1 /*
2  * (C) Copyright 2002
3  * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
4  *
5  * See file CREDITS for list of people who contributed to this
6  * project.
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License as
10  * published by the Free Software Foundation; either version 2 of
11  * the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
21  * MA 02111-1307 USA
22  */
23 
24 #include <common.h>
25 #include <malloc.h>
26 #include <net.h>
27 #include <netdev.h>
28 #include <asm/io.h>
29 #include <pci.h>
30 #include <miiphy.h>
31 
32 #undef DEBUG
33 
34 	/* Ethernet chip registers.
35 	 */
36 #define SCBStatus		0	/* Rx/Command Unit Status *Word* */
37 #define SCBIntAckByte		1	/* Rx/Command Unit STAT/ACK byte */
38 #define SCBCmd			2	/* Rx/Command Unit Command *Word* */
39 #define SCBIntrCtlByte		3	/* Rx/Command Unit Intr.Control Byte */
40 #define SCBPointer		4	/* General purpose pointer. */
41 #define SCBPort			8	/* Misc. commands and operands. */
42 #define SCBflash		12	/* Flash memory control. */
43 #define SCBeeprom		14	/* EEPROM memory control. */
44 #define SCBCtrlMDI		16	/* MDI interface control. */
45 #define SCBEarlyRx		20	/* Early receive byte count. */
46 #define SCBGenControl		28	/* 82559 General Control Register */
47 #define SCBGenStatus		29	/* 82559 General Status register */
48 
49 	/* 82559 SCB status word defnitions
50 	 */
51 #define SCB_STATUS_CX		0x8000	/* CU finished command (transmit) */
52 #define SCB_STATUS_FR		0x4000	/* frame received */
53 #define SCB_STATUS_CNA		0x2000	/* CU left active state */
54 #define SCB_STATUS_RNR		0x1000	/* receiver left ready state */
55 #define SCB_STATUS_MDI		0x0800	/* MDI read/write cycle done */
56 #define SCB_STATUS_SWI		0x0400	/* software generated interrupt */
57 #define SCB_STATUS_FCP		0x0100	/* flow control pause interrupt */
58 
59 #define SCB_INTACK_MASK		0xFD00	/* all the above */
60 
61 #define SCB_INTACK_TX		(SCB_STATUS_CX | SCB_STATUS_CNA)
62 #define SCB_INTACK_RX		(SCB_STATUS_FR | SCB_STATUS_RNR)
63 
64 	/* System control block commands
65 	 */
66 /* CU Commands */
67 #define CU_NOP			0x0000
68 #define CU_START		0x0010
69 #define CU_RESUME		0x0020
70 #define CU_STATSADDR		0x0040	/* Load Dump Statistics ctrs addr */
71 #define CU_SHOWSTATS		0x0050	/* Dump statistics counters. */
72 #define CU_ADDR_LOAD		0x0060	/* Base address to add to CU commands */
73 #define CU_DUMPSTATS		0x0070	/* Dump then reset stats counters. */
74 
75 /* RUC Commands */
76 #define RUC_NOP			0x0000
77 #define RUC_START		0x0001
78 #define RUC_RESUME		0x0002
79 #define RUC_ABORT		0x0004
80 #define RUC_ADDR_LOAD		0x0006	/* (seems not to clear on acceptance) */
81 #define RUC_RESUMENR		0x0007
82 
83 #define CU_CMD_MASK		0x00f0
84 #define RU_CMD_MASK		0x0007
85 
86 #define SCB_M			0x0100	/* 0 = enable interrupt, 1 = disable */
87 #define SCB_SWI			0x0200	/* 1 - cause device to interrupt */
88 
89 #define CU_STATUS_MASK		0x00C0
90 #define RU_STATUS_MASK		0x003C
91 
92 #define RU_STATUS_IDLE		(0<<2)
93 #define RU_STATUS_SUS		(1<<2)
94 #define RU_STATUS_NORES		(2<<2)
95 #define RU_STATUS_READY		(4<<2)
96 #define RU_STATUS_NO_RBDS_SUS	((1<<2)|(8<<2))
97 #define RU_STATUS_NO_RBDS_NORES ((2<<2)|(8<<2))
98 #define RU_STATUS_NO_RBDS_READY ((4<<2)|(8<<2))
99 
100 	/* 82559 Port interface commands.
101 	 */
102 #define I82559_RESET		0x00000000	/* Software reset */
103 #define I82559_SELFTEST		0x00000001	/* 82559 Selftest command */
104 #define I82559_SELECTIVE_RESET	0x00000002
105 #define I82559_DUMP		0x00000003
106 #define I82559_DUMP_WAKEUP	0x00000007
107 
108 	/* 82559 Eeprom interface.
