1 /*
2  * RAM allocation and memory access
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
23 
24 #include "qemu/cutils.h"
25 #include "qemu/cacheflush.h"
26 
27 #ifdef CONFIG_TCG
28 #include "hw/core/tcg-cpu-ops.h"
29 #endif /* CONFIG_TCG */
30 
31 #include "exec/exec-all.h"
32 #include "exec/target_page.h"
33 #include "hw/qdev-core.h"
34 #include "hw/qdev-properties.h"
35 #include "hw/boards.h"
36 #include "hw/xen/xen.h"
37 #include "sysemu/kvm.h"
38 #include "sysemu/tcg.h"
39 #include "sysemu/qtest.h"
40 #include "qemu/timer.h"
41 #include "qemu/config-file.h"
42 #include "qemu/error-report.h"
43 #include "qemu/qemu-print.h"
44 #include "exec/memory.h"
45 #include "exec/ioport.h"
46 #include "sysemu/dma.h"
47 #include "sysemu/hostmem.h"
48 #include "sysemu/hw_accel.h"
49 #include "sysemu/xen-mapcache.h"
50 #include "trace/trace-root.h"
51 
52 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
53 #include <linux/falloc.h>
54 #endif
55 
56 #include "qemu/rcu_queue.h"
57 #include "qemu/main-loop.h"
58 #include "exec/translate-all.h"
59 #include "sysemu/replay.h"
60 
61 #include "exec/memory-internal.h"
62 #include "exec/ram_addr.h"
63 #include "exec/log.h"
64 
65 #include "qemu/pmem.h"
66 
67 #include "migration/vmstate.h"
68 
69 #include "qemu/range.h"
70 #ifndef _WIN32
71 #include "qemu/mmap-alloc.h"
72 #endif
73 
74 #include "monitor/monitor.h"
75 
76 #ifdef CONFIG_LIBDAXCTL
77 #include <daxctl/libdaxctl.h>
78 #endif
79 
80 //#define DEBUG_SUBPAGE
81 
82 /* ram_list is read under rcu_read_lock()/rcu_read_unlock().  Writes
83  * are protected by the ramlist lock.
84  */
85 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
86 
87 static MemoryRegion *system_memory;
88 static MemoryRegion *system_io;
89 
90 AddressSpace address_space_io;
91 AddressSpace address_space_memory;
92 
93 static MemoryRegion io_mem_unassigned;
94 
95 typedef struct PhysPageEntry PhysPageEntry;
96 
97 struct PhysPageEntry {
98     /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
99     uint32_t skip : 6;
100      /* index into phys_sections (!skip) or phys_map_nodes (skip) */
101     uint32_t ptr : 26;
102 };
103 
104 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
105 
106 /* Size of the L2 (and L3, etc) page tables.  */
107 #define ADDR_SPACE_BITS 64
108 
109 #define P_L2_BITS 9
110 #define P_L2_SIZE (1 << P_L2_BITS)
111 
112 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
113 
114 typedef PhysPageEntry Node[P_L2_SIZE];
115 
116 typedef struct PhysPageMap {
117     struct rcu_head rcu;
118 
119     unsigned sections_nb;
120     unsigned sections_nb_alloc;
121     unsigned nodes_nb;
122     unsigned nodes_nb_alloc;
123     Node *nodes;
124     MemoryRegionSection *sections;
125 } PhysPageMap;
126 
127 struct AddressSpaceDispatch {
128     MemoryRegionSection *mru_section;
129     /* This is a multi-level map on the physical address space.
130      * The bottom level has pointers to MemoryRegionSections.
131      */
132     PhysPageEntry phys_map;
133     PhysPageMap map;
134 };
135 
136 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
137 typedef struct subpage_t {
138     MemoryRegion iomem;
139     FlatView *fv;
140     hwaddr base;
141     uint16_t sub_section[];
142 } subpage_t;
143 
144 #define PHYS_SECTION_UNASSIGNED 0
145 
146 static void io_mem_init(void);
147 static void memory_map_init(void);
148 static void tcg_log_global_after_sync(MemoryListener *listener);
149 static void tcg_commit(MemoryListener *listener);
150 
151 /**
152  * CPUAddressSpace: all the information a CPU needs about an AddressSpace
153  * @cpu: the CPU whose AddressSpace this is
154  * @as: the AddressSpace itself
155  * @memory_dispatch: its dispatch pointer (cached, RCU protected)
156  * @tcg_as_listener: listener for tracking changes to the AddressSpace
157  */
158 struct CPUAddressSpace {
159     CPUState *cpu;
160     AddressSpace *as;
161     struct AddressSpaceDispatch *memory_dispatch;
162     MemoryListener tcg_as_listener;
163 };
164 
165 struct DirtyBitmapSnapshot {
166     ram_addr_t start;
167     ram_addr_t end;
168     unsigned long dirty[];
169 };
170 
phys_map_node_reserve(PhysPageMap * map,unsigned nodes)171 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
172 {
173     static unsigned alloc_hint = 16;
174     if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
175         map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
176         map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
177         alloc_hint = map->nodes_nb_alloc;
178     }
179 }
180 
phys_map_node_alloc(PhysPageMap * map,bool leaf)181 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
182 {
183     unsigned i;
184     uint32_t ret;
185     PhysPageEntry e;
186     PhysPageEntry *p;
187 
188     ret = map->nodes_nb++;
189     p = map->nodes[ret];
190     assert(ret != PHYS_MAP_NODE_NIL);
191     assert(ret != map->nodes_nb_alloc);
192 
193     e.skip = leaf ? 0 : 1;
194     e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
195     for (i = 0; i < P_L2_SIZE; ++i) {
196         memcpy(&p[i], &e, sizeof(e));
197     }
198     return ret;
199 }
200 
phys_page_set_level(PhysPageMap * map,PhysPageEntry * lp,hwaddr * index,uint64_t * nb,uint16_t leaf,int level)201 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
202                                 hwaddr *index, uint64_t *nb, uint16_t leaf,
203                                 int level)
204 {
205     PhysPageEntry *p;
206     hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
207 
208     if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
209         lp->ptr = phys_map_node_alloc(map, level == 0);
210     }
211     p = map->nodes[lp->ptr];
212     lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
213 
214     while (*nb && lp < &p[P_L2_SIZE]) {
215         if ((*index & (step - 1)) == 0 && *nb >= step) {
216             lp->skip = 0;
217             lp->ptr = leaf;
218             *index += step;
219             *nb -= step;
220         } else {
221             phys_page_set_level(map, lp, index, nb, leaf, level - 1);
222         }
223         ++lp;
224     }
225 }
226 
phys_page_set(AddressSpaceDispatch * d,hwaddr index,uint64_t nb,uint16_t leaf)227 static void phys_page_set(AddressSpaceDispatch *d,
228                           hwaddr index, uint64_t nb,
229                           uint16_t leaf)
230 {
231     /* Wildly overreserve - it doesn't matter much. */
232     phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
233 
234     phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
235 }
236 
237 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
238  * and update our entry so we can skip it and go directly to the destination.
239  */
phys_page_compact(PhysPageEntry * lp,Node * nodes)240 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
241 {
242     unsigned valid_ptr = P_L2_SIZE;
243     int valid = 0;
244     PhysPageEntry *p;
245     int i;
246 
247     if (lp->ptr == PHYS_MAP_NODE_NIL) {
248         return;
249     }
250 
251     p = nodes[lp->ptr];
252     for (i = 0; i < P_L2_SIZE; i++) {
253         if (p[i].ptr == PHYS_MAP_NODE_NIL) {
254             continue;
255         }
256 
257         valid_ptr = i;
258         valid++;
259         if (p[i].skip) {
260             phys_page_compact(&p[i], nodes);
261         }
262     }
263 
264     /* We can only compress if there's only one child. */
265     if (valid != 1) {
266         return;
267     }
268 
269     assert(valid_ptr < P_L2_SIZE);
270 
271     /* Don't compress if it won't fit in the # of bits we have. */
272     if (P_L2_LEVELS >= (1 << 6) &&
273         lp->skip + p[valid_ptr].skip >= (1 << 6)) {
274         return;
275     }
276 
277     lp->ptr = p[valid_ptr].ptr;
278     if (!p[valid_ptr].skip) {
279         /* If our only child is a leaf, make this a leaf. */
280         /* By design, we should have made this node a leaf to begin with so we
281          * should never reach here.
282          * But since it's so simple to handle this, let's do it just in case we
283          * change this rule.
284          */
285         lp->skip = 0;
286     } else {
287         lp->skip += p[valid_ptr].skip;
288     }
289 }
290 
address_space_dispatch_compact(AddressSpaceDispatch * d)291 void address_space_dispatch_compact(AddressSpaceDispatch *d)
292 {
293     if (d->phys_map.skip) {
294         phys_page_compact(&d->phys_map, d->map.nodes);
295     }
296 }
297 
section_covers_addr(const MemoryRegionSection * section,hwaddr addr)298 static inline bool section_covers_addr(const MemoryRegionSection *section,
299                                        hwaddr addr)
300 {
301     /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
302      * the section must cover the entire address space.
303      */
304     return int128_gethi(section->size) ||
305            range_covers_byte(section->offset_within_address_space,
306                              int128_getlo(section->size), addr);
307 }
308 
phys_page_find(AddressSpaceDispatch * d,hwaddr addr)309 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
310 {
311     PhysPageEntry lp = d->phys_map, *p;
312     Node *nodes = d->map.nodes;
313     MemoryRegionSection *sections = d->map.sections;
314     hwaddr index = addr >> TARGET_PAGE_BITS;
315     int i;
316 
317     for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
318         if (lp.ptr == PHYS_MAP_NODE_NIL) {
319             return &sections[PHYS_SECTION_UNASSIGNED];
320         }
321         p = nodes[lp.ptr];
322         lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
323     }
324 
325     if (section_covers_addr(&sections[lp.ptr], addr)) {
326         return &sections[lp.ptr];
327     } else {
328         return &sections[PHYS_SECTION_UNASSIGNED];
329     }
330 }
331 
332 /* Called from RCU critical section */
address_space_lookup_region(AddressSpaceDispatch * d,hwaddr addr,bool resolve_subpage)333 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
334                                                         hwaddr addr,
335                                                         bool resolve_subpage)
336 {
337     MemoryRegionSection *section = qatomic_read(&d->mru_section);
338     subpage_t *subpage;
339 
340     if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
341         !section_covers_addr(section, addr)) {
342         section = phys_page_find(d, addr);
343         qatomic_set(&d->mru_section, section);
344     }
345     if (resolve_subpage && section->mr->subpage) {
346         subpage = container_of(section->mr, subpage_t, iomem);
347         section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
348     }
349     return section;
350 }
351 
352 /* Called from RCU critical section */
353 static MemoryRegionSection *
address_space_translate_internal(AddressSpaceDispatch * d,hwaddr addr,hwaddr * xlat,hwaddr * plen,bool resolve_subpage)354 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
355                                  hwaddr *plen, bool resolve_subpage)
356 {
357     MemoryRegionSection *section;
358     MemoryRegion *mr;
359     Int128 diff;
360 
361     section = address_space_lookup_region(d, addr, resolve_subpage);
362     /* Compute offset within MemoryRegionSection */
363     addr -= section->offset_within_address_space;
364 
365     /* Compute offset within MemoryRegion */
366     *xlat = addr + section->offset_within_region;
367 
368     mr = section->mr;
369 
370     /* MMIO registers can be expected to perform full-width accesses based only
371      * on their address, without considering adjacent registers that could
372      * decode to completely different MemoryRegions.  When such registers
373      * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
374      * regions overlap wildly.  For this reason we cannot clamp the accesses
375      * here.
376      *
377      * If the length is small (as is the case for address_space_ldl/stl),
378      * everything works fine.  If the incoming length is large, however,
379      * the caller really has to do the clamping through memory_access_size.
380      */
381     if (memory_region_is_ram(mr)) {
382         diff = int128_sub(section->size, int128_make64(addr));
383         *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
384     }
385     return section;
386 }
387 
388 /**
389  * address_space_translate_iommu - translate an address through an IOMMU
390  * memory region and then through the target address space.
391  *
392  * @iommu_mr: the IOMMU memory region that we start the translation from
393  * @addr: the address to be translated through the MMU
394  * @xlat: the translated address offset within the destination memory region.
395  *        It cannot be %NULL.
396  * @plen_out: valid read/write length of the translated address. It
397  *            cannot be %NULL.
398  * @page_mask_out: page mask for the translated address. This
399  *            should only be meaningful for IOMMU translated
400  *            addresses, since there may be huge pages that this bit
401  *            would tell. It can be %NULL if we don't care about it.
402  * @is_write: whether the translation operation is for write
403  * @is_mmio: whether this can be MMIO, set true if it can
404  * @target_as: the address space targeted by the IOMMU
405  * @attrs: transaction attributes
406  *
407  * This function is called from RCU critical section.  It is the common
408  * part of flatview_do_translate and address_space_translate_cached.
409  */
address_space_translate_iommu(IOMMUMemoryRegion * iommu_mr,hwaddr * xlat,hwaddr * plen_out,hwaddr * page_mask_out,bool is_write,bool is_mmio,AddressSpace ** target_as,MemTxAttrs attrs)410 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
411                                                          hwaddr *xlat,
412                                                          hwaddr *plen_out,
413                                                          hwaddr *page_mask_out,
414                                                          bool is_write,
415                                                          bool is_mmio,
416                                                          AddressSpace **target_as,
417                                                          MemTxAttrs attrs)
418 {
419     MemoryRegionSection *section;
420     hwaddr page_mask = (hwaddr)-1;
421 
422     do {
423         hwaddr addr = *xlat;
424         IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
425         int iommu_idx = 0;
426         IOMMUTLBEntry iotlb;
427 
428         if (imrc->attrs_to_index) {
429             iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
430         }
431 
432         iotlb = imrc->translate(iommu_mr, addr, is_write ?
433                                 IOMMU_WO : IOMMU_RO, iommu_idx);
434 
435         if (!(iotlb.perm & (1 << is_write))) {
436             goto unassigned;
437         }
438 
439         addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
440                 | (addr & iotlb.addr_mask));
441         page_mask &= iotlb.addr_mask;
442         *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
443         *target_as = iotlb.target_as;
444 
445         section = address_space_translate_internal(
446                 address_space_to_dispatch(iotlb.target_as), addr, xlat,
447                 plen_out, is_mmio);
448 
449         iommu_mr = memory_region_get_iommu(section->mr);
450     } while (unlikely(iommu_mr));
451 
452     if (page_mask_out) {
453         *page_mask_out = page_mask;
454     }
455     return *section;
456 
457 unassigned:
458     return (MemoryRegionSection) { .mr = &io_mem_unassigned };
459 }
460 
461 /**
462  * flatview_do_translate - translate an address in FlatView
463  *
464  * @fv: the flat view that we want to translate on
465  * @addr: the address to be translated in above address space
466  * @xlat: the translated address offset within memory region. It
467  *        cannot be @NULL.
468  * @plen_out: valid read/write length of the translated address. It
469  *            can be @NULL when we don't care about it.
470  * @page_mask_out: page mask for the translated address. This
471  *            should only be meaningful for IOMMU translated
472  *            addresses, since there may be huge pages that this bit
473  *            would tell. It can be @NULL if we don't care about it.
474  * @is_write: whether the translation operation is for write
475  * @is_mmio: whether this can be MMIO, set true if it can
476  * @target_as: the address space targeted by the IOMMU
477  * @attrs: memory transaction attributes
478  *
479  * This function is called from RCU critical section
480  */
flatview_do_translate(FlatView * fv,hwaddr addr,hwaddr * xlat,hwaddr * plen_out,hwaddr * page_mask_out,bool is_write,bool is_mmio,AddressSpace ** target_as,MemTxAttrs attrs)481 static MemoryRegionSection flatview_do_translate(FlatView *fv,
482                                                  hwaddr addr,
483                                                  hwaddr *xlat,
484                                                  hwaddr *plen_out,
485                                                  hwaddr *page_mask_out,
486                                                  bool is_write,
487                                                  bool is_mmio,
488                                                  AddressSpace **target_as,
489                                                  MemTxAttrs attrs)
490 {
491     MemoryRegionSection *section;
492     IOMMUMemoryRegion *iommu_mr;
493     hwaddr plen = (hwaddr)(-1);
494 
495     if (!plen_out) {
496         plen_out = &plen;
497     }
498 
499     section = address_space_translate_internal(
500             flatview_to_dispatch(fv), addr, xlat,
501             plen_out, is_mmio);
502 
503     iommu_mr = memory_region_get_iommu(section->mr);
504     if (unlikely(iommu_mr)) {
505         return address_space_translate_iommu(iommu_mr, xlat,
506                                              plen_out, page_mask_out,
507                                              is_write, is_mmio,
508                                              target_as, attrs);
509     }
510     if (page_mask_out) {
511         /* Not behind an IOMMU, use default page size. */
512         *page_mask_out = ~TARGET_PAGE_MASK;
513     }
514 
515     return *section;
516 }
517 
518 /* Called from RCU critical section */
address_space_get_iotlb_entry(AddressSpace * as,hwaddr addr,bool is_write,MemTxAttrs attrs)519 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
520                                             bool is_write, MemTxAttrs attrs)
521 {
522     MemoryRegionSection section;
523     hwaddr xlat, page_mask;
524 
525     /*
526      * This can never be MMIO, and we don't really care about plen,
527      * but page mask.
