENCY_MSRS_AVAILABLE}
892         }
893     },
894     [HYPERV_FEAT_REENLIGHTENMENT] = {
895         .desc = "reenlightenment MSRs (hv-reenlightenment)",
896         .flags = {
897             {.fw = FEAT_HYPERV_EAX,
898              .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
899         }
900     },
901     [HYPERV_FEAT_TLBFLUSH] = {
902         .desc = "paravirtualized TLB flush (hv-tlbflush)",
903         .flags = {
904             {.fw = FEAT_HV_RECOMM_EAX,
905              .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
906              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
907         },
908         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
909     },
910     [HYPERV_FEAT_EVMCS] = {
911         .desc = "enlightened VMCS (hv-evmcs)",
912         .flags = {
913             {.fw = FEAT_HV_RECOMM_EAX,
914              .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
915         },
916         .dependencies = BIT(HYPERV_FEAT_VAPIC)
917     },
918     [HYPERV_FEAT_IPI] = {
919         .desc = "paravirtualized IPI (hv-ipi)",
920         .flags = {
921             {.fw = FEAT_HV_RECOMM_EAX,
922              .bits = HV_CLUSTER_IPI_RECOMMENDED |
923              HV_EX_PROCESSOR_MASKS_RECOMMENDED}
924         },
925         .dependencies = BIT(HYPERV_FEAT_VPINDEX)
926     },
927     [HYPERV_FEAT_STIMER_DIRECT] = {
928         .desc = "direct mode synthetic timers (hv-stimer-direct)",
929         .flags = {
930             {.fw = FEAT_HYPERV_EDX,
931              .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
932         },
933         .dependencies = BIT(HYPERV_FEAT_STIMER)
934     },
935 };
936 
try_get_hv_cpuid(CPUState * cs,int max)937 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max)
938 {
939     struct kvm_cpuid2 *cpuid;
940     int r, size;
941 
942     size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
943     cpuid = g_malloc0(size);
944     cpuid->nent = max;
945 
946     r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
947     if (r == 0 && cpuid->nent >= max) {
948         r = -E2BIG;
949     }
950     if (r < 0) {
951         if (r == -E2BIG) {
952             g_free(cpuid);
953             return NULL;
954         } else {
955             fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
956                     strerror(-r));
957             exit(1);
958         }
959     }
960     return cpuid;
961 }
962 
963 /*
964  * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
965  * for all entries.
966  */
get_supported_hv_cpuid(CPUState * cs)967 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
968 {
969     struct kvm_cpuid2 *cpuid;
970     int max = 7; /* 0x40000000..0x40000005, 0x4000000A */
971 
972     /*
973      * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
974      * -E2BIG, however, it doesn't report back the right size. Keep increasing
975      * it and re-trying until we succeed.
976      */
977     while ((cpuid = try_get_hv_cpuid(cs, max)) == NULL) {
978         max++;
979     }
980     return cpuid;
981 }
982 
983 /*
984  * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
985  * leaves from KVM_CAP_HYPERV* and present MSRs data.
986  */
get_supported_hv_cpuid_legacy(CPUState * cs)987 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
988 {
989     X86CPU *cpu = X86_CPU(cs);
990     struct kvm_cpuid2 *cpuid;
991     struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
992 
993     /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
994     cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
995     cpuid->nent = 2;
996 
997     /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
998     entry_feat = &cpuid->entries[0];
999     entry_feat->function = HV_CPUID_FEATURES;
1000 
1001     entry_recomm = &cpuid->entries[1];
1002     entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
1003     entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
1004 
1005     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
1006         entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
1007         entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
1008         entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1009         entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1010         entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1011     }
1012 
1013     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1014         entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1015         entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1016     }
1017 
1018     if (has_msr_hv_frequencies) {
1019         entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1020         entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1021     }
1022 
1023     if (has_msr_hv_crash) {
1024         entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1025     }
1026 
1027     if (has_msr_hv_reenlightenment) {
1028         entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1029     }
1030 
1031     if (has_msr_hv_reset) {
1032         entry_feat->eax |= HV_RESET_AVAILABLE;
1033     }
1034 
1035     if (has_msr_hv_vpindex) {
1036         entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1037     }
1038 
1039     if (has_msr_hv_runtime) {
1040         entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1041     }
1042 
1043     if (has_msr_hv_synic) {
1044         unsigned int cap = cpu->hyperv_synic_kvm_only ?
1045             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1046 
1047         if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1048             entry_feat->eax |= HV_SYNIC_AVAILABLE;
1049         }
1050     }
1051 
1052     if (has_msr_hv_stimer) {
1053         entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1054     }
1055 
1056     if (kvm_check_extension(cs->kvm_state,
1057                             KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1058         entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1059         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1060     }
1061 
1062     if (kvm_check_extension(cs->kvm_state,
1063                             KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1064         entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1065     }
1066 
1067     if (kvm_check_extension(cs->kvm_state,
1068                             KVM_CAP_HYPERV_SEND_IPI) > 0) {
1069         entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1070         entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1071     }
1072 
1073     return cpuid;
1074 }
1075 
hv_cpuid_get_fw(struct kvm_cpuid2 * cpuid,int fw,uint32_t * r)1076 static int hv_cpuid_get_fw(struct kvm_cpuid2 *cpuid, int fw, uint32_t *r)
1077 {
1078     struct kvm_cpuid_entry2 *entry;
1079     uint32_t func;
1080     int reg;
1081 
1082     switch (fw) {
1083     case FEAT_HYPERV_EAX:
1084         reg = R_EAX;
1085         func = HV_CPUID_FEATURES;
1086         break;
1087     case FEAT_HYPERV_EDX:
1088         reg = R_EDX;
1089         func = HV_CPUID_FEATURES;
1090         break;
1091     case FEAT_HV_RECOMM_EAX:
1092         reg = R_EAX;
1093         func = HV_CPUID_ENLIGHTMENT_INFO;
1094         break;
1095     default:
1096         return -EINVAL;
1097     }
1098 
1099     entry = cpuid_find_entry(cpuid, func, 0);
1100     if (!entry) {
1101         return -ENOENT;
1102     }
1103 
1104     switch (reg) {
1105     case R_EAX:
1106         *r = entry->eax;
1107         break;
1108     case R_EDX:
1109         *r = entry->edx;
1110         break;
1111     default:
1112         return -EINVAL;
1113     }
1114 
1115     return 0;
1116 }
1117 
hv_cpuid_check_and_set(CPUState * cs,struct kvm_cpuid2 * cpuid,int feature)1118 static int hv_cpuid_check_and_set(CPUState *cs, struct kvm_cpuid2 *cpuid,
1119                                   int feature)
1120 {
1121     X86CPU *cpu = X86_CPU(cs);
1122     CPUX86State *env = &cpu->env;
1123     uint32_t r, fw, bits;
1124     uint64_t deps;
1125     int i, dep_feat;
1126 
1127     if (!hyperv_feat_enabled(cpu, feature) && !cpu->hyperv_passthrough) {
1128         return 0;
1129     }
1130 
1131     deps = kvm_hyperv_properties[feature].dependencies;
1132     while (deps) {
1133         dep_feat = ctz64(deps);
1134         if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1135                 fprintf(stderr,
1136                         "Hyper-V %s requires Hyper-V %s\n",
1137                         kvm_hyperv_properties[feature].desc,
1138                         kvm_hyperv_properties[dep_feat].desc);
1139                 return 1;
1140         }
1141         deps &= ~(1ull << dep_feat);
1142     }
1143 
1144     for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1145         fw = kvm_hyperv_properties[feature].flags[i].fw;
1146         bits = kvm_hyperv_properties[feature].flags[i].bits;
1147 
1148         if (!fw) {
1149             continue;
1150         }
1151 
1152         if (hv_cpuid_get_fw(cpuid, fw, &r) || (r & bits) != bits) {
1153             if (hyperv_feat_enabled(cpu, feature)) {
1154                 fprintf(stderr,
1155                         "Hyper-V %s is not supported by kernel\n",
1156                         kvm_hyperv_properties[feature].desc);
1157                 return 1;
1158             } else {
1159                 return 0;
1160             }
1161         }
1162 
1163         env->features[fw] |= bits;
1164     }
1165 
1166     if (cpu->hyperv_passthrough) {
1167         cpu->hyperv_features |= BIT(feature);
1168     }
1169 
1170     return 0;
1171 }
1172 
1173 /*
1174  * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent in
1175  * case of success, errno < 0 in case of failure and 0 when no Hyper-V
1176  * extentions are enabled.
1177  */
hyperv_handle_properties(CPUState * cs,struct kvm_cpuid_entry2 * cpuid_ent)1178 static int hyperv_handle_properties(CPUState *cs,
1179                                     struct kvm_cpuid_entry2 *cpuid_ent)
1180 {
1181     X86CPU *cpu = X86_CPU(cs);
1182     CPUX86State *env = &cpu->env;
1183     struct kvm_cpuid2 *cpuid;
1184     struct kvm_cpuid_entry2 *c;
1185     uint32_t signature[3];
1186     uint32_t cpuid_i = 0;
1187     int r;
1188 
1189     if (!hyperv_enabled(cpu))
1190         return 0;
1191 
1192     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ||
1193         cpu->hyperv_passthrough) {
1194         uint16_t evmcs_version;
1195 
1196         r = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1197                                 (uintptr_t)&evmcs_version);
1198 
1199         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) && r) {
1200             fprintf(stderr, "Hyper-V %s is not supported by kernel\n",
1201                     kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1202             return -ENOSYS;
1203         }
1204 
1205         if (!r) {
1206             env->features[FEAT_HV_RECOMM_EAX] |=
1207                 HV_ENLIGHTENED_VMCS_RECOMMENDED;
1208             env->features[FEAT_HV_NESTED_EAX] = evmcs_version;
1209         }
1210     }
1211 
1212     if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1213         cpuid = get_supported_hv_cpuid(cs);
1214     } else {
1215         cpuid = get_supported_hv_cpuid_legacy(cs);
1216     }
1217 
1218     if (cpu->hyperv_passthrough) {
1219         memcpy(cpuid_ent, &cpuid->entries[0],
1220                cpuid->nent * sizeof(cpuid->entries[0]));
1221 
1222         c = cpuid_find_entry(cpuid, HV_CPUID_FEATURES, 0);
1223         if (c) {
1224             env->features[FEAT_HYPERV_EAX] = c->eax;
1225             env->features[FEAT_HYPERV_EBX] = c->ebx;
1226             env->features[FEAT_HYPERV_EDX] = c->eax;
1227         }
1228         c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
1229         if (c) {
1230             env->features[FEAT_HV_RECOMM_EAX] = c->eax;
1231 
1232             /* hv-spinlocks may have been overriden */
1233             if (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY) {
1234                 c->ebx = cpu->hyperv_spinlock_attempts;
1235             }
1236         }
1237         c = cpuid_find_entry(cpuid, HV_CPUID_NESTED_FEATURES, 0);
1238         if (c) {
1239             env->features[FEAT_HV_NESTED_EAX] = c->eax;
1240         }
1241     }
1242 
1243     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1244         env->features[FEAT_HV_RECOMM_EAX] |= HV_NO_NONARCH_CORESHARING;
1245     } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1246         c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
1247         if (c) {
1248             env->features[FEAT_HV_RECOMM_EAX] |=
1249                 c->eax & HV_NO_NONARCH_CORESHARING;
1250         }
1251     }
1252 
1253     /* Features */
1254     r = hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RELAXED);
1255     r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VAPIC);
1256     r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TIME);
1257     r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_CRASH);
1258     r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RESET);
1259     r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VPINDEX);
1260     r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RUNTIME);
1261     r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_SYNIC);
1262     r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER);
1263     r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_FREQUENCIES);
1264     r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_REENLIGHTENMENT);
1265     r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TLBFLUSH);
1266     r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_EVMCS);
1267     r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_IPI);
1268     r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER_DIRECT);
1269 
1270     /* Additional dependencies not covered by kvm_hyperv_properties[] */
1271     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1272         !cpu->hyperv_synic_kvm_only &&
1273         !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1274         fprintf(stderr, "Hyper-V %s requires Hyper-V %s\n",
1275                 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1276                 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1277         r |= 1;
1278     }
1279 
1280     /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1281     env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1282 
1283     if (r) {
1284         r = -ENOSYS;
1285         goto free;
1286     }
1287 
1288     if (cpu->hyperv_passthrough) {
1289         /* We already copied all feature words from KVM as is */
1290         r = cpuid->nent;
1291         goto free;
1292     }
1293 
1294     c = &cpuid_ent[cpuid_i++];
1295     c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1296     if (!cpu->hyperv_vendor_id) {
1297         memcpy(signature, "Microsoft Hv", 12);
1298     } else {
1299         size_t len = strlen(cpu->hyperv_vendor_id);
1300 
1301         if (len > 12) {
1302             error_report("hv-vendor-id truncated to 12 characters");
1303             len = 12;
1304         }
1305         memset(signature, 0, 12);
1306         memcpy(signature, cpu->hyperv_vendor_id, len);
1307     }
1308     c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1309         HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1310     c->ebx = signature[0];
1311     c->ecx = signature[1];
1312     c->edx = signature[2];
1313 
1314     c = &cpuid_ent[cpuid_i++];
1315     c->function = HV_CPUID_INTERFACE;
1316     memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
1317     c->eax = signature[0];
1318     c->ebx = 0;
1319     c->ecx = 0;
1320     c->edx = 0;
1321 
1322     c = &cpuid_ent[cpuid_i++];
1323     c->function = HV_CPUID_VERSION;
1324     c->eax = 0x00001bbc;
1325     c->ebx = 0x00060001;
1326 
1327     c = &cpuid_ent[cpuid_i++];
1328     c->function = HV_CPUID_FEATURES;
1329     c->eax = env->features[FEAT_HYPERV_EAX];
1330     c->ebx = env->features[FEAT_HYPERV_EBX];
1331     c->edx = env->features[FEAT_HYPERV_EDX];
1332 
1333     c = &cpuid_ent[cpuid_i++];
1334     c->function = HV_CPUID_ENLIGHTMENT_INFO;
1335     c->eax = env->features[FEAT_HV_RECOMM_EAX];
1336     c->ebx = cpu->hyperv_spinlock_attempts;
1337 
1338     c = &cpuid_ent[cpuid_i++];
1339     c->function = HV_CPUID_IMPLEMENT_LIMITS;
1340     c->eax = cpu->hv_max_vps;
1341     c->ebx = 0x40;
1342 
1343     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1344         __u32 function;
1345 
1346         /* Create zeroed 0x40000006..0x40000009 leaves */
1347         for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1348              function < HV_CPUID_NESTED_FEATURES; function++) {
1349             c = &cpuid_ent[cpuid_i++];
1350             c->function = function;
1351         }
1352 
1353         c = &cpuid_ent[cpuid_i++];
1354         c->function = HV_CPUID_NESTED_FEATURES;
1355         c->eax = env->features[FEAT_HV_NESTED_EAX];
1356     }
1357     r = cpuid_i;
1358 
1359 free:
1360     g_free(cpuid);
1361 
1362     return r;
1363 }
1364 
1365 static Error *hv_passthrough_mig_blocker;
1366 static Error *hv_no_nonarch_cs_mig_blocker;
1367 
hyperv_init_vcpu(X86CPU * cpu)1368 static int hyperv_init_vcpu(X86CPU *cpu)
1369 {
1370     CPUState *cs = CPU(cpu);
1371     Error *local_err = NULL;
1372     int ret;
1373 
1374     if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1375         error_setg(&hv_passthrough_mig_blocker,
1376                    "'hv-passthrough' CPU flag prevents migration, use explicit"
1377                    " set of hv-* flags instead");
1378         ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1379         if (local_err) {
1380             error_report_err(local_err);
1381             error_free(hv_passthrough_mig_blocker);
1382             return ret;
1383         }
1384     }
1385 
1386     if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1387         hv_no_nonarch_cs_mig_blocker == NULL) {
1388         error_setg(&hv_no_nonarch_cs_mig_blocker,
1389                    "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1390                    " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1391                    " make sure SMT is disabled and/or that vCPUs are properly"
1392                    " pinned)");
1393         ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err);
1394         if (local_err) {
1395             error_report_err(local_err);
1396             error_free(hv_no_nonarch_cs_mig_blocker);
1397             return ret;
1398         }
1399     }
1400 
1401     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1402         /*
1403          * the kernel doesn't support setting vp_index; assert that its value
1404          * is in sync
1405          */
1406         struct {
1407             struct kvm_msrs info;
1408             struct kvm_msr_entry entries[1];
1409         } msr_data = {
1410             .info.nmsrs = 1,
1411             .entries[0].index = HV_X64_MSR_VP_INDEX,
1412         };
1413 
1414         ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
1415         if (ret < 0) {
1416             return ret;
1417         }
1418         assert(ret == 1);
1419 
1420         if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
1421             error_report("kernel's vp_index != QEMU's vp_index");
1422             return -ENXIO;
1423         }
1424     }
1425 
1426     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1427         uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1428             KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1429         ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1430         if (ret < 0) {
1431             error_report("failed to turn on HyperV SynIC in KVM: %s",
1432                          strerror(-ret));
1433             return ret;
1434         }
1435 
1436         if (!cpu->hyperv_synic_kvm_only) {
1437             ret = hyperv_x86_synic_add(cpu);
1438             if (ret < 0) {
1439                 error_report("failed to create HyperV SynIC: %s",
1440                              strerror(-ret));
1441                 return ret;
1442             }
1443         }
1444     }
1445 
1446     return 0;
1447 }
1448 
1449 static Error *invtsc_mig_blocker;
1450 
1451 #define KVM_MAX_CPUID_ENTRIES  100
1452 
kvm_arch_init_vcpu(CPUState * cs)1453 int kvm_arch_init_vcpu(CPUState *cs)
1454 {
1455     struct {
1456         struct kvm_cpuid2 cpuid;
1457         struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1458     } cpuid_data;
1459     /*
1460      * The kernel defines these structs with padding fields so there
1461      * should be no extra padding in our cpuid_data struct.