109 	 */
110 #define EE_SHIFT_CLK		0x01	/* EEPROM shift clock. */
111 #define EE_CS			0x02	/* EEPROM chip select. */
112 #define EE_DATA_WRITE		0x04	/* EEPROM chip data in. */
113 #define EE_WRITE_0		0x01
114 #define EE_WRITE_1		0x05
115 #define EE_DATA_READ		0x08	/* EEPROM chip data out. */
116 #define EE_ENB			(0x4800 | EE_CS)
117 #define EE_CMD_BITS		3
118 #define EE_DATA_BITS		16
119 
120 	/* The EEPROM commands include the alway-set leading bit.
121 	 */
122 #define EE_EWENB_CMD		(4 << addr_len)
123 #define EE_WRITE_CMD		(5 << addr_len)
124 #define EE_READ_CMD		(6 << addr_len)
125 #define EE_ERASE_CMD		(7 << addr_len)
126 
127 	/* Receive frame descriptors.
128 	 */
129 struct RxFD {
130 	volatile u16 status;
131 	volatile u16 control;
132 	volatile u32 link;		/* struct RxFD * */
133 	volatile u32 rx_buf_addr;	/* void * */
134 	volatile u32 count;
135 
136 	volatile u8 data[PKTSIZE_ALIGN];
137 };
138 
139 #define RFD_STATUS_C		0x8000	/* completion of received frame */
140 #define RFD_STATUS_OK		0x2000	/* frame received with no errors */
141 
142 #define RFD_CONTROL_EL		0x8000	/* 1=last RFD in RFA */
143 #define RFD_CONTROL_S		0x4000	/* 1=suspend RU after receiving frame */
144 #define RFD_CONTROL_H		0x0010	/* 1=RFD is a header RFD */
145 #define RFD_CONTROL_SF		0x0008	/* 0=simplified, 1=flexible mode */
146 
147 #define RFD_COUNT_MASK		0x3fff
148 #define RFD_COUNT_F		0x4000
149 #define RFD_COUNT_EOF		0x8000
150 
151 #define RFD_RX_CRC		0x0800	/* crc error */
152 #define RFD_RX_ALIGNMENT	0x0400	/* alignment error */
153 #define RFD_RX_RESOURCE		0x0200	/* out of space, no resources */
154 #define RFD_RX_DMA_OVER		0x0100	/* DMA overrun */
155 #define RFD_RX_SHORT		0x0080	/* short frame error */
156 #define RFD_RX_LENGTH		0x0020
157 #define RFD_RX_ERROR		0x0010	/* receive error */
158 #define RFD_RX_NO_ADR_MATCH	0x0004	/* no address match */
159 #define RFD_RX_IA_MATCH		0x0002	/* individual address does not match */
160 #define RFD_RX_TCO		0x0001	/* TCO indication */
161 
162 	/* Transmit frame descriptors
163 	 */
164 struct TxFD {				/* Transmit frame descriptor set. */
165 	volatile u16 status;
166 	volatile u16 command;
167 	volatile u32 link;		/* void * */
168 	volatile u32 tx_desc_addr;	/* Always points to the tx_buf_addr element. */
169 	volatile s32 count;
170 
171 	volatile u32 tx_buf_addr0;	/* void *, frame to be transmitted.  */
172 	volatile s32 tx_buf_size0;	/* Length of Tx frame. */
173 	volatile u32 tx_buf_addr1;	/* void *, frame to be transmitted.  */
174 	volatile s32 tx_buf_size1;	/* Length of Tx frame. */
175 };
176 
177 #define TxCB_CMD_TRANSMIT	0x0004	/* transmit command */
178 #define TxCB_CMD_SF		0x0008	/* 0=simplified, 1=flexible mode */
179 #define TxCB_CMD_NC		0x0010	/* 0=CRC insert by controller */
180 #define TxCB_CMD_I		0x2000	/* generate interrupt on completion */
181 #define TxCB_CMD_S		0x4000	/* suspend on completion */
182 #define TxCB_CMD_EL		0x8000	/* last command block in CBL */
183 
184 #define TxCB_COUNT_MASK		0x3fff
185 #define TxCB_COUNT_EOF		0x8000
186 
187 	/* The Speedo3 Rx and Tx frame/buffer descriptors.
