1 /******************************************************************************
2 * Copyright (c) 2004, 2008 IBM Corporation
3 * All rights reserved.
4 * This program and the accompanying materials
5 * are made available under the terms of the BSD License
6 * which accompanies this distribution, and is available at
7 * http://www.opensource.org/licenses/bsd-license.php
8 *
9 * Contributors:
10 * IBM Corporation - initial implementation
11 *****************************************************************************/
12
13 #include "cache.h"
14 #include "nvram.h"
15 #include "../libhvcall/libhvcall.h"
16
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <string.h>
20 #include <southbridge.h>
21 #include <nvramlog.h>
22 #include <byteorder.h>
23
24 #ifdef RTAS_NVRAM
25 static uint32_t fetch_token;
26 static uint32_t store_token;
27 static uint32_t NVRAM_LENGTH;
28 static char *nvram_buffer; /* use buffer allocated by SLOF code */
29 #else
30 #ifndef NVRAM_LENGTH
31 #define NVRAM_LENGTH 0x10000
32 #endif
33 /*
34 * This is extremely ugly, but still better than implementing
35 * another sbrk() around it.
36 */
37 static char nvram_buffer[NVRAM_LENGTH];
38 #endif
39
40 static uint8_t nvram_buffer_locked=0x00;
41
nvram_init(uint32_t _fetch_token,uint32_t _store_token,long _nvram_length,void * nvram_addr)42 void nvram_init(uint32_t _fetch_token, uint32_t _store_token,
43 long _nvram_length, void* nvram_addr)
44 {
45 #ifdef RTAS_NVRAM
46 fetch_token = _fetch_token;
47 store_token = _store_token;
48 NVRAM_LENGTH = _nvram_length;
49 nvram_buffer = nvram_addr;
50
51 DEBUG("\nNVRAM: size=%d, fetch=%x, store=%x\n",
52 NVRAM_LENGTH, fetch_token, store_token);
53 #endif
54 }
55
56
57 void asm_cout(long Character,long UART,long NVRAM);
58
59 #if defined(DISABLE_NVRAM)
60
61 static volatile uint8_t nvram[NVRAM_LENGTH]; /* FAKE */
62
63 #define nvram_access(type,size,name) \
64 type nvram_read_##name(unsigned int offset) \
65 { \
66 type *pos; \
67 if (offset > (NVRAM_LENGTH - sizeof(type))) \
68 return 0; \
69 pos = (type *)(nvram+offset); \
70 return *pos; \
71 } \
72 void nvram_write_##name(unsigned int offset, type data) \
73 { \
74 type *pos; \
75 if (offset > (NVRAM_LENGTH - sizeof(type))) \
76 return; \
77 pos = (type *)(nvram+offset); \
78 *pos = data; \
79 }
80
81 #elif defined(RTAS_NVRAM)
82
nvram_fetch(unsigned int offset,void * buf,unsigned int len)83 static inline void nvram_fetch(unsigned int offset, void *buf, unsigned int len)
84 {
85 struct hv_rtas_call rtas = {
86 .token = fetch_token,
87 .nargs = 3,
88 .nrets = 2,
89 .argret = { offset, (uint32_t)(unsigned long)buf, len },
90 };
91 h_rtas(&rtas);
92 }
93
nvram_store(unsigned int offset,void * buf,unsigned int len)94 static inline void nvram_store(unsigned int offset, void *buf, unsigned int len)
95 {
96 struct hv_rtas_call rtas = {
97 .token = store_token,
98 .nargs = 3,
99 .nrets = 2,
100 .argret = { offset, (uint32_t)(unsigned long)buf, len },
101 };
102 h_rtas(&rtas);
103 }
104
105 #define nvram_access(type,size,name) \
106 type nvram_read_##name(unsigned int offset) \
107 { \
108 type val; \
109 if (offset > (NVRAM_LENGTH - sizeof(type))) \
110 return 0; \
111 nvram_fetch(offset, &val, size / 8); \
112 return val; \
113 } \
114 void nvram_write_##name(unsigned int offset, type data) \
115 { \
116 if (offset > (NVRAM_LENGTH - sizeof(type))) \
117 return; \
118 nvram_store(offset, &data, size / 8); \
119 }
120
121 #else /* DISABLE_NVRAM */
122
123 static volatile uint8_t *nvram = (volatile uint8_t *)SB_NVRAM_adr;
124
125 #define nvram_access(type,size,name) \
126 type nvram_read_##name(unsigned int offset) \
127 { \
128 type *pos; \
129 if (offset > (NVRAM_LENGTH - sizeof(type))) \
130 return 0; \
131 pos = (type *)(nvram+offset); \
132 return ci_read_##size(pos); \
133 } \
134 void nvram_write_##name(unsigned int offset, type data) \
135 { \
136 type *pos; \
137 if (offset > (NVRAM_LENGTH - sizeof(type))) \
138 return; \
139 pos = (type *)(nvram+offset); \
140 ci_write_##size(pos, data); \
141 }
142
143 #endif
144
145 /*
146 * producer for nvram access functions. Since these functions are
147 * basically all the same except for the used data types, produce
148 * them via the nvram_access macro to keep the code from bloating.