528      */
529     section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
530                                     NULL, &page_mask, is_write, false, &as,
531                                     attrs);
532 
533     /* Illegal translation */
534     if (section.mr == &io_mem_unassigned) {
535         goto iotlb_fail;
536     }
537 
538     /* Convert memory region offset into address space offset */
539     xlat += section.offset_within_address_space -
540         section.offset_within_region;
541 
542     return (IOMMUTLBEntry) {
543         .target_as = as,
544         .iova = addr & ~page_mask,
545         .translated_addr = xlat & ~page_mask,
546         .addr_mask = page_mask,
547         /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
548         .perm = IOMMU_RW,
549     };
550 
551 iotlb_fail:
552     return (IOMMUTLBEntry) {0};
553 }
554 
555 /* Called from RCU critical section */
flatview_translate(FlatView * fv,hwaddr addr,hwaddr * xlat,hwaddr * plen,bool is_write,MemTxAttrs attrs)556 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
557                                  hwaddr *plen, bool is_write,
558                                  MemTxAttrs attrs)
559 {
560     MemoryRegion *mr;
561     MemoryRegionSection section;
562     AddressSpace *as = NULL;
563 
564     /* This can be MMIO, so setup MMIO bit. */
565     section = flatview_do_translate(fv, addr, xlat, plen, NULL,
566                                     is_write, true, &as, attrs);
567     mr = section.mr;
568 
569     if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
570         hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
571         *plen = MIN(page, *plen);
572     }
573 
574     return mr;
575 }
576 
577 typedef struct TCGIOMMUNotifier {
578     IOMMUNotifier n;
579     MemoryRegion *mr;
580     CPUState *cpu;
581     int iommu_idx;
582     bool active;
583 } TCGIOMMUNotifier;
584 
tcg_iommu_unmap_notify(IOMMUNotifier * n,IOMMUTLBEntry * iotlb)585 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
586 {
587     TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
588 
589     if (!notifier->active) {
590         return;
591     }
592     tlb_flush(notifier->cpu);
593     notifier->active = false;
594     /* We leave the notifier struct on the list to avoid reallocating it later.
595      * Generally the number of IOMMUs a CPU deals with will be small.
596      * In any case we can't unregister the iommu notifier from a notify
597      * callback.
598      */
599 }
600 
tcg_register_iommu_notifier(CPUState * cpu,IOMMUMemoryRegion * iommu_mr,int iommu_idx)601 static void tcg_register_iommu_notifier(CPUState *cpu,
602                                         IOMMUMemoryRegion *iommu_mr,
603                                         int iommu_idx)
604 {
605     /* Make sure this CPU has an IOMMU notifier registered for this
606      * IOMMU/IOMMU index combination, so that we can flush its TLB
607      * when the IOMMU tells us the mappings we've cached have changed.
608      */
609     MemoryRegion *mr = MEMORY_REGION(iommu_mr);
610     TCGIOMMUNotifier *notifier = NULL;
611     int i;
612 
613     for (i = 0; i < cpu->iommu_notifiers->len; i++) {
614         notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
615         if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
616             break;
617         }
618     }
619     if (i == cpu->iommu_notifiers->len) {
620         /* Not found, add a new entry at the end of the array */
621         cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
622         notifier = g_new0(TCGIOMMUNotifier, 1);
623         g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
624 
625         notifier->mr = mr;
626         notifier->iommu_idx = iommu_idx;
627         notifier->cpu = cpu;
628         /* Rather than trying to register interest in the specific part
629          * of the iommu's address space that we've accessed and then
630          * expand it later as subsequent accesses touch more of it, we
631          * just register interest in the whole thing, on the assumption
632          * that iommu reconfiguration will be rare.
633          */
634         iommu_notifier_init(&notifier->n,
635                             tcg_iommu_unmap_notify,
636                             IOMMU_NOTIFIER_UNMAP,
637                             0,
638                             HWADDR_MAX,
639                             iommu_idx);
640         memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
641                                               &error_fatal);
642     }
643 
644     if (!notifier->active) {
645         notifier->active = true;
646     }
647 }
648 
tcg_iommu_free_notifier_list(CPUState * cpu)649 void tcg_iommu_free_notifier_list(CPUState *cpu)
650 {
651     /* Destroy the CPU's notifier list */
652     int i;
653     TCGIOMMUNotifier *notifier;
654 
655     for (i = 0; i < cpu->iommu_notifiers->len; i++) {
656         notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
657         memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
658         g_free(notifier);
659     }
660     g_array_free(cpu->iommu_notifiers, true);
661 }
662 
tcg_iommu_init_notifier_list(CPUState * cpu)663 void tcg_iommu_init_notifier_list(CPUState *cpu)
664 {
665     cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
666 }
667 
668 /* Called from RCU critical section */
669 MemoryRegionSection *
address_space_translate_for_iotlb(CPUState * cpu,int asidx,hwaddr addr,hwaddr * xlat,hwaddr * plen,MemTxAttrs attrs,int * prot)670 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
671                                   hwaddr *xlat, hwaddr *plen,
672                                   MemTxAttrs attrs, int *prot)
673 {
674     MemoryRegionSection *section;
675     IOMMUMemoryRegion *iommu_mr;
676     IOMMUMemoryRegionClass *imrc;
677     IOMMUTLBEntry iotlb;
678     int iommu_idx;
679     AddressSpaceDispatch *d =
680         qatomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
681 
682     for (;;) {
683         section = address_space_translate_internal(d, addr, &addr, plen, false);
684 
685         iommu_mr = memory_region_get_iommu(section->mr);
686         if (!iommu_mr) {
687             break;
688         }
689 
690         imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
691 
692         iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
693         tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
694         /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
695          * doesn't short-cut its translation table walk.
696          */
697         iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
698         addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
699                 | (addr & iotlb.addr_mask));
700         /* Update the caller's prot bits to remove permissions the IOMMU
701          * is giving us a failure response for. If we get down to no
702          * permissions left at all we can give up now.
703          */
704         if (!(iotlb.perm & IOMMU_RO)) {
705             *prot &= ~(PAGE_READ | PAGE_EXEC);
706         }
707         if (!(iotlb.perm & IOMMU_WO)) {
708             *prot &= ~PAGE_WRITE;
709         }
710 
711         if (!*prot) {
712             goto translate_fail;
713         }
714 
715         d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
716     }
717 
718     assert(!memory_region_is_iommu(section->mr));
719     *xlat = addr;
720     return section;
721 
722 translate_fail:
723     return &d->map.sections[PHYS_SECTION_UNASSIGNED];
724 }
725 
cpu_address_space_init(CPUState * cpu,int asidx,const char * prefix,MemoryRegion * mr)726 void cpu_address_space_init(CPUState *cpu, int asidx,
727                             const char *prefix, MemoryRegion *mr)
728 {
729     CPUAddressSpace *newas;
730     AddressSpace *as = g_new0(AddressSpace, 1);
731     char *as_name;
732 
733     assert(mr);
734     as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
735     address_space_init(as, mr, as_name);
736     g_free(as_name);
737 
738     /* Target code should have set num_ases before calling us */
739     assert(asidx < cpu->num_ases);
740 
741     if (asidx == 0) {
742         /* address space 0 gets the convenience alias */
743         cpu->as = as;
744     }
745 
746     /* KVM cannot currently support multiple address spaces. */
747     assert(asidx == 0 || !kvm_enabled());
748 
749     if (!cpu->cpu_ases) {
750         cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
751     }
752 
753     newas = &cpu->cpu_ases[asidx];
754     newas->cpu = cpu;
755     newas->as = as;
756     if (tcg_enabled()) {
757         newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
758         newas->tcg_as_listener.commit = tcg_commit;
759         newas->tcg_as_listener.name = "tcg";
760         memory_listener_register(&newas->tcg_as_listener, as);
761     }
762 }
763 
cpu_get_address_space(CPUState * cpu,int asidx)764 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
765 {
766     /* Return the AddressSpace corresponding to the specified index */
767     return cpu->cpu_ases[asidx].as;
768 }
769 
770 /* Add a watchpoint.  */
cpu_watchpoint_insert(CPUState * cpu,vaddr addr,vaddr len,int flags,CPUWatchpoint ** watchpoint)771 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
772                           int flags, CPUWatchpoint **watchpoint)
773 {
774     CPUWatchpoint *wp;
775     vaddr in_page;
776 
777     /* forbid ranges which are empty or run off the end of the address space */
778     if (len == 0 || (addr + len - 1) < addr) {
779         error_report("tried to set invalid watchpoint at %"
780                      VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
781         return -EINVAL;
782     }
783     wp = g_malloc(sizeof(*wp));
784 
785     wp->vaddr = addr;
786     wp->len = len;
787     wp->flags = flags;
788 
789     /* keep all GDB-injected watchpoints in front */
790     if (flags & BP_GDB) {
791         QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
792     } else {
793         QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
794     }
795 
796     in_page = -(addr | TARGET_PAGE_MASK);
797     if (len <= in_page) {
798         tlb_flush_page(cpu, addr);
799     } else {
800         tlb_flush(cpu);
801     }
802 
803     if (watchpoint)
804         *watchpoint = wp;
805     return 0;
806 }
807 
808 /* Remove a specific watchpoint.  */
cpu_watchpoint_remove(CPUState * cpu,vaddr addr,vaddr len,int flags)809 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
810                           int flags)
811 {
812     CPUWatchpoint *wp;
813 
814     QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
815         if (addr == wp->vaddr && len == wp->len
816                 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
817             cpu_watchpoint_remove_by_ref(cpu, wp);
818             return 0;
819         }
820     }
821     return -ENOENT;
822 }
823 
824 /* Remove a specific watchpoint by reference.  */
cpu_watchpoint_remove_by_ref(CPUState * cpu,CPUWatchpoint * watchpoint)825 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
826 {
827     QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
828 
829     tlb_flush_page(cpu, watchpoint->vaddr);
830 
831     g_free(watchpoint);
832 }
833 
834 /* Remove all matching watchpoints.  */
cpu_watchpoint_remove_all(CPUState * cpu,int mask)835 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
836 {
837     CPUWatchpoint *wp, *next;
838 
839     QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
840         if (wp->flags & mask) {
841             cpu_watchpoint_remove_by_ref(cpu, wp);
842         }
843     }
844 }
845 
846 #ifdef CONFIG_TCG
847 /* Return true if this watchpoint address matches the specified
848  * access (ie the address range covered by the watchpoint overlaps
849  * partially or completely with the address range covered by the
850  * access).
851  */
watchpoint_address_matches(CPUWatchpoint * wp,vaddr addr,vaddr len)852 static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
853                                               vaddr addr, vaddr len)
854 {
855     /* We know the lengths are non-zero, but a little caution is
856      * required to avoid errors in the case where the range ends
857      * exactly at the top of the address space and so addr + len
858      * wraps round to zero.
859      */
860     vaddr wpend = wp->vaddr + wp->len - 1;
861     vaddr addrend = addr + len - 1;
862 
863     return !(addr > wpend || wp->vaddr > addrend);
864 }
865 
866 /* Return flags for watchpoints that match addr + prot.  */
cpu_watchpoint_address_matches(CPUState * cpu,vaddr addr,vaddr len)867 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
868 {
869     CPUWatchpoint *wp;
870     int ret = 0;
871 
872     QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
873         if (watchpoint_address_matches(wp, addr, len)) {
874             ret |= wp->flags;
875         }
876     }
877     return ret;
878 }
879 
880 /* Generate a debug exception if a watchpoint has been hit.  */
cpu_check_watchpoint(CPUState * cpu,vaddr addr,vaddr len,MemTxAttrs attrs,int flags,uintptr_t ra)881 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
882                           MemTxAttrs attrs, int flags, uintptr_t ra)
883 {
884     CPUClass *cc = CPU_GET_CLASS(cpu);
885     CPUWatchpoint *wp;
886 
887     assert(tcg_enabled());
888     if (cpu->watchpoint_hit) {
889         /*
890          * We re-entered the check after replacing the TB.
891          * Now raise the debug interrupt so that it will
892          * trigger after the current instruction.
893          */
894         qemu_mutex_lock_iothread();
895         cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
896         qemu_mutex_unlock_iothread();
897         return;
898     }
899 
900     if (cc->tcg_ops->adjust_watchpoint_address) {
901         /* this is currently used only by ARM BE32 */
902         addr = cc->tcg_ops->adjust_watchpoint_address(cpu, addr, len);
903     }
904     QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
905         if (watchpoint_address_matches(wp, addr, len)
906             && (wp->flags & flags)) {
907             if (replay_running_debug()) {
908                 /*
909                  * replay_breakpoint reads icount.
910                  * Force recompile to succeed, because icount may
911                  * be read only at the end of the block.
912                  */
913                 if (!cpu->can_do_io) {
914                     /* Force execution of one insn next time.  */
915                     cpu->cflags_next_tb = 1 | CF_LAST_IO | CF_NOIRQ | curr_cflags(cpu);
916                     cpu_loop_exit_restore(cpu, ra);
917                 }
918                 /*
919                  * Don't process the watchpoints when we are
920                  * in a reverse debugging operation.
921                  */
922                 replay_breakpoint();
923                 return;
924             }
925             if (flags == BP_MEM_READ) {
926                 wp->flags |= BP_WATCHPOINT_HIT_READ;
927             } else {
928                 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
929             }
930             wp->hitaddr = MAX(addr, wp->vaddr);
931             wp->hitattrs = attrs;
932 
933             if (wp->flags & BP_CPU && cc->tcg_ops->debug_check_watchpoint &&
934                 !cc->tcg_ops->debug_check_watchpoint(cpu, wp)) {
935                 wp->flags &= ~BP_WATCHPOINT_HIT;
936                 continue;
937             }
938             cpu->watchpoint_hit = wp;
939 
940             mmap_lock();
941             /* This call also restores vCPU state */
942             tb_check_watchpoint(cpu, ra);
943             if (wp->flags & BP_STOP_BEFORE_ACCESS) {
944                 cpu->exception_index = EXCP_DEBUG;
945                 mmap_unlock();
946                 cpu_loop_exit(cpu);
947             } else {
948                 /* Force execution of one insn next time.  */
949                 cpu->cflags_next_tb = 1 | CF_LAST_IO | CF_NOIRQ | curr_cflags(cpu);
950                 mmap_unlock();
951                 cpu_loop_exit_noexc(cpu);
952             }
953         } else {
954             wp->flags &= ~BP_WATCHPOINT_HIT;
955         }
956     }
957 }
958 
959 #endif /* CONFIG_TCG */
960 
961 /* Called from RCU critical section */
qemu_get_ram_block(ram_addr_t addr)962 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
963 {
964     RAMBlock *block;
965 
966     block = qatomic_rcu_read(&ram_list.mru_block);
967     if (block && addr - block->offset < block->max_length) {
968         return block;
969     }
970     RAMBLOCK_FOREACH(block) {
971         if (addr - block->offset < block->max_length) {
972             goto found;
973         }
974     }
975 
976     fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
977     abort();
978 
979 found:
980     /* It is safe to write mru_block outside the iothread lock.  This
981      * is what happens:
982      *
983      *     mru_block = xxx
984      *     rcu_read_unlock()
985      *                                        xxx removed from list
986      *                  rcu_read_lock()
987      *                  read mru_block
988      *                                        mru_block = NULL;
989      *                                        call_rcu(reclaim_ramblock, xxx);
990      *                  rcu_read_unlock()
991      *
992      * qatomic_rcu_set is not needed here.  The block was already published
993      * when it was placed into the list.  Here we're just making an extra
994      * copy of the pointer.