188 	 */
189 struct descriptor {			/* A generic descriptor. */
190 	volatile u16 status;
191 	volatile u16 command;
192 	volatile u32 link;		/* struct descriptor *	*/
193 
194 	unsigned char params[0];
195 };
196 
197 #define CONFIG_SYS_CMD_EL		0x8000
198 #define CONFIG_SYS_CMD_SUSPEND		0x4000
199 #define CONFIG_SYS_CMD_INT		0x2000
200 #define CONFIG_SYS_CMD_IAS		0x0001	/* individual address setup */
201 #define CONFIG_SYS_CMD_CONFIGURE	0x0002	/* configure */
202 
203 #define CONFIG_SYS_STATUS_C		0x8000
204 #define CONFIG_SYS_STATUS_OK		0x2000
205 
206 	/* Misc.
207 	 */
208 #define NUM_RX_DESC		PKTBUFSRX
209 #define NUM_TX_DESC		1	/* Number of TX descriptors   */
210 
211 #define TOUT_LOOP		1000000
212 
213 #define ETH_ALEN		6
214 
215 static struct RxFD rx_ring[NUM_RX_DESC];	/* RX descriptor ring	      */
216 static struct TxFD tx_ring[NUM_TX_DESC];	/* TX descriptor ring	      */
217 static int rx_next;			/* RX descriptor ring pointer */
218 static int tx_next;			/* TX descriptor ring pointer */
219 static int tx_threshold;
220 
221 /*
222  * The parameters for a CmdConfigure operation.
223  * There are so many options that it would be difficult to document
224  * each bit. We mostly use the default or recommended settings.
225  */
226 static const char i82557_config_cmd[] = {
227 	22, 0x08, 0, 0, 0, 0, 0x32, 0x03, 1,	/* 1=Use MII  0=Use AUI */
228 	0, 0x2E, 0, 0x60, 0,
229 	0xf2, 0x48, 0, 0x40, 0xf2, 0x80,	/* 0x40=Force full-duplex */
230 	0x3f, 0x05,
231 };
232 static const char i82558_config_cmd[] = {
233 	22, 0x08, 0, 1, 0, 0, 0x22, 0x03, 1,	/* 1=Use MII  0=Use AUI */
234 	0, 0x2E, 0, 0x60, 0x08, 0x88,
235 	0x68, 0, 0x40, 0xf2, 0x84,		/* Disable FC */
236 	0x31, 0x05,
237 };
238 
239 static void init_rx_ring (struct eth_device *dev);
240 static void purge_tx_ring (struct eth_device *dev);
241 
242 static void read_hw_addr (struct eth_device *dev, bd_t * bis);
243 
244 static int eepro100_init (struct eth_device *dev, bd_t * bis);
245 static int eepro100_send (struct eth_device *dev, volatile void *packet,
246 						  int length);
247 static int eepro100_recv (struct eth_device *dev);
248 static void eepro100_halt (struct eth_device *dev);
249 
250 #if defined(CONFIG_E500) || defined(CONFIG_DB64360) || defined(CONFIG_DB64460)
251 #define bus_to_phys(a) (a)
252 #define phys_to_bus(a) (a)
253 #else
254 #define bus_to_phys(a)	pci_mem_to_phys((pci_dev_t)dev->priv, a)
255 #define phys_to_bus(a)	pci_phys_to_mem((pci_dev_t)dev->priv, a)
256 #endif
257 
INW(struct eth_device * dev,u_long addr)258 static inline int INW (struct eth_device *dev, u_long addr)
259 {
260 	return le16_to_cpu (*(volatile u16 *) (addr + dev->iobase));
261 }
262 
OUTW(struct eth_device * dev,int command,u_long addr)263 static inline void OUTW (struct eth_device *dev, int command, u_long addr)
264 {
265 	*(volatile u16 *) ((addr + dev->iobase)) = cpu_to_le16 (command);
266 }
267 
OUTL(struct eth_device * dev,int command,u_long addr)268 static inline void OUTL (struct eth_device *dev, int command, u_long addr)
269 {
270 	*(volatile u32 *) ((addr + dev->iobase)) = cpu_to_le32 (command);
271 }
272 
273 #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
INL(struct eth_device * dev,u_long addr)274 static inline int INL (struct eth_device *dev, u_long addr)
275 {
276 	return le32_to_cpu (*(volatile u32 *) (addr + dev->iobase));
277 }
278 
get_phyreg(struct eth_device * dev,unsigned char addr,unsigned char reg,unsigned short * value)279 static int get_phyreg (struct eth_device *dev, unsigned char addr,
280 		unsigned char reg, unsigned short *value)
281 {
282 	int cmd;
283 	int timeout = 50;
284 
285 	/* read requested data */
286 	cmd = (2 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
287 	OUTL (dev, cmd, SCBCtrlMDI);
288 
289 	do {
290 		udelay(1000);
291 		cmd = INL (dev, SCBCtrlMDI);
292 	} while (!(cmd & (1 << 28)) && (--timeout));
293 
294 	if (timeout == 0)
295 		return -1;
296 
297 	*value = (unsigned short) (cmd & 0xffff);
298 
299 	return 0;
300 }
301 
set_phyreg(struct eth_device * dev,unsigned char addr,unsigned char reg,unsigned short value)302 static int set_phyreg (struct eth_device *dev, unsigned char addr,
303 		unsigned char reg, unsigned short value)
304 {
305 	int cmd;
306 	int timeout = 50;
307 
308 	/* write requested data */
309 	cmd = (1 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
310 	OUTL (dev, cmd | value, SCBCtrlMDI);
311 
312 	while (!(INL (dev, SCBCtrlMDI) & (1 << 28)) && (--timeout))
313 		udelay(1000);
314 
315 	if (timeout == 0)
316 		return -1;
317 
318 	return 0;
319 }
320 
321 /* Check if given phyaddr is valid, i.e. there is a PHY connected.