1462      */
1463     QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1464                       sizeof(struct kvm_cpuid2) +
1465                       sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1466 
1467     X86CPU *cpu = X86_CPU(cs);
1468     CPUX86State *env = &cpu->env;
1469     uint32_t limit, i, j, cpuid_i;
1470     uint32_t unused;
1471     struct kvm_cpuid_entry2 *c;
1472     uint32_t signature[3];
1473     int kvm_base = KVM_CPUID_SIGNATURE;
1474     int max_nested_state_len;
1475     int r;
1476     Error *local_err = NULL;
1477 
1478     memset(&cpuid_data, 0, sizeof(cpuid_data));
1479 
1480     cpuid_i = 0;
1481 
1482     r = kvm_arch_set_tsc_khz(cs);
1483     if (r < 0) {
1484         return r;
1485     }
1486 
1487     /* vcpu's TSC frequency is either specified by user, or following
1488      * the value used by KVM if the former is not present. In the
1489      * latter case, we query it from KVM and record in env->tsc_khz,
1490      * so that vcpu's TSC frequency can be migrated later via this field.
1491      */
1492     if (!env->tsc_khz) {
1493         r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1494             kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1495             -ENOTSUP;
1496         if (r > 0) {
1497             env->tsc_khz = r;
1498         }
1499     }
1500 
1501     /* Paravirtualization CPUIDs */
1502     r = hyperv_handle_properties(cs, cpuid_data.entries);
1503     if (r < 0) {
1504         return r;
1505     } else if (r > 0) {
1506         cpuid_i = r;
1507         kvm_base = KVM_CPUID_SIGNATURE_NEXT;
1508         has_msr_hv_hypercall = true;
1509     }
1510 
1511     if (cpu->expose_kvm) {
1512         memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1513         c = &cpuid_data.entries[cpuid_i++];
1514         c->function = KVM_CPUID_SIGNATURE | kvm_base;
1515         c->eax = KVM_CPUID_FEATURES | kvm_base;
1516         c->ebx = signature[0];
1517         c->ecx = signature[1];
1518         c->edx = signature[2];
1519 
1520         c = &cpuid_data.entries[cpuid_i++];
1521         c->function = KVM_CPUID_FEATURES | kvm_base;
1522         c->eax = env->features[FEAT_KVM];
1523         c->edx = env->features[FEAT_KVM_HINTS];
1524     }
1525 
1526     cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1527 
1528     for (i = 0; i <= limit; i++) {
1529         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1530             fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1531             abort();
1532         }
1533         c = &cpuid_data.entries[cpuid_i++];
1534 
1535         switch (i) {
1536         case 2: {
1537             /* Keep reading function 2 till all the input is received */
1538             int times;
1539 
1540             c->function = i;
1541             c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1542                        KVM_CPUID_FLAG_STATE_READ_NEXT;
1543             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1544             times = c->eax & 0xff;
1545 
1546             for (j = 1; j < times; ++j) {
1547                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1548                     fprintf(stderr, "cpuid_data is full, no space for "
1549                             "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1550                     abort();
1551                 }
1552                 c = &cpuid_data.entries[cpuid_i++];
1553                 c->function = i;
1554                 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1555                 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1556             }
1557             break;
1558         }
1559         case 0x1f:
1560             if (env->nr_dies < 2) {
1561                 break;
1562             }
1563         case 4:
1564         case 0xb:
1565         case 0xd:
1566             for (j = 0; ; j++) {
1567                 if (i == 0xd && j == 64) {
1568                     break;
1569                 }
1570 
1571                 if (i == 0x1f && j == 64) {
1572                     break;
1573                 }
1574 
1575                 c->function = i;
1576                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1577                 c->index = j;
1578                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1579 
1580                 if (i == 4 && c->eax == 0) {
1581                     break;
1582                 }
1583                 if (i == 0xb && !(c->ecx & 0xff00)) {
1584                     break;
1585                 }
1586                 if (i == 0x1f && !(c->ecx & 0xff00)) {
1587                     break;
1588                 }
1589                 if (i == 0xd && c->eax == 0) {
1590                     continue;
1591                 }
1592                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1593                     fprintf(stderr, "cpuid_data is full, no space for "
1594                             "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1595                     abort();
1596                 }
1597                 c = &cpuid_data.entries[cpuid_i++];
1598             }
1599             break;
1600         case 0x7:
1601         case 0x14: {
1602             uint32_t times;
1603 
1604             c->function = i;
1605             c->index = 0;
1606             c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1607             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1608             times = c->eax;
1609 
1610             for (j = 1; j <= times; ++j) {
1611                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1612                     fprintf(stderr, "cpuid_data is full, no space for "
1613                                 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1614                     abort();
1615                 }
1616                 c = &cpuid_data.entries[cpuid_i++];
1617                 c->function = i;
1618                 c->index = j;
1619                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1620                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1621             }
1622             break;
1623         }
1624         default:
1625             c->function = i;
1626             c->flags = 0;
1627             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1628             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1629                 /*
1630                  * KVM already returns all zeroes if a CPUID entry is missing,
1631                  * so we can omit it and avoid hitting KVM's 80-entry limit.
1632                  */
1633                 cpuid_i--;
1634             }
1635             break;
1636         }
1637     }
1638 
1639     if (limit >= 0x0a) {
1640         uint32_t eax, edx;
1641 
1642         cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1643 
1644         has_architectural_pmu_version = eax & 0xff;
1645         if (has_architectural_pmu_version > 0) {
1646             num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1647 
1648             /* Shouldn't be more than 32, since that's the number of bits
1649              * available in EBX to tell us _which_ counters are available.
1650              * Play it safe.
1651              */
1652             if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1653                 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1654             }
1655 
1656             if (has_architectural_pmu_version > 1) {
1657                 num_architectural_pmu_fixed_counters = edx & 0x1f;
1658 
1659                 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1660                     num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1661                 }
1662             }
1663         }
1664     }
1665 
1666     cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1667 
1668     for (i = 0x80000000; i <= limit; i++) {
1669         if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1670             fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1671             abort();
1672         }
1673         c = &cpuid_data.entries[cpuid_i++];
1674 
1675         switch (i) {
1676         case 0x8000001d:
1677             /* Query for all AMD cache information leaves */
1678             for (j = 0; ; j++) {
1679                 c->function = i;
1680                 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1681                 c->index = j;
1682                 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1683 
1684                 if (c->eax == 0) {
1685                     break;
1686                 }
1687                 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1688                     fprintf(stderr, "cpuid_data is full, no space for "
1689                             "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1690                     abort();
1691                 }
1692                 c = &cpuid_data.entries[cpuid_i++];
1693             }
1694             break;
1695         default:
1696             c->function = i;
1697             c->flags = 0;
1698             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1699             if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1700                 /*
1701                  * KVM already returns all zeroes if a CPUID entry is missing,
1702                  * so we can omit it and avoid hitting KVM's 80-entry limit.
1703                  */
1704                 cpuid_i--;
1705             }
1706             break;
1707         }
1708     }
1709 
1710     /* Call Centaur's CPUID instructions they are supported. */
1711     if (env->cpuid_xlevel2 > 0) {
1712         cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1713 
1714         for (i = 0xC0000000; i <= limit; i++) {
1715             if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1716                 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1717                 abort();
1718             }
1719             c = &cpuid_data.entries[cpuid_i++];
1720 
1721             c->function = i;
1722             c->flags = 0;
1723             cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1724         }
1725     }
1726 
1727     cpuid_data.cpuid.nent = cpuid_i;
1728 
1729     if (((env->cpuid_version >> 8)&0xF) >= 6
1730         && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
1731            (CPUID_MCE | CPUID_MCA)
1732         && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
1733         uint64_t mcg_cap, unsupported_caps;
1734         int banks;
1735         int ret;
1736 
1737         ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
1738         if (ret < 0) {
1739             fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1740             return ret;
1741         }
1742 
1743         if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
1744             error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
1745                          (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
1746             return -ENOTSUP;
1747         }
1748 
1749         unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1750         if (unsupported_caps) {
1751             if (unsupported_caps & MCG_LMCE_P) {
1752                 error_report("kvm: LMCE not supported");
1753                 return -ENOTSUP;
1754             }
1755             warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1756                         unsupported_caps);
1757         }
1758 
1759         env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1760         ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
1761         if (ret < 0) {
1762             fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1763             return ret;
1764         }
1765     }
1766 
1767     qemu_add_vm_change_state_handler(cpu_update_state, env);
1768 
1769     c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1770     if (c) {
1771         has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1772                                   !!(c->ecx & CPUID_EXT_SMX);
1773     }
1774 
1775     if (env->mcg_cap & MCG_LMCE_P) {
1776         has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1777     }
1778 
1779     if (!env->user_tsc_khz) {
1780         if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
1781             invtsc_mig_blocker == NULL) {
1782             error_setg(&invtsc_mig_blocker,
1783                        "State blocked by non-migratable CPU device"
1784                        " (invtsc flag)");
1785             r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
1786             if (local_err) {
1787                 error_report_err(local_err);
1788                 error_free(invtsc_mig_blocker);
1789                 return r;
1790             }
1791         }
1792     }
1793 
1794     if (cpu->vmware_cpuid_freq
1795         /* Guests depend on 0x40000000 to detect this feature, so only expose
1796          * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1797         && cpu->expose_kvm
1798         && kvm_base == KVM_CPUID_SIGNATURE
1799         /* TSC clock must be stable and known for this feature. */
1800         && tsc_is_stable_and_known(env)) {
1801 
1802         c = &cpuid_data.entries[cpuid_i++];
1803         c->function = KVM_CPUID_SIGNATURE | 0x10;
1804         c->eax = env->tsc_khz;
1805         /* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's
1806          * APIC_BUS_CYCLE_NS */
1807         c->ebx = 1000000;
1808         c->ecx = c->edx = 0;
1809 
1810         c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
1811         c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
1812     }
1813 
1814     cpuid_data.cpuid.nent = cpuid_i;
1815 
1816     cpuid_data.cpuid.padding = 0;
1817     r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
1818     if (r) {
1819         goto fail;
1820     }
1821 
1822     if (has_xsave) {
1823         env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
1824         memset(env->xsave_buf, 0, sizeof(struct kvm_xsave));
1825     }
1826 
1827     max_nested_state_len = kvm_max_nested_state_length();
1828     if (max_nested_state_len > 0) {
1829         assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
1830 
1831         if (cpu_has_vmx(env)) {
1832             struct kvm_vmx_nested_state_hdr *vmx_hdr;
1833 
1834             env->nested_state = g_malloc0(max_nested_state_len);
1835             env->nested_state->size = max_nested_state_len;
1836             env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1837 
1838             vmx_hdr = &env->nested_state->hdr.vmx;
1839             vmx_hdr->vmxon_pa = -1ull;
1840             vmx_hdr->vmcs12_pa = -1ull;
1841         }
1842     }
1843 
1844     cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
1845 
1846     if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
1847         has_msr_tsc_aux = false;
1848     }
1849 
1850     kvm_init_msrs(cpu);
1851 
1852     r = hyperv_init_vcpu(cpu);
1853     if (r) {
1854         goto fail;
1855     }
1856 
1857     return 0;
1858 
1859  fail:
1860     migrate_del_blocker(invtsc_mig_blocker);
1861 
1862     return r;
1863 }
1864 
kvm_arch_destroy_vcpu(CPUState * cs)1865 int kvm_arch_destroy_vcpu(CPUState *cs)
1866 {
1867     X86CPU *cpu = X86_CPU(cs);
1868     CPUX86State *env = &cpu->env;
1869 
1870     if (cpu->kvm_msr_buf) {
1871         g_free(cpu->kvm_msr_buf);
1872         cpu->kvm_msr_buf = NULL;
1873     }
1874 
1875     if (env->nested_state) {
1876         g_free(env->nested_state);
1877         env->nested_state = NULL;
1878     }
1879 
1880     return 0;
1881 }
1882 
kvm_arch_reset_vcpu(X86CPU * cpu)1883 void kvm_arch_reset_vcpu(X86CPU *cpu)
1884 {
1885     CPUX86State *env = &cpu->env;
1886 
1887     env->xcr0 = 1;
1888     if (kvm_irqchip_in_kernel()) {
1889         env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
1890                                           KVM_MP_STATE_UNINITIALIZED;
1891     } else {
1892         env->mp_state = KVM_MP_STATE_RUNNABLE;
1893     }
1894 
1895     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1896         int i;
1897         for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
1898             env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
1899         }
1900 
1901         hyperv_x86_synic_reset(cpu);
1902     }
1903     /* enabled by default */
1904     env->poll_control_msr = 1;
1905 }
1906 
kvm_arch_do_init_vcpu(X86CPU * cpu)1907 void kvm_arch_do_init_vcpu(X86CPU *cpu)
1908 {
1909     CPUX86State *env = &cpu->env;
1910 
1911     /* APs get directly into wait-for-SIPI state.  */
1912     if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
1913         env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
1914     }
1915 }
1916 
kvm_get_supported_feature_msrs(KVMState * s)1917 static int kvm_get_supported_feature_msrs(KVMState *s)
1918 {
1919     int ret = 0;
1920 
1921     if (kvm_feature_msrs != NULL) {
1922         return 0;
1923     }
1924 
1925     if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
1926         return 0;
1927     }
1928 
1929     struct kvm_msr_list msr_list;
1930 
1931     msr_list.nmsrs = 0;
1932     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
1933     if (ret < 0 && ret != -E2BIG) {
1934         error_report("Fetch KVM feature MSR list failed: %s",
1935             strerror(-ret));
1936         return ret;
1937     }
1938 
1939     assert(msr_list.nmsrs > 0);
1940     kvm_feature_msrs = (struct kvm_msr_list *) \
1941         g_malloc0(sizeof(msr_list) +
1942                  msr_list.nmsrs * sizeof(msr_list.indices[0]));
1943 
1944     kvm_feature_msrs->nmsrs = msr_list.nmsrs;
1945     ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
1946 
1947     if (ret < 0) {
1948         error_report("Fetch KVM feature MSR list failed: %s",
1949             strerror(-ret));
1950         g_free(kvm_feature_msrs);
1951         kvm_feature_msrs = NULL;
1952         return ret;
1953     }
1954 
1955     return 0;
1956 }
1957 
kvm_get_supported_msrs(KVMState * s)1958 static int kvm_get_supported_msrs(KVMState *s)
1959 {
1960     int ret = 0;
1961     struct kvm_msr_list msr_list, *kvm_msr_list;
1962 
1963     /*
1964      *  Obtain MSR list from KVM.  These are the MSRs that we must
1965      *  save/restore.