995      */
996     ram_list.mru_block = block;
997     return block;
998 }
999 
tlb_reset_dirty_range_all(ram_addr_t start,ram_addr_t length)1000 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1001 {
1002     CPUState *cpu;
1003     ram_addr_t start1;
1004     RAMBlock *block;
1005     ram_addr_t end;
1006 
1007     assert(tcg_enabled());
1008     end = TARGET_PAGE_ALIGN(start + length);
1009     start &= TARGET_PAGE_MASK;
1010 
1011     RCU_READ_LOCK_GUARD();
1012     block = qemu_get_ram_block(start);
1013     assert(block == qemu_get_ram_block(end - 1));
1014     start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1015     CPU_FOREACH(cpu) {
1016         tlb_reset_dirty(cpu, start1, length);
1017     }
1018 }
1019 
1020 /* Note: start and end must be within the same ram block.  */
cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,ram_addr_t length,unsigned client)1021 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1022                                               ram_addr_t length,
1023                                               unsigned client)
1024 {
1025     DirtyMemoryBlocks *blocks;
1026     unsigned long end, page, start_page;
1027     bool dirty = false;
1028     RAMBlock *ramblock;
1029     uint64_t mr_offset, mr_size;
1030 
1031     if (length == 0) {
1032         return false;
1033     }
1034 
1035     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1036     start_page = start >> TARGET_PAGE_BITS;
1037     page = start_page;
1038 
1039     WITH_RCU_READ_LOCK_GUARD() {
1040         blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
1041         ramblock = qemu_get_ram_block(start);
1042         /* Range sanity check on the ramblock */
1043         assert(start >= ramblock->offset &&
1044                start + length <= ramblock->offset + ramblock->used_length);
1045 
1046         while (page < end) {
1047             unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1048             unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1049             unsigned long num = MIN(end - page,
1050                                     DIRTY_MEMORY_BLOCK_SIZE - offset);
1051 
1052             dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1053                                                   offset, num);
1054             page += num;
1055         }
1056 
1057         mr_offset = (ram_addr_t)(start_page << TARGET_PAGE_BITS) - ramblock->offset;
1058         mr_size = (end - start_page) << TARGET_PAGE_BITS;
1059         memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1060     }
1061 
1062     if (dirty && tcg_enabled()) {
1063         tlb_reset_dirty_range_all(start, length);
1064     }
1065 
1066     return dirty;
1067 }
1068 
cpu_physical_memory_snapshot_and_clear_dirty(MemoryRegion * mr,hwaddr offset,hwaddr length,unsigned client)1069 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1070     (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1071 {
1072     DirtyMemoryBlocks *blocks;
1073     ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1074     unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1075     ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1076     ram_addr_t last  = QEMU_ALIGN_UP(start + length, align);
1077     DirtyBitmapSnapshot *snap;
1078     unsigned long page, end, dest;
1079 
1080     snap = g_malloc0(sizeof(*snap) +
1081                      ((last - first) >> (TARGET_PAGE_BITS + 3)));
1082     snap->start = first;
1083     snap->end   = last;
1084 
1085     page = first >> TARGET_PAGE_BITS;
1086     end  = last  >> TARGET_PAGE_BITS;
1087     dest = 0;
1088 
1089     WITH_RCU_READ_LOCK_GUARD() {
1090         blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
1091 
1092         while (page < end) {
1093             unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1094             unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1095             unsigned long num = MIN(end - page,
1096                                     DIRTY_MEMORY_BLOCK_SIZE - offset);
1097 
1098             assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1099             assert(QEMU_IS_ALIGNED(num,    (1 << BITS_PER_LEVEL)));
1100             offset >>= BITS_PER_LEVEL;
1101 
1102             bitmap_copy_and_clear_atomic(snap->dirty + dest,
1103                                          blocks->blocks[idx] + offset,
1104                                          num);
1105             page += num;
1106             dest += num >> BITS_PER_LEVEL;
1107         }
1108     }
1109 
1110     if (tcg_enabled()) {
1111         tlb_reset_dirty_range_all(start, length);
1112     }
1113 
1114     memory_region_clear_dirty_bitmap(mr, offset, length);
1115 
1116     return snap;
1117 }
1118 
cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot * snap,ram_addr_t start,ram_addr_t length)1119 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1120                                             ram_addr_t start,
1121                                             ram_addr_t length)
1122 {
1123     unsigned long page, end;
1124 
1125     assert(start >= snap->start);
1126     assert(start + length <= snap->end);
1127 
1128     end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1129     page = (start - snap->start) >> TARGET_PAGE_BITS;
1130 
1131     while (page < end) {
1132         if (test_bit(page, snap->dirty)) {
1133             return true;
1134         }
1135         page++;
1136     }
1137     return false;
1138 }
1139 
1140 /* Called from RCU critical section */
memory_region_section_get_iotlb(CPUState * cpu,MemoryRegionSection * section)1141 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1142                                        MemoryRegionSection *section)
1143 {
1144     AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1145     return section - d->map.sections;
1146 }
1147 
1148 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1149                             uint16_t section);
1150 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1151 
phys_section_add(PhysPageMap * map,MemoryRegionSection * section)1152 static uint16_t phys_section_add(PhysPageMap *map,
1153                                  MemoryRegionSection *section)
1154 {
1155     /* The physical section number is ORed with a page-aligned
1156      * pointer to produce the iotlb entries.  Thus it should
1157      * never overflow into the page-aligned value.
1158      */
1159     assert(map->sections_nb < TARGET_PAGE_SIZE);
1160 
1161     if (map->sections_nb == map->sections_nb_alloc) {
1162         map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1163         map->sections = g_renew(MemoryRegionSection, map->sections,
1164                                 map->sections_nb_alloc);
1165     }
1166     map->sections[map->sections_nb] = *section;
1167     memory_region_ref(section->mr);
1168     return map->sections_nb++;
1169 }
1170 
phys_section_destroy(MemoryRegion * mr)1171 static void phys_section_destroy(MemoryRegion *mr)
1172 {
1173     bool have_sub_page = mr->subpage;
1174 
1175     memory_region_unref(mr);
1176 
1177     if (have_sub_page) {
1178         subpage_t *subpage = container_of(mr, subpage_t, iomem);
1179         object_unref(OBJECT(&subpage->iomem));
1180         g_free(subpage);
1181     }
1182 }
1183 
phys_sections_free(PhysPageMap * map)1184 static void phys_sections_free(PhysPageMap *map)
1185 {
1186     while (map->sections_nb > 0) {
1187         MemoryRegionSection *section = &map->sections[--map->sections_nb];
1188         phys_section_destroy(section->mr);
1189     }
1190     g_free(map->sections);
1191     g_free(map->nodes);
1192 }
1193 
register_subpage(FlatView * fv,MemoryRegionSection * section)1194 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1195 {
1196     AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1197     subpage_t *subpage;
1198     hwaddr base = section->offset_within_address_space
1199         & TARGET_PAGE_MASK;
1200     MemoryRegionSection *existing = phys_page_find(d, base);
1201     MemoryRegionSection subsection = {
1202         .offset_within_address_space = base,
1203         .size = int128_make64(TARGET_PAGE_SIZE),
1204     };
1205     hwaddr start, end;
1206 
1207     assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1208 
1209     if (!(existing->mr->subpage)) {
1210         subpage = subpage_init(fv, base);
1211         subsection.fv = fv;
1212         subsection.mr = &subpage->iomem;
1213         phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1214                       phys_section_add(&d->map, &subsection));
1215     } else {
1216         subpage = container_of(existing->mr, subpage_t, iomem);
1217     }
1218     start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1219     end = start + int128_get64(section->size) - 1;
1220     subpage_register(subpage, start, end,
1221                      phys_section_add(&d->map, section));
1222 }
1223 
1224 
register_multipage(FlatView * fv,MemoryRegionSection * section)1225 static void register_multipage(FlatView *fv,
1226                                MemoryRegionSection *section)
1227 {
1228     AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1229     hwaddr start_addr = section->offset_within_address_space;
1230     uint16_t section_index = phys_section_add(&d->map, section);
1231     uint64_t num_pages = int128_get64(int128_rshift(section->size,
1232                                                     TARGET_PAGE_BITS));
1233 
1234     assert(num_pages);
1235     phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1236 }
1237 
1238 /*
1239  * The range in *section* may look like this:
1240  *
1241  *      |s|PPPPPPP|s|
1242  *
1243  * where s stands for subpage and P for page.
1244  */
flatview_add_to_dispatch(FlatView * fv,MemoryRegionSection * section)1245 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1246 {
1247     MemoryRegionSection remain = *section;
1248     Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1249 
1250     /* register first subpage */
1251     if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1252         uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1253                         - remain.offset_within_address_space;
1254 
1255         MemoryRegionSection now = remain;
1256         now.size = int128_min(int128_make64(left), now.size);
1257         register_subpage(fv, &now);
1258         if (int128_eq(remain.size, now.size)) {
1259             return;
1260         }
1261         remain.size = int128_sub(remain.size, now.size);
1262         remain.offset_within_address_space += int128_get64(now.size);
1263         remain.offset_within_region += int128_get64(now.size);
1264     }
1265 
1266     /* register whole pages */
1267     if (int128_ge(remain.size, page_size)) {
1268         MemoryRegionSection now = remain;
1269         now.size = int128_and(now.size, int128_neg(page_size));
1270         register_multipage(fv, &now);
1271         if (int128_eq(remain.size, now.size)) {
1272             return;
1273         }
1274         remain.size = int128_sub(remain.size, now.size);
1275         remain.offset_within_address_space += int128_get64(now.size);
1276         remain.offset_within_region += int128_get64(now.size);
1277     }
1278 
1279     /* register last subpage */
1280     register_subpage(fv, &remain);
1281 }
1282 
qemu_flush_coalesced_mmio_buffer(void)1283 void qemu_flush_coalesced_mmio_buffer(void)
1284 {
1285     if (kvm_enabled())
1286         kvm_flush_coalesced_mmio_buffer();
1287 }
1288 
qemu_mutex_lock_ramlist(void)1289 void qemu_mutex_lock_ramlist(void)
1290 {
1291     qemu_mutex_lock(&ram_list.mutex);
1292 }
1293 
qemu_mutex_unlock_ramlist(void)1294 void qemu_mutex_unlock_ramlist(void)
1295 {
1296     qemu_mutex_unlock(&ram_list.mutex);
1297 }
1298 
ram_block_format(void)1299 GString *ram_block_format(void)
1300 {
1301     RAMBlock *block;
1302     char *psize;
1303     GString *buf = g_string_new("");
1304 
1305     RCU_READ_LOCK_GUARD();
1306     g_string_append_printf(buf, "%24s %8s  %18s %18s %18s\n",
1307                            "Block Name", "PSize", "Offset", "Used", "Total");
1308     RAMBLOCK_FOREACH(block) {
1309         psize = size_to_str(block->page_size);
1310         g_string_append_printf(buf, "%24s %8s  0x%016" PRIx64 " 0x%016" PRIx64
1311                                " 0x%016" PRIx64 "\n", block->idstr, psize,
1312                                (uint64_t)block->offset,
1313                                (uint64_t)block->used_length,
1314                                (uint64_t)block->max_length);
1315         g_free(psize);
1316     }
1317 
1318     return buf;
1319 }
1320 
1321 #ifdef __linux__
1322 /*
1323  * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1324  * may or may not name the same files / on the same filesystem now as
1325  * when we actually open and map them.  Iterate over the file
1326  * descriptors instead, and use qemu_fd_getpagesize().
1327  */
find_min_backend_pagesize(Object * obj,void * opaque)1328 static int find_min_backend_pagesize(Object *obj, void *opaque)
1329 {
1330     long *hpsize_min = opaque;
1331 
1332     if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1333         HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1334         long hpsize = host_memory_backend_pagesize(backend);
1335 
1336         if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1337             *hpsize_min = hpsize;
1338         }
1339     }
1340 
1341     return 0;
1342 }
1343 
find_max_backend_pagesize(Object * obj,void * opaque)1344 static int find_max_backend_pagesize(Object *obj, void *opaque)
1345 {
1346     long *hpsize_max = opaque;
1347 
1348     if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1349         HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1350         long hpsize = host_memory_backend_pagesize(backend);
1351 
1352         if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1353             *hpsize_max = hpsize;
1354         }
1355     }
1356 
1357     return 0;
1358 }
1359 
1360 /*
1361  * TODO: We assume right now that all mapped host memory backends are
1362  * used as RAM, however some might be used for different purposes.
1363  */
qemu_minrampagesize(void)1364 long qemu_minrampagesize(void)
1365 {
1366     long hpsize = LONG_MAX;
1367     Object *memdev_root = object_resolve_path("/objects", NULL);
1368 
1369     object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1370     return hpsize;
1371 }
1372 
qemu_maxrampagesize(void)1373 long qemu_maxrampagesize(void)
1374 {
1375     long pagesize = 0;
1376     Object *memdev_root = object_resolve_path("/objects", NULL);
1377 
1378     object_child_foreach(memdev_root, find_max_backend_pagesize, &pagesize);
1379     return pagesize;
1380 }
1381 #else
qemu_minrampagesize(void)1382 long qemu_minrampagesize(void)
1383 {
1384     return qemu_real_host_page_size;
1385 }
qemu_maxrampagesize(void)1386 long qemu_maxrampagesize(void)
1387 {
1388     return qemu_real_host_page_size;
1389 }
1390 #endif
1391 
1392 #ifdef CONFIG_POSIX
get_file_size(int fd)1393 static int64_t get_file_size(int fd)
1394 {
1395     int64_t size;
1396 #if defined(__linux__)
1397     struct stat st;
1398 
1399     if (fstat(fd, &st) < 0) {
1400         return -errno;
1401     }
1402 
1403     /* Special handling for devdax character devices */
1404     if (S_ISCHR(st.st_mode)) {
1405         g_autofree char *subsystem_path = NULL;
1406         g_autofree char *subsystem = NULL;
1407 
1408         subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1409                                          major(st.st_rdev), minor(st.st_rdev));
1410         subsystem = g_file_read_link(subsystem_path, NULL);
1411 
1412         if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1413             g_autofree char *size_path = NULL;
1414             g_autofree char *size_str = NULL;
1415 
1416             size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1417                                     major(st.st_rdev), minor(st.st_rdev));
1418 
1419             if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1420                 return g_ascii_strtoll(size_str, NULL, 0);
1421             }
1422         }
1423     }
1424 #endif /* defined(__linux__) */
1425 
1426     /* st.st_size may be zero for special files yet lseek(2) works */
1427     size = lseek(fd, 0, SEEK_END);
1428     if (size < 0) {
1429         return -errno;
1430     }
1431     return size;
1432 }
1433 
get_file_align(int fd)1434 static int64_t get_file_align(int fd)
1435 {
1436     int64_t align = -1;
1437 #if defined(__linux__) && defined(CONFIG_LIBDAXCTL)
1438     struct stat st;
1439 
1440     if (fstat(fd, &st) < 0) {
1441         return -errno;
1442     }
1443 
1444     /* Special handling for devdax character devices */
1445     if (S_ISCHR(st.st_mode)) {
1446         g_autofree char *path = NULL;
1447         g_autofree char *rpath = NULL;
1448         struct daxctl_ctx *ctx;
1449         struct daxctl_region *region;
1450         int rc = 0;
1451 
1452         path = g_strdup_printf("/sys/dev/char/%d:%d",
1453                     major(st.st_rdev), minor(st.st_rdev));
1454         rpath = realpath(path, NULL);
1455         if (!rpath) {
1456             return -errno;
1457         }
1458 
1459         rc = daxctl_new(&ctx);
1460         if (rc) {
1461             return -1;
1462         }
1463 
1464         daxctl_region_foreach(ctx, region) {
1465             if (strstr(rpath, daxctl_region_get_path(region))) {
1466                 align = daxctl_region_get_align(region);
1467                 break;
1468             }
1469         }
1470         daxctl_unref(ctx);
1471     }
1472 #endif /* defined(__linux__) && defined(CONFIG_LIBDAXCTL) */
1473 
1474     return align;
1475 }
1476 
file_ram_open(const char * path,const char * region_name,bool readonly,bool * created,Error ** errp)1477 static int file_ram_open(const char *path,
1478                          const char *region_name,
1479                          bool readonly,
1480                          bool *created,
1481                          Error **errp)
1482 {
1483     char *filename;
1484     char *sanitized_name;
1485     char *c;
1486     int fd = -1;
1487 
1488     *created = false;
1489     for (;;) {
1490         fd = open(path, readonly ? O_RDONLY : O_RDWR);
1491         if (fd >= 0) {
1492             /* @path names an existing file, use it */
1493             break;
1494         }
1495         if (errno == ENOENT) {
1496             /* @path names a file that doesn't exist, create it */
1497             fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1498             if (fd >= 0) {
1499                 *created = true;
1500                 break;
1501             }
1502         } else if (errno == EISDIR) {
1503             /* @path names a directory, create a file there */
1504             /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1505             sanitized_name = g_strdup(region_name);
1506             for (c = sanitized_name; *c != '\0'; c++) {
1507                 if (*c == '/') {
1508                     *c = '_';
1509                 }
1510             }
1511 
1512             filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1513                                        sanitized_name);
1514             g_free(sanitized_name);
1515 
1516             fd = mkstemp(filename);
1517             if (fd >= 0) {
1518                 unlink(filename);
1519                 g_free(filename);
1520                 break;
1521             }
1522             g_free(filename);
1523         }
1524         if (errno != EEXIST && errno != EINTR) {
1525             error_setg_errno(errp, errno,
1526                              "can't open backing store %s for guest RAM",
1527                              path);
1528             return -1;
1529         }
1530         /*
1531          * Try again on EINTR and EEXIST.  The latter happens when
1532          * something else creates the file between our two open().