149 */
150
151 nvram_access(uint8_t, 8, byte)
152 nvram_access(uint16_t, 16, word)
153 nvram_access(uint32_t, 32, dword)
154 nvram_access(uint64_t, 64, qword)
155
156
157
158 /**
159 * This function is a minimal abstraction for our temporary
160 * buffer. It should have been malloced, but since there is no
161 * usable malloc, we go this route.
162 *
163 * @return pointer to temporary buffer
164 */
165
get_nvram_buffer(int len)166 char *get_nvram_buffer(int len)
167 {
168 if(len>NVRAM_LENGTH)
169 return NULL;
170
171 if(nvram_buffer_locked)
172 return NULL;
173
174 nvram_buffer_locked = 0xff;
175
176 return nvram_buffer;
177 }
178
179 /**
180 * @param buffer pointer to the allocated buffer. This
181 * is unused, but nice in case we ever get a real malloc
182 */
183
free_nvram_buffer(char * buffer)184 void free_nvram_buffer(char *buffer __attribute__((unused)))
185 {
186 nvram_buffer_locked = 0x00;
187 }
188
189 /**
190 * @param fmt format string, like in printf
191 * @param ... variable number of arguments
192 */
193
nvramlog_printf(const char * fmt,...)194 int nvramlog_printf(const char* fmt, ...)
195 {
196 char buff[256];
197 int count, i;
198 va_list ap;
199
200 va_start(ap, fmt);
201 count = vsprintf(buff, fmt, ap);
202 va_end(ap);
203
204 for (i=0; i<count; i++)
205 asm_cout(buff[i], 0, 1);
206
207 return count;
208 }
209
210 /**
211 * @param offset start offset of the partition header
212 */
213
get_partition_type(int offset)214 static uint8_t get_partition_type(int offset)
215 {
216 return nvram_read_byte(offset);
217 }
218
219 /**
220 * @param offset start offset of the partition header
221 */
222
get_partition_header_checksum(int offset)223 static uint8_t get_partition_header_checksum(int offset)
224 {
225 return nvram_read_byte(offset+1);
226 }
227
228 /**
229 * @param offset start offset of the partition header
230 */
231
get_partition_len(int offset)232 static uint16_t get_partition_len(int offset)
233 {
234 return nvram_read_word(offset+2);
235 }
236
237 /**
238 * @param offset start offset of the partition header
239 * @return static char array containing the partition name
240 *
241 * NOTE: If the partition name needs to be non-temporary, strdup
242 * and use the copy instead.
243 */
244
get_partition_name(int offset)245 static char * get_partition_name(int offset)
246 {
247 static char name[12];
248 int i;
249 for (i=0; i<12; i++)
250 name[i]=nvram_read_byte(offset+4+i);
251
252 DEBUG("name: \"%s\"\n", name);
253 return name;
254 }
255
calc_partition_header_checksum(int offset)256 static uint8_t calc_partition_header_checksum(int offset)
257 {
258 uint16_t plainsum;
259 uint8_t checksum;
260 int i;
261
262 plainsum = nvram_read_byte(offset);
263
264 for (i=2; i<PARTITION_HEADER_SIZE; i++)
265 plainsum+=nvram_read_byte(offset+i);
266
267 checksum=(plainsum>>8)+(plainsum&0xff);
268
269 return checksum;
270 }
271
calc_used_nvram_space(void)272 static int calc_used_nvram_space(void)
273 {
274 int walk, len;
275
276 for (walk=0; walk<NVRAM_LENGTH;) {
277 if(nvram_read_byte(walk) == 0
278 || get_partition_header_checksum(walk) !=
279 calc_partition_header_checksum(walk)) {
280 /* If there's no valid entry, bail out */
281 break;
282 }
283
284 len=get_partition_len(walk);
285 DEBUG("... part len=%x, %x\n", len, len*16);
286
287 if(!len) {
288 /* If there's a partition type but no len, bail out.