1966      */
1967     msr_list.nmsrs = 0;
1968     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
1969     if (ret < 0 && ret != -E2BIG) {
1970         return ret;
1971     }
1972     /*
1973      * Old kernel modules had a bug and could write beyond the provided
1974      * memory. Allocate at least a safe amount of 1K.
1975      */
1976     kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
1977                                           msr_list.nmsrs *
1978                                           sizeof(msr_list.indices[0])));
1979 
1980     kvm_msr_list->nmsrs = msr_list.nmsrs;
1981     ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
1982     if (ret >= 0) {
1983         int i;
1984 
1985         for (i = 0; i < kvm_msr_list->nmsrs; i++) {
1986             switch (kvm_msr_list->indices[i]) {
1987             case MSR_STAR:
1988                 has_msr_star = true;
1989                 break;
1990             case MSR_VM_HSAVE_PA:
1991                 has_msr_hsave_pa = true;
1992                 break;
1993             case MSR_TSC_AUX:
1994                 has_msr_tsc_aux = true;
1995                 break;
1996             case MSR_TSC_ADJUST:
1997                 has_msr_tsc_adjust = true;
1998                 break;
1999             case MSR_IA32_TSCDEADLINE:
2000                 has_msr_tsc_deadline = true;
2001                 break;
2002             case MSR_IA32_SMBASE:
2003                 has_msr_smbase = true;
2004                 break;
2005             case MSR_SMI_COUNT:
2006                 has_msr_smi_count = true;
2007                 break;
2008             case MSR_IA32_MISC_ENABLE:
2009                 has_msr_misc_enable = true;
2010                 break;
2011             case MSR_IA32_BNDCFGS:
2012                 has_msr_bndcfgs = true;
2013                 break;
2014             case MSR_IA32_XSS:
2015                 has_msr_xss = true;
2016                 break;
2017             case MSR_IA32_UMWAIT_CONTROL:
2018                 has_msr_umwait = true;
2019                 break;
2020             case HV_X64_MSR_CRASH_CTL:
2021                 has_msr_hv_crash = true;
2022                 break;
2023             case HV_X64_MSR_RESET:
2024                 has_msr_hv_reset = true;
2025                 break;
2026             case HV_X64_MSR_VP_INDEX:
2027                 has_msr_hv_vpindex = true;
2028                 break;
2029             case HV_X64_MSR_VP_RUNTIME:
2030                 has_msr_hv_runtime = true;
2031                 break;
2032             case HV_X64_MSR_SCONTROL:
2033                 has_msr_hv_synic = true;
2034                 break;
2035             case HV_X64_MSR_STIMER0_CONFIG:
2036                 has_msr_hv_stimer = true;
2037                 break;
2038             case HV_X64_MSR_TSC_FREQUENCY:
2039                 has_msr_hv_frequencies = true;
2040                 break;
2041             case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2042                 has_msr_hv_reenlightenment = true;
2043                 break;
2044             case MSR_IA32_SPEC_CTRL:
2045                 has_msr_spec_ctrl = true;
2046                 break;
2047             case MSR_IA32_TSX_CTRL:
2048                 has_msr_tsx_ctrl = true;
2049                 break;
2050             case MSR_VIRT_SSBD:
2051                 has_msr_virt_ssbd = true;
2052                 break;
2053             case MSR_IA32_ARCH_CAPABILITIES:
2054                 has_msr_arch_capabs = true;
2055                 break;
2056             case MSR_IA32_CORE_CAPABILITY:
2057                 has_msr_core_capabs = true;
2058                 break;
2059             case MSR_IA32_VMX_VMFUNC:
2060                 has_msr_vmx_vmfunc = true;
2061                 break;
2062             case MSR_IA32_UCODE_REV:
2063                 has_msr_ucode_rev = true;
2064                 break;
2065             case MSR_IA32_VMX_PROCBASED_CTLS2:
2066                 has_msr_vmx_procbased_ctls2 = true;
2067                 break;
2068             }
2069         }
2070     }
2071 
2072     g_free(kvm_msr_list);
2073 
2074     return ret;
2075 }
2076 
2077 static Notifier smram_machine_done;
2078 static KVMMemoryListener smram_listener;
2079 static AddressSpace smram_address_space;
2080 static MemoryRegion smram_as_root;
2081 static MemoryRegion smram_as_mem;
2082 
register_smram_listener(Notifier * n,void * unused)2083 static void register_smram_listener(Notifier *n, void *unused)
2084 {
2085     MemoryRegion *smram =
2086         (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2087 
2088     /* Outer container... */
2089     memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2090     memory_region_set_enabled(&smram_as_root, true);
2091 
2092     /* ... with two regions inside: normal system memory with low
2093      * priority, and...
2094      */
2095     memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2096                              get_system_memory(), 0, ~0ull);
2097     memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2098     memory_region_set_enabled(&smram_as_mem, true);
2099 
2100     if (smram) {
2101         /* ... SMRAM with higher priority */
2102         memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2103         memory_region_set_enabled(smram, true);
2104     }
2105 
2106     address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2107     kvm_memory_listener_register(kvm_state, &smram_listener,
2108                                  &smram_address_space, 1);
2109 }
2110 
kvm_arch_init(MachineState * ms,KVMState * s)2111 int kvm_arch_init(MachineState *ms, KVMState *s)
2112 {
2113     uint64_t identity_base = 0xfffbc000;
2114     uint64_t shadow_mem;
2115     int ret;
2116     struct utsname utsname;
2117 
2118     has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
2119     has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
2120     has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
2121 
2122     hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2123 
2124     has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2125     if (has_exception_payload) {
2126         ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2127         if (ret < 0) {
2128             error_report("kvm: Failed to enable exception payload cap: %s",
2129                          strerror(-ret));
2130             return ret;
2131         }
2132     }
2133 
2134     ret = kvm_get_supported_msrs(s);
2135     if (ret < 0) {
2136         return ret;
2137     }
2138 
2139     kvm_get_supported_feature_msrs(s);
2140 
2141     uname(&utsname);
2142     lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2143 
2144     /*
2145      * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2146      * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
2147      * Since these must be part of guest physical memory, we need to allocate
2148      * them, both by setting their start addresses in the kernel and by
2149      * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2150      *
2151      * Older KVM versions may not support setting the identity map base. In
2152      * that case we need to stick with the default, i.e. a 256K maximum BIOS
2153      * size.
2154      */
2155     if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2156         /* Allows up to 16M BIOSes. */
2157         identity_base = 0xfeffc000;
2158 
2159         ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2160         if (ret < 0) {
2161             return ret;
2162         }
2163     }
2164 
2165     /* Set TSS base one page after EPT identity map. */
2166     ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2167     if (ret < 0) {
2168         return ret;
2169     }
2170 
2171     /* Tell fw_cfg to notify the BIOS to reserve the range. */
2172     ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2173     if (ret < 0) {
2174         fprintf(stderr, "e820_add_entry() table is full\n");
2175         return ret;
2176     }
2177     qemu_register_reset(kvm_unpoison_all, NULL);
2178 
2179     shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
2180     if (shadow_mem != -1) {
2181         shadow_mem /= 4096;
2182         ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2183         if (ret < 0) {
2184             return ret;
2185         }
2186     }
2187 
2188     if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2189         object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
2190         x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
2191         smram_machine_done.notify = register_smram_listener;
2192         qemu_add_machine_init_done_notifier(&smram_machine_done);
2193     }
2194 
2195     if (enable_cpu_pm) {
2196         int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2197         int ret;
2198 
2199 /* Work around for kernel header with a typo. TODO: fix header and drop. */
2200 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2201 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2202 #endif
2203         if (disable_exits) {
2204             disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2205                               KVM_X86_DISABLE_EXITS_HLT |
2206                               KVM_X86_DISABLE_EXITS_PAUSE |
2207                               KVM_X86_DISABLE_EXITS_CSTATE);
2208         }
2209 
2210         ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2211                                 disable_exits);
2212         if (ret < 0) {
2213             error_report("kvm: guest stopping CPU not supported: %s",
2214                          strerror(-ret));
2215         }
2216     }
2217 
2218     return 0;
2219 }
2220 
set_v8086_seg(struct kvm_segment * lhs,const SegmentCache * rhs)2221 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2222 {
2223     lhs->selector = rhs->selector;
2224     lhs->base = rhs->base;
2225     lhs->limit = rhs->limit;
2226     lhs->type = 3;
2227     lhs->present = 1;
2228     lhs->dpl = 3;
2229     lhs->db = 0;
2230     lhs->s = 1;
2231     lhs->l = 0;
2232     lhs->g = 0;
2233     lhs->avl = 0;
2234     lhs->unusable = 0;
2235 }
2236 
set_seg(struct kvm_segment * lhs,const SegmentCache * rhs)2237 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2238 {
2239     unsigned flags = rhs->flags;
2240     lhs->selector = rhs->selector;
2241     lhs->base = rhs->base;
2242     lhs->limit = rhs->limit;
2243     lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2244     lhs->present = (flags & DESC_P_MASK) != 0;
2245     lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2246     lhs->db = (flags >> DESC_B_SHIFT) & 1;
2247     lhs->s = (flags & DESC_S_MASK) != 0;
2248     lhs->l = (flags >> DESC_L_SHIFT) & 1;
2249     lhs->g = (flags & DESC_G_MASK) != 0;
2250     lhs->avl = (flags & DESC_AVL_MASK) != 0;
2251     lhs->unusable = !lhs->present;
2252     lhs->padding = 0;
2253 }
2254 
get_seg(SegmentCache * lhs,const struct kvm_segment * rhs)2255 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2256 {
2257     lhs->selector = rhs->selector;
2258     lhs->base = rhs->base;
2259     lhs->limit = rhs->limit;
2260     lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2261                  ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2262                  (rhs->dpl << DESC_DPL_SHIFT) |
2263                  (rhs->db << DESC_B_SHIFT) |
2264                  (rhs->s * DESC_S_MASK) |
2265                  (rhs->l << DESC_L_SHIFT) |
2266                  (rhs->g * DESC_G_MASK) |
2267                  (rhs->avl * DESC_AVL_MASK);
2268 }
2269 
kvm_getput_reg(__u64 * kvm_reg,target_ulong * qemu_reg,int set)2270 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2271 {
2272     if (set) {
2273         *kvm_reg = *qemu_reg;
2274     } else {
2275         *qemu_reg = *kvm_reg;
2276     }
2277 }
2278 
kvm_getput_regs(X86CPU * cpu,int set)2279 static int kvm_getput_regs(X86CPU *cpu, int set)
2280 {
2281     CPUX86State *env = &cpu->env;
2282     struct kvm_regs regs;
2283     int ret = 0;
2284 
2285     if (!set) {
2286         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
2287         if (ret < 0) {
2288             return ret;
2289         }
2290     }
2291 
2292     kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2293     kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2294     kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2295     kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2296     kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2297     kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2298     kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2299     kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2300 #ifdef TARGET_X86_64
2301     kvm_getput_reg(&regs.r8, &env->regs[8], set);
2302     kvm_getput_reg(&regs.r9, &env->regs[9], set);
2303     kvm_getput_reg(&regs.r10, &env->regs[10], set);
2304     kvm_getput_reg(&regs.r11, &env->regs[11], set);
2305     kvm_getput_reg(&regs.r12, &env->regs[12], set);
2306     kvm_getput_reg(&regs.r13, &env->regs[13], set);
2307     kvm_getput_reg(&regs.r14, &env->regs[14], set);
2308     kvm_getput_reg(&regs.r15, &env->regs[15], set);
2309 #endif
2310 
2311     kvm_getput_reg(&regs.rflags, &env->eflags, set);
2312     kvm_getput_reg(&regs.rip, &env->eip, set);
2313 
2314     if (set) {
2315         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
2316     }
2317 
2318     return ret;
2319 }
2320 
kvm_put_fpu(X86CPU * cpu)2321 static int kvm_put_fpu(X86CPU *cpu)
2322 {
2323     CPUX86State *env = &cpu->env;
2324     struct kvm_fpu fpu;
2325     int i;
2326 
2327     memset(&fpu, 0, sizeof fpu);
2328     fpu.fsw = env->fpus & ~(7 << 11);
2329     fpu.fsw |= (env->fpstt & 7) << 11;
2330     fpu.fcw = env->fpuc;
2331     fpu.last_opcode = env->fpop;
2332     fpu.last_ip = env->fpip;
2333     fpu.last_dp = env->fpdp;
2334     for (i = 0; i < 8; ++i) {
2335         fpu.ftwx |= (!env->fptags[i]) << i;
2336     }
2337     memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
2338     for (i = 0; i < CPU_NB_REGS; i++) {
2339         stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2340         stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
2341     }
2342     fpu.mxcsr = env->mxcsr;
2343 
2344     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
2345 }
2346 
2347 #define XSAVE_FCW_FSW     0
2348 #define XSAVE_FTW_FOP     1
2349 #define XSAVE_CWD_RIP     2
2350 #define XSAVE_CWD_RDP     4
2351 #define XSAVE_MXCSR       6
2352 #define XSAVE_ST_SPACE    8
2353 #define XSAVE_XMM_SPACE   40
2354 #define XSAVE_XSTATE_BV   128
2355 #define XSAVE_YMMH_SPACE  144
2356 #define XSAVE_BNDREGS     240
2357 #define XSAVE_BNDCSR      256
2358 #define XSAVE_OPMASK      272
2359 #define XSAVE_ZMM_Hi256   288
2360 #define XSAVE_Hi16_ZMM    416
2361 #define XSAVE_PKRU        672
2362 
2363 #define XSAVE_BYTE_OFFSET(word_offset) \
2364     ((word_offset) * sizeof_field(struct kvm_xsave, region[0]))
2365 
2366 #define ASSERT_OFFSET(word_offset, field) \
2367     QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
2368                       offsetof(X86XSaveArea, field))
2369 
2370 ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw);
2371 ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw);
2372 ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip);
2373 ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp);
2374 ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr);
2375 ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs);
2376 ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs);
2377 ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv);