1533          */
1534     }
1535 
1536     return fd;
1537 }
1538 
file_ram_alloc(RAMBlock * block,ram_addr_t memory,int fd,bool readonly,bool truncate,off_t offset,Error ** errp)1539 static void *file_ram_alloc(RAMBlock *block,
1540                             ram_addr_t memory,
1541                             int fd,
1542                             bool readonly,
1543                             bool truncate,
1544                             off_t offset,
1545                             Error **errp)
1546 {
1547     uint32_t qemu_map_flags;
1548     void *area;
1549 
1550     block->page_size = qemu_fd_getpagesize(fd);
1551     if (block->mr->align % block->page_size) {
1552         error_setg(errp, "alignment 0x%" PRIx64
1553                    " must be multiples of page size 0x%zx",
1554                    block->mr->align, block->page_size);
1555         return NULL;
1556     } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1557         error_setg(errp, "alignment 0x%" PRIx64
1558                    " must be a power of two", block->mr->align);
1559         return NULL;
1560     }
1561     block->mr->align = MAX(block->page_size, block->mr->align);
1562 #if defined(__s390x__)
1563     if (kvm_enabled()) {
1564         block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1565     }
1566 #endif
1567 
1568     if (memory < block->page_size) {
1569         error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1570                    "or larger than page size 0x%zx",
1571                    memory, block->page_size);
1572         return NULL;
1573     }
1574 
1575     memory = ROUND_UP(memory, block->page_size);
1576 
1577     /*
1578      * ftruncate is not supported by hugetlbfs in older
1579      * hosts, so don't bother bailing out on errors.
1580      * If anything goes wrong with it under other filesystems,
1581      * mmap will fail.
1582      *
1583      * Do not truncate the non-empty backend file to avoid corrupting
1584      * the existing data in the file. Disabling shrinking is not
1585      * enough. For example, the current vNVDIMM implementation stores
1586      * the guest NVDIMM labels at the end of the backend file. If the
1587      * backend file is later extended, QEMU will not be able to find
1588      * those labels. Therefore, extending the non-empty backend file
1589      * is disabled as well.
1590      */
1591     if (truncate && ftruncate(fd, memory)) {
1592         perror("ftruncate");
1593     }
1594 
1595     qemu_map_flags = readonly ? QEMU_MAP_READONLY : 0;
1596     qemu_map_flags |= (block->flags & RAM_SHARED) ? QEMU_MAP_SHARED : 0;
1597     qemu_map_flags |= (block->flags & RAM_PMEM) ? QEMU_MAP_SYNC : 0;
1598     qemu_map_flags |= (block->flags & RAM_NORESERVE) ? QEMU_MAP_NORESERVE : 0;
1599     area = qemu_ram_mmap(fd, memory, block->mr->align, qemu_map_flags, offset);
1600     if (area == MAP_FAILED) {
1601         error_setg_errno(errp, errno,
1602                          "unable to map backing store for guest RAM");
1603         return NULL;
1604     }
1605 
1606     block->fd = fd;
1607     return area;
1608 }
1609 #endif
1610 
1611 /* Allocate space within the ram_addr_t space that governs the
1612  * dirty bitmaps.
1613  * Called with the ramlist lock held.
1614  */
find_ram_offset(ram_addr_t size)1615 static ram_addr_t find_ram_offset(ram_addr_t size)
1616 {
1617     RAMBlock *block, *next_block;
1618     ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1619 
1620     assert(size != 0); /* it would hand out same offset multiple times */
1621 
1622     if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1623         return 0;
1624     }
1625 
1626     RAMBLOCK_FOREACH(block) {
1627         ram_addr_t candidate, next = RAM_ADDR_MAX;
1628 
1629         /* Align blocks to start on a 'long' in the bitmap
1630          * which makes the bitmap sync'ing take the fast path.
1631          */
1632         candidate = block->offset + block->max_length;
1633         candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1634 
1635         /* Search for the closest following block
1636          * and find the gap.
1637          */
1638         RAMBLOCK_FOREACH(next_block) {
1639             if (next_block->offset >= candidate) {
1640                 next = MIN(next, next_block->offset);
1641             }
1642         }
1643 
1644         /* If it fits remember our place and remember the size
1645          * of gap, but keep going so that we might find a smaller
1646          * gap to fill so avoiding fragmentation.
1647          */
1648         if (next - candidate >= size && next - candidate < mingap) {
1649             offset = candidate;
1650             mingap = next - candidate;
1651         }
1652 
1653         trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1654     }
1655 
1656     if (offset == RAM_ADDR_MAX) {
1657         fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1658                 (uint64_t)size);
1659         abort();
1660     }
1661 
1662     trace_find_ram_offset(size, offset);
1663 
1664     return offset;
1665 }
1666 
last_ram_page(void)1667 static unsigned long last_ram_page(void)
1668 {
1669     RAMBlock *block;
1670     ram_addr_t last = 0;
1671 
1672     RCU_READ_LOCK_GUARD();
1673     RAMBLOCK_FOREACH(block) {
1674         last = MAX(last, block->offset + block->max_length);
1675     }
1676     return last >> TARGET_PAGE_BITS;
1677 }
1678 
qemu_ram_setup_dump(void * addr,ram_addr_t size)1679 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1680 {
1681     int ret;
1682 
1683     /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1684     if (!machine_dump_guest_core(current_machine)) {
1685         ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1686         if (ret) {
1687             perror("qemu_madvise");
1688             fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1689                             "but dump_guest_core=off specified\n");
1690         }
1691     }
1692 }
1693 
qemu_ram_get_idstr(RAMBlock * rb)1694 const char *qemu_ram_get_idstr(RAMBlock *rb)
1695 {
1696     return rb->idstr;
1697 }
1698 
qemu_ram_get_host_addr(RAMBlock * rb)1699 void *qemu_ram_get_host_addr(RAMBlock *rb)
1700 {
1701     return rb->host;
1702 }
1703 
qemu_ram_get_offset(RAMBlock * rb)1704 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1705 {
1706     return rb->offset;
1707 }
1708 
qemu_ram_get_used_length(RAMBlock * rb)1709 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1710 {
1711     return rb->used_length;
1712 }
1713 
qemu_ram_get_max_length(RAMBlock * rb)1714 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb)
1715 {
1716     return rb->max_length;
1717 }
1718 
qemu_ram_is_shared(RAMBlock * rb)1719 bool qemu_ram_is_shared(RAMBlock *rb)
1720 {
1721     return rb->flags & RAM_SHARED;
1722 }
1723 
qemu_ram_is_noreserve(RAMBlock * rb)1724 bool qemu_ram_is_noreserve(RAMBlock *rb)
1725 {
1726     return rb->flags & RAM_NORESERVE;
1727 }
1728 
1729 /* Note: Only set at the start of postcopy */
qemu_ram_is_uf_zeroable(RAMBlock * rb)1730 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1731 {
1732     return rb->flags & RAM_UF_ZEROPAGE;
1733 }
1734 
qemu_ram_set_uf_zeroable(RAMBlock * rb)1735 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1736 {
1737     rb->flags |= RAM_UF_ZEROPAGE;
1738 }
1739 
qemu_ram_is_migratable(RAMBlock * rb)1740 bool qemu_ram_is_migratable(RAMBlock *rb)
1741 {
1742     return rb->flags & RAM_MIGRATABLE;
1743 }
1744 
qemu_ram_set_migratable(RAMBlock * rb)1745 void qemu_ram_set_migratable(RAMBlock *rb)
1746 {
1747     rb->flags |= RAM_MIGRATABLE;
1748 }
1749 
qemu_ram_unset_migratable(RAMBlock * rb)1750 void qemu_ram_unset_migratable(RAMBlock *rb)
1751 {
1752     rb->flags &= ~RAM_MIGRATABLE;
1753 }
1754 
1755 /* Called with iothread lock held.  */
qemu_ram_set_idstr(RAMBlock * new_block,const char * name,DeviceState * dev)1756 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
1757 {
1758     RAMBlock *block;
1759 
1760     assert(new_block);
1761     assert(!new_block->idstr[0]);
1762 
1763     if (dev) {
1764         char *id = qdev_get_dev_path(dev);
1765         if (id) {
1766             snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1767             g_free(id);
1768         }
1769     }
1770     pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1771 
1772     RCU_READ_LOCK_GUARD();
1773     RAMBLOCK_FOREACH(block) {
1774         if (block != new_block &&
1775             !strcmp(block->idstr, new_block->idstr)) {
1776             fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1777                     new_block->idstr);
1778             abort();
1779         }
1780     }
1781 }
1782 
1783 /* Called with iothread lock held.  */
qemu_ram_unset_idstr(RAMBlock * block)1784 void qemu_ram_unset_idstr(RAMBlock *block)
1785 {
1786     /* FIXME: arch_init.c assumes that this is not called throughout
1787      * migration.  Ignore the problem since hot-unplug during migration
1788      * does not work anyway.
1789      */
1790     if (block) {
1791         memset(block->idstr, 0, sizeof(block->idstr));
1792     }
1793 }
1794 
qemu_ram_pagesize(RAMBlock * rb)1795 size_t qemu_ram_pagesize(RAMBlock *rb)
1796 {
1797     return rb->page_size;
1798 }
1799 
1800 /* Returns the largest size of page in use */
qemu_ram_pagesize_largest(void)1801 size_t qemu_ram_pagesize_largest(void)
1802 {
1803     RAMBlock *block;
1804     size_t largest = 0;
1805 
1806     RAMBLOCK_FOREACH(block) {
1807         largest = MAX(largest, qemu_ram_pagesize(block));
1808     }
1809 
1810     return largest;
1811 }
1812 
memory_try_enable_merging(void * addr,size_t len)1813 static int memory_try_enable_merging(void *addr, size_t len)
1814 {
1815     if (!machine_mem_merge(current_machine)) {
1816         /* disabled by the user */
1817         return 0;
1818     }
1819 
1820     return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1821 }
1822 
1823 /*
1824  * Resizing RAM while migrating can result in the migration being canceled.
1825  * Care has to be taken if the guest might have already detected the memory.
1826  *
1827  * As memory core doesn't know how is memory accessed, it is up to
1828  * resize callback to update device state and/or add assertions to detect
1829  * misuse, if necessary.
1830  */
qemu_ram_resize(RAMBlock * block,ram_addr_t newsize,Error ** errp)1831 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
1832 {
1833     const ram_addr_t oldsize = block->used_length;
1834     const ram_addr_t unaligned_size = newsize;
1835 
1836     assert(block);
1837 
1838     newsize = HOST_PAGE_ALIGN(newsize);
1839 
1840     if (block->used_length == newsize) {
1841         /*
1842          * We don't have to resize the ram block (which only knows aligned
1843          * sizes), however, we have to notify if the unaligned size changed.
1844          */
1845         if (unaligned_size != memory_region_size(block->mr)) {
1846             memory_region_set_size(block->mr, unaligned_size);
1847             if (block->resized) {
1848                 block->resized(block->idstr, unaligned_size, block->host);
1849             }
1850         }
1851         return 0;
1852     }
1853 
1854     if (!(block->flags & RAM_RESIZEABLE)) {
1855         error_setg_errno(errp, EINVAL,
1856                          "Size mismatch: %s: 0x" RAM_ADDR_FMT
1857                          " != 0x" RAM_ADDR_FMT, block->idstr,
1858                          newsize, block->used_length);
1859         return -EINVAL;
1860     }
1861 
1862     if (block->max_length < newsize) {
1863         error_setg_errno(errp, EINVAL,
1864                          "Size too large: %s: 0x" RAM_ADDR_FMT
1865                          " > 0x" RAM_ADDR_FMT, block->idstr,
1866                          newsize, block->max_length);
1867         return -EINVAL;
1868     }
1869 
1870     /* Notify before modifying the ram block and touching the bitmaps. */
1871     if (block->host) {
1872         ram_block_notify_resize(block->host, oldsize, newsize);
1873     }
1874 
1875     cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1876     block->used_length = newsize;
1877     cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1878                                         DIRTY_CLIENTS_ALL);
1879     memory_region_set_size(block->mr, unaligned_size);
1880     if (block->resized) {
1881         block->resized(block->idstr, unaligned_size, block->host);
1882     }
1883     return 0;
1884 }
1885 
1886 /*
1887  * Trigger sync on the given ram block for range [start, start + length]
1888  * with the backing store if one is available.
1889  * Otherwise no-op.
1890  * @Note: this is supposed to be a synchronous op.
1891  */
qemu_ram_msync(RAMBlock * block,ram_addr_t start,ram_addr_t length)1892 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length)
1893 {
1894     /* The requested range should fit in within the block range */
1895     g_assert((start + length) <= block->used_length);
1896 
1897 #ifdef CONFIG_LIBPMEM
1898     /* The lack of support for pmem should not block the sync */
1899     if (ramblock_is_pmem(block)) {
1900         void *addr = ramblock_ptr(block, start);
1901         pmem_persist(addr, length);
1902         return;
1903     }
1904 #endif
1905     if (block->fd >= 0) {
1906         /**
1907          * Case there is no support for PMEM or the memory has not been
1908          * specified as persistent (or is not one) - use the msync.