322  * Do this by checking model value field from ID2 register.
323  */
verify_phyaddr(char * devname,unsigned char addr)324 static struct eth_device* verify_phyaddr (char *devname, unsigned char addr)
325 {
326 	struct eth_device *dev;
327 	unsigned short value;
328 	unsigned char model;
329 
330 	dev = eth_get_dev_by_name(devname);
331 	if (dev == NULL) {
332 		printf("%s: no such device\n", devname);
333 		return NULL;
334 	}
335 
336 	/* read id2 register */
337 	if (get_phyreg(dev, addr, PHY_PHYIDR2, &value) != 0) {
338 		printf("%s: mii read timeout!\n", devname);
339 		return NULL;
340 	}
341 
342 	/* get model */
343 	model = (unsigned char)((value >> 4) & 0x003f);
344 
345 	if (model == 0) {
346 		printf("%s: no PHY at address %d\n", devname, addr);
347 		return NULL;
348 	}
349 
350 	return dev;
351 }
352 
eepro100_miiphy_read(char * devname,unsigned char addr,unsigned char reg,unsigned short * value)353 static int eepro100_miiphy_read (char *devname, unsigned char addr,
354 		unsigned char reg, unsigned short *value)
355 {
356 	struct eth_device *dev;
357 
358 	dev = verify_phyaddr(devname, addr);
359 	if (dev == NULL)
360 		return -1;
361 
362 	if (get_phyreg(dev, addr, reg, value) != 0) {
363 		printf("%s: mii read timeout!\n", devname);
364 		return -1;
365 	}
366 
367 	return 0;
368 }
369 
eepro100_miiphy_write(char * devname,unsigned char addr,unsigned char reg,unsigned short value)370 static int eepro100_miiphy_write (char *devname, unsigned char addr,
371 		unsigned char reg, unsigned short value)
372 {
373 	struct eth_device *dev;
374 
375 	dev = verify_phyaddr(devname, addr);
376 	if (dev == NULL)
377 		return -1;
378 
379 	if (set_phyreg(dev, addr, reg, value) != 0) {
380 		printf("%s: mii write timeout!\n", devname);
381 		return -1;
382 	}
383 
384 	return 0;
385 }
386 
387 #endif
388 
389 /* Wait for the chip get the command.
390 */
wait_for_eepro100(struct eth_device * dev)391 static int wait_for_eepro100 (struct eth_device *dev)
392 {
393 	int i;
394 
395 	for (i = 0; INW (dev, SCBCmd) & (CU_CMD_MASK | RU_CMD_MASK); i++) {
396 		if (i >= TOUT_LOOP) {
397 			return 0;
398 		}
399 	}
400 
401 	return 1;
402 }
403 
404 static struct pci_device_id supported[] = {
405 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82557},
406 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559},
407 	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559ER},
408 	{}
409 };
410 
eepro100_initialize(bd_t * bis)411 int eepro100_initialize (bd_t * bis)
412 {
413 	pci_dev_t devno;
414 	int card_number = 0;
415 	struct eth_device *dev;
416 	u32 iobase, status;
417 	int idx = 0;
418 
419 	while (1) {
420 		/* Find PCI device
421 		 */
422 		if ((devno = pci_find_devices (supported, idx++)) < 0) {
423 			break;
424 		}
425 
426 		pci_read_config_dword (devno, PCI_BASE_ADDRESS_0, &iobase);
427 		iobase &= ~0xf;
428 
429 #ifdef DEBUG
430 		printf ("eepro100: Intel i82559 PCI EtherExpressPro @0x%x\n",
431 				iobase);
432 #endif
433 
434 		pci_write_config_dword (devno,
435 					PCI_COMMAND,
436 					PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
437 
438 		/* Check if I/O accesses and Bus Mastering are enabled.