2378 ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state);
2379 ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state);
2380 ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state);
2381 ASSERT_OFFSET(XSAVE_OPMASK, opmask_state);
2382 ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state);
2383 ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state);
2384 ASSERT_OFFSET(XSAVE_PKRU, pkru_state);
2385 
kvm_put_xsave(X86CPU * cpu)2386 static int kvm_put_xsave(X86CPU *cpu)
2387 {
2388     CPUX86State *env = &cpu->env;
2389     X86XSaveArea *xsave = env->xsave_buf;
2390 
2391     if (!has_xsave) {
2392         return kvm_put_fpu(cpu);
2393     }
2394     x86_cpu_xsave_all_areas(cpu, xsave);
2395 
2396     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2397 }
2398 
kvm_put_xcrs(X86CPU * cpu)2399 static int kvm_put_xcrs(X86CPU *cpu)
2400 {
2401     CPUX86State *env = &cpu->env;
2402     struct kvm_xcrs xcrs = {};
2403 
2404     if (!has_xcrs) {
2405         return 0;
2406     }
2407 
2408     xcrs.nr_xcrs = 1;
2409     xcrs.flags = 0;
2410     xcrs.xcrs[0].xcr = 0;
2411     xcrs.xcrs[0].value = env->xcr0;
2412     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2413 }
2414 
kvm_put_sregs(X86CPU * cpu)2415 static int kvm_put_sregs(X86CPU *cpu)
2416 {
2417     CPUX86State *env = &cpu->env;
2418     struct kvm_sregs sregs;
2419 
2420     memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2421     if (env->interrupt_injected >= 0) {
2422         sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
2423                 (uint64_t)1 << (env->interrupt_injected % 64);
2424     }
2425 
2426     if ((env->eflags & VM_MASK)) {
2427         set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2428         set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2429         set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2430         set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2431         set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2432         set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2433     } else {
2434         set_seg(&sregs.cs, &env->segs[R_CS]);
2435         set_seg(&sregs.ds, &env->segs[R_DS]);
2436         set_seg(&sregs.es, &env->segs[R_ES]);
2437         set_seg(&sregs.fs, &env->segs[R_FS]);
2438         set_seg(&sregs.gs, &env->segs[R_GS]);
2439         set_seg(&sregs.ss, &env->segs[R_SS]);
2440     }
2441 
2442     set_seg(&sregs.tr, &env->tr);
2443     set_seg(&sregs.ldt, &env->ldt);
2444 
2445     sregs.idt.limit = env->idt.limit;
2446     sregs.idt.base = env->idt.base;
2447     memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2448     sregs.gdt.limit = env->gdt.limit;
2449     sregs.gdt.base = env->gdt.base;
2450     memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2451 
2452     sregs.cr0 = env->cr[0];
2453     sregs.cr2 = env->cr[2];
2454     sregs.cr3 = env->cr[3];
2455     sregs.cr4 = env->cr[4];
2456 
2457     sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2458     sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2459 
2460     sregs.efer = env->efer;
2461 
2462     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2463 }
2464 
kvm_msr_buf_reset(X86CPU * cpu)2465 static void kvm_msr_buf_reset(X86CPU *cpu)
2466 {
2467     memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2468 }
2469 
kvm_msr_entry_add(X86CPU * cpu,uint32_t index,uint64_t value)2470 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2471 {
2472     struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2473     void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2474     struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2475 
2476     assert((void *)(entry + 1) <= limit);
2477 
2478     entry->index = index;
2479     entry->reserved = 0;
2480     entry->data = value;
2481     msrs->nmsrs++;
2482 }
2483 
kvm_put_one_msr(X86CPU * cpu,int index,uint64_t value)2484 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2485 {
2486     kvm_msr_buf_reset(cpu);
2487     kvm_msr_entry_add(cpu, index, value);
2488 
2489     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2490 }
2491 
kvm_put_apicbase(X86CPU * cpu,uint64_t value)2492 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2493 {
2494     int ret;
2495 
2496     ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2497     assert(ret == 1);
2498 }
2499 
kvm_put_tscdeadline_msr(X86CPU * cpu)2500 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2501 {
2502     CPUX86State *env = &cpu->env;
2503     int ret;
2504 
2505     if (!has_msr_tsc_deadline) {
2506         return 0;
2507     }
2508 
2509     ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
2510     if (ret < 0) {
2511         return ret;
2512     }
2513 
2514     assert(ret == 1);
2515     return 0;
2516 }
2517 
2518 /*
2519  * Provide a separate write service for the feature control MSR in order to
2520  * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2521  * before writing any other state because forcibly leaving nested mode
2522  * invalidates the VCPU state.
2523  */
kvm_put_msr_feature_control(X86CPU * cpu)2524 static int kvm_put_msr_feature_control(X86CPU *cpu)
2525 {
2526     int ret;
2527 
2528     if (!has_msr_feature_control) {
2529         return 0;
2530     }
2531 
2532     ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
2533                           cpu->env.msr_ia32_feature_control);
2534     if (ret < 0) {
2535         return ret;
2536     }
2537 
2538     assert(ret == 1);
2539     return 0;
2540 }
2541 
make_vmx_msr_value(uint32_t index,uint32_t features)2542 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
2543 {
2544     uint32_t default1, can_be_one, can_be_zero;
2545     uint32_t must_be_one;
2546 
2547     switch (index) {
2548     case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2549         default1 = 0x00000016;
2550         break;
2551     case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2552         default1 = 0x0401e172;
2553         break;
2554     case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2555         default1 = 0x000011ff;
2556         break;
2557     case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2558         default1 = 0x00036dff;
2559         break;
2560     case MSR_IA32_VMX_PROCBASED_CTLS2:
2561         default1 = 0;
2562         break;
2563     default:
2564         abort();
2565     }
2566 
2567     /* If a feature bit is set, the control can be either set or clear.
2568      * Otherwise the value is limited to either 0 or 1 by default1.
2569      */
2570     can_be_one = features | default1;
2571     can_be_zero = features | ~default1;
2572     must_be_one = ~can_be_zero;
2573 
2574     /*
2575      * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
2576      * Bit 32:63 -> 1 if the control bit can be one.
2577      */
2578     return must_be_one | (((uint64_t)can_be_one) << 32);
2579 }
2580 
2581 #define VMCS12_MAX_FIELD_INDEX (0x17)
2582 
kvm_msr_entry_add_vmx(X86CPU * cpu,FeatureWordArray f)2583 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
2584 {
2585     uint64_t kvm_vmx_basic =
2586         kvm_arch_get_supported_msr_feature(kvm_state,
2587                                            MSR_IA32_VMX_BASIC);
2588 
2589     if (!kvm_vmx_basic) {
2590         /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
2591          * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
2592          */
2593         return;
2594     }
2595 
2596     uint64_t kvm_vmx_misc =
2597         kvm_arch_get_supported_msr_feature(kvm_state,
2598                                            MSR_IA32_VMX_MISC);
2599     uint64_t kvm_vmx_ept_vpid =
2600         kvm_arch_get_supported_msr_feature(kvm_state,
2601                                            MSR_IA32_VMX_EPT_VPID_CAP);
2602 
2603     /*
2604      * If the guest is 64-bit, a value of 1 is allowed for the host address
2605      * space size vmexit control.
2606      */
2607     uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
2608         ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
2609 
2610     /*
2611      * Bits 0-30, 32-44 and 50-53 come from the host.  KVM should
2612      * not change them for backwards compatibility.
2613      */
2614     uint64_t fixed_vmx_basic = kvm_vmx_basic &
2615         (MSR_VMX_BASIC_VMCS_REVISION_MASK |
2616          MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
2617          MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
2618 
2619     /*
2620      * Same for bits 0-4 and 25-27.  Bits 16-24 (CR3 target count) can
2621      * change in the future but are always zero for now, clear them to be
2622      * future proof.  Bits 32-63 in theory could change, though KVM does
2623      * not support dual-monitor treatment and probably never will; mask
2624      * them out as well.
2625      */
2626     uint64_t fixed_vmx_misc = kvm_vmx_misc &
2627         (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
2628          MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
2629 
2630     /*
2631      * EPT memory types should not change either, so we do not bother
2632      * adding features for them.
2633      */
2634     uint64_t fixed_vmx_ept_mask =
2635             (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
2636              MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
2637     uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
2638 
2639     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2640                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2641                                          f[FEAT_VMX_PROCBASED_CTLS]));
2642     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2643                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2644                                          f[FEAT_VMX_PINBASED_CTLS]));
2645     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2646                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
2647                                          f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
2648     kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2649                       make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2650                                          f[FEAT_VMX_ENTRY_CTLS]));
2651     kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
2652                       make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
2653                                          f[FEAT_VMX_SECONDARY_CTLS]));
2654     kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
2655                       f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
2656     kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
2657                       f[FEAT_VMX_BASIC] | fixed_vmx_basic);
2658     kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
2659                       f[FEAT_VMX_MISC] | fixed_vmx_misc);
2660     if (has_msr_vmx_vmfunc) {
2661         kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
2662     }
2663 
2664     /*
2665      * Just to be safe, write these with constant values.  The CRn_FIXED1
2666      * MSRs are generated by KVM based on the vCPU's CPUID.
2667      */
2668     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
2669                       CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
2670     kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
2671                       CR4_VMXE_MASK);
2672     kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM,
2673                       VMCS12_MAX_FIELD_INDEX << 1);
2674 }
2675 
kvm_buf_set_msrs(X86CPU * cpu)2676 static int kvm_buf_set_msrs(X86CPU *cpu)
2677 {
2678     int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2679     if (ret < 0) {
2680         return ret;
2681     }
2682 
2683     if (ret < cpu->kvm_msr_buf->nmsrs) {
2684         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2685         error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2686                      (uint32_t)e->index, (uint64_t)e->data);
2687     }
2688 
2689     assert(ret == cpu->kvm_msr_buf->nmsrs);
2690     return 0;
2691 }
2692 
kvm_init_msrs(X86CPU * cpu)2693 static void kvm_init_msrs(X86CPU *cpu)
2694 {
2695     CPUX86State *env = &cpu->env;
2696 
2697     kvm_msr_buf_reset(cpu);
2698     if (has_msr_arch_capabs) {
2699         kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
2700                           env->features[FEAT_ARCH_CAPABILITIES]);
2701     }
2702 
2703     if (has_msr_core_capabs) {
2704         kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
2705                           env->features[FEAT_CORE_CAPABILITY]);
2706     }
2707 
2708     if (has_msr_ucode_rev) {
2709         kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
2710     }
2711 
2712     /*
2713      * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
2714      * all kernels with MSR features should have them.
2715      */
2716     if (kvm_feature_msrs && cpu_has_vmx(env)) {
2717         kvm_msr_entry_add_vmx(cpu, env->features);
2718     }
2719 
2720     assert(kvm_buf_set_msrs(cpu) == 0);
2721 }
2722 
kvm_put_msrs(X86CPU * cpu,int level)2723 static int kvm_put_msrs(X86CPU *cpu, int level)
2724 {
2725     CPUX86State *env = &cpu->env;
2726     int i;
2727 
2728     kvm_msr_buf_reset(cpu);
2729 
2730     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
2731     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
2732     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
2733     kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
2734     if (has_msr_star) {
2735         kvm_msr_entry_add(cpu, MSR_STAR, env->star);
2736     }
2737     if (has_msr_hsave_pa) {
2738         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
2739     }
2740     if (has_msr_tsc_aux) {
2741         kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
2742     }
2743     if (has_msr_tsc_adjust) {
2744         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
2745     }
2746     if (has_msr_misc_enable) {
2747         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
2748                           env->msr_ia32_misc_enable);
2749     }
2750     if (has_msr_smbase) {
2751         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
2752     }
2753     if (has_msr_smi_count) {
2754         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
2755     }
2756     if (has_msr_bndcfgs) {
2757         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
2758     }
2759     if (has_msr_xss) {
2760         kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
2761     }
2762     if (has_msr_umwait) {
2763         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
2764     }
2765     if (has_msr_spec_ctrl) {
2766         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
2767     }
2768     if (has_msr_tsx_ctrl) {
2769         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
2770     }
2771     if (has_msr_virt_ssbd) {
2772         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
2773     }
2774 
2775 #ifdef TARGET_X86_64
2776     if (lm_capable_kernel) {
2777         kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
2778         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
2779         kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
2780         kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
2781     }
2782 #endif
2783 
2784     /*
2785      * The following MSRs have side effects on the guest or are too heavy
2786      * for normal writeback. Limit them to reset or full state updates.
