1 /*
2  * ARM implementation of KVM hooks, 32 bit specific code.
3  *
4  * Copyright Christoffer Dall 2009-2010
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  */
10 
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
13 
14 #include <linux/kvm.h>
15 
16 #include "qemu-common.h"
17 #include "cpu.h"
18 #include "qemu/timer.h"
19 #include "sysemu/kvm.h"
20 #include "kvm_arm.h"
21 #include "internals.h"
22 #include "qemu/log.h"
23 
set_feature(uint64_t * features,int feature)24 static inline void set_feature(uint64_t *features, int feature)
25 {
26     *features |= 1ULL << feature;
27 }
28 
read_sys_reg32(int fd,uint32_t * pret,uint64_t id)29 static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
30 {
31     struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
32 
33     assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32);
34     return ioctl(fd, KVM_GET_ONE_REG, &idreg);
35 }
36 
kvm_arm_get_host_cpu_features(ARMHostCPUFeatures * ahcf)37 bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
38 {
39     /* Identify the feature bits corresponding to the host CPU, and
40      * fill out the ARMHostCPUClass fields accordingly. To do this
41      * we have to create a scratch VM, create a single CPU inside it,
42      * and then query that CPU for the relevant ID registers.
43      */
44     int err = 0, fdarray[3];
45     uint32_t midr, id_pfr0;
46     uint64_t features = 0;
47 
48     /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
49      * we know these will only support creating one kind of guest CPU,
50      * which is its preferred CPU type.
51      */
52     static const uint32_t cpus_to_try[] = {
53         QEMU_KVM_ARM_TARGET_CORTEX_A15,
54         QEMU_KVM_ARM_TARGET_NONE
55     };
56     /*
57      * target = -1 informs kvm_arm_create_scratch_host_vcpu()
58      * to use the preferred target
59      */
60     struct kvm_vcpu_init init = { .target = -1, };
61 
62     if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
63         return false;
64     }
65 
66     ahcf->target = init.target;
67 
68     /* This is not strictly blessed by the device tree binding docs yet,
69      * but in practice the kernel does not care about this string so
70      * there is no point maintaining an KVM_ARM_TARGET_* -> string table.
71      */
72     ahcf->dtb_compatible = "arm,arm-v7";
73 
74     err |= read_sys_reg32(fdarray[2], &midr, ARM_CP15_REG32(0, 0, 0, 0));
75     err |= read_sys_reg32(fdarray[2], &id_pfr0, ARM_CP15_REG32(0, 0, 1, 0));
76 
77     err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
78                           ARM_CP15_REG32(0, 0, 2, 0));
79     err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
80                           ARM_CP15_REG32(0, 0, 2, 1));
81     err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
82                           ARM_CP15_REG32(0, 0, 2, 2));
83     err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
84                           ARM_CP15_REG32(0, 0, 2, 3));
85     err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
86                           ARM_CP15_REG32(0, 0, 2, 4));
87     err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
88                           ARM_CP15_REG32(0, 0, 2, 5));
89     if (read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
90                        ARM_CP15_REG32(0, 0, 2, 7))) {
91         /*
92          * Older kernels don't support reading ID_ISAR6. This register was
93          * only introduced in ARMv8, so we can assume that it is zero on a
94          * CPU that a kernel this old is running on.
95          */
96         ahcf->isar.id_isar6 = 0;
97     }
98 
99     err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
100                           KVM_REG_ARM | KVM_REG_SIZE_U32 |
101                           KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_MVFR0);
102     err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
103                           KVM_REG_ARM | KVM_REG_SIZE_U32 |
104                           KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_MVFR1);
105     /*
106      * FIXME: There is not yet a way to read MVFR2.
107      * Fortunately there is not yet anything in there that affects migration.
108      */
109 
110     kvm_arm_destroy_scratch_host_vcpu(fdarray);
111 
112     if (err < 0) {
113         return false;
114     }
115 
116     /* Now we've retrieved all the register information we can
117      * set the feature bits based on the ID register fields.