439 		 */
440 		pci_read_config_dword (devno, PCI_COMMAND, &status);
441 		if (!(status & PCI_COMMAND_MEMORY)) {
442 			printf ("Error: Can not enable MEM access.\n");
443 			continue;
444 		}
445 
446 		if (!(status & PCI_COMMAND_MASTER)) {
447 			printf ("Error: Can not enable Bus Mastering.\n");
448 			continue;
449 		}
450 
451 		dev = (struct eth_device *) malloc (sizeof *dev);
452 
453 		sprintf (dev->name, "i82559#%d", card_number);
454 		dev->priv = (void *) devno; /* this have to come before bus_to_phys() */
455 		dev->iobase = bus_to_phys (iobase);
456 		dev->init = eepro100_init;
457 		dev->halt = eepro100_halt;
458 		dev->send = eepro100_send;
459 		dev->recv = eepro100_recv;
460 
461 		eth_register (dev);
462 
463 #if defined (CONFIG_MII) || defined(CONFIG_CMD_MII)
464 		/* register mii command access routines */
465 		miiphy_register(dev->name,
466 				eepro100_miiphy_read, eepro100_miiphy_write);
467 #endif
468 
469 		card_number++;
470 
471 		/* Set the latency timer for value.
472 		 */
473 		pci_write_config_byte (devno, PCI_LATENCY_TIMER, 0x20);
474 
475 		udelay (10 * 1000);
476 
477 		read_hw_addr (dev, bis);
478 	}
479 
480 	return card_number;
481 }
482 
483 
eepro100_init(struct eth_device * dev,bd_t * bis)484 static int eepro100_init (struct eth_device *dev, bd_t * bis)
485 {
486 	int i, status = -1;
487 	int tx_cur;
488 	struct descriptor *ias_cmd, *cfg_cmd;
489 
490 	/* Reset the ethernet controller
491 	 */
492 	OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
493 	udelay (20);
494 
495 	OUTL (dev, I82559_RESET, SCBPort);
496 	udelay (20);
497 
498 	if (!wait_for_eepro100 (dev)) {
499 		printf ("Error: Can not reset ethernet controller.\n");
500 		goto Done;
501 	}
502 	OUTL (dev, 0, SCBPointer);
503 	OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
504 
505 	if (!wait_for_eepro100 (dev)) {
506 		printf ("Error: Can not reset ethernet controller.\n");
507 		goto Done;
508 	}
509 	OUTL (dev, 0, SCBPointer);
510 	OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
511 
512 	/* Initialize Rx and Tx rings.
513 	 */
514 	init_rx_ring (dev);
515 	purge_tx_ring (dev);
516 
517 	/* Tell the adapter where the RX ring is located.
518 	 */
519 	if (!wait_for_eepro100 (dev)) {
520 		printf ("Error: Can not reset ethernet controller.\n");
521 		goto Done;
522 	}
523 
524 	OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
525 	OUTW (dev, SCB_M | RUC_START, SCBCmd);
526 
527 	/* Send the Configure frame */
528 	tx_cur = tx_next;
529 	tx_next = ((tx_next + 1) % NUM_TX_DESC);
530 
531 	cfg_cmd = (struct descriptor *) &tx_ring[tx_cur];
532 	cfg_cmd->command = cpu_to_le16 ((CONFIG_SYS_CMD_SUSPEND | CONFIG_SYS_CMD_CONFIGURE));
533 	cfg_cmd->status = 0;
534 	cfg_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
535 
536 	memcpy (cfg_cmd->params, i82558_config_cmd,
537 			sizeof (i82558_config_cmd));
538 
539 	if (!wait_for_eepro100 (dev)) {
540 		printf ("Error---CONFIG_SYS_CMD_CONFIGURE: Can not reset ethernet controller.\n");
541 		goto Done;
542 	}
543 
544 	OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
545 	OUTW (dev, SCB_M | CU_START, SCBCmd);
546 
547 	for (i = 0;
548 	     !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
549 	     i++) {
550 		if (i >= TOUT_LOOP) {
551 			printf ("%s: Tx error buffer not ready\n", dev->name);
552 			goto Done;
553 		}
554 	}
555 
556 	if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
557 		printf ("TX error status = 0x%08X\n",
558 			le16_to_cpu (tx_ring[tx_cur].status));
559 		goto Done;
560 	}
561 
562 	/* Send the Individual Address Setup frame
563 	 */
564 	tx_cur = tx_next;
565 	tx_next = ((tx_next + 1) % NUM_TX_DESC);
566 
567 	ias_cmd = (struct descriptor *) &tx_ring[tx_cur];
568 	ias_cmd->command = cpu_to_le16 ((CONFIG_SYS_CMD_SUSPEND | CONFIG_SYS_CMD_IAS));
569 	ias_cmd->status = 0;
570 	ias_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
571 
572 	memcpy (ias_cmd->params, dev->enetaddr, 6);
573 
574 	/* Tell the adapter where the TX ring is located.