2787      */
2788     if (level >= KVM_PUT_RESET_STATE) {
2789         kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
2790         kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
2791         kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
2792         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
2793             kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
2794         }
2795         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
2796             kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
2797         }
2798         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
2799             kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
2800         }
2801 
2802         if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
2803             kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
2804         }
2805 
2806         if (has_architectural_pmu_version > 0) {
2807             if (has_architectural_pmu_version > 1) {
2808                 /* Stop the counter.  */
2809                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2810                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2811             }
2812 
2813             /* Set the counter values.  */
2814             for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
2815                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
2816                                   env->msr_fixed_counters[i]);
2817             }
2818             for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
2819                 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
2820                                   env->msr_gp_counters[i]);
2821                 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
2822                                   env->msr_gp_evtsel[i]);
2823             }
2824             if (has_architectural_pmu_version > 1) {
2825                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
2826                                   env->msr_global_status);
2827                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
2828                                   env->msr_global_ovf_ctrl);
2829 
2830                 /* Now start the PMU.  */
2831                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
2832                                   env->msr_fixed_ctr_ctrl);
2833                 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
2834                                   env->msr_global_ctrl);
2835             }
2836         }
2837         /*
2838          * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
2839          * only sync them to KVM on the first cpu
2840          */
2841         if (current_cpu == first_cpu) {
2842             if (has_msr_hv_hypercall) {
2843                 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
2844                                   env->msr_hv_guest_os_id);
2845                 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
2846                                   env->msr_hv_hypercall);
2847             }
2848             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
2849                 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
2850                                   env->msr_hv_tsc);
2851             }
2852             if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
2853                 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
2854                                   env->msr_hv_reenlightenment_control);
2855                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
2856                                   env->msr_hv_tsc_emulation_control);
2857                 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
2858                                   env->msr_hv_tsc_emulation_status);
2859             }
2860         }
2861         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
2862             kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
2863                               env->msr_hv_vapic);
2864         }
2865         if (has_msr_hv_crash) {
2866             int j;
2867 
2868             for (j = 0; j < HV_CRASH_PARAMS; j++)
2869                 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
2870                                   env->msr_hv_crash_params[j]);
2871 
2872             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
2873         }
2874         if (has_msr_hv_runtime) {
2875             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
2876         }
2877         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
2878             && hv_vpindex_settable) {
2879             kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
2880                               hyperv_vp_index(CPU(cpu)));
2881         }
2882         if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2883             int j;
2884 
2885             kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
2886 
2887             kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
2888                               env->msr_hv_synic_control);
2889             kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
2890                               env->msr_hv_synic_evt_page);
2891             kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
2892                               env->msr_hv_synic_msg_page);
2893 
2894             for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
2895                 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
2896                                   env->msr_hv_synic_sint[j]);
2897             }
2898         }
2899         if (has_msr_hv_stimer) {
2900             int j;
2901 
2902             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
2903                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
2904                                 env->msr_hv_stimer_config[j]);
2905             }
2906 
2907             for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
2908                 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
2909                                 env->msr_hv_stimer_count[j]);
2910             }
2911         }
2912         if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
2913             uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
2914 
2915             kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
2916             kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
2917             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
2918             kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
2919             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
2920             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
2921             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
2922             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
2923             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
2924             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
2925             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
2926             kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
2927             for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
2928                 /* The CPU GPs if we write to a bit above the physical limit of
2929                  * the host CPU (and KVM emulates that)
2930                  */
2931                 uint64_t mask = env->mtrr_var[i].mask;
2932                 mask &= phys_mask;
2933 
2934                 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
2935                                   env->mtrr_var[i].base);
2936                 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
2937             }
2938         }
2939         if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2940             int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
2941                                                     0x14, 1, R_EAX) & 0x7;
2942 
2943             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
2944                             env->msr_rtit_ctrl);
2945             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
2946                             env->msr_rtit_status);
2947             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
2948                             env->msr_rtit_output_base);
2949             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
2950                             env->msr_rtit_output_mask);
2951             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
2952                             env->msr_rtit_cr3_match);
2953             for (i = 0; i < addr_num; i++) {
2954                 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
2955                             env->msr_rtit_addrs[i]);
2956             }
2957         }
2958 
2959         /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
2960          *       kvm_put_msr_feature_control. */
2961     }
2962 
2963     if (env->mcg_cap) {
2964         int i;
2965 
2966         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
2967         kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
2968         if (has_msr_mcg_ext_ctl) {
2969             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
2970         }
2971         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
2972             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
2973         }
2974     }
2975 
2976     return kvm_buf_set_msrs(cpu);
2977 }
2978 
2979 
kvm_get_fpu(X86CPU * cpu)2980 static int kvm_get_fpu(X86CPU *cpu)
2981 {
2982     CPUX86State *env = &cpu->env;
2983     struct kvm_fpu fpu;
2984     int i, ret;
2985 
2986     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
2987     if (ret < 0) {
2988         return ret;
2989     }
2990 
2991     env->fpstt = (fpu.fsw >> 11) & 7;
2992     env->fpus = fpu.fsw;
2993     env->fpuc = fpu.fcw;
2994     env->fpop = fpu.last_opcode;
2995     env->fpip = fpu.last_ip;
2996     env->fpdp = fpu.last_dp;
2997     for (i = 0; i < 8; ++i) {
2998         env->fptags[i] = !((fpu.ftwx >> i) & 1);
2999     }
3000     memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
3001     for (i = 0; i < CPU_NB_REGS; i++) {
3002         env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
3003         env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
3004     }
3005     env->mxcsr = fpu.mxcsr;
3006 
3007     return 0;
3008 }
3009 
kvm_get_xsave(X86CPU * cpu)3010 static int kvm_get_xsave(X86CPU *cpu)
3011 {
3012     CPUX86State *env = &cpu->env;
3013     X86XSaveArea *xsave = env->xsave_buf;
3014     int ret;
3015 
3016     if (!has_xsave) {
3017         return kvm_get_fpu(cpu);
3018     }
3019 
3020     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
3021     if (ret < 0) {
3022         return ret;
3023     }
3024     x86_cpu_xrstor_all_areas(cpu, xsave);
3025 
3026     return 0;
3027 }
3028 
kvm_get_xcrs(X86CPU * cpu)3029 static int kvm_get_xcrs(X86CPU *cpu)
3030 {
3031     CPUX86State *env = &cpu->env;
3032     int i, ret;
3033     struct kvm_xcrs xcrs;
3034 
3035     if (!has_xcrs) {
3036         return 0;
3037     }
3038 
3039     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
3040     if (ret < 0) {
3041         return ret;
3042     }
3043 
3044     for (i = 0; i < xcrs.nr_xcrs; i++) {
3045         /* Only support xcr0 now */
3046         if (xcrs.xcrs[i].xcr == 0) {
3047             env->xcr0 = xcrs.xcrs[i].value;
3048             break;
3049         }
3050     }
3051     return 0;
3052 }
3053 
kvm_get_sregs(X86CPU * cpu)3054 static int kvm_get_sregs(X86CPU *cpu)
3055 {
3056     CPUX86State *env = &cpu->env;
3057     struct kvm_sregs sregs;
3058     int bit, i, ret;
3059 
3060     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
3061     if (ret < 0) {
3062         return ret;
3063     }
3064 
3065     /* There can only be one pending IRQ set in the bitmap at a time, so try
3066        to find it and save its number instead (-1 for none). */
3067     env->interrupt_injected = -1;
3068     for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
3069         if (sregs.interrupt_bitmap[i]) {
3070             bit = ctz64(sregs.interrupt_bitmap[i]);
3071             env->interrupt_injected = i * 64 + bit;
3072             break;
3073         }
3074     }
3075 
3076     get_seg(&env->segs[R_CS], &sregs.cs);
3077     get_seg(&env->segs[R_DS], &sregs.ds);
3078     get_seg(&env->segs[R_ES], &sregs.es);
3079     get_seg(&env->segs[R_FS], &sregs.fs);
3080     get_seg(&env->segs[R_GS], &sregs.gs);
3081     get_seg(&env->segs[R_SS], &sregs.ss);
3082 
3083     get_seg(&env->tr, &sregs.tr);
3084     get_seg(&env->ldt, &sregs.ldt);
3085 
3086     env->idt.limit = sregs.idt.limit;
3087     env->idt.base = sregs.idt.base;
3088     env->gdt.limit = sregs.gdt.limit;
3089     env->gdt.base = sregs.gdt.base;
3090 
3091     env->cr[0] = sregs.cr0;
3092     env->cr[2] = sregs.cr2;
3093     env->cr[3] = sregs.cr3;
3094     env->cr[4] = sregs.cr4;
3095 
3096     env->efer = sregs.efer;
3097 
3098     /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3099     x86_update_hflags(env);
3100 
3101     return 0;
3102 }
3103 
kvm_get_msrs(X86CPU * cpu)3104 static int kvm_get_msrs(X86CPU *cpu)
3105 {
3106     CPUX86State *env = &cpu->env;
3107     struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
3108     int ret, i;
3109     uint64_t mtrr_top_bits;
3110 
3111     kvm_msr_buf_reset(cpu);
3112 
3113     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3114     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3115     kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3116     kvm_msr_entry_add(cpu, MSR_PAT, 0);
3117     if (has_msr_star) {
3118         kvm_msr_entry_add(cpu, MSR_STAR, 0);
3119     }
3120     if (has_msr_hsave_pa) {
3121         kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
3122     }
3123     if (has_msr_tsc_aux) {
3124         kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
3125     }
3126     if (has_msr_tsc_adjust) {
3127         kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
3128     }
3129     if (has_msr_tsc_deadline) {
3130         kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
3131     }
3132     if (has_msr_misc_enable) {
3133         kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
3134     }
3135     if (has_msr_smbase) {
3136         kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
3137     }
3138     if (has_msr_smi_count) {
3139         kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3140     }
3141     if (has_msr_feature_control) {
3142         kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
3143     }
3144     if (has_msr_bndcfgs) {
3145         kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
3146     }
3147     if (has_msr_xss) {
3148         kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
3149     }
3150     if (has_msr_umwait) {
3151         kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3152     }
3153     if (has_msr_spec_ctrl) {
3154         kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3155     }
3156     if (has_msr_tsx_ctrl) {
3157         kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3158     }
3159     if (has_msr_virt_ssbd) {
3160         kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3161     }
3162     if (!env->tsc_valid) {
3163         kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
3164         env->tsc_valid = !runstate_is_running();
3165     }
3166 
3167 #ifdef TARGET_X86_64
3168     if (lm_capable_kernel) {
3169         kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3170         kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3171         kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3172         kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
3173     }
3174 #endif
3175     kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3176     kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
3177     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3178         kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3179     }
3180     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3181         kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
3182     }
3183     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3184         kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
3185     }
3186     if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3187         kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3188     }
3189     if (has_architectural_pmu_version > 0) {
3190         if (has_architectural_pmu_version > 1) {
3191             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3192             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3193             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3194             kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3195         }
3196         for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3197             kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
3198         }
3199         for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3200             kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3201             kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
3202         }
3203     }
3204 
3205     if (env->mcg_cap) {
3206         kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3207         kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
3208         if (has_msr_mcg_ext_ctl) {
3209             kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3210         }
3211         for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3212             kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
3213         }
3214     }
3215 
3216     if (has_msr_hv_hypercall) {
3217         kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3218         kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
3219     }
3220     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3221         kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
3222     }
3223     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3224         kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
3225     }
3226     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3227         kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3228         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3229         kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3230     }
3231     if (has_msr_hv_crash) {
3232         int j;
3233 
3234         for (j = 0; j < HV_CRASH_PARAMS; j++) {
3235             kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
3236         }
3237     }
3238     if (has_msr_hv_runtime) {
3239         kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
3240     }
3241     if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3242         uint32_t msr;
3243 
3244         kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
3245         kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3246         kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
3247         for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
3248             kvm_msr_entry_add(cpu, msr, 0);
3249         }
3250     }
3251     if (has_msr_hv_stimer) {
3252         uint32_t msr;
3253 
3254         for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3255              msr++) {
3256             kvm_msr_entry_add(cpu, msr, 0);
3257         }
3258     }
3259     if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3260         kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3261         kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3262         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3263         kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3264         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3265         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3266         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3267         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3268         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3269         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3270         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3271         kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
3272         for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3273             kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3274             kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
3275         }
3276     }
3277 
3278     if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3279         int addr_num =
3280             kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3281 
3282         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3283         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3284         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3285         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3286         kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3287         for (i = 0; i < addr_num; i++) {
3288             kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3289         }
3290     }
3291 
3292     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
3293     if (ret < 0) {
3294         return ret;
3295     }
3296 
3297     if (ret < cpu->kvm_msr_buf->nmsrs) {
3298         struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3299         error_report("error: failed to get MSR 0x%" PRIx32,
3300                      (uint32_t)e->index);
3301     }
3302 
3303     assert(ret == cpu->kvm_msr_buf->nmsrs);
3304     /*
3305      * MTRR masks: Each mask consists of 5 parts
3306      * a  10..0: must be zero
3307      * b  11   : valid bit
3308      * c n-1.12: actual mask bits
3309      * d  51..n: reserved must be zero
3310      * e  63.52: reserved must be zero
3311      *
3312      * 'n' is the number of physical bits supported by the CPU and is
3313      * apparently always <= 52.   We know our 'n' but don't know what
3314      * the destinations 'n' is; it might be smaller, in which case
3315      * it masks (c) on loading. It might be larger, in which case
3316      * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3317      * we're migrating to.