289 * Don't bail out if type is 0. This can be used to
290 * find the offset of the first free byte.
291 */
292 break;
293 }
294
295 walk += len * 16;
296 }
297 DEBUG("used nvram space: %d\n", walk);
298
299 return walk;
300 }
301
302 /**
303 *
304 * @param type partition type. Set this to the partition type you are looking
305 * for. If there are several partitions with the same type, only
306 * the first partition with that type will be found.
307 * Set to -1 to ignore. Set to 0 to find free unpartitioned space.
308 *
309 * @param name partition name. Set this to the name of the partition you are
310 * looking for. If there are several partitions with the same name,
311 * only the first partition with that name will be found.
312 * Set to NULL to ignore.
313 *
314 * To disambiguate the partitions you should have a unique name if you plan to
315 * have several partitions of the same type.
316 *
317 */
318
get_partition(unsigned int type,char * name)319 partition_t get_partition(unsigned int type, char *name)
320 {
321 partition_t ret={0,-1};
322 int walk, len;
323
324 DEBUG("get_partition(%i, '%s')\n", type, name);
325
326 for (walk=0; walk<NVRAM_LENGTH;) {
327 // DEBUG("get_partition: walk=%x\n", walk);
328 if(get_partition_header_checksum(walk) !=
329 calc_partition_header_checksum(walk)) {
330 /* If there's no valid entry, bail out */
331 break;
332 }
333
334 len=get_partition_len(walk);
335 if(type && !len) {
336 /* If there's a partition type but no len, bail out.
337 * Don't bail out if type is 0. This can be used to
338 * find the offset of the first free byte.
339 */
340 break;
341 }
342
343 /* Check if either type or name or both do not match. */
344 if ( (type!=(unsigned int)-1 && type != get_partition_type(walk)) ||
345 (name && strncmp(get_partition_name(walk), name, 12)) ) {
346 /* We hit another partition. Continue
347 * at the end of this partition
348 */
349 walk += len*16;
350 continue;
351 }
352
353 ret.addr=walk+PARTITION_HEADER_SIZE;
354 ret.len=(len*16)-PARTITION_HEADER_SIZE;
355 break;
356 }
357
358 return ret;
359 }
360
361 /* Get partition specified by a Forth string */
get_partition_fs(char * name,int namelen)362 partition_t get_partition_fs(char *name, int namelen)
363 {
364 char buf[namelen + 1];
365
366 memcpy(buf, name, namelen);
367 buf[namelen] = 0;
368
369 return get_partition(-1, buf);
370 }
371
erase_nvram(int offset,int len)372 void erase_nvram(int offset, int len)
373 {
374 int i;
375
376 #ifdef RTAS_NVRAM
377 char *erase_buf = get_nvram_buffer(len);
378 if (erase_buf) {
379 /* Speed up by erasing all memory at once */
380 memset(erase_buf, 0, len);
381 nvram_store(offset, erase_buf, len);
382 free_nvram_buffer(erase_buf);
383 return;
384 }
385 /* If get_nvram_buffer failed, fall through to default code */
386 #endif
387 for (i=offset; i<offset+len; i++)
388 nvram_write_byte(i, 0);
389 }
390
wipe_nvram(void)391 void wipe_nvram(void)
392 {
393 erase_nvram(0, NVRAM_LENGTH);
394 }
395
396 /**
397 * @param partition partition structure pointing to the partition to wipe.
398 * @param header_only if header_only is != 0 only the partition header is
399 * nulled out, not the whole partition.