1909          * Less optimal but still achieves the same goal
1910          */
1911         void *addr = ramblock_ptr(block, start);
1912         if (qemu_msync(addr, length, block->fd)) {
1913             warn_report("%s: failed to sync memory range: start: "
1914                     RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
1915                     __func__, start, length);
1916         }
1917     }
1918 }
1919 
1920 /* Called with ram_list.mutex held */
dirty_memory_extend(ram_addr_t old_ram_size,ram_addr_t new_ram_size)1921 static void dirty_memory_extend(ram_addr_t old_ram_size,
1922                                 ram_addr_t new_ram_size)
1923 {
1924     ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1925                                              DIRTY_MEMORY_BLOCK_SIZE);
1926     ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1927                                              DIRTY_MEMORY_BLOCK_SIZE);
1928     int i;
1929 
1930     /* Only need to extend if block count increased */
1931     if (new_num_blocks <= old_num_blocks) {
1932         return;
1933     }
1934 
1935     for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1936         DirtyMemoryBlocks *old_blocks;
1937         DirtyMemoryBlocks *new_blocks;
1938         int j;
1939 
1940         old_blocks = qatomic_rcu_read(&ram_list.dirty_memory[i]);
1941         new_blocks = g_malloc(sizeof(*new_blocks) +
1942                               sizeof(new_blocks->blocks[0]) * new_num_blocks);
1943 
1944         if (old_num_blocks) {
1945             memcpy(new_blocks->blocks, old_blocks->blocks,
1946                    old_num_blocks * sizeof(old_blocks->blocks[0]));
1947         }
1948 
1949         for (j = old_num_blocks; j < new_num_blocks; j++) {
1950             new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1951         }
1952 
1953         qatomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1954 
1955         if (old_blocks) {
1956             g_free_rcu(old_blocks, rcu);
1957         }
1958     }
1959 }
1960 
ram_block_add(RAMBlock * new_block,Error ** errp)1961 static void ram_block_add(RAMBlock *new_block, Error **errp)
1962 {
1963     const bool noreserve = qemu_ram_is_noreserve(new_block);
1964     const bool shared = qemu_ram_is_shared(new_block);
1965     RAMBlock *block;
1966     RAMBlock *last_block = NULL;
1967     ram_addr_t old_ram_size, new_ram_size;
1968     Error *err = NULL;
1969 
1970     old_ram_size = last_ram_page();
1971 
1972     qemu_mutex_lock_ramlist();
1973     new_block->offset = find_ram_offset(new_block->max_length);
1974 
1975     if (!new_block->host) {
1976         if (xen_enabled()) {
1977             xen_ram_alloc(new_block->offset, new_block->max_length,
1978                           new_block->mr, &err);
1979             if (err) {
1980                 error_propagate(errp, err);
1981                 qemu_mutex_unlock_ramlist();
1982                 return;
1983             }
1984         } else {
1985             new_block->host = qemu_anon_ram_alloc(new_block->max_length,
1986                                                   &new_block->mr->align,
1987                                                   shared, noreserve);
1988             if (!new_block->host) {
1989                 error_setg_errno(errp, errno,
1990                                  "cannot set up guest memory '%s'",
1991                                  memory_region_name(new_block->mr));
1992                 qemu_mutex_unlock_ramlist();
1993                 return;
1994             }
1995             memory_try_enable_merging(new_block->host, new_block->max_length);
1996         }
1997     }
1998 
1999     new_ram_size = MAX(old_ram_size,
2000               (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2001     if (new_ram_size > old_ram_size) {
2002         dirty_memory_extend(old_ram_size, new_ram_size);
2003     }
2004     /* Keep the list sorted from biggest to smallest block.  Unlike QTAILQ,
2005      * QLIST (which has an RCU-friendly variant) does not have insertion at
2006      * tail, so save the last element in last_block.
2007      */
2008     RAMBLOCK_FOREACH(block) {
2009         last_block = block;
2010         if (block->max_length < new_block->max_length) {
2011             break;
2012         }
2013     }
2014     if (block) {
2015         QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2016     } else if (last_block) {
2017         QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2018     } else { /* list is empty */
2019         QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2020     }
2021     ram_list.mru_block = NULL;
2022 
2023     /* Write list before version */
2024     smp_wmb();
2025     ram_list.version++;
2026     qemu_mutex_unlock_ramlist();
2027 
2028     cpu_physical_memory_set_dirty_range(new_block->offset,
2029                                         new_block->used_length,
2030                                         DIRTY_CLIENTS_ALL);
2031 
2032     if (new_block->host) {
2033         qemu_ram_setup_dump(new_block->host, new_block->max_length);
2034         qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2035         /*
2036          * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2037          * Configure it unless the machine is a qtest server, in which case
2038          * KVM is not used and it may be forked (eg for fuzzing purposes).
2039          */
2040         if (!qtest_enabled()) {
2041             qemu_madvise(new_block->host, new_block->max_length,
2042                          QEMU_MADV_DONTFORK);
2043         }
2044         ram_block_notify_add(new_block->host, new_block->used_length,
2045                              new_block->max_length);
2046     }
2047 }
2048 
2049 #ifdef CONFIG_POSIX
qemu_ram_alloc_from_fd(ram_addr_t size,MemoryRegion * mr,uint32_t ram_flags,int fd,off_t offset,bool readonly,Error ** errp)2050 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2051                                  uint32_t ram_flags, int fd, off_t offset,
2052                                  bool readonly, Error **errp)
2053 {
2054     RAMBlock *new_block;
2055     Error *local_err = NULL;
2056     int64_t file_size, file_align;
2057 
2058     /* Just support these ram flags by now. */
2059     assert((ram_flags & ~(RAM_SHARED | RAM_PMEM | RAM_NORESERVE |
2060                           RAM_PROTECTED)) == 0);
2061 
2062     if (xen_enabled()) {
2063         error_setg(errp, "-mem-path not supported with Xen");
2064         return NULL;
2065     }
2066 
2067     if (kvm_enabled() && !kvm_has_sync_mmu()) {
2068         error_setg(errp,
2069                    "host lacks kvm mmu notifiers, -mem-path unsupported");
2070         return NULL;
2071     }
2072 
2073     size = HOST_PAGE_ALIGN(size);
2074     file_size = get_file_size(fd);
2075     if (file_size > 0 && file_size < size) {
2076         error_setg(errp, "backing store size 0x%" PRIx64
2077                    " does not match 'size' option 0x" RAM_ADDR_FMT,
2078                    file_size, size);
2079         return NULL;
2080     }
2081 
2082     file_align = get_file_align(fd);
2083     if (file_align > 0 && file_align > mr->align) {
2084         error_setg(errp, "backing store align 0x%" PRIx64
2085                    " is larger than 'align' option 0x%" PRIx64,
2086                    file_align, mr->align);
2087         return NULL;
2088     }
2089 
2090     new_block = g_malloc0(sizeof(*new_block));
2091     new_block->mr = mr;
2092     new_block->used_length = size;
2093     new_block->max_length = size;
2094     new_block->flags = ram_flags;
2095     new_block->host = file_ram_alloc(new_block, size, fd, readonly,
2096                                      !file_size, offset, errp);
2097     if (!new_block->host) {
2098         g_free(new_block);
2099         return NULL;
2100     }
2101 
2102     ram_block_add(new_block, &local_err);
2103     if (local_err) {
2104         g_free(new_block);
2105         error_propagate(errp, local_err);
2106         return NULL;
2107     }
2108     return new_block;
2109 
2110 }
2111 
2112 
qemu_ram_alloc_from_file(ram_addr_t size,MemoryRegion * mr,uint32_t ram_flags,const char * mem_path,bool readonly,Error ** errp)2113 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2114                                    uint32_t ram_flags, const char *mem_path,
2115                                    bool readonly, Error **errp)
2116 {
2117     int fd;
2118     bool created;
2119     RAMBlock *block;
2120 
2121     fd = file_ram_open(mem_path, memory_region_name(mr), readonly, &created,
2122                        errp);
2123     if (fd < 0) {
2124         return NULL;
2125     }
2126 
2127     block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, 0, readonly, errp);
2128     if (!block) {
2129         if (created) {
2130             unlink(mem_path);
2131         }
2132         close(fd);
2133         return NULL;
2134     }
2135 
2136     return block;
2137 }
2138 #endif
2139 
2140 static
qemu_ram_alloc_internal(ram_addr_t size,ram_addr_t max_size,void (* resized)(const char *,uint64_t length,void * host),void * host,uint32_t ram_flags,MemoryRegion * mr,Error ** errp)2141 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2142                                   void (*resized)(const char*,
2143                                                   uint64_t length,
2144                                                   void *host),
2145                                   void *host, uint32_t ram_flags,
2146                                   MemoryRegion *mr, Error **errp)
2147 {
2148     RAMBlock *new_block;
2149     Error *local_err = NULL;
2150 
2151     assert((ram_flags & ~(RAM_SHARED | RAM_RESIZEABLE | RAM_PREALLOC |
2152                           RAM_NORESERVE)) == 0);
2153     assert(!host ^ (ram_flags & RAM_PREALLOC));
2154 
2155     size = HOST_PAGE_ALIGN(size);
2156     max_size = HOST_PAGE_ALIGN(max_size);
2157     new_block = g_malloc0(sizeof(*new_block));
2158     new_block->mr = mr;
2159     new_block->resized = resized;
2160     new_block->used_length = size;
2161     new_block->max_length = max_size;
2162     assert(max_size >= size);
2163     new_block->fd = -1;
2164     new_block->page_size = qemu_real_host_page_size;
2165     new_block->host = host;
2166     new_block->flags = ram_flags;
2167     ram_block_add(new_block, &local_err);
2168     if (local_err) {
2169         g_free(new_block);
2170         error_propagate(errp, local_err);
2171         return NULL;
2172     }
2173     return new_block;
2174 }
2175 
qemu_ram_alloc_from_ptr(ram_addr_t size,void * host,MemoryRegion * mr,Error ** errp)2176 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2177                                    MemoryRegion *mr, Error **errp)
2178 {
2179     return qemu_ram_alloc_internal(size, size, NULL, host, RAM_PREALLOC, mr,
2180                                    errp);
2181 }
2182 
qemu_ram_alloc(ram_addr_t size,uint32_t ram_flags,MemoryRegion * mr,Error ** errp)2183 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags,
2184                          MemoryRegion *mr, Error **errp)
2185 {
2186     assert((ram_flags & ~(RAM_SHARED | RAM_NORESERVE)) == 0);
2187     return qemu_ram_alloc_internal(size, size, NULL, NULL, ram_flags, mr, errp);
2188 }
2189 
qemu_ram_alloc_resizeable(ram_addr_t size,ram_addr_t maxsz,void (* resized)(const char *,uint64_t length,void * host),MemoryRegion * mr,Error ** errp)2190 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2191                                      void (*resized)(const char*,
2192                                                      uint64_t length,
2193                                                      void *host),
2194                                      MemoryRegion *mr, Error **errp)
2195 {
2196     return qemu_ram_alloc_internal(size, maxsz, resized, NULL,
2197                                    RAM_RESIZEABLE, mr, errp);
2198 }
2199 
reclaim_ramblock(RAMBlock * block)2200 static void reclaim_ramblock(RAMBlock *block)
2201 {
2202     if (block->flags & RAM_PREALLOC) {
2203         ;
2204     } else if (xen_enabled()) {
2205         xen_invalidate_map_cache_entry(block->host);
2206 #ifndef _WIN32
2207     } else if (block->fd >= 0) {
2208         qemu_ram_munmap(block->fd, block->host, block->max_length);
2209         close(block->fd);
2210 #endif
2211     } else {
2212         qemu_anon_ram_free(block->host, block->max_length);
2213     }
2214     g_free(block);
2215 }
2216 
qemu_ram_free(RAMBlock * block)2217 void qemu_ram_free(RAMBlock *block)
2218 {
2219     if (!block) {
2220         return;
2221     }
2222 
2223     if (block->host) {
2224         ram_block_notify_remove(block->host, block->used_length,
2225                                 block->max_length);
2226     }
2227 
2228     qemu_mutex_lock_ramlist();
2229     QLIST_REMOVE_RCU(block, next);
2230     ram_list.mru_block = NULL;
2231     /* Write list before version */
2232     smp_wmb();
2233     ram_list.version++;
2234     call_rcu(block, reclaim_ramblock, rcu);
2235     qemu_mutex_unlock_ramlist();
2236 }
2237 
2238 #ifndef _WIN32
qemu_ram_remap(ram_addr_t addr,ram_addr_t length)2239 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2240 {
2241     RAMBlock *block;
2242     ram_addr_t offset;
2243     int flags;
2244     void *area, *vaddr;
2245 
2246     RAMBLOCK_FOREACH(block) {
2247         offset = addr - block->offset;
2248         if (offset < block->max_length) {
2249             vaddr = ramblock_ptr(block, offset);
2250             if (block->flags & RAM_PREALLOC) {
2251                 ;
2252             } else if (xen_enabled()) {
2253                 abort();
2254             } else {
2255                 flags = MAP_FIXED;
2256                 flags |= block->flags & RAM_SHARED ?
2257                          MAP_SHARED : MAP_PRIVATE;
2258                 flags |= block->flags & RAM_NORESERVE ? MAP_NORESERVE : 0;
2259                 if (block->fd >= 0) {
2260                     area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2261                                 flags, block->fd, offset);
2262                 } else {
2263                     flags |= MAP_ANONYMOUS;
2264                     area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2265                                 flags, -1, 0);
2266                 }
2267                 if (area != vaddr) {
2268                     error_report("Could not remap addr: "
2269                                  RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2270                                  length, addr);
2271                     exit(1);
2272                 }
2273                 memory_try_enable_merging(vaddr, length);
2274                 qemu_ram_setup_dump(vaddr, length);
2275             }
2276         }
2277     }
2278 }
2279 #endif /* !_WIN32 */
2280 
2281 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2282  * This should not be used for general purpose DMA.  Use address_space_map
2283  * or address_space_rw instead. For local memory (e.g. video ram) that the
2284  * device owns, use memory_region_get_ram_ptr.
2285  *
2286  * Called within RCU critical section.
2287  */
qemu_map_ram_ptr(RAMBlock * ram_block,ram_addr_t addr)2288 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2289 {
2290     RAMBlock *block = ram_block;
2291 
2292     if (block == NULL) {
2293         block = qemu_get_ram_block(addr);
2294         addr -= block->offset;
2295     }
2296 
2297     if (xen_enabled() && block->host == NULL) {
2298         /* We need to check if the requested address is in the RAM
2299          * because we don't want to map the entire memory in QEMU.
2300          * In that case just map until the end of the page.
2301          */
2302         if (block->offset == 0) {
2303             return xen_map_cache(addr, 0, 0, false);
2304         }
2305 
2306         block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2307     }
2308     return ramblock_ptr(block, addr);
2309 }
2310 
2311 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2312  * but takes a size argument.
2313  *
2314  * Called within RCU critical section.
2315  */
qemu_ram_ptr_length(RAMBlock * ram_block,ram_addr_t addr,hwaddr * size,bool lock)2316 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2317                                  hwaddr *size, bool lock)
2318 {
2319     RAMBlock *block = ram_block;
2320     if (*size == 0) {
2321         return NULL;
2322     }
2323 
2324     if (block == NULL) {
2325         block = qemu_get_ram_block(addr);
2326         addr -= block->offset;
2327     }
2328     *size = MIN(*size, block->max_length - addr);
2329 
2330     if (xen_enabled() && block->host == NULL) {
2331         /* We need to check if the requested address is in the RAM
2332          * because we don't want to map the entire memory in QEMU.
2333          * In that case just map the requested area.
2334          */
2335         if (block->offset == 0) {
2336             return xen_map_cache(addr, *size, lock, lock);
2337         }
2338 
2339         block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2340     }
2341 
2342     return ramblock_ptr(block, addr);
2343 }
2344 
2345 /* Return the offset of a hostpointer within a ramblock */
qemu_ram_block_host_offset(RAMBlock * rb,void * host)2346 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2347 {
2348     ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2349     assert((uintptr_t)host >= (uintptr_t)rb->host);
2350     assert(res < rb->max_length);
2351 
2352     return res;
2353 }
2354 
2355 /*
2356  * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2357  * in that RAMBlock.
2358  *
2359  * ptr: Host pointer to look up
2360  * round_offset: If true round the result offset down to a page boundary
2361  * *ram_addr: set to result ram_addr
2362  * *offset: set to result offset within the RAMBlock
2363  *
2364  * Returns: RAMBlock (or NULL if not found)
2365  *
2366  * By the time this function returns, the returned pointer is not protected
2367  * by RCU anymore.  If the caller is not within an RCU critical section and
2368  * does not hold the iothread lock, it must have other means of protecting the
2369  * pointer, such as a reference to the region that includes the incoming
2370  * ram_addr_t.