3318      */
3319 
3320     if (cpu->fill_mtrr_mask) {
3321         QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3322         assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3323         mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3324     } else {
3325         mtrr_top_bits = 0;
3326     }
3327 
3328     for (i = 0; i < ret; i++) {
3329         uint32_t index = msrs[i].index;
3330         switch (index) {
3331         case MSR_IA32_SYSENTER_CS:
3332             env->sysenter_cs = msrs[i].data;
3333             break;
3334         case MSR_IA32_SYSENTER_ESP:
3335             env->sysenter_esp = msrs[i].data;
3336             break;
3337         case MSR_IA32_SYSENTER_EIP:
3338             env->sysenter_eip = msrs[i].data;
3339             break;
3340         case MSR_PAT:
3341             env->pat = msrs[i].data;
3342             break;
3343         case MSR_STAR:
3344             env->star = msrs[i].data;
3345             break;
3346 #ifdef TARGET_X86_64
3347         case MSR_CSTAR:
3348             env->cstar = msrs[i].data;
3349             break;
3350         case MSR_KERNELGSBASE:
3351             env->kernelgsbase = msrs[i].data;
3352             break;
3353         case MSR_FMASK:
3354             env->fmask = msrs[i].data;
3355             break;
3356         case MSR_LSTAR:
3357             env->lstar = msrs[i].data;
3358             break;
3359 #endif
3360         case MSR_IA32_TSC:
3361             env->tsc = msrs[i].data;
3362             break;
3363         case MSR_TSC_AUX:
3364             env->tsc_aux = msrs[i].data;
3365             break;
3366         case MSR_TSC_ADJUST:
3367             env->tsc_adjust = msrs[i].data;
3368             break;
3369         case MSR_IA32_TSCDEADLINE:
3370             env->tsc_deadline = msrs[i].data;
3371             break;
3372         case MSR_VM_HSAVE_PA:
3373             env->vm_hsave = msrs[i].data;
3374             break;
3375         case MSR_KVM_SYSTEM_TIME:
3376             env->system_time_msr = msrs[i].data;
3377             break;
3378         case MSR_KVM_WALL_CLOCK:
3379             env->wall_clock_msr = msrs[i].data;
3380             break;
3381         case MSR_MCG_STATUS:
3382             env->mcg_status = msrs[i].data;
3383             break;
3384         case MSR_MCG_CTL:
3385             env->mcg_ctl = msrs[i].data;
3386             break;
3387         case MSR_MCG_EXT_CTL:
3388             env->mcg_ext_ctl = msrs[i].data;
3389             break;
3390         case MSR_IA32_MISC_ENABLE:
3391             env->msr_ia32_misc_enable = msrs[i].data;
3392             break;
3393         case MSR_IA32_SMBASE:
3394             env->smbase = msrs[i].data;
3395             break;
3396         case MSR_SMI_COUNT:
3397             env->msr_smi_count = msrs[i].data;
3398             break;
3399         case MSR_IA32_FEATURE_CONTROL:
3400             env->msr_ia32_feature_control = msrs[i].data;
3401             break;
3402         case MSR_IA32_BNDCFGS:
3403             env->msr_bndcfgs = msrs[i].data;
3404             break;
3405         case MSR_IA32_XSS:
3406             env->xss = msrs[i].data;
3407             break;
3408         case MSR_IA32_UMWAIT_CONTROL:
3409             env->umwait = msrs[i].data;
3410             break;
3411         default:
3412             if (msrs[i].index >= MSR_MC0_CTL &&
3413                 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
3414                 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
3415             }
3416             break;
3417         case MSR_KVM_ASYNC_PF_EN:
3418             env->async_pf_en_msr = msrs[i].data;
3419             break;
3420         case MSR_KVM_PV_EOI_EN:
3421             env->pv_eoi_en_msr = msrs[i].data;
3422             break;
3423         case MSR_KVM_STEAL_TIME:
3424             env->steal_time_msr = msrs[i].data;
3425             break;
3426         case MSR_KVM_POLL_CONTROL: {
3427             env->poll_control_msr = msrs[i].data;
3428             break;
3429         }
3430         case MSR_CORE_PERF_FIXED_CTR_CTRL:
3431             env->msr_fixed_ctr_ctrl = msrs[i].data;
3432             break;
3433         case MSR_CORE_PERF_GLOBAL_CTRL:
3434             env->msr_global_ctrl = msrs[i].data;
3435             break;
3436         case MSR_CORE_PERF_GLOBAL_STATUS:
3437             env->msr_global_status = msrs[i].data;
3438             break;
3439         case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
3440             env->msr_global_ovf_ctrl = msrs[i].data;
3441             break;
3442         case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
3443             env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
3444             break;
3445         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
3446             env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
3447             break;
3448         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
3449             env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
3450             break;
3451         case HV_X64_MSR_HYPERCALL:
3452             env->msr_hv_hypercall = msrs[i].data;
3453             break;
3454         case HV_X64_MSR_GUEST_OS_ID:
3455             env->msr_hv_guest_os_id = msrs[i].data;
3456             break;
3457         case HV_X64_MSR_APIC_ASSIST_PAGE:
3458             env->msr_hv_vapic = msrs[i].data;
3459             break;
3460         case HV_X64_MSR_REFERENCE_TSC:
3461             env->msr_hv_tsc = msrs[i].data;
3462             break;
3463         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3464             env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
3465             break;
3466         case HV_X64_MSR_VP_RUNTIME:
3467             env->msr_hv_runtime = msrs[i].data;
3468             break;
3469         case HV_X64_MSR_SCONTROL:
3470             env->msr_hv_synic_control = msrs[i].data;
3471             break;
3472         case HV_X64_MSR_SIEFP:
3473             env->msr_hv_synic_evt_page = msrs[i].data;
3474             break;
3475         case HV_X64_MSR_SIMP:
3476             env->msr_hv_synic_msg_page = msrs[i].data;
3477             break;
3478         case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
3479             env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
3480             break;
3481         case HV_X64_MSR_STIMER0_CONFIG:
3482         case HV_X64_MSR_STIMER1_CONFIG:
3483         case HV_X64_MSR_STIMER2_CONFIG:
3484         case HV_X64_MSR_STIMER3_CONFIG:
3485             env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
3486                                 msrs[i].data;
3487             break;
3488         case HV_X64_MSR_STIMER0_COUNT:
3489         case HV_X64_MSR_STIMER1_COUNT:
3490         case HV_X64_MSR_STIMER2_COUNT:
3491         case HV_X64_MSR_STIMER3_COUNT:
3492             env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
3493                                 msrs[i].data;
3494             break;
3495         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3496             env->msr_hv_reenlightenment_control = msrs[i].data;
3497             break;
3498         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3499             env->msr_hv_tsc_emulation_control = msrs[i].data;
3500             break;
3501         case HV_X64_MSR_TSC_EMULATION_STATUS:
3502             env->msr_hv_tsc_emulation_status = msrs[i].data;
3503             break;
3504         case MSR_MTRRdefType:
3505             env->mtrr_deftype = msrs[i].data;
3506             break;
3507         case MSR_MTRRfix64K_00000:
3508             env->mtrr_fixed[0] = msrs[i].data;
3509             break;
3510         case MSR_MTRRfix16K_80000:
3511             env->mtrr_fixed[1] = msrs[i].data;
3512             break;
3513         case MSR_MTRRfix16K_A0000:
3514             env->mtrr_fixed[2] = msrs[i].data;
3515             break;
3516         case MSR_MTRRfix4K_C0000:
3517             env->mtrr_fixed[3] = msrs[i].data;
3518             break;
3519         case MSR_MTRRfix4K_C8000:
3520             env->mtrr_fixed[4] = msrs[i].data;
3521             break;
3522         case MSR_MTRRfix4K_D0000:
3523             env->mtrr_fixed[5] = msrs[i].data;
3524             break;
3525         case MSR_MTRRfix4K_D8000:
3526             env->mtrr_fixed[6] = msrs[i].data;
3527             break;
3528         case MSR_MTRRfix4K_E0000:
3529             env->mtrr_fixed[7] = msrs[i].data;
3530             break;
3531         case MSR_MTRRfix4K_E8000:
3532             env->mtrr_fixed[8] = msrs[i].data;
3533             break;
3534         case MSR_MTRRfix4K_F0000:
3535             env->mtrr_fixed[9] = msrs[i].data;
3536             break;
3537         case MSR_MTRRfix4K_F8000:
3538             env->mtrr_fixed[10] = msrs[i].data;
3539             break;
3540         case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
3541             if (index & 1) {
3542                 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
3543                                                                mtrr_top_bits;
3544             } else {
3545                 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
3546             }
3547             break;
3548         case MSR_IA32_SPEC_CTRL:
3549             env->spec_ctrl = msrs[i].data;
3550             break;
3551         case MSR_IA32_TSX_CTRL:
3552             env->tsx_ctrl = msrs[i].data;
3553             break;
3554         case MSR_VIRT_SSBD:
3555             env->virt_ssbd = msrs[i].data;
3556             break;
3557         case MSR_IA32_RTIT_CTL:
3558             env->msr_rtit_ctrl = msrs[i].data;
3559             break;
3560         case MSR_IA32_RTIT_STATUS:
3561             env->msr_rtit_status = msrs[i].data;
3562             break;
3563         case MSR_IA32_RTIT_OUTPUT_BASE:
3564             env->msr_rtit_output_base = msrs[i].data;
3565             break;
3566         case MSR_IA32_RTIT_OUTPUT_MASK:
3567             env->msr_rtit_output_mask = msrs[i].data;
3568             break;
3569         case MSR_IA32_RTIT_CR3_MATCH:
3570             env->msr_rtit_cr3_match = msrs[i].data;
3571             break;
3572         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
3573             env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
3574             break;
3575         }
3576     }
3577 
3578     return 0;
3579 }
3580 
kvm_put_mp_state(X86CPU * cpu)3581 static int kvm_put_mp_state(X86CPU *cpu)
3582 {
3583     struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
3584 
3585     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
3586 }
3587 
kvm_get_mp_state(X86CPU * cpu)3588 static int kvm_get_mp_state(X86CPU *cpu)
3589 {
3590     CPUState *cs = CPU(cpu);
3591     CPUX86State *env = &cpu->env;
3592     struct kvm_mp_state mp_state;
3593     int ret;
3594 
3595     ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
3596     if (ret < 0) {
3597         return ret;
3598     }
3599     env->mp_state = mp_state.mp_state;
3600     if (kvm_irqchip_in_kernel()) {
3601         cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
3602     }
3603     return 0;
3604 }
3605 
kvm_get_apic(X86CPU * cpu)3606 static int kvm_get_apic(X86CPU *cpu)
3607 {
3608     DeviceState *apic = cpu->apic_state;
3609     struct kvm_lapic_state kapic;
3610     int ret;
3611 
3612     if (apic && kvm_irqchip_in_kernel()) {
3613         ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
3614         if (ret < 0) {
3615             return ret;
3616         }
3617 
3618         kvm_get_apic_state(apic, &kapic);
3619     }
3620     return 0;
3621 }
3622 
kvm_put_vcpu_events(X86CPU * cpu,int level)3623 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
3624 {
3625     CPUState *cs = CPU(cpu);
3626     CPUX86State *env = &cpu->env;
3627     struct kvm_vcpu_events events = {};
3628 
3629     if (!kvm_has_vcpu_events()) {
3630         return 0;
3631     }
3632 
3633     events.flags = 0;
3634 
3635     if (has_exception_payload) {
3636         events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3637         events.exception.pending = env->exception_pending;
3638         events.exception_has_payload = env->exception_has_payload;
3639         events.exception_payload = env->exception_payload;
3640     }
3641     events.exception.nr = env->exception_nr;
3642     events.exception.injected = env->exception_injected;
3643     events.exception.has_error_code = env->has_error_code;
3644     events.exception.error_code = env->error_code;
3645 
3646     events.interrupt.injected = (env->interrupt_injected >= 0);
3647     events.interrupt.nr = env->interrupt_injected;
3648     events.interrupt.soft = env->soft_interrupt;
3649 
3650     events.nmi.injected = env->nmi_injected;
3651     events.nmi.pending = env->nmi_pending;
3652     events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
3653 
3654     events.sipi_vector = env->sipi_vector;
3655 
3656     if (has_msr_smbase) {
3657         events.smi.smm = !!(env->hflags & HF_SMM_MASK);
3658         events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
3659         if (kvm_irqchip_in_kernel()) {
3660             /* As soon as these are moved to the kernel, remove them
3661              * from cs->interrupt_request.
3662              */
3663             events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
3664             events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
3665             cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
3666         } else {
3667             /* Keep these in cs->interrupt_request.  */
3668             events.smi.pending = 0;
3669             events.smi.latched_init = 0;
3670         }
3671         /* Stop SMI delivery on old machine types to avoid a reboot
3672          * on an inward migration of an old VM.
3673          */
3674         if (!cpu->kvm_no_smi_migration) {
3675             events.flags |= KVM_VCPUEVENT_VALID_SMM;
3676         }
3677     }
3678 
3679     if (level >= KVM_PUT_RESET_STATE) {
3680         events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
3681         if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
3682             events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
3683         }
3684     }
3685 
3686     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
3687 }
3688 
kvm_get_vcpu_events(X86CPU * cpu)3689 static int kvm_get_vcpu_events(X86CPU *cpu)
3690 {
3691     CPUX86State *env = &cpu->env;
3692     struct kvm_vcpu_events events;
3693     int ret;
3694 
3695     if (!kvm_has_vcpu_events()) {
3696         return 0;
3697     }
3698 
3699     memset(&events, 0, sizeof(events));
3700     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
3701     if (ret < 0) {
3702        return ret;
3703     }
3704 
3705     if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3706         env->exception_pending = events.exception.pending;
3707         env->exception_has_payload = events.exception_has_payload;
3708         env->exception_payload = events.exception_payload;
3709     } else {
3710         env->exception_pending = 0;
3711         env->exception_has_payload = false;
3712     }
3713     env->exception_injected = events.exception.injected;
3714     env->exception_nr =
3715         (env->exception_pending || env->exception_injected) ?
3716         events.exception.nr : -1;
3717     env->has_error_code = events.exception.has_error_code;
3718     env->error_code = events.exception.error_code;
3719 
3720     env->interrupt_injected =
3721         events.interrupt.injected ? events.interrupt.nr : -1;
3722     env->soft_interrupt = events.interrupt.soft;
3723 
3724     env->nmi_injected = events.nmi.injected;
3725     env->nmi_pending = events.nmi.pending;
3726     if (events.nmi.masked) {
3727         env->hflags2 |= HF2_NMI_MASK;
3728     } else {
3729         env->hflags2 &= ~HF2_NMI_MASK;
3730     }
3731 
3732     if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
3733         if (events.smi.smm) {
3734             env->hflags |= HF_SMM_MASK;
3735         } else {
3736             env->hflags &= ~HF_SMM_MASK;
3737         }
3738         if (events.smi.pending) {
3739             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3740         } else {
3741             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3742         }
3743         if (events.smi.smm_inside_nmi) {
3744             env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
3745         } else {
3746             env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
3747         }
3748         if (events.smi.latched_init) {
3749             cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3750         } else {
3751             cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3752         }
3753     }
3754 
3755     env->sipi_vector = events.sipi_vector;
3756 
3757     return 0;
3758 }
3759 
kvm_guest_debug_workarounds(X86CPU * cpu)3760 static int kvm_guest_debug_workarounds(X86CPU *cpu)
3761 {
3762     CPUState *cs = CPU(cpu);
3763     CPUX86State *env = &cpu->env;
3764     int ret = 0;
3765     unsigned long reinject_trap = 0;
3766 
3767     if (!kvm_has_vcpu_events()) {
3768         if (env->exception_nr == EXCP01_DB) {
3769             reinject_trap = KVM_GUESTDBG_INJECT_DB;
3770         } else if (env->exception_injected == EXCP03_INT3) {
3771             reinject_trap = KVM_GUESTDBG_INJECT_BP;
3772         }
3773         kvm_reset_exception(env);
3774     }
3775 
3776     /*
3777      * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
3778      * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
3779      * by updating the debug state once again if single-stepping is on.