400 */
401
wipe_partition(partition_t partition,int header_only)402 int wipe_partition(partition_t partition, int header_only)
403 {
404 int pstart, len;
405
406 pstart=partition.addr-PARTITION_HEADER_SIZE;
407
408 len=PARTITION_HEADER_SIZE;
409
410 if(!header_only)
411 len += partition.len;
412
413 erase_nvram(pstart, len);
414
415 return 0;
416 }
417
418
create_nvram_partition(int type,const char * name,int len)419 static partition_t create_nvram_partition(int type, const char *name, int len)
420 {
421 partition_t ret = { 0, 0 };
422 int offset, plen;
423 unsigned int i;
424
425 plen = ALIGN(len+PARTITION_HEADER_SIZE, 16);
426
427 DEBUG("Creating partition type=%x, name=%s, len=%d plen=%d\n",
428 type, name, len, plen);
429
430 offset = calc_used_nvram_space();
431
432 if (NVRAM_LENGTH-(calc_used_nvram_space())<plen) {
433 DEBUG("Not enough free space.\n");
434 return ret;
435 }
436
437 DEBUG("Writing header.");
438
439 nvram_write_byte(offset, type);
440 nvram_write_word(offset+2, plen/16);
441
442 for (i=0; i<strlen(name); i++)
443 nvram_write_byte(offset+4+i, name[i]);
444
445 nvram_write_byte(offset+1, calc_partition_header_checksum(offset));
446
447 ret.addr = offset+PARTITION_HEADER_SIZE;
448 ret.len = len;
449
450 DEBUG("partition created: addr=%lx len=%lx\n", ret.addr, ret.len);
451
452 return ret;
453 }
454
create_free_partition(void)455 static int create_free_partition(void)
456 {
457 int free_space;
458 partition_t free_part;
459
460 free_space = NVRAM_LENGTH - calc_used_nvram_space() - PARTITION_HEADER_SIZE;
461 free_part = create_nvram_partition(0x7f, "free space", free_space);
462
463 return (free_part.addr != 0);
464 }
465
new_nvram_partition(int type,char * name,int len)466 partition_t new_nvram_partition(int type, char *name, int len)
467 {
468 partition_t free_part, new_part = { 0, 0 };
469
470 /* NOTE: Assume all free space is consumed by the "free space"
471 * partition. This means a partition can not be increased in the middle
472 * of reset_nvram, which is obviously not a big loss.
473 */
474
475 free_part=get_partition(0x7f, NULL);
476 if( free_part.len && free_part.len != -1)
477 wipe_partition(free_part, 1);
478
479 new_part = create_nvram_partition(type, name, len);
480
481 if(new_part.len != len) {
482 new_part.len = 0;
483 new_part.addr = 0;
484 }
485
486 create_free_partition();
487
488 return new_part;
489 }
490
new_nvram_partition_fs(int type,char * name,int namelen,int len)491 partition_t new_nvram_partition_fs(int type, char *name, int namelen, int len)
492 {
493 char buf[13];
494 int i;
495
496 for (i = 0; i < 12; i++) {
497 if (i < namelen)
498 buf[i] = name[i];
499 else
500 buf[i] = 0;
501 }
502 buf[12] = 0;
503
504 return new_nvram_partition(type, buf, len);
505 }
506
507 /**
508 * @param partition partition structure pointing to the partition to wipe.
509 */
510
delete_nvram_partition(partition_t partition)511 int delete_nvram_partition(partition_t partition)
512 {
513 int i;
514 partition_t free_part;
515
516 if(!partition.len || partition.len == -1)
517 return 0;
518
519 for (i=partition.addr+partition.len; i< NVRAM_LENGTH; i++)
520 nvram_write_byte(i - partition.len - PARTITION_HEADER_SIZE, nvram_read_byte(i));
521
522 erase_nvram(NVRAM_LENGTH-partition.len-PARTITION_HEADER_SIZE,
523 partition.len-PARTITION_HEADER_SIZE);
524
525 free_part=get_partition(0x7f, NULL);
526 wipe_partition(free_part, 0);
527 create_free_partition();
528
529 return 1;
530 }
531
clear_nvram_partition(partition_t part)532 int clear_nvram_partition(partition_t part)
533 {
534 if(!part.addr)
535 return 0;
536
537 erase_nvram(part.addr, part.len);
538
539 return 1;
540 }
541
542
increase_nvram_partition_size(partition_t partition,int newsize)543 int increase_nvram_partition_size(partition_t partition, int newsize)
544 {
545 partition_t free_part;
546 int free_offset, end_offset, i;
547
548 /* We don't support shrinking partitions (yet) */
549 if (newsize < partition.len) {
550 return 0;
551 }
552
553 /* NOTE: Assume all free space is consumed by the "free space"
554 * partition. This means a partition can not be increased in the middle
555 * of reset_nvram, which is obviously not a big loss.