2371  */
qemu_ram_block_from_host(void * ptr,bool round_offset,ram_addr_t * offset)2372 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2373                                    ram_addr_t *offset)
2374 {
2375     RAMBlock *block;
2376     uint8_t *host = ptr;
2377 
2378     if (xen_enabled()) {
2379         ram_addr_t ram_addr;
2380         RCU_READ_LOCK_GUARD();
2381         ram_addr = xen_ram_addr_from_mapcache(ptr);
2382         block = qemu_get_ram_block(ram_addr);
2383         if (block) {
2384             *offset = ram_addr - block->offset;
2385         }
2386         return block;
2387     }
2388 
2389     RCU_READ_LOCK_GUARD();
2390     block = qatomic_rcu_read(&ram_list.mru_block);
2391     if (block && block->host && host - block->host < block->max_length) {
2392         goto found;
2393     }
2394 
2395     RAMBLOCK_FOREACH(block) {
2396         /* This case append when the block is not mapped. */
2397         if (block->host == NULL) {
2398             continue;
2399         }
2400         if (host - block->host < block->max_length) {
2401             goto found;
2402         }
2403     }
2404 
2405     return NULL;
2406 
2407 found:
2408     *offset = (host - block->host);
2409     if (round_offset) {
2410         *offset &= TARGET_PAGE_MASK;
2411     }
2412     return block;
2413 }
2414 
2415 /*
2416  * Finds the named RAMBlock
2417  *
2418  * name: The name of RAMBlock to find
2419  *
2420  * Returns: RAMBlock (or NULL if not found)
2421  */
qemu_ram_block_by_name(const char * name)2422 RAMBlock *qemu_ram_block_by_name(const char *name)
2423 {
2424     RAMBlock *block;
2425 
2426     RAMBLOCK_FOREACH(block) {
2427         if (!strcmp(name, block->idstr)) {
2428             return block;
2429         }
2430     }
2431 
2432     return NULL;
2433 }
2434 
2435 /* Some of the softmmu routines need to translate from a host pointer
2436    (typically a TLB entry) back to a ram offset.  */
qemu_ram_addr_from_host(void * ptr)2437 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2438 {
2439     RAMBlock *block;
2440     ram_addr_t offset;
2441 
2442     block = qemu_ram_block_from_host(ptr, false, &offset);
2443     if (!block) {
2444         return RAM_ADDR_INVALID;
2445     }
2446 
2447     return block->offset + offset;
2448 }
2449 
2450 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2451                                  MemTxAttrs attrs, void *buf, hwaddr len);
2452 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2453                                   const void *buf, hwaddr len);
2454 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2455                                   bool is_write, MemTxAttrs attrs);
2456 
subpage_read(void * opaque,hwaddr addr,uint64_t * data,unsigned len,MemTxAttrs attrs)2457 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2458                                 unsigned len, MemTxAttrs attrs)
2459 {
2460     subpage_t *subpage = opaque;
2461     uint8_t buf[8];
2462     MemTxResult res;
2463 
2464 #if defined(DEBUG_SUBPAGE)
2465     printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2466            subpage, len, addr);
2467 #endif
2468     res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2469     if (res) {
2470         return res;
2471     }
2472     *data = ldn_p(buf, len);
2473     return MEMTX_OK;
2474 }
2475 
subpage_write(void * opaque,hwaddr addr,uint64_t value,unsigned len,MemTxAttrs attrs)2476 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2477                                  uint64_t value, unsigned len, MemTxAttrs attrs)
2478 {
2479     subpage_t *subpage = opaque;
2480     uint8_t buf[8];
2481 
2482 #if defined(DEBUG_SUBPAGE)
2483     printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2484            " value %"PRIx64"\n",
2485            __func__, subpage, len, addr, value);
2486 #endif
2487     stn_p(buf, len, value);
2488     return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2489 }
2490 
subpage_accepts(void * opaque,hwaddr addr,unsigned len,bool is_write,MemTxAttrs attrs)2491 static bool subpage_accepts(void *opaque, hwaddr addr,
2492                             unsigned len, bool is_write,
2493                             MemTxAttrs attrs)
2494 {
2495     subpage_t *subpage = opaque;
2496 #if defined(DEBUG_SUBPAGE)
2497     printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2498            __func__, subpage, is_write ? 'w' : 'r', len, addr);
2499 #endif
2500 
2501     return flatview_access_valid(subpage->fv, addr + subpage->base,
2502                                  len, is_write, attrs);
2503 }
2504 
2505 static const MemoryRegionOps subpage_ops = {
2506     .read_with_attrs = subpage_read,
2507     .write_with_attrs = subpage_write,
2508     .impl.min_access_size = 1,
2509     .impl.max_access_size = 8,
2510     .valid.min_access_size = 1,
2511     .valid.max_access_size = 8,
2512     .valid.accepts = subpage_accepts,
2513     .endianness = DEVICE_NATIVE_ENDIAN,
2514 };
2515 
subpage_register(subpage_t * mmio,uint32_t start,uint32_t end,uint16_t section)2516 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2517                             uint16_t section)
2518 {
2519     int idx, eidx;
2520 
2521     if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2522         return -1;
2523     idx = SUBPAGE_IDX(start);
2524     eidx = SUBPAGE_IDX(end);
2525 #if defined(DEBUG_SUBPAGE)
2526     printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2527            __func__, mmio, start, end, idx, eidx, section);
2528 #endif
2529     for (; idx <= eidx; idx++) {
2530         mmio->sub_section[idx] = section;
2531     }
2532 
2533     return 0;
2534 }
2535 
subpage_init(FlatView * fv,hwaddr base)2536 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2537 {
2538     subpage_t *mmio;
2539 
2540     /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2541     mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2542     mmio->fv = fv;
2543     mmio->base = base;
2544     memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2545                           NULL, TARGET_PAGE_SIZE);
2546     mmio->iomem.subpage = true;
2547 #if defined(DEBUG_SUBPAGE)
2548     printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2549            mmio, base, TARGET_PAGE_SIZE);
2550 #endif
2551 
2552     return mmio;
2553 }
2554 
dummy_section(PhysPageMap * map,FlatView * fv,MemoryRegion * mr)2555 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2556 {
2557     assert(fv);
2558     MemoryRegionSection section = {
2559         .fv = fv,
2560         .mr = mr,
2561         .offset_within_address_space = 0,
2562         .offset_within_region = 0,
2563         .size = int128_2_64(),
2564     };
2565 
2566     return phys_section_add(map, &section);
2567 }
2568 
iotlb_to_section(CPUState * cpu,hwaddr index,MemTxAttrs attrs)2569 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2570                                       hwaddr index, MemTxAttrs attrs)
2571 {
2572     int asidx = cpu_asidx_from_attrs(cpu, attrs);
2573     CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2574     AddressSpaceDispatch *d = qatomic_rcu_read(&cpuas->memory_dispatch);
2575     MemoryRegionSection *sections = d->map.sections;
2576 
2577     return &sections[index & ~TARGET_PAGE_MASK];
2578 }
2579 
io_mem_init(void)2580 static void io_mem_init(void)
2581 {
2582     memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2583                           NULL, UINT64_MAX);
2584 }
2585 
address_space_dispatch_new(FlatView * fv)2586 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2587 {
2588     AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2589     uint16_t n;
2590 
2591     n = dummy_section(&d->map, fv, &io_mem_unassigned);
2592     assert(n == PHYS_SECTION_UNASSIGNED);
2593 
2594     d->phys_map  = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2595 
2596     return d;
2597 }
2598 
address_space_dispatch_free(AddressSpaceDispatch * d)2599 void address_space_dispatch_free(AddressSpaceDispatch *d)
2600 {
2601     phys_sections_free(&d->map);
2602     g_free(d);
2603 }
2604 
do_nothing(CPUState * cpu,run_on_cpu_data d)2605 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2606 {
2607 }
2608 
tcg_log_global_after_sync(MemoryListener * listener)2609 static void tcg_log_global_after_sync(MemoryListener *listener)
2610 {
2611     CPUAddressSpace *cpuas;
2612 
2613     /* Wait for the CPU to end the current TB.  This avoids the following
2614      * incorrect race:
2615      *
2616      *      vCPU                         migration
2617      *      ----------------------       -------------------------
2618      *      TLB check -> slow path
2619      *        notdirty_mem_write
2620      *          write to RAM
2621      *          mark dirty
2622      *                                   clear dirty flag
2623      *      TLB check -> fast path
2624      *                                   read memory
2625      *        write to RAM
2626      *
2627      * by pushing the migration thread's memory read after the vCPU thread has
2628      * written the memory.
2629      */
2630     if (replay_mode == REPLAY_MODE_NONE) {
2631         /*
2632          * VGA can make calls to this function while updating the screen.
2633          * In record/replay mode this causes a deadlock, because
2634          * run_on_cpu waits for rr mutex. Therefore no races are possible
2635          * in this case and no need for making run_on_cpu when
2636          * record/replay is enabled.
2637          */
2638         cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2639         run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2640     }
2641 }
2642 
tcg_commit(MemoryListener * listener)2643 static void tcg_commit(MemoryListener *listener)
2644 {
2645     CPUAddressSpace *cpuas;
2646     AddressSpaceDispatch *d;
2647 
2648     assert(tcg_enabled());
2649     /* since each CPU stores ram addresses in its TLB cache, we must
2650        reset the modified entries */
2651     cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2652     cpu_reloading_memory_map();
2653     /* The CPU and TLB are protected by the iothread lock.
2654      * We reload the dispatch pointer now because cpu_reloading_memory_map()
2655      * may have split the RCU critical section.
2656      */
2657     d = address_space_to_dispatch(cpuas->as);
2658     qatomic_rcu_set(&cpuas->memory_dispatch, d);
2659     tlb_flush(cpuas->cpu);
2660 }
2661 
memory_map_init(void)2662 static void memory_map_init(void)
2663 {
2664     system_memory = g_malloc(sizeof(*system_memory));
2665 
2666     memory_region_init(system_memory, NULL, "system", UINT64_MAX);
2667     address_space_init(&address_space_memory, system_memory, "memory");
2668 
2669     system_io = g_malloc(sizeof(*system_io));
2670     memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2671                           65536);
2672     address_space_init(&address_space_io, system_io, "I/O");
2673 }
2674 
get_system_memory(void)2675 MemoryRegion *get_system_memory(void)
2676 {
2677     return system_memory;
2678 }
2679 
get_system_io(void)2680 MemoryRegion *get_system_io(void)
2681 {
2682     return system_io;
2683 }
2684 
invalidate_and_set_dirty(MemoryRegion * mr,hwaddr addr,hwaddr length)2685 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
2686                                      hwaddr length)
2687 {
2688     uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2689     addr += memory_region_get_ram_addr(mr);
2690 
2691     /* No early return if dirty_log_mask is or becomes 0, because
2692      * cpu_physical_memory_set_dirty_range will still call
2693      * xen_modified_memory.
2694      */
2695     if (dirty_log_mask) {
2696         dirty_log_mask =
2697             cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2698     }
2699     if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2700         assert(tcg_enabled());
2701         tb_invalidate_phys_range(addr, addr + length);
2702         dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
2703     }
2704     cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
2705 }
2706 
memory_region_flush_rom_device(MemoryRegion * mr,hwaddr addr,hwaddr size)2707 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
2708 {
2709     /*
2710      * In principle this function would work on other memory region types too,
2711      * but the ROM device use case is the only one where this operation is
2712      * necessary.  Other memory regions should use the
2713      * address_space_read/write() APIs.
2714      */
2715     assert(memory_region_is_romd(mr));
2716 
2717     invalidate_and_set_dirty(mr, addr, size);
2718 }
2719 
memory_access_size(MemoryRegion * mr,unsigned l,hwaddr addr)2720 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
2721 {
2722     unsigned access_size_max = mr->ops->valid.max_access_size;
2723 
2724     /* Regions are assumed to support 1-4 byte accesses unless
2725        otherwise specified.  */
2726     if (access_size_max == 0) {
2727         access_size_max = 4;
2728     }
2729 
2730     /* Bound the maximum access by the alignment of the address.  */
2731     if (!mr->ops->impl.unaligned) {
2732         unsigned align_size_max = addr & -addr;
2733         if (align_size_max != 0 && align_size_max < access_size_max) {
2734             access_size_max = align_size_max;
2735         }
2736     }
2737 
2738     /* Don't attempt accesses larger than the maximum.  */
2739     if (l > access_size_max) {
2740         l = access_size_max;
2741     }
2742     l = pow2floor(l);
2743 
2744     return l;
2745 }
2746 
prepare_mmio_access(MemoryRegion * mr)2747 static bool prepare_mmio_access(MemoryRegion *mr)
2748 {
2749     bool release_lock = false;
2750 
2751     if (!qemu_mutex_iothread_locked()) {
2752         qemu_mutex_lock_iothread();
2753         release_lock = true;
2754     }
2755     if (mr->flush_coalesced_mmio) {
2756         qemu_flush_coalesced_mmio_buffer();
2757     }
2758 
2759     return release_lock;
2760 }
2761 
2762 /* Called within RCU critical section.  */
flatview_write_continue(FlatView * fv,hwaddr addr,MemTxAttrs attrs,const void * ptr,hwaddr len,hwaddr addr1,hwaddr l,MemoryRegion * mr)2763 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2764                                            MemTxAttrs attrs,
2765                                            const void *ptr,
2766                                            hwaddr len, hwaddr addr1,
2767                                            hwaddr l, MemoryRegion *mr)
2768 {
2769     uint8_t *ram_ptr;
2770     uint64_t val;
2771     MemTxResult result = MEMTX_OK;
2772     bool release_lock = false;
2773     const uint8_t *buf = ptr;
2774 
2775     for (;;) {
2776         if (!memory_access_is_direct(mr, true)) {
2777             release_lock |= prepare_mmio_access(mr);
2778             l = memory_access_size(mr, l, addr1);
2779             /* XXX: could force current_cpu to NULL to avoid
2780                potential bugs */
2781             val = ldn_he_p(buf, l);
2782             result |= memory_region_dispatch_write(mr, addr1, val,
2783                                                    size_memop(l), attrs);
2784         } else {
2785             /* RAM case */
2786             ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2787             memcpy(ram_ptr, buf, l);
2788             invalidate_and_set_dirty(mr, addr1, l);
2789         }
2790 
2791         if (release_lock) {
2792             qemu_mutex_unlock_iothread();
2793             release_lock = false;
2794         }
2795 
2796         len -= l;
2797         buf += l;
2798         addr += l;
2799 
2800         if (!len) {
2801             break;
2802         }
2803 
2804         l = len;
2805         mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2806     }
2807 
2808     return result;
2809 }
2810 
2811 /* Called from RCU critical section.  */
flatview_write(FlatView * fv,hwaddr addr,MemTxAttrs attrs,const void * buf,hwaddr len)2812 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2813                                   const void *buf, hwaddr len)
2814 {
2815     hwaddr l;
2816     hwaddr addr1;
2817     MemoryRegion *mr;
2818     MemTxResult result = MEMTX_OK;
2819 
2820     l = len;
2821     mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
2822     result = flatview_write_continue(fv, addr, attrs, buf, len,
2823                                      addr1, l, mr);
2824 
2825     return result;
2826 }
2827 
2828 /* Called within RCU critical section.  */
flatview_read_continue(FlatView * fv,hwaddr addr,MemTxAttrs attrs,void * ptr,hwaddr len,hwaddr addr1,hwaddr l,MemoryRegion * mr)2829 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2830                                    MemTxAttrs attrs, void *ptr,
2831                                    hwaddr len, hwaddr addr1, hwaddr l,
2832                                    MemoryRegion *mr)
2833 {
2834     uint8_t *ram_ptr;
2835     uint64_t val;
2836     MemTxResult result = MEMTX_OK;
2837     bool release_lock = false;
2838     uint8_t *buf = ptr;
2839 
2840     fuzz_dma_read_cb(addr, len, mr);
2841     for (;;) {
2842         if (!memory_access_is_direct(mr, false)) {
2843             /* I/O case */
2844             release_lock |= prepare_mmio_access(mr);
2845             l = memory_access_size(mr, l, addr1);
2846             result |= memory_region_dispatch_read(mr, addr1, &val,
2847                                                   size_memop(l), attrs);
2848             stn_he_p(buf, l, val);
2849         } else {
2850             /* RAM case */
2851             ram_ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
2852             memcpy(buf, ram_ptr, l);
2853         }
2854 
2855         if (release_lock) {
2856             qemu_mutex_unlock_iothread();
2857             release_lock = false;
2858         }
2859 
2860         len -= l;
2861         buf += l;
2862         addr += l;
2863 
2864         if (!len) {
2865             break;
2866         }
2867 
2868         l = len;
2869         mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2870     }
2871 
2872     return result;
2873 }
2874 
2875 /* Called from RCU critical section.  */
flatview_read(FlatView * fv,hwaddr addr,MemTxAttrs attrs,void * buf,hwaddr len)2876 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2877                                  MemTxAttrs attrs, void *buf, hwaddr len)
2878 {
2879     hwaddr l;
2880     hwaddr addr1;
2881     MemoryRegion *mr;
2882 
2883     l = len;
2884     mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2885     return flatview_read_continue(fv, addr, attrs, buf, len,
2886                                   addr1, l, mr);
2887 }
2888 
address_space_read_full(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,void * buf,hwaddr len)2889 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2890                                     MemTxAttrs attrs, void *buf, hwaddr len)
2891 {
2892     MemTxResult result = MEMTX_OK;
2893     FlatView *fv;
2894 
2895     if (len > 0) {
2896         RCU_READ_LOCK_GUARD();
2897         fv = address_space_to_flatview(as);
2898         result = flatview_read(fv, addr, attrs, buf, len);
2899     }
2900 
2901     return result;
2902 }
2903 
address_space_write(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,const void * buf,hwaddr len)2904 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
2905                                 MemTxAttrs attrs,
2906                                 const void *buf, hwaddr len)
2907 {
2908     MemTxResult result = MEMTX_OK;
2909     FlatView *fv;
2910 
2911     if (len > 0) {
2912         RCU_READ_LOCK_GUARD();
2913         fv = address_space_to_flatview(as);
2914         result = flatview_write(fv, addr, attrs, buf, len);
2915     }
2916 
2917     return result;
2918 }
2919 
address_space_rw(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,void * buf,hwaddr len,bool is_write)2920 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2921                              void *buf, hwaddr len, bool is_write)
2922 {
2923     if (is_write) {
2924         return address_space_write(as, addr, attrs, buf, len);
2925     } else {
2926         return address_space_read_full(as, addr, attrs, buf, len);
2927     }
2928 }
2929 
cpu_physical_memory_rw(hwaddr addr,void * buf,hwaddr len,bool is_write)2930 void cpu_physical_memory_rw(hwaddr addr, void *buf,
2931                             hwaddr len, bool is_write)
2932 {
2933     address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2934                      buf, len, is_write);
2935 }
2936 
2937 enum write_rom_type {
2938     WRITE_DATA,
2939     FLUSH_CACHE,
2940 };
2941 
address_space_write_rom_internal(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,const void * ptr,hwaddr len,enum write_rom_type type)2942 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
2943                                                            hwaddr addr,
2944                                                            MemTxAttrs attrs,
2945                                                            const void *ptr,
2946                                                            hwaddr len,
2947                                                            enum write_rom_type type)
2948 {
2949     hwaddr l;
2950     uint8_t *ram_ptr;
2951     hwaddr addr1;
2952     MemoryRegion *mr;
2953     const uint8_t *buf = ptr;
2954 
2955     RCU_READ_LOCK_GUARD();
2956     while (len > 0) {
2957         l = len;
2958         mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
2959 
2960         if (!(memory_region_is_ram(mr) ||
2961               memory_region_is_romd(mr))) {
2962             l = memory_access_size(mr, l, addr1);
2963         } else {
2964             /* ROM/RAM case */
2965             ram_ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2966             switch (type) {
2967             case WRITE_DATA:
2968                 memcpy(ram_ptr, buf, l);
2969                 invalidate_and_set_dirty(mr, addr1, l);
2970                 break;
2971             case FLUSH_CACHE:
2972                 flush_idcache_range((uintptr_t)ram_ptr, (uintptr_t)ram_ptr, l);
2973                 break;
2974             }
2975         }
2976         len -= l;
2977         buf += l;
2978         addr += l;
2979     }
2980     return MEMTX_OK;
2981 }
2982 
2983 /* used for ROM loading : can write in RAM and ROM */
address_space_write_rom(AddressSpace * as,hwaddr addr,MemTxAttrs attrs,const void * buf,hwaddr len)2984 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
2985                                     MemTxAttrs attrs,
2986                                     const void *buf, hwaddr len)
2987 {
2988     return address_space_write_rom_internal(as, addr, attrs,
2989                                             buf, len, WRITE_DATA);
2990 }
2991 
cpu_flush_icache_range(hwaddr start,hwaddr len)2992 void cpu_flush_icache_range(hwaddr start, hwaddr len)
2993 {
2994     /*
2995      * This function should do the same thing as an icache flush that was
2996      * triggered from within the guest. For TCG we are always cache coherent,
2997      * so there is no need to flush anything. For KVM / Xen we need to flush
2998      * the host's instruction cache at least.