575 	 */
576 	if (!wait_for_eepro100 (dev)) {
577 		printf ("Error: Can not reset ethernet controller.\n");
578 		goto Done;
579 	}
580 
581 	OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
582 	OUTW (dev, SCB_M | CU_START, SCBCmd);
583 
584 	for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
585 		 i++) {
586 		if (i >= TOUT_LOOP) {
587 			printf ("%s: Tx error buffer not ready\n",
588 				dev->name);
589 			goto Done;
590 		}
591 	}
592 
593 	if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
594 		printf ("TX error status = 0x%08X\n",
595 			le16_to_cpu (tx_ring[tx_cur].status));
596 		goto Done;
597 	}
598 
599 	status = 0;
600 
601   Done:
602 	return status;
603 }
604 
eepro100_send(struct eth_device * dev,volatile void * packet,int length)605 static int eepro100_send (struct eth_device *dev, volatile void *packet, int length)
606 {
607 	int i, status = -1;
608 	int tx_cur;
609 
610 	if (length <= 0) {
611 		printf ("%s: bad packet size: %d\n", dev->name, length);
612 		goto Done;
613 	}
614 
615 	tx_cur = tx_next;
616 	tx_next = (tx_next + 1) % NUM_TX_DESC;
617 
618 	tx_ring[tx_cur].command = cpu_to_le16 ( TxCB_CMD_TRANSMIT |
619 						TxCB_CMD_SF	|
620 						TxCB_CMD_S	|
621 						TxCB_CMD_EL );
622 	tx_ring[tx_cur].status = 0;
623 	tx_ring[tx_cur].count = cpu_to_le32 (tx_threshold);
624 	tx_ring[tx_cur].link =
625 		cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
626 	tx_ring[tx_cur].tx_desc_addr =
627 		cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_cur].tx_buf_addr0));
628 	tx_ring[tx_cur].tx_buf_addr0 =
629 		cpu_to_le32 (phys_to_bus ((u_long) packet));
630 	tx_ring[tx_cur].tx_buf_size0 = cpu_to_le32 (length);
631 
632 	if (!wait_for_eepro100 (dev)) {
633 		printf ("%s: Tx error ethernet controller not ready.\n",
634 				dev->name);
635 		goto Done;
636 	}
637 
638 	/* Send the packet.
639 	 */
640 	OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
641 	OUTW (dev, SCB_M | CU_START, SCBCmd);
642 
643 	for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
644 		 i++) {
645 		if (i >= TOUT_LOOP) {
646 			printf ("%s: Tx error buffer not ready\n", dev->name);
647 			goto Done;
648 		}
649 	}
650 
651 	if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
652 		printf ("TX error status = 0x%08X\n",
653 			le16_to_cpu (tx_ring[tx_cur].status));
654 		goto Done;
655 	}
656 
657 	status = length;
658 
659   Done:
660 	return status;
661 }
662 
eepro100_recv(struct eth_device * dev)663 static int eepro100_recv (struct eth_device *dev)
664 {
665 	u16 status, stat;
666 	int rx_prev, length = 0;
667 
668 	stat = INW (dev, SCBStatus);
669 	OUTW (dev, stat & SCB_STATUS_RNR, SCBStatus);
670 
671 	for (;;) {
672 		status = le16_to_cpu (rx_ring[rx_next].status);
673 
674 		if (!(status & RFD_STATUS_C)) {
675 			break;
676 		}
677 
678 		/* Valid frame status.
679 		 */
680 		if ((status & RFD_STATUS_OK)) {
681 			/* A valid frame received.