118      * We can assume any KVM supporting CPU is at least a v7
119      * with VFPv3, virtualization extensions, and the generic
120      * timers; this in turn implies most of the other feature
121      * bits, but a few must be tested.
122      */
123     set_feature(&features, ARM_FEATURE_V7VE);
124     set_feature(&features, ARM_FEATURE_VFP3);
125     set_feature(&features, ARM_FEATURE_GENERIC_TIMER);
126 
127     if (extract32(id_pfr0, 12, 4) == 1) {
128         set_feature(&features, ARM_FEATURE_THUMB2EE);
129     }
130     if (extract32(ahcf->isar.mvfr1, 12, 4) == 1) {
131         set_feature(&features, ARM_FEATURE_NEON);
132     }
133     if (extract32(ahcf->isar.mvfr1, 28, 4) == 1) {
134         /* FMAC support implies VFPv4 */
135         set_feature(&features, ARM_FEATURE_VFP4);
136     }
137 
138     ahcf->features = features;
139 
140     return true;
141 }
142 
kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)143 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
144 {
145     /* Return true if the regidx is a register we should synchronize
146      * via the cpreg_tuples array (ie is not a core reg we sync by
147      * hand in kvm_arch_get/put_registers())
148      */
149     switch (regidx & KVM_REG_ARM_COPROC_MASK) {
150     case KVM_REG_ARM_CORE:
151     case KVM_REG_ARM_VFP:
152         return false;
153     default:
154         return true;
155     }
156 }
157 
158 typedef struct CPRegStateLevel {
159     uint64_t regidx;
160     int level;
161 } CPRegStateLevel;
162 
163 /* All coprocessor registers not listed in the following table are assumed to
164  * be of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
165  * often, you must add it to this table with a state of either
166  * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
167  */
168 static const CPRegStateLevel non_runtime_cpregs[] = {
169     { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
170 };
171 
kvm_arm_cpreg_level(uint64_t regidx)172 int kvm_arm_cpreg_level(uint64_t regidx)
173 {
174     int i;
175 
176     for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
177         const CPRegStateLevel *l = &non_runtime_cpregs[i];
178         if (l->regidx == regidx) {
179             return l->level;
180         }
181     }
182 
183     return KVM_PUT_RUNTIME_STATE;
184 }
185 
186 #define ARM_CPU_ID_MPIDR       0, 0, 0, 5
187 
kvm_arch_init_vcpu(CPUState * cs)188 int kvm_arch_init_vcpu(CPUState *cs)
189 {
190     int ret;
191     uint64_t v;
192     uint32_t mpidr;
193     struct kvm_one_reg r;
194     ARMCPU *cpu = ARM_CPU(cs);
195 
196     if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE) {
197         fprintf(stderr, "KVM is not supported for this guest CPU type\n");
198         return -EINVAL;
199     }
200 
201     /* Determine init features for this CPU */
202     memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
203     if (cpu->start_powered_off) {
204         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
205     }
206     if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
207         cpu->psci_version = 2;
208         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
209     }
210 
211     /* Do KVM_ARM_VCPU_INIT ioctl */
212     ret = kvm_arm_vcpu_init(cs);
213     if (ret) {
214         return ret;
215     }
216 
217     /* Query the kernel to make sure it supports 32 VFP
218      * registers: QEMU's "cortex-a15" CPU is always a
219      * VFP-D32 core. The simplest way to do this is just
220      * to attempt to read register d31.
221      */
222     r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31;
223     r.addr = (uintptr_t)(&v);
224     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
225     if (ret == -ENOENT) {
226         return -EINVAL;
227     }
228 
229     /*
230      * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
231      * Currently KVM has its own idea about MPIDR assignment, so we
232      * override our defaults with what we get from KVM.