2999      */
3000     if (tcg_enabled()) {
3001         return;
3002     }
3003 
3004     address_space_write_rom_internal(&address_space_memory,
3005                                      start, MEMTXATTRS_UNSPECIFIED,
3006                                      NULL, len, FLUSH_CACHE);
3007 }
3008 
3009 typedef struct {
3010     MemoryRegion *mr;
3011     void *buffer;
3012     hwaddr addr;
3013     hwaddr len;
3014     bool in_use;
3015 } BounceBuffer;
3016 
3017 static BounceBuffer bounce;
3018 
3019 typedef struct MapClient {
3020     QEMUBH *bh;
3021     QLIST_ENTRY(MapClient) link;
3022 } MapClient;
3023 
3024 QemuMutex map_client_list_lock;
3025 static QLIST_HEAD(, MapClient) map_client_list
3026     = QLIST_HEAD_INITIALIZER(map_client_list);
3027 
cpu_unregister_map_client_do(MapClient * client)3028 static void cpu_unregister_map_client_do(MapClient *client)
3029 {
3030     QLIST_REMOVE(client, link);
3031     g_free(client);
3032 }
3033 
cpu_notify_map_clients_locked(void)3034 static void cpu_notify_map_clients_locked(void)
3035 {
3036     MapClient *client;
3037 
3038     while (!QLIST_EMPTY(&map_client_list)) {
3039         client = QLIST_FIRST(&map_client_list);
3040         qemu_bh_schedule(client->bh);
3041         cpu_unregister_map_client_do(client);
3042     }
3043 }
3044 
cpu_register_map_client(QEMUBH * bh)3045 void cpu_register_map_client(QEMUBH *bh)
3046 {
3047     MapClient *client = g_malloc(sizeof(*client));
3048 
3049     qemu_mutex_lock(&map_client_list_lock);
3050     client->bh = bh;
3051     QLIST_INSERT_HEAD(&map_client_list, client, link);
3052     if (!qatomic_read(&bounce.in_use)) {
3053         cpu_notify_map_clients_locked();
3054     }
3055     qemu_mutex_unlock(&map_client_list_lock);
3056 }
3057 
cpu_exec_init_all(void)3058 void cpu_exec_init_all(void)
3059 {
3060     qemu_mutex_init(&ram_list.mutex);
3061     /* The data structures we set up here depend on knowing the page size,
3062      * so no more changes can be made after this point.
3063      * In an ideal world, nothing we did before we had finished the
3064      * machine setup would care about the target page size, and we could
3065      * do this much later, rather than requiring board models to state
3066      * up front what their requirements are.
3067      */
3068     finalize_target_page_bits();
3069     io_mem_init();
3070     memory_map_init();
3071     qemu_mutex_init(&map_client_list_lock);
3072 }
3073 
cpu_unregister_map_client(QEMUBH * bh)3074 void cpu_unregister_map_client(QEMUBH *bh)
3075 {
3076     MapClient *client;
3077 
3078     qemu_mutex_lock(&map_client_list_lock);
3079     QLIST_FOREACH(client, &map_client_list, link) {
3080         if (client->bh == bh) {
3081             cpu_unregister_map_client_do(client);
3082             break;
3083         }
3084     }
3085     qemu_mutex_unlock(&map_client_list_lock);
3086 }
3087 
cpu_notify_map_clients(void)3088 static void cpu_notify_map_clients(void)
3089 {
3090     qemu_mutex_lock(&map_client_list_lock);
3091     cpu_notify_map_clients_locked();
3092     qemu_mutex_unlock(&map_client_list_lock);
3093 }
3094 
flatview_access_valid(FlatView * fv,hwaddr addr,hwaddr len,bool is_write,MemTxAttrs attrs)3095 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3096                                   bool is_write, MemTxAttrs attrs)
3097 {
3098     MemoryRegion *mr;
3099     hwaddr l, xlat;
3100 
3101     while (len > 0) {
3102         l = len;
3103         mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3104         if (!memory_access_is_direct(mr, is_write)) {
3105             l = memory_access_size(mr, l, addr);
3106             if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3107                 return false;
3108             }
3109         }
3110 
3111         len -= l;
3112         addr += l;
3113     }
3114     return true;
3115 }
3116 
address_space_access_valid(AddressSpace * as,hwaddr addr,hwaddr len,bool is_write,MemTxAttrs attrs)3117 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3118                                 hwaddr len, bool is_write,
3119                                 MemTxAttrs attrs)
3120 {
3121     FlatView *fv;
3122     bool result;
3123 
3124     RCU_READ_LOCK_GUARD();
3125     fv = address_space_to_flatview(as);
3126     result = flatview_access_valid(fv, addr, len, is_write, attrs);
3127     return result;
3128 }
3129 
3130 static hwaddr
flatview_extend_translation(FlatView * fv,hwaddr addr,hwaddr target_len,MemoryRegion * mr,hwaddr base,hwaddr len,bool is_write,MemTxAttrs attrs)3131 flatview_extend_translation(FlatView *fv, hwaddr addr,
3132                             hwaddr target_len,
3133                             MemoryRegion *mr, hwaddr base, hwaddr len,
3134                             bool is_write, MemTxAttrs attrs)
3135 {
3136     hwaddr done = 0;
3137     hwaddr xlat;
3138     MemoryRegion *this_mr;
3139 
3140     for (;;) {
3141         target_len -= len;
3142         addr += len;
3143         done += len;
3144         if (target_len == 0) {
3145             return done;
3146         }
3147 
3148         len = target_len;
3149         this_mr = flatview_translate(fv, addr, &xlat,
3150                                      &len, is_write, attrs);
3151         if (this_mr != mr || xlat != base + done) {
3152             return done;
3153         }
3154     }
3155 }
3156 
3157 /* Map a physical memory region into a host virtual address.
3158  * May map a subset of the requested range, given by and returned in *plen.
3159  * May return NULL if resources needed to perform the mapping are exhausted.
3160  * Use only for reads OR writes - not for read-modify-write operations.
3161  * Use cpu_register_map_client() to know when retrying the map operation is
3162  * likely to succeed.
3163  */
address_space_map(AddressSpace * as,hwaddr addr,hwaddr * plen,bool is_write,MemTxAttrs attrs)3164 void *address_space_map(AddressSpace *as,
3165                         hwaddr addr,
3166                         hwaddr *plen,
3167                         bool is_write,
3168                         MemTxAttrs attrs)
3169 {
3170     hwaddr len = *plen;
3171     hwaddr l, xlat;
3172     MemoryRegion *mr;
3173     void *ptr;
3174     FlatView *fv;
3175 
3176     if (len == 0) {
3177         return NULL;
3178     }
3179 
3180     l = len;
3181     RCU_READ_LOCK_GUARD();
3182     fv = address_space_to_flatview(as);
3183     mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3184 
3185     if (!memory_access_is_direct(mr, is_write)) {
3186         if (qatomic_xchg(&bounce.in_use, true)) {
3187             *plen = 0;
3188             return NULL;
3189         }
3190         /* Avoid unbounded allocations */
3191         l = MIN(l, TARGET_PAGE_SIZE);
3192         bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3193         bounce.addr = addr;
3194         bounce.len = l;
3195 
3196         memory_region_ref(mr);
3197         bounce.mr = mr;
3198         if (!is_write) {
3199             flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3200                                bounce.buffer, l);
3201         }
3202 
3203         *plen = l;
3204         return bounce.buffer;
3205     }
3206 
3207 
3208     memory_region_ref(mr);
3209     *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3210                                         l, is_write, attrs);
3211     fuzz_dma_read_cb(addr, *plen, mr);
3212     ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3213 
3214     return ptr;
3215 }
3216 
3217 /* Unmaps a memory region previously mapped by address_space_map().
3218  * Will also mark the memory as dirty if is_write is true.  access_len gives
3219  * the amount of memory that was actually read or written by the caller.
3220  */
address_space_unmap(AddressSpace * as,void * buffer,hwaddr len,bool is_write,hwaddr access_len)3221 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3222                          bool is_write, hwaddr access_len)
3223 {
3224     if (buffer != bounce.buffer) {
3225         MemoryRegion *mr;
3226         ram_addr_t addr1;
3227 
3228         mr = memory_region_from_host(buffer, &addr1);
3229         assert(mr != NULL);
3230         if (is_write) {
3231             invalidate_and_set_dirty(mr, addr1, access_len);
3232         }
3233         if (xen_enabled()) {
3234             xen_invalidate_map_cache_entry(buffer);
3235         }
3236         memory_region_unref(mr);
3237         return;
3238     }
3239     if (is_write) {
3240         address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3241                             bounce.buffer, access_len);
3242     }
3243     qemu_vfree(bounce.buffer);
3244     bounce.buffer = NULL;
3245     memory_region_unref(bounce.mr);
3246     qatomic_mb_set(&bounce.in_use, false);
3247     cpu_notify_map_clients();
3248 }
3249 
cpu_physical_memory_map(hwaddr addr,hwaddr * plen,bool is_write)3250 void *cpu_physical_memory_map(hwaddr addr,
3251                               hwaddr *plen,
3252                               bool is_write)
3253 {
3254     return address_space_map(&address_space_memory, addr, plen, is_write,
3255                              MEMTXATTRS_UNSPECIFIED);
3256 }
3257 
cpu_physical_memory_unmap(void * buffer,hwaddr len,bool is_write,hwaddr access_len)3258 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3259                                bool is_write, hwaddr access_len)
3260 {
3261     return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3262 }
3263 
3264 #define ARG1_DECL                AddressSpace *as
3265 #define ARG1                     as
3266 #define SUFFIX
3267 #define TRANSLATE(...)           address_space_translate(as, __VA_ARGS__)
3268 #define RCU_READ_LOCK(...)       rcu_read_lock()
3269 #define RCU_READ_UNLOCK(...)     rcu_read_unlock()
3270 #include "memory_ldst.c.inc"
3271 
address_space_cache_init(MemoryRegionCache * cache,AddressSpace * as,hwaddr addr,hwaddr len,bool is_write)3272 int64_t address_space_cache_init(MemoryRegionCache *cache,
3273                                  AddressSpace *as,
3274                                  hwaddr addr,
3275                                  hwaddr len,
3276                                  bool is_write)
3277 {
3278     AddressSpaceDispatch *d;
3279     hwaddr l;
3280     MemoryRegion *mr;
3281     Int128 diff;
3282 
3283     assert(len > 0);
3284 
3285     l = len;
3286     cache->fv = address_space_get_flatview(as);
3287     d = flatview_to_dispatch(cache->fv);
3288     cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3289 
3290     /*
3291      * cache->xlat is now relative to cache->mrs.mr, not to the section itself.
3292      * Take that into account to compute how many bytes are there between
3293      * cache->xlat and the end of the section.
3294      */
3295     diff = int128_sub(cache->mrs.size,
3296 		      int128_make64(cache->xlat - cache->mrs.offset_within_region));
3297     l = int128_get64(int128_min(diff, int128_make64(l)));
3298 
3299     mr = cache->mrs.mr;
3300     memory_region_ref(mr);
3301     if (memory_access_is_direct(mr, is_write)) {
3302         /* We don't care about the memory attributes here as we're only
3303          * doing this if we found actual RAM, which behaves the same
3304          * regardless of attributes; so UNSPECIFIED is fine.
3305          */
3306         l = flatview_extend_translation(cache->fv, addr, len, mr,
3307                                         cache->xlat, l, is_write,
3308                                         MEMTXATTRS_UNSPECIFIED);
3309         cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3310     } else {
3311         cache->ptr = NULL;
3312     }
3313 
3314     cache->len = l;
3315     cache->is_write = is_write;
3316     return l;
3317 }
3318 
address_space_cache_invalidate(MemoryRegionCache * cache,hwaddr addr,hwaddr access_len)3319 void address_space_cache_invalidate(MemoryRegionCache *cache,
3320                                     hwaddr addr,
3321                                     hwaddr access_len)
3322 {
3323     assert(cache->is_write);
3324     if (likely(cache->ptr)) {
3325         invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3326     }
3327 }
3328 
address_space_cache_destroy(MemoryRegionCache * cache)3329 void address_space_cache_destroy(MemoryRegionCache *cache)
3330 {
3331     if (!cache->mrs.mr) {
3332         return;
3333     }
3334 
3335     if (xen_enabled()) {
3336         xen_invalidate_map_cache_entry(cache->ptr);
3337     }
3338     memory_region_unref(cache->mrs.mr);
3339     flatview_unref(cache->fv);
3340     cache->mrs.mr = NULL;
3341     cache->fv = NULL;
3342 }
3343 
3344 /* Called from RCU critical section.  This function has the same
3345  * semantics as address_space_translate, but it only works on a
3346  * predefined range of a MemoryRegion that was mapped with
3347  * address_space_cache_init.