3780      * Another reason to call kvm_update_guest_debug here is a pending debug
3781      * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
3782      * reinject them via SET_GUEST_DEBUG.
3783      */
3784     if (reinject_trap ||
3785         (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
3786         ret = kvm_update_guest_debug(cs, reinject_trap);
3787     }
3788     return ret;
3789 }
3790 
kvm_put_debugregs(X86CPU * cpu)3791 static int kvm_put_debugregs(X86CPU *cpu)
3792 {
3793     CPUX86State *env = &cpu->env;
3794     struct kvm_debugregs dbgregs;
3795     int i;
3796 
3797     if (!kvm_has_debugregs()) {
3798         return 0;
3799     }
3800 
3801     memset(&dbgregs, 0, sizeof(dbgregs));
3802     for (i = 0; i < 4; i++) {
3803         dbgregs.db[i] = env->dr[i];
3804     }
3805     dbgregs.dr6 = env->dr[6];
3806     dbgregs.dr7 = env->dr[7];
3807     dbgregs.flags = 0;
3808 
3809     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
3810 }
3811 
kvm_get_debugregs(X86CPU * cpu)3812 static int kvm_get_debugregs(X86CPU *cpu)
3813 {
3814     CPUX86State *env = &cpu->env;
3815     struct kvm_debugregs dbgregs;
3816     int i, ret;
3817 
3818     if (!kvm_has_debugregs()) {
3819         return 0;
3820     }
3821 
3822     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
3823     if (ret < 0) {
3824         return ret;
3825     }
3826     for (i = 0; i < 4; i++) {
3827         env->dr[i] = dbgregs.db[i];
3828     }
3829     env->dr[4] = env->dr[6] = dbgregs.dr6;
3830     env->dr[5] = env->dr[7] = dbgregs.dr7;
3831 
3832     return 0;
3833 }
3834 
kvm_put_nested_state(X86CPU * cpu)3835 static int kvm_put_nested_state(X86CPU *cpu)
3836 {
3837     CPUX86State *env = &cpu->env;
3838     int max_nested_state_len = kvm_max_nested_state_length();
3839 
3840     if (!env->nested_state) {
3841         return 0;
3842     }
3843 
3844     assert(env->nested_state->size <= max_nested_state_len);
3845     return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
3846 }
3847 
kvm_get_nested_state(X86CPU * cpu)3848 static int kvm_get_nested_state(X86CPU *cpu)
3849 {
3850     CPUX86State *env = &cpu->env;
3851     int max_nested_state_len = kvm_max_nested_state_length();
3852     int ret;
3853 
3854     if (!env->nested_state) {
3855         return 0;
3856     }
3857 
3858     /*
3859      * It is possible that migration restored a smaller size into
3860      * nested_state->hdr.size than what our kernel support.
3861      * We preserve migration origin nested_state->hdr.size for
3862      * call to KVM_SET_NESTED_STATE but wish that our next call
3863      * to KVM_GET_NESTED_STATE will use max size our kernel support.
3864      */
3865     env->nested_state->size = max_nested_state_len;
3866 
3867     ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
3868     if (ret < 0) {
3869         return ret;
3870     }
3871 
3872     if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
3873         env->hflags |= HF_GUEST_MASK;
3874     } else {
3875         env->hflags &= ~HF_GUEST_MASK;
3876     }
3877 
3878     return ret;
3879 }
3880 
kvm_arch_put_registers(CPUState * cpu,int level)3881 int kvm_arch_put_registers(CPUState *cpu, int level)
3882 {
3883     X86CPU *x86_cpu = X86_CPU(cpu);
3884     int ret;
3885 
3886     assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
3887 
3888     if (level >= KVM_PUT_RESET_STATE) {
3889         ret = kvm_put_nested_state(x86_cpu);
3890         if (ret < 0) {
3891             return ret;
3892         }
3893 
3894         ret = kvm_put_msr_feature_control(x86_cpu);
3895         if (ret < 0) {
3896             return ret;
3897         }
3898     }
3899 
3900     if (level == KVM_PUT_FULL_STATE) {
3901         /* We don't check for kvm_arch_set_tsc_khz() errors here,
3902          * because TSC frequency mismatch shouldn't abort migration,
3903          * unless the user explicitly asked for a more strict TSC
3904          * setting (e.g. using an explicit "tsc-freq" option).
3905          */
3906         kvm_arch_set_tsc_khz(cpu);
3907     }
3908 
3909     ret = kvm_getput_regs(x86_cpu, 1);
3910     if (ret < 0) {
3911         return ret;
3912     }
3913     ret = kvm_put_xsave(x86_cpu);
3914     if (ret < 0) {
3915         return ret;
3916     }
3917     ret = kvm_put_xcrs(x86_cpu);
3918     if (ret < 0) {
3919         return ret;
3920     }
3921     ret = kvm_put_sregs(x86_cpu);
3922     if (ret < 0) {
3923         return ret;
3924     }
3925     /* must be before kvm_put_msrs */
3926     ret = kvm_inject_mce_oldstyle(x86_cpu);
3927     if (ret < 0) {
3928         return ret;
3929     }
3930     ret = kvm_put_msrs(x86_cpu, level);
3931     if (ret < 0) {
3932         return ret;
3933     }
3934     ret = kvm_put_vcpu_events(x86_cpu, level);
3935     if (ret < 0) {
3936         return ret;
3937     }
3938     if (level >= KVM_PUT_RESET_STATE) {
3939         ret = kvm_put_mp_state(x86_cpu);
3940         if (ret < 0) {
3941             return ret;
3942         }
3943     }
3944 
3945     ret = kvm_put_tscdeadline_msr(x86_cpu);
3946     if (ret < 0) {
3947         return ret;
3948     }
3949     ret = kvm_put_debugregs(x86_cpu);
3950     if (ret < 0) {
3951         return ret;
3952     }
3953     /* must be last */
3954     ret = kvm_guest_debug_workarounds(x86_cpu);
3955     if (ret < 0) {
3956         return ret;
3957     }
3958     return 0;
3959 }
3960 
kvm_arch_get_registers(CPUState * cs)3961 int kvm_arch_get_registers(CPUState *cs)
3962 {
3963     X86CPU *cpu = X86_CPU(cs);
3964     int ret;
3965 
3966     assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
3967 
3968     ret = kvm_get_vcpu_events(cpu);
3969     if (ret < 0) {
3970         goto out;
3971     }
3972     /*
3973      * KVM_GET_MPSTATE can modify CS and RIP, call it before
3974      * KVM_GET_REGS and KVM_GET_SREGS.
3975      */
3976     ret = kvm_get_mp_state(cpu);
3977     if (ret < 0) {
3978         goto out;
3979     }
3980     ret = kvm_getput_regs(cpu, 0);
3981     if (ret < 0) {
3982         goto out;
3983     }
3984     ret = kvm_get_xsave(cpu);
3985     if (ret < 0) {
3986         goto out;
3987     }
3988     ret = kvm_get_xcrs(cpu);
3989     if (ret < 0) {
3990         goto out;
3991     }
3992     ret = kvm_get_sregs(cpu);
3993     if (ret < 0) {
3994         goto out;
3995     }
3996     ret = kvm_get_msrs(cpu);
3997     if (ret < 0) {
3998         goto out;
3999     }
4000     ret = kvm_get_apic(cpu);
4001     if (ret < 0) {
4002         goto out;
4003     }
4004     ret = kvm_get_debugregs(cpu);
4005     if (ret < 0) {
4006         goto out;
4007     }
4008     ret = kvm_get_nested_state(cpu);
4009     if (ret < 0) {
4010         goto out;
4011     }
4012     ret = 0;
4013  out:
4014     cpu_sync_bndcs_hflags(&cpu->env);
4015     return ret;
4016 }
4017 
kvm_arch_pre_run(CPUState * cpu,struct kvm_run * run)4018 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
4019 {
4020     X86CPU *x86_cpu = X86_CPU(cpu);
4021     CPUX86State *env = &x86_cpu->env;
4022     int ret;
4023 
4024     /* Inject NMI */
4025     if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4026         if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4027             qemu_mutex_lock_iothread();
4028             cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4029             qemu_mutex_unlock_iothread();
4030             DPRINTF("injected NMI\n");
4031             ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4032             if (ret < 0) {
4033                 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4034                         strerror(-ret));
4035             }
4036         }
4037         if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4038             qemu_mutex_lock_iothread();
4039             cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4040             qemu_mutex_unlock_iothread();
4041             DPRINTF("injected SMI\n");
4042             ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4043             if (ret < 0) {
4044                 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4045                         strerror(-ret));
4046             }
4047         }
4048     }
4049 
4050     if (!kvm_pic_in_kernel()) {
4051         qemu_mutex_lock_iothread();
4052     }
4053 
4054     /* Force the VCPU out of its inner loop to process any INIT requests
4055      * or (for userspace APIC, but it is cheap to combine the checks here)
4056      * pending TPR access reports.
4057      */
4058     if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
4059         if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4060             !(env->hflags & HF_SMM_MASK)) {
4061             cpu->exit_request = 1;
4062         }
4063         if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4064             cpu->exit_request = 1;
4065         }
4066     }
4067 
4068     if (!kvm_pic_in_kernel()) {
4069         /* Try to inject an interrupt if the guest can accept it */
4070         if (run->ready_for_interrupt_injection &&
4071             (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
4072             (env->eflags & IF_MASK)) {
4073             int irq;
4074 
4075             cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
4076             irq = cpu_get_pic_interrupt(env);
4077             if (irq >= 0) {
4078                 struct kvm_interrupt intr;
4079 
4080                 intr.irq = irq;
4081                 DPRINTF("injected interrupt %d\n", irq);
4082                 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
4083                 if (ret < 0) {
4084                     fprintf(stderr,
4085                             "KVM: injection failed, interrupt lost (%s)\n",
4086                             strerror(-ret));
4087                 }
4088             }
4089         }
4090 
4091         /* If we have an interrupt but the guest is not ready to receive an
4092          * interrupt, request an interrupt window exit.  This will
4093          * cause a return to userspace as soon as the guest is ready to
4094          * receive interrupts. */
4095         if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
4096             run->request_interrupt_window = 1;
4097         } else {
4098             run->request_interrupt_window = 0;
4099         }
4100 
4101         DPRINTF("setting tpr\n");
4102         run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4103 
4104         qemu_mutex_unlock_iothread();
4105     }
4106 }
4107 
kvm_arch_post_run(CPUState * cpu,struct kvm_run * run)4108 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
4109 {
4110     X86CPU *x86_cpu = X86_CPU(cpu);
4111     CPUX86State *env = &x86_cpu->env;
4112 
4113     if (run->flags & KVM_RUN_X86_SMM) {
4114         env->hflags |= HF_SMM_MASK;
4115     } else {
4116         env->hflags &= ~HF_SMM_MASK;
4117     }
4118     if (run->if_flag) {
4119         env->eflags |= IF_MASK;
4120     } else {
4121         env->eflags &= ~IF_MASK;
4122     }
4123 
4124     /* We need to protect the apic state against concurrent accesses from
4125      * different threads in case the userspace irqchip is used. */
4126     if (!kvm_irqchip_in_kernel()) {
4127         qemu_mutex_lock_iothread();
4128     }
4129     cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4130     cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4131     if (!kvm_irqchip_in_kernel()) {
4132         qemu_mutex_unlock_iothread();
4133     }
4134     return cpu_get_mem_attrs(env);
4135 }
4136 
kvm_arch_process_async_events(CPUState * cs)4137 int kvm_arch_process_async_events(CPUState *cs)
4138 {
4139     X86CPU *cpu = X86_CPU(cs);
4140     CPUX86State *env = &cpu->env;
4141 
4142     if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
4143         /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4144         assert(env->mcg_cap);
4145 
4146         cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
4147 
4148         kvm_cpu_synchronize_state(cs);
4149 
4150         if (env->exception_nr == EXCP08_DBLE) {
4151             /* this means triple fault */
4152             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
4153             cs->exit_request = 1;
4154             return 0;
4155         }
4156         kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
4157         env->has_error_code = 0;
4158 
4159         cs->halted = 0;
4160         if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4161             env->mp_state = KVM_MP_STATE_RUNNABLE;
4162         }
4163     }
4164 
4165     if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4166         !(env->hflags & HF_SMM_MASK)) {
4167         kvm_cpu_synchronize_state(cs);
4168         do_cpu_init(cpu);
4169     }
4170 
4171     if (kvm_irqchip_in_kernel()) {
4172         return 0;
4173     }
4174 
4175     if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4176         cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
4177         apic_poll_irq(cpu->apic_state);
4178     }
4179     if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4180          (env->eflags & IF_MASK)) ||
4181         (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4182         cs->halted = 0;
4183     }
4184     if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
4185         kvm_cpu_synchronize_state(cs);
4186         do_cpu_sipi(cpu);
4187     }
4188     if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4189         cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
4190         kvm_cpu_synchronize_state(cs);
4191         apic_handle_tpr_access_report(cpu->apic_state, env->eip,
4192                                       env->tpr_access_type);
4193     }
4194 
4195     return cs->halted;
4196 }
4197 
kvm_handle_halt(X86CPU * cpu)4198 static int kvm_handle_halt(X86CPU *cpu)
4199 {
4200     CPUState *cs = CPU(cpu);
4201     CPUX86State *env = &cpu->env;
4202 
4203     if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4204           (env->eflags & IF_MASK)) &&
4205         !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4206         cs->halted = 1;
4207         return EXCP_HLT;
4208     }
4209 
4210     return 0;
4211 }
4212 
kvm_handle_tpr_access(X86CPU * cpu)4213 static int kvm_handle_tpr_access(X86CPU *cpu)
4214 {
4215     CPUState *cs = CPU(cpu);
4216     struct kvm_run *run = cs->kvm_run;
4217 
4218     apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
4219                                   run->tpr_access.is_write ? TPR_ACCESS_WRITE
4220                                                            : TPR_ACCESS_READ);
4221     return 1;
4222 }
4223 
kvm_arch_insert_sw_breakpoint(CPUState * cs,struct kvm_sw_breakpoint * bp)4224 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4225 {
4226     static const uint8_t int3 = 0xcc;
4227 
4228     if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
4229         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
4230         return -EINVAL;
4231     }
4232     return 0;
4233 }
4234 
kvm_arch_remove_sw_breakpoint(CPUState * cs,struct kvm_sw_breakpoint * bp)4235 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4236 {
4237     uint8_t int3;
4238 
4239     if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
4240         cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
4241         return -EINVAL;
4242     }
4243     return 0;
4244 }
4245 
4246 static struct {
4247     target_ulong addr;