233      */
234     ret = kvm_get_one_reg(cs, ARM_CP15_REG32(ARM_CPU_ID_MPIDR), &mpidr);
235     if (ret) {
236         return ret;
237     }
238     cpu->mp_affinity = mpidr & ARM32_AFFINITY_MASK;
239 
240     /* Check whether userspace can specify guest syndrome value */
241     kvm_arm_init_serror_injection(cs);
242 
243     return kvm_arm_init_cpreg_list(cpu);
244 }
245 
kvm_arch_destroy_vcpu(CPUState * cs)246 int kvm_arch_destroy_vcpu(CPUState *cs)
247 {
248 	return 0;
249 }
250 
251 typedef struct Reg {
252     uint64_t id;
253     int offset;
254 } Reg;
255 
256 #define COREREG(KERNELNAME, QEMUFIELD)                       \
257     {                                                        \
258         KVM_REG_ARM | KVM_REG_SIZE_U32 |                     \
259         KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
260         offsetof(CPUARMState, QEMUFIELD)                     \
261     }
262 
263 #define VFPSYSREG(R)                                       \
264     {                                                      \
265         KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
266         KVM_REG_ARM_VFP_##R,                               \
267         offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R])      \
268     }
269 
270 /* Like COREREG, but handle fields which are in a uint64_t in CPUARMState. */
271 #define COREREG64(KERNELNAME, QEMUFIELD)                     \
272     {                                                        \
273         KVM_REG_ARM | KVM_REG_SIZE_U32 |                     \
274         KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
275         offsetoflow32(CPUARMState, QEMUFIELD)                \
276     }
277 
278 static const Reg regs[] = {
279     /* R0_usr .. R14_usr */
280     COREREG(usr_regs.uregs[0], regs[0]),
281     COREREG(usr_regs.uregs[1], regs[1]),
282     COREREG(usr_regs.uregs[2], regs[2]),
283     COREREG(usr_regs.uregs[3], regs[3]),
284     COREREG(usr_regs.uregs[4], regs[4]),
285     COREREG(usr_regs.uregs[5], regs[5]),
286     COREREG(usr_regs.uregs[6], regs[6]),
287     COREREG(usr_regs.uregs[7], regs[7]),
288     COREREG(usr_regs.uregs[8], usr_regs[0]),
289     COREREG(usr_regs.uregs[9], usr_regs[1]),
290     COREREG(usr_regs.uregs[10], usr_regs[2]),
291     COREREG(usr_regs.uregs[11], usr_regs[3]),
292     COREREG(usr_regs.uregs[12], usr_regs[4]),
293     COREREG(usr_regs.uregs[13], banked_r13[BANK_USRSYS]),
294     COREREG(usr_regs.uregs[14], banked_r14[BANK_USRSYS]),
295     /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
296     COREREG(svc_regs[0], banked_r13[BANK_SVC]),
297     COREREG(svc_regs[1], banked_r14[BANK_SVC]),
298     COREREG64(svc_regs[2], banked_spsr[BANK_SVC]),
299     COREREG(abt_regs[0], banked_r13[BANK_ABT]),
300     COREREG(abt_regs[1], banked_r14[BANK_ABT]),
301     COREREG64(abt_regs[2], banked_spsr[BANK_ABT]),
302     COREREG(und_regs[0], banked_r13[BANK_UND]),
303     COREREG(und_regs[1], banked_r14[BANK_UND]),
304     COREREG64(und_regs[2], banked_spsr[BANK_UND]),
305     COREREG(irq_regs[0], banked_r13[BANK_IRQ]),
306     COREREG(irq_regs[1], banked_r14[BANK_IRQ]),
307     COREREG64(irq_regs[2], banked_spsr[BANK_IRQ]),
308     /* R8_fiq .. R14_fiq and SPSR_fiq */
309     COREREG(fiq_regs[0], fiq_regs[0]),
310     COREREG(fiq_regs[1], fiq_regs[1]),
311     COREREG(fiq_regs[2], fiq_regs[2]),
312     COREREG(fiq_regs[3], fiq_regs[3]),
313     COREREG(fiq_regs[4], fiq_regs[4]),
314     COREREG(fiq_regs[5], banked_r13[BANK_FIQ]),
315     COREREG(fiq_regs[6], banked_r14[BANK_FIQ]),
316     COREREG64(fiq_regs[7], banked_spsr[BANK_FIQ]),
317     /* R15 */
318     COREREG(usr_regs.uregs[15], regs[15]),
319     /* VFP system registers */