682 			 */
683 			length = le32_to_cpu (rx_ring[rx_next].count) & 0x3fff;
684 
685 			/* Pass the packet up to the protocol
686 			 * layers.
687 			 */
688 			NetReceive (rx_ring[rx_next].data, length);
689 		} else {
690 			/* There was an error.
691 			 */
692 			printf ("RX error status = 0x%08X\n", status);
693 		}
694 
695 		rx_ring[rx_next].control = cpu_to_le16 (RFD_CONTROL_S);
696 		rx_ring[rx_next].status = 0;
697 		rx_ring[rx_next].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
698 
699 		rx_prev = (rx_next + NUM_RX_DESC - 1) % NUM_RX_DESC;
700 		rx_ring[rx_prev].control = 0;
701 
702 		/* Update entry information.
703 		 */
704 		rx_next = (rx_next + 1) % NUM_RX_DESC;
705 	}
706 
707 	if (stat & SCB_STATUS_RNR) {
708 
709 		printf ("%s: Receiver is not ready, restart it !\n", dev->name);
710 
711 		/* Reinitialize Rx ring.
712 		 */
713 		init_rx_ring (dev);
714 
715 		if (!wait_for_eepro100 (dev)) {
716 			printf ("Error: Can not restart ethernet controller.\n");
717 			goto Done;
718 		}
719 
720 		OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
721 		OUTW (dev, SCB_M | RUC_START, SCBCmd);
722 	}
723 
724   Done:
725 	return length;
726 }
727 
eepro100_halt(struct eth_device * dev)728 static void eepro100_halt (struct eth_device *dev)
729 {
730 	/* Reset the ethernet controller
731 	 */
732 	OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
733 	udelay (20);
734 
735 	OUTL (dev, I82559_RESET, SCBPort);
736 	udelay (20);
737 
738 	if (!wait_for_eepro100 (dev)) {
739 		printf ("Error: Can not reset ethernet controller.\n");
740 		goto Done;
741 	}
742 	OUTL (dev, 0, SCBPointer);
743 	OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
744 
745 	if (!wait_for_eepro100 (dev)) {
746 		printf ("Error: Can not reset ethernet controller.\n");
747 		goto Done;
748 	}
749 	OUTL (dev, 0, SCBPointer);
750 	OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
751 
752   Done:
753 	return;
754 }
755 
756 	/* SROM Read.
757 	 */
read_eeprom(struct eth_device * dev,int location,int addr_len)758 static int read_eeprom (struct eth_device *dev, int location, int addr_len)
759 {
760 	unsigned short retval = 0;
761 	int read_cmd = location | EE_READ_CMD;
762 	int i;
763 
764 	OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
765 	OUTW (dev, EE_ENB, SCBeeprom);
766 
767 	/* Shift the read command bits out. */
768 	for (i = 12; i >= 0; i--) {
769 		short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
770 
771 		OUTW (dev, EE_ENB | dataval, SCBeeprom);
772 		udelay (1);
773 		OUTW (dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
774 		udelay (1);
775 	}
776 	OUTW (dev, EE_ENB, SCBeeprom);
777 
778 	for (i = 15; i >= 0; i--) {
779 		OUTW (dev, EE_ENB | EE_SHIFT_CLK, SCBeeprom);
780 		udelay (1);
781 		retval = (retval << 1) |
782 				((INW (dev, SCBeeprom) & EE_DATA_READ) ? 1 : 0);
783 		OUTW (dev, EE_ENB, SCBeeprom);
784 		udelay (1);
785 	}
786 
787 	/* Terminate the EEPROM access. */
788 	OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
789 	return retval;
790 }
791 
792 #ifdef CONFIG_EEPRO100_SROM_WRITE
eepro100_write_eeprom(struct eth_device * dev,int location,int addr_len,unsigned short data)793 int eepro100_write_eeprom (struct eth_device* dev, int location, int addr_len, unsigned short data)
794 {
795     unsigned short dataval;
796     int enable_cmd = 0x3f | EE_EWENB_CMD;
797     int write_cmd  = location | EE_WRITE_CMD;
798     int i;
799     unsigned long datalong, tmplong;
800 
801     OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
802     udelay(1);
803     OUTW(dev, EE_ENB, SCBeeprom);
804 
805     /* Shift the enable command bits out. */
806     for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
807     {
808 	dataval = (enable_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