4248     int len;
4249     int type;
4250 } hw_breakpoint[4];
4251 
4252 static int nb_hw_breakpoint;
4253 
find_hw_breakpoint(target_ulong addr,int len,int type)4254 static int find_hw_breakpoint(target_ulong addr, int len, int type)
4255 {
4256     int n;
4257 
4258     for (n = 0; n < nb_hw_breakpoint; n++) {
4259         if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
4260             (hw_breakpoint[n].len == len || len == -1)) {
4261             return n;
4262         }
4263     }
4264     return -1;
4265 }
4266 
kvm_arch_insert_hw_breakpoint(target_ulong addr,target_ulong len,int type)4267 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
4268                                   target_ulong len, int type)
4269 {
4270     switch (type) {
4271     case GDB_BREAKPOINT_HW:
4272         len = 1;
4273         break;
4274     case GDB_WATCHPOINT_WRITE:
4275     case GDB_WATCHPOINT_ACCESS:
4276         switch (len) {
4277         case 1:
4278             break;
4279         case 2:
4280         case 4:
4281         case 8:
4282             if (addr & (len - 1)) {
4283                 return -EINVAL;
4284             }
4285             break;
4286         default:
4287             return -EINVAL;
4288         }
4289         break;
4290     default:
4291         return -ENOSYS;
4292     }
4293 
4294     if (nb_hw_breakpoint == 4) {
4295         return -ENOBUFS;
4296     }
4297     if (find_hw_breakpoint(addr, len, type) >= 0) {
4298         return -EEXIST;
4299     }
4300     hw_breakpoint[nb_hw_breakpoint].addr = addr;
4301     hw_breakpoint[nb_hw_breakpoint].len = len;
4302     hw_breakpoint[nb_hw_breakpoint].type = type;
4303     nb_hw_breakpoint++;
4304 
4305     return 0;
4306 }
4307 
kvm_arch_remove_hw_breakpoint(target_ulong addr,target_ulong len,int type)4308 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
4309                                   target_ulong len, int type)
4310 {
4311     int n;
4312 
4313     n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
4314     if (n < 0) {
4315         return -ENOENT;
4316     }
4317     nb_hw_breakpoint--;
4318     hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
4319 
4320     return 0;
4321 }
4322 
kvm_arch_remove_all_hw_breakpoints(void)4323 void kvm_arch_remove_all_hw_breakpoints(void)
4324 {
4325     nb_hw_breakpoint = 0;
4326 }
4327 
4328 static CPUWatchpoint hw_watchpoint;
4329 
kvm_handle_debug(X86CPU * cpu,struct kvm_debug_exit_arch * arch_info)4330 static int kvm_handle_debug(X86CPU *cpu,
4331                             struct kvm_debug_exit_arch *arch_info)
4332 {
4333     CPUState *cs = CPU(cpu);
4334     CPUX86State *env = &cpu->env;
4335     int ret = 0;
4336     int n;
4337 
4338     if (arch_info->exception == EXCP01_DB) {
4339         if (arch_info->dr6 & DR6_BS) {
4340             if (cs->singlestep_enabled) {
4341                 ret = EXCP_DEBUG;
4342             }
4343         } else {
4344             for (n = 0; n < 4; n++) {
4345                 if (arch_info->dr6 & (1 << n)) {
4346                     switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
4347                     case 0x0:
4348                         ret = EXCP_DEBUG;
4349                         break;
4350                     case 0x1:
4351                         ret = EXCP_DEBUG;
4352                         cs->watchpoint_hit = &hw_watchpoint;
4353                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4354                         hw_watchpoint.flags = BP_MEM_WRITE;
4355                         break;
4356                     case 0x3:
4357                         ret = EXCP_DEBUG;
4358                         cs->watchpoint_hit = &hw_watchpoint;
4359                         hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4360                         hw_watchpoint.flags = BP_MEM_ACCESS;
4361                         break;
4362                     }
4363                 }
4364             }
4365         }
4366     } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
4367         ret = EXCP_DEBUG;
4368     }
4369     if (ret == 0) {
4370         cpu_synchronize_state(cs);
4371         assert(env->exception_nr == -1);
4372 
4373         /* pass to guest */
4374         kvm_queue_exception(env, arch_info->exception,
4375                             arch_info->exception == EXCP01_DB,
4376                             arch_info->dr6);
4377         env->has_error_code = 0;
4378     }
4379 
4380     return ret;
4381 }
4382 
kvm_arch_update_guest_debug(CPUState * cpu,struct kvm_guest_debug * dbg)4383 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
4384 {
4385     const uint8_t type_code[] = {
4386         [GDB_BREAKPOINT_HW] = 0x0,
4387         [GDB_WATCHPOINT_WRITE] = 0x1,
4388         [GDB_WATCHPOINT_ACCESS] = 0x3
4389     };
4390     const uint8_t len_code[] = {
4391         [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
4392     };
4393     int n;
4394 
4395     if (kvm_sw_breakpoints_active(cpu)) {
4396         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
4397     }
4398     if (nb_hw_breakpoint > 0) {
4399         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
4400         dbg->arch.debugreg[7] = 0x0600;
4401         for (n = 0; n < nb_hw_breakpoint; n++) {
4402             dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
4403             dbg->arch.debugreg[7] |= (2 << (n * 2)) |
4404                 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
4405                 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
4406         }
4407     }
4408 }
4409 
host_supports_vmx(void)4410 static bool host_supports_vmx(void)
4411 {
4412     uint32_t ecx, unused;
4413 
4414     host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
4415     return ecx & CPUID_EXT_VMX;
4416 }
4417 
4418 #define VMX_INVALID_GUEST_STATE 0x80000021
4419 
kvm_arch_handle_exit(CPUState * cs,struct kvm_run * run)4420 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
4421 {
4422     X86CPU *cpu = X86_CPU(cs);
4423     uint64_t code;
4424     int ret;
4425 
4426     switch (run->exit_reason) {
4427     case KVM_EXIT_HLT:
4428         DPRINTF("handle_hlt\n");
4429         qemu_mutex_lock_iothread();
4430         ret = kvm_handle_halt(cpu);
4431         qemu_mutex_unlock_iothread();
4432         break;
4433     case KVM_EXIT_SET_TPR:
4434         ret = 0;
4435         break;
4436     case KVM_EXIT_TPR_ACCESS:
4437         qemu_mutex_lock_iothread();
4438         ret = kvm_handle_tpr_access(cpu);
4439         qemu_mutex_unlock_iothread();
4440         break;
4441     case KVM_EXIT_FAIL_ENTRY:
4442         code = run->fail_entry.hardware_entry_failure_reason;
4443         fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
4444                 code);
4445         if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
4446             fprintf(stderr,
4447                     "\nIf you're running a guest on an Intel machine without "
4448                         "unrestricted mode\n"
4449                     "support, the failure can be most likely due to the guest "
4450                         "entering an invalid\n"
4451                     "state for Intel VT. For example, the guest maybe running "
4452                         "in big real mode\n"
4453                     "which is not supported on less recent Intel processors."
4454                         "\n\n");
4455         }
4456         ret = -1;
4457         break;
4458     case KVM_EXIT_EXCEPTION:
4459         fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
4460                 run->ex.exception, run->ex.error_code);
4461         ret = -1;
4462         break;
4463     case KVM_EXIT_DEBUG:
4464         DPRINTF("kvm_exit_debug\n");
4465         qemu_mutex_lock_iothread();
4466         ret = kvm_handle_debug(cpu, &run->debug.arch);
4467         qemu_mutex_unlock_iothread();
4468         break;
4469     case KVM_EXIT_HYPERV:
4470         ret = kvm_hv_handle_exit(cpu, &run->hyperv);
4471         break;
4472     case KVM_EXIT_IOAPIC_EOI:
4473         ioapic_eoi_broadcast(run->eoi.vector);
4474         ret = 0;
4475         break;
4476     default:
4477         fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
4478         ret = -1;
4479         break;
4480     }
4481 
4482     return ret;
4483 }
4484 
kvm_arch_stop_on_emulation_error(CPUState * cs)4485 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4486 {
4487     X86CPU *cpu = X86_CPU(cs);
4488     CPUX86State *env = &cpu->env;
4489 
4490     kvm_cpu_synchronize_state(cs);
4491     return !(env->cr[0] & CR0_PE_MASK) ||
4492            ((env->segs[R_CS].selector  & 3) != 3);
4493 }
4494 
kvm_arch_init_irq_routing(KVMState * s)4495 void kvm_arch_init_irq_routing(KVMState *s)
4496 {
4497     if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
4498         /* If kernel can't do irq routing, interrupt source
4499          * override 0->2 cannot be set up as required by HPET.
4500          * So we have to disable it.
4501          */
4502         no_hpet = 1;
4503     }
4504     /* We know at this point that we're using the in-kernel
4505      * irqchip, so we can use irqfds, and on x86 we know
4506      * we can use msi via irqfd and GSI routing.
4507      */
4508     kvm_msi_via_irqfd_allowed = true;
4509     kvm_gsi_routing_allowed = true;
4510 
4511     if (kvm_irqchip_is_split()) {
4512         int i;
4513 
4514         /* If the ioapic is in QEMU and the lapics are in KVM, reserve
4515            MSI routes for signaling interrupts to the local apics. */
4516         for (i = 0; i < IOAPIC_NUM_PINS; i++) {
4517             if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) {
4518                 error_report("Could not enable split IRQ mode.");
4519                 exit(1);
4520             }
4521         }
4522     }
4523 }
4524 
kvm_arch_irqchip_create(KVMState * s)4525 int kvm_arch_irqchip_create(KVMState *s)
4526 {
4527     int ret;
4528     if (kvm_kernel_irqchip_split()) {
4529         ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
4530         if (ret) {
4531             error_report("Could not enable split irqchip mode: %s",
4532                          strerror(-ret));
4533             exit(1);
4534         } else {
4535             DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
4536             kvm_split_irqchip = true;
4537             return 1;
4538         }
4539     } else {
4540         return 0;
4541     }
4542 }
4543 
kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry * route,uint64_t address,uint32_t data,PCIDevice * dev)4544 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
4545                              uint64_t address, uint32_t data, PCIDevice *dev)
4546 {
4547     X86IOMMUState *iommu = x86_iommu_get_default();
4548 
4549     if (iommu) {
4550         int ret;
4551         MSIMessage src, dst;
4552         X86IOMMUClass *class = X86_IOMMU_GET_CLASS(iommu);
4553 
4554         if (!class->int_remap) {
4555             return 0;
4556         }
4557 
4558         src.address = route->u.msi.address_hi;
4559         src.address <<= VTD_MSI_ADDR_HI_SHIFT;
4560         src.address |= route->u.msi.address_lo;
4561         src.data = route->u.msi.data;
4562 
4563         ret = class->int_remap(iommu, &src, &dst, dev ? \
4564                                pci_requester_id(dev) : \
4565                                X86_IOMMU_SID_INVALID);
4566         if (ret) {
4567             trace_kvm_x86_fixup_msi_error(route->gsi);
4568             return 1;
4569         }
4570 
4571         route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
4572         route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
4573         route->u.msi.data = dst.data;
4574     }
4575 
4576     return 0;
4577 }
4578 
4579 typedef struct MSIRouteEntry MSIRouteEntry;
4580 
4581 struct MSIRouteEntry {
4582     PCIDevice *dev;             /* Device pointer */
4583     int vector;                 /* MSI/MSIX vector index */
4584     int virq;                   /* Virtual IRQ index */
4585     QLIST_ENTRY(MSIRouteEntry) list;
4586 };
4587 
4588 /* List of used GSI routes */
4589 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
4590     QLIST_HEAD_INITIALIZER(msi_route_list);
4591 
kvm_update_msi_routes_all(void * private,bool global,uint32_t index,uint32_t mask)4592 static void kvm_update_msi_routes_all(void *private, bool global,
4593                                       uint32_t index, uint32_t mask)
4594 {
4595     int cnt = 0, vector;
4596     MSIRouteEntry *entry;
4597     MSIMessage msg;
4598     PCIDevice *dev;
4599 
4600     /* TODO: explicit route update */
4601     QLIST_FOREACH(entry, &msi_route_list, list) {
4602         cnt++;
4603         vector = entry->vector;
4604         dev = entry->dev;
4605         if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
4606             msg = msix_get_message(dev, vector);
4607         } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
4608             msg = msi_get_message(dev, vector);
4609         } else {
4610             /*
4611              * Either MSI/MSIX is disabled for the device, or the
4612              * specific message was masked out.  Skip this one.
4613              */
4614             continue;
4615         }
4616         kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
4617     }
4618     kvm_irqchip_commit_routes(kvm_state);
4619     trace_kvm_x86_update_msi_routes(cnt);
4620 }
4621 
kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry * route,int vector,PCIDevice * dev)4622 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
4623                                 int vector, PCIDevice *dev)
4624 {
4625     static bool notify_list_inited = false;
4626     MSIRouteEntry *entry;
4627 
4628     if (!dev) {
4629         /* These are (possibly) IOAPIC routes only used for split
4630          * kernel irqchip mode, while what we are housekeeping are
4631          * PCI devices only. */
4632         return 0;
4633     }
4634 
4635     entry = g_new0(MSIRouteEntry, 1);
4636     entry->dev = dev;
4637     entry->vector = vector;
4638     entry->virq = route->gsi;
4639     QLIST_INSERT_HEAD(&msi_route_list, entry, list);
4640 
4641     trace_kvm_x86_add_msi_route(route->gsi);
4642 
4643     if (!notify_list_inited) {
4644         /* For the first time we do add route, add ourselves into
4645          * IOMMU's IEC notify list if needed. */
4646         X86IOMMUState *iommu = x86_iommu_get_default();
4647         if (iommu) {
4648             x86_iommu_iec_register_notifier(iommu,
4649                                             kvm_update_msi_routes_all,
4650                                             NULL);
4651         }
4652         notify_list_inited = true;
4653     }
4654     return 0;
4655 }
4656 
kvm_arch_release_virq_post(int virq)4657 int kvm_arch_release_virq_post(int virq)
4658 {
4659     MSIRouteEntry *entry, *next;
4660     QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
4661         if (entry->virq == virq) {
4662             trace_kvm_x86_remove_msi_route(virq);
4663             QLIST_REMOVE(entry, list);
4664             g_free(entry);
4665             break;
4666         }
4667     }
4668     return 0;
4669 }
4670 
kvm_arch_msi_data_to_gsi(uint32_t data)4671 int kvm_arch_msi_data_to_gsi(uint32_t data)
4672 {
4673     abort();
4674 }
4675 
kvm_has_waitpkg(void)4676 bool kvm_has_waitpkg(void)
4677 {
4678     return has_msr_umwait;
4679 }
4680