320     VFPSYSREG(FPSID),
321     VFPSYSREG(MVFR1),
322     VFPSYSREG(MVFR0),
323     VFPSYSREG(FPEXC),
324     VFPSYSREG(FPINST),
325     VFPSYSREG(FPINST2),
326 };
327 
kvm_arch_put_registers(CPUState * cs,int level)328 int kvm_arch_put_registers(CPUState *cs, int level)
329 {
330     ARMCPU *cpu = ARM_CPU(cs);
331     CPUARMState *env = &cpu->env;
332     struct kvm_one_reg r;
333     int mode, bn;
334     int ret, i;
335     uint32_t cpsr, fpscr;
336 
337     /* Make sure the banked regs are properly set */
338     mode = env->uncached_cpsr & CPSR_M;
339     bn = bank_number(mode);
340     if (mode == ARM_CPU_MODE_FIQ) {
341         memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
342     } else {
343         memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
344     }
345     env->banked_r13[bn] = env->regs[13];
346     env->banked_spsr[bn] = env->spsr;
347     env->banked_r14[r14_bank_number(mode)] = env->regs[14];
348 
349     /* Now we can safely copy stuff down to the kernel */
350     for (i = 0; i < ARRAY_SIZE(regs); i++) {
351         r.id = regs[i].id;
352         r.addr = (uintptr_t)(env) + regs[i].offset;
353         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
354         if (ret) {
355             return ret;
356         }
357     }
358 
359     /* Special cases which aren't a single CPUARMState field */
360     cpsr = cpsr_read(env);
361     r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
362         KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
363     r.addr = (uintptr_t)(&cpsr);
364     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
365     if (ret) {
366         return ret;
367     }
368 
369     /* VFP registers */
370     r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
371     for (i = 0; i < 32; i++) {
372         r.addr = (uintptr_t)aa32_vfp_dreg(env, i);
373         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
374         if (ret) {
375             return ret;
376         }
377         r.id++;
378     }
379 
380     r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
381         KVM_REG_ARM_VFP_FPSCR;
382     fpscr = vfp_get_fpscr(env);
383     r.addr = (uintptr_t)&fpscr;
384     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
385     if (ret) {
386         return ret;
387     }
388 
389     ret = kvm_put_vcpu_events(cpu);
390     if (ret) {
391         return ret;
392     }
393 
394     write_cpustate_to_list(cpu, true);
395 
396     if (!write_list_to_kvmstate(cpu, level)) {
397         return EINVAL;
398     }
399 
400     kvm_arm_sync_mpstate_to_kvm(cpu);
401 
402     return ret;
403 }
404 
kvm_arch_get_registers(CPUState * cs)405 int kvm_arch_get_registers(CPUState *cs)
406 {
407     ARMCPU *cpu = ARM_CPU(cs);
408     CPUARMState *env = &cpu->env;
409     struct kvm_one_reg r;
410     int mode, bn;
411     int ret, i;
412     uint32_t cpsr, fpscr;
413 
414     for (i = 0; i < ARRAY_SIZE(regs); i++) {
415         r.id = regs[i].id;
416         r.addr = (uintptr_t)(env) + regs[i].offset;
417         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
418         if (ret) {
419             return ret;
420         }
421     }
422 
423     /* Special cases which aren't a single CPUARMState field */
424     r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
425         KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
426     r.addr = (uintptr_t)(&cpsr);
427     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
428     if (ret) {
429         return ret;
430     }
431     cpsr_write(env, cpsr, 0xffffffff, CPSRWriteRaw);
432 
433     /* Make sure the current mode regs are properly set */
434     mode = env->uncached_cpsr & CPSR_M;