556 */
557
558 free_part=get_partition(0x7f, NULL);
559
560 // FIXME: It could be 16 byte more. Also handle empty "free" partition.
561 if (free_part.len == -1 || free_part.len < newsize - partition.len ) {
562 return 0;
563 }
564
565 free_offset=free_part.addr - PARTITION_HEADER_SIZE; // first unused byte
566 end_offset=partition.addr + partition.len; // last used byte of partition + 1
567
568 if(free_offset > end_offset) {
569 int j, bufferlen;
570 char *overlap_buffer;
571
572 bufferlen=free_offset - end_offset;
573
574 overlap_buffer=get_nvram_buffer(bufferlen);
575 if(!overlap_buffer) {
576 return 0;
577 }
578
579 for (i=end_offset, j=0; i<free_offset; i++, j++)
580 overlap_buffer[j]=nvram_read_byte(i);
581
582 /* Only wipe the header. The free space partition is empty per
583 * definition
584 */
585
586 wipe_partition(free_part, 1);
587
588 for (i=partition.addr+newsize, j=0; i<(int)(partition.addr+newsize+bufferlen); i++, j++)
589 nvram_write_byte(i, overlap_buffer[j]);
590
591 free_nvram_buffer(overlap_buffer);
592 } else {
593 /* Only wipe the header. */
594 wipe_partition(free_part, 1);
595 }
596
597 /* Clear the new partition space */
598 erase_nvram(partition.addr+partition.len, newsize-partition.len);
599
600 nvram_write_word(partition.addr - 16 + 2, newsize);
601
602 create_free_partition();
603
604 return 1;
605 }
606
init_cpulog_partition(partition_t cpulog)607 static void init_cpulog_partition(partition_t cpulog)
608 {
609 unsigned int offset=cpulog.addr;
610
611 /* see board-xxx/include/nvramlog.h for information */
612 nvram_write_word(offset+0, 0x40); // offset
613 nvram_write_word(offset+2, 0x00); // flags
614 nvram_write_dword(offset+4, 0x01); // pointer
615
616 }
617
reset_nvram(void)618 void reset_nvram(void)
619 {
620 partition_t cpulog0, cpulog1;
621 struct {
622 uint32_t prefix;
623 uint64_t name;
624 } __attribute__((packed)) header;
625
626 DEBUG("Erasing NVRAM\n");
627 erase_nvram(0, NVRAM_LENGTH);
628
629 DEBUG("Creating CPU log partitions\n");
630 header.prefix = be32_to_cpu(LLFW_LOG_BE0_NAME_PREFIX);
631 header.name = be64_to_cpu(LLFW_LOG_BE0_NAME);
632 cpulog0=create_nvram_partition(LLFW_LOG_BE0_SIGNATURE, (char *)&header,
633 (LLFW_LOG_BE0_LENGTH*16)-PARTITION_HEADER_SIZE);
634
635 header.prefix = be32_to_cpu(LLFW_LOG_BE1_NAME_PREFIX);
636 header.name = be64_to_cpu(LLFW_LOG_BE1_NAME);
637 cpulog1=create_nvram_partition(LLFW_LOG_BE1_SIGNATURE, (char *)&header,
638 (LLFW_LOG_BE1_LENGTH*16)-PARTITION_HEADER_SIZE);
639
640 DEBUG("Initializing CPU log partitions\n");
641 init_cpulog_partition(cpulog0);
642 init_cpulog_partition(cpulog1);
643
644 nvramlog_printf("Creating common NVRAM partition\r\n");
645 create_nvram_partition(0x70, "common", 0x01000-PARTITION_HEADER_SIZE);
646
647 create_free_partition();
648 }
649
nvram_debug(void)650 void nvram_debug(void)
651 {
652 #ifndef RTAS_NVRAM
653 printf("\nNVRAM_BASE: %p\n", nvram);
654 printf("NVRAM_LEN: 0x%x\n", NVRAM_LENGTH);
655 #endif
656 }
657
get_nvram_size(void)658 unsigned int get_nvram_size(void)
659 {
660 return NVRAM_LENGTH;
661 }
662