809 	OUTW(dev, EE_ENB | dataval, SCBeeprom);
810 	udelay(1);
811 	OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
812 	udelay(1);
813     }
814 
815     OUTW(dev, EE_ENB, SCBeeprom);
816     udelay(1);
817     OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
818     udelay(1);
819     OUTW(dev, EE_ENB, SCBeeprom);
820 
821 
822     /* Shift the write command bits out. */
823     for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
824     {
825 	dataval = (write_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
826 	OUTW(dev, EE_ENB | dataval, SCBeeprom);
827 	udelay(1);
828 	OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
829 	udelay(1);
830     }
831 
832     /* Write the data */
833     datalong= (unsigned long) ((((data) & 0x00ff) << 8) | ( (data) >> 8));
834 
835     for (i = 0; i< EE_DATA_BITS; i++)
836     {
837     /* Extract and move data bit to bit DI */
838     dataval = ((datalong & 0x8000)>>13) ? EE_DATA_WRITE : 0;
839 
840     OUTW(dev, EE_ENB | dataval, SCBeeprom);
841     udelay(1);
842     OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
843     udelay(1);
844     OUTW(dev, EE_ENB | dataval, SCBeeprom);
845     udelay(1);
846 
847     datalong = datalong << 1;	/* Adjust significant data bit*/
848     }
849 
850     /* Finish up command  (toggle CS) */
851     OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
852     udelay(1);			/* delay for more than 250 ns */
853     OUTW(dev, EE_ENB, SCBeeprom);
854 
855     /* Wait for programming ready (D0 = 1) */
856     tmplong = 10;
857     do
858     {
859 	dataval = INW(dev, SCBeeprom);
860 	if (dataval & EE_DATA_READ)
861 	    break;
862 	udelay(10000);
863     }
864     while (-- tmplong);
865 
866     if (tmplong == 0)
867     {
868 	printf ("Write i82559 eeprom timed out (100 ms waiting for data ready.\n");
869 	return -1;
870     }
871 
872     /* Terminate the EEPROM access. */
873     OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
874 
875     return 0;
876 }
877 #endif
878 
init_rx_ring(struct eth_device * dev)879 static void init_rx_ring (struct eth_device *dev)
880 {
881 	int i;
882 
883 	for (i = 0; i < NUM_RX_DESC; i++) {
884 		rx_ring[i].status = 0;
885 		rx_ring[i].control =
886 				(i == NUM_RX_DESC - 1) ? cpu_to_le16 (RFD_CONTROL_S) : 0;
887 		rx_ring[i].link =
888 				cpu_to_le32 (phys_to_bus
889 							 ((u32) & rx_ring[(i + 1) % NUM_RX_DESC]));
890 		rx_ring[i].rx_buf_addr = 0xffffffff;
891 		rx_ring[i].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
892 	}
893 
894 	rx_next = 0;
895 }
896 
purge_tx_ring(struct eth_device * dev)897 static void purge_tx_ring (struct eth_device *dev)
898 {
899 	int i;
900 
901 	tx_next = 0;
902 	tx_threshold = 0x01208000;
903 
904 	for (i = 0; i < NUM_TX_DESC; i++) {
905 		tx_ring[i].status = 0;
906 		tx_ring[i].command = 0;
907 		tx_ring[i].link = 0;
908 		tx_ring[i].tx_desc_addr = 0;
909 		tx_ring[i].count = 0;
910 
911 		tx_ring[i].tx_buf_addr0 = 0;
912 		tx_ring[i].tx_buf_size0 = 0;
913 		tx_ring[i].tx_buf_addr1 = 0;
914 		tx_ring[i].tx_buf_size1 = 0;
915 	}
916 }
917 
read_hw_addr(struct eth_device * dev,bd_t * bis)918 static void read_hw_addr (struct eth_device *dev, bd_t * bis)
919 {
920 	u16 eeprom[0x40];
921 	u16 sum = 0;
922 	int i, j;
923 	int addr_len = read_eeprom (dev, 0, 6) == 0xffff ? 8 : 6;
924 
925 	for (j = 0, i = 0; i < 0x40; i++) {
926 		u16 value = read_eeprom (dev, i, addr_len);
927 
928 		eeprom[i] = value;
929 		sum += value;
930 		if (i < 3) {
931 			dev->enetaddr[j++] = value;
932 			dev->enetaddr[j++] = value >> 8;
933 		}
934 	}
935 
936 	if (sum != 0xBABA) {
937 		memset (dev->enetaddr, 0, ETH_ALEN);
938 #ifdef DEBUG
939 		printf ("%s: Invalid EEPROM checksum %#4.4x, "
940 			"check settings before activating this device!\n",
941 			dev->name, sum);
942 #endif
943 	}
944 }
945