3348  */
address_space_translate_cached(MemoryRegionCache * cache,hwaddr addr,hwaddr * xlat,hwaddr * plen,bool is_write,MemTxAttrs attrs)3349 static inline MemoryRegion *address_space_translate_cached(
3350     MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3351     hwaddr *plen, bool is_write, MemTxAttrs attrs)
3352 {
3353     MemoryRegionSection section;
3354     MemoryRegion *mr;
3355     IOMMUMemoryRegion *iommu_mr;
3356     AddressSpace *target_as;
3357 
3358     assert(!cache->ptr);
3359     *xlat = addr + cache->xlat;
3360 
3361     mr = cache->mrs.mr;
3362     iommu_mr = memory_region_get_iommu(mr);
3363     if (!iommu_mr) {
3364         /* MMIO region.  */
3365         return mr;
3366     }
3367 
3368     section = address_space_translate_iommu(iommu_mr, xlat, plen,
3369                                             NULL, is_write, true,
3370                                             &target_as, attrs);
3371     return section.mr;
3372 }
3373 
3374 /* Called from RCU critical section. address_space_read_cached uses this
3375  * out of line function when the target is an MMIO or IOMMU region.
3376  */
3377 MemTxResult
address_space_read_cached_slow(MemoryRegionCache * cache,hwaddr addr,void * buf,hwaddr len)3378 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3379                                    void *buf, hwaddr len)
3380 {
3381     hwaddr addr1, l;
3382     MemoryRegion *mr;
3383 
3384     l = len;
3385     mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3386                                         MEMTXATTRS_UNSPECIFIED);
3387     return flatview_read_continue(cache->fv,
3388                                   addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3389                                   addr1, l, mr);
3390 }
3391 
3392 /* Called from RCU critical section. address_space_write_cached uses this
3393  * out of line function when the target is an MMIO or IOMMU region.
3394  */
3395 MemTxResult
address_space_write_cached_slow(MemoryRegionCache * cache,hwaddr addr,const void * buf,hwaddr len)3396 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3397                                     const void *buf, hwaddr len)
3398 {
3399     hwaddr addr1, l;
3400     MemoryRegion *mr;
3401 
3402     l = len;
3403     mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3404                                         MEMTXATTRS_UNSPECIFIED);
3405     return flatview_write_continue(cache->fv,
3406                                    addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3407                                    addr1, l, mr);
3408 }
3409 
3410 #define ARG1_DECL                MemoryRegionCache *cache
3411 #define ARG1                     cache
3412 #define SUFFIX                   _cached_slow
3413 #define TRANSLATE(...)           address_space_translate_cached(cache, __VA_ARGS__)
3414 #define RCU_READ_LOCK()          ((void)0)
3415 #define RCU_READ_UNLOCK()        ((void)0)
3416 #include "memory_ldst.c.inc"
3417 
3418 /* virtual memory access for debug (includes writing to ROM) */
cpu_memory_rw_debug(CPUState * cpu,target_ulong addr,void * ptr,target_ulong len,bool is_write)3419 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3420                         void *ptr, target_ulong len, bool is_write)
3421 {
3422     hwaddr phys_addr;
3423     target_ulong l, page;
3424     uint8_t *buf = ptr;
3425 
3426     cpu_synchronize_state(cpu);
3427     while (len > 0) {
3428         int asidx;
3429         MemTxAttrs attrs;
3430         MemTxResult res;
3431 
3432         page = addr & TARGET_PAGE_MASK;
3433         phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3434         asidx = cpu_asidx_from_attrs(cpu, attrs);
3435         /* if no physical page mapped, return an error */
3436         if (phys_addr == -1)
3437             return -1;
3438         l = (page + TARGET_PAGE_SIZE) - addr;
3439         if (l > len)
3440             l = len;
3441         phys_addr += (addr & ~TARGET_PAGE_MASK);
3442         if (is_write) {
3443             res = address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3444                                           attrs, buf, l);
3445         } else {
3446             res = address_space_read(cpu->cpu_ases[asidx].as, phys_addr,
3447                                      attrs, buf, l);
3448         }
3449         if (res != MEMTX_OK) {
3450             return -1;
3451         }
3452         len -= l;
3453         buf += l;
3454         addr += l;
3455     }
3456     return 0;
3457 }
3458 
3459 /*
3460  * Allows code that needs to deal with migration bitmaps etc to still be built
3461  * target independent.
3462  */
qemu_target_page_size(void)3463 size_t qemu_target_page_size(void)
3464 {
3465     return TARGET_PAGE_SIZE;
3466 }
3467 
qemu_target_page_bits(void)3468 int qemu_target_page_bits(void)
3469 {
3470     return TARGET_PAGE_BITS;
3471 }
3472 
qemu_target_page_bits_min(void)3473 int qemu_target_page_bits_min(void)
3474 {
3475     return TARGET_PAGE_BITS_MIN;
3476 }
3477 
cpu_physical_memory_is_io(hwaddr phys_addr)3478 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3479 {
3480     MemoryRegion*mr;
3481     hwaddr l = 1;
3482     bool res;
3483 
3484     RCU_READ_LOCK_GUARD();
3485     mr = address_space_translate(&address_space_memory,
3486                                  phys_addr, &phys_addr, &l, false,
3487                                  MEMTXATTRS_UNSPECIFIED);
3488 
3489     res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3490     return res;
3491 }
3492 
qemu_ram_foreach_block(RAMBlockIterFunc func,void * opaque)3493 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3494 {
3495     RAMBlock *block;
3496     int ret = 0;
3497 
3498     RCU_READ_LOCK_GUARD();
3499     RAMBLOCK_FOREACH(block) {
3500         ret = func(block, opaque);
3501         if (ret) {
3502             break;
3503         }
3504     }
3505     return ret;
3506 }
3507 
3508 /*
3509  * Unmap pages of memory from start to start+length such that
3510  * they a) read as 0, b) Trigger whatever fault mechanism
3511  * the OS provides for postcopy.
3512  * The pages must be unmapped by the end of the function.
3513  * Returns: 0 on success, none-0 on failure
3514  *
3515  */
ram_block_discard_range(RAMBlock * rb,uint64_t start,size_t length)3516 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3517 {
3518     int ret = -1;
3519 
3520     uint8_t *host_startaddr = rb->host + start;
3521 
3522     if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3523         error_report("ram_block_discard_range: Unaligned start address: %p",
3524                      host_startaddr);
3525         goto err;
3526     }
3527 
3528     if ((start + length) <= rb->max_length) {
3529         bool need_madvise, need_fallocate;
3530         if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3531             error_report("ram_block_discard_range: Unaligned length: %zx",
3532                          length);
3533             goto err;
3534         }
3535 
3536         errno = ENOTSUP; /* If we are missing MADVISE etc */
3537 
3538         /* The logic here is messy;
3539          *    madvise DONTNEED fails for hugepages
3540          *    fallocate works on hugepages and shmem
3541          *    shared anonymous memory requires madvise REMOVE
3542          */
3543         need_madvise = (rb->page_size == qemu_host_page_size);
3544         need_fallocate = rb->fd != -1;
3545         if (need_fallocate) {
3546             /* For a file, this causes the area of the file to be zero'd
3547              * if read, and for hugetlbfs also causes it to be unmapped
3548              * so a userfault will trigger.
3549              */
3550 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3551             ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3552                             start, length);
3553             if (ret) {
3554                 ret = -errno;
3555                 error_report("ram_block_discard_range: Failed to fallocate "
3556                              "%s:%" PRIx64 " +%zx (%d)",
3557                              rb->idstr, start, length, ret);
3558                 goto err;
3559             }
3560 #else
3561             ret = -ENOSYS;
3562             error_report("ram_block_discard_range: fallocate not available/file"
3563                          "%s:%" PRIx64 " +%zx (%d)",
3564                          rb->idstr, start, length, ret);
3565             goto err;
3566 #endif
3567         }
3568         if (need_madvise) {
3569             /* For normal RAM this causes it to be unmapped,
3570              * for shared memory it causes the local mapping to disappear
3571              * and to fall back on the file contents (which we just
3572              * fallocate'd away).
3573              */
3574 #if defined(CONFIG_MADVISE)
3575             if (qemu_ram_is_shared(rb) && rb->fd < 0) {
3576                 ret = madvise(host_startaddr, length, QEMU_MADV_REMOVE);
3577             } else {
3578                 ret = madvise(host_startaddr, length, QEMU_MADV_DONTNEED);
3579             }
3580             if (ret) {
3581                 ret = -errno;
3582                 error_report("ram_block_discard_range: Failed to discard range "
3583                              "%s:%" PRIx64 " +%zx (%d)",
3584                              rb->idstr, start, length, ret);
3585                 goto err;
3586             }
3587 #else
3588             ret = -ENOSYS;
3589             error_report("ram_block_discard_range: MADVISE not available"
3590                          "%s:%" PRIx64 " +%zx (%d)",
3591                          rb->idstr, start, length, ret);
3592             goto err;
3593 #endif
3594         }
3595         trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3596                                       need_madvise, need_fallocate, ret);
3597     } else {
3598         error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3599                      "/%zx/" RAM_ADDR_FMT")",
3600                      rb->idstr, start, length, rb->max_length);
3601     }
3602 
3603 err:
3604     return ret;
3605 }
3606 
ramblock_is_pmem(RAMBlock * rb)3607 bool ramblock_is_pmem(RAMBlock *rb)
3608 {
3609     return rb->flags & RAM_PMEM;
3610 }
3611 
mtree_print_phys_entries(int start,int end,int skip,int ptr)3612 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
3613 {
3614     if (start == end - 1) {
3615         qemu_printf("\t%3d      ", start);
3616     } else {
3617         qemu_printf("\t%3d..%-3d ", start, end - 1);
3618     }
3619     qemu_printf(" skip=%d ", skip);
3620     if (ptr == PHYS_MAP_NODE_NIL) {
3621         qemu_printf(" ptr=NIL");
3622     } else if (!skip) {
3623         qemu_printf(" ptr=#%d", ptr);
3624     } else {
3625         qemu_printf(" ptr=[%d]", ptr);
3626     }
3627     qemu_printf("\n");
3628 }
3629 
3630 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3631                            int128_sub((size), int128_one())) : 0)
3632 
mtree_print_dispatch(AddressSpaceDispatch * d,MemoryRegion * root)3633 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
3634 {
3635     int i;
3636 
3637     qemu_printf("  Dispatch\n");
3638     qemu_printf("    Physical sections\n");
3639 
3640     for (i = 0; i < d->map.sections_nb; ++i) {
3641         MemoryRegionSection *s = d->map.sections + i;
3642         const char *names[] = { " [unassigned]", " [not dirty]",
3643                                 " [ROM]", " [watch]" };
3644 
3645         qemu_printf("      #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
3646                     " %s%s%s%s%s",
3647             i,
3648             s->offset_within_address_space,
3649             s->offset_within_address_space + MR_SIZE(s->mr->size),
3650             s->mr->name ? s->mr->name : "(noname)",
3651             i < ARRAY_SIZE(names) ? names[i] : "",
3652             s->mr == root ? " [ROOT]" : "",
3653             s == d->mru_section ? " [MRU]" : "",
3654             s->mr->is_iommu ? " [iommu]" : "");
3655 
3656         if (s->mr->alias) {
3657             qemu_printf(" alias=%s", s->mr->alias->name ?
3658                     s->mr->alias->name : "noname");
3659         }
3660         qemu_printf("\n");
3661     }
3662 
3663     qemu_printf("    Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3664                P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3665     for (i = 0; i < d->map.nodes_nb; ++i) {
3666         int j, jprev;
3667         PhysPageEntry prev;
3668         Node *n = d->map.nodes + i;
3669 
3670         qemu_printf("      [%d]\n", i);
3671 
3672         for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3673             PhysPageEntry *pe = *n + j;
3674 
3675             if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3676                 continue;
3677             }
3678 
3679             mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3680 
3681             jprev = j;
3682             prev = *pe;
3683         }
3684 
3685         if (jprev != ARRAY_SIZE(*n)) {
3686             mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
3687         }
3688     }
3689 }
3690 
3691 /* Require any discards to work. */
3692 static unsigned int ram_block_discard_required_cnt;
3693 /* Require only coordinated discards to work. */
3694 static unsigned int ram_block_coordinated_discard_required_cnt;
3695 /* Disable any discards. */
3696 static unsigned int ram_block_discard_disabled_cnt;
3697 /* Disable only uncoordinated discards. */
3698 static unsigned int ram_block_uncoordinated_discard_disabled_cnt;
3699 static QemuMutex ram_block_discard_disable_mutex;
3700 
ram_block_discard_disable_mutex_lock(void)3701 static void ram_block_discard_disable_mutex_lock(void)
3702 {
3703     static gsize initialized;
3704 
3705     if (g_once_init_enter(&initialized)) {
3706         qemu_mutex_init(&ram_block_discard_disable_mutex);
3707         g_once_init_leave(&initialized, 1);
3708     }
3709     qemu_mutex_lock(&ram_block_discard_disable_mutex);
3710 }
3711 
ram_block_discard_disable_mutex_unlock(void)3712 static void ram_block_discard_disable_mutex_unlock(void)
3713 {
3714     qemu_mutex_unlock(&ram_block_discard_disable_mutex);
3715 }
3716 
ram_block_discard_disable(bool state)3717 int ram_block_discard_disable(bool state)
3718 {
3719     int ret = 0;
3720 
3721     ram_block_discard_disable_mutex_lock();
3722     if (!state) {
3723         ram_block_discard_disabled_cnt--;
3724     } else if (ram_block_discard_required_cnt ||
3725                ram_block_coordinated_discard_required_cnt) {
3726         ret = -EBUSY;
3727     } else {
3728         ram_block_discard_disabled_cnt++;
3729     }
3730     ram_block_discard_disable_mutex_unlock();
3731     return ret;
3732 }
3733 
ram_block_uncoordinated_discard_disable(bool state)3734 int ram_block_uncoordinated_discard_disable(bool state)
3735 {
3736     int ret = 0;
3737 
3738     ram_block_discard_disable_mutex_lock();
3739     if (!state) {
3740         ram_block_uncoordinated_discard_disabled_cnt--;
3741     } else if (ram_block_discard_required_cnt) {
3742         ret = -EBUSY;
3743     } else {
3744         ram_block_uncoordinated_discard_disabled_cnt++;
3745     }
3746     ram_block_discard_disable_mutex_unlock();
3747     return ret;
3748 }
3749 
ram_block_discard_require(bool state)3750 int ram_block_discard_require(bool state)
3751 {
3752     int ret = 0;
3753 
3754     ram_block_discard_disable_mutex_lock();
3755     if (!state) {
3756         ram_block_discard_required_cnt--;
3757     } else if (ram_block_discard_disabled_cnt ||
3758                ram_block_uncoordinated_discard_disabled_cnt) {
3759         ret = -EBUSY;
3760     } else {
3761         ram_block_discard_required_cnt++;
3762     }
3763     ram_block_discard_disable_mutex_unlock();
3764     return ret;
3765 }
3766 
ram_block_coordinated_discard_require(bool state)3767 int ram_block_coordinated_discard_require(bool state)
3768 {
3769     int ret = 0;
3770 
3771     ram_block_discard_disable_mutex_lock();
3772     if (!state) {
3773         ram_block_coordinated_discard_required_cnt--;
3774     } else if (ram_block_discard_disabled_cnt) {
3775         ret = -EBUSY;
3776     } else {
3777         ram_block_coordinated_discard_required_cnt++;
3778     }
3779     ram_block_discard_disable_mutex_unlock();
3780     return ret;
3781 }
3782 
ram_block_discard_is_disabled(void)3783 bool ram_block_discard_is_disabled(void)
3784 {
3785     return qatomic_read(&ram_block_discard_disabled_cnt) ||
3786            qatomic_read(&ram_block_uncoordinated_discard_disabled_cnt);
3787 }
3788 
ram_block_discard_is_required(void)3789 bool ram_block_discard_is_required(void)
3790 {
3791     return qatomic_read(&ram_block_discard_required_cnt) ||
3792            qatomic_read(&ram_block_coordinated_discard_required_cnt);
3793 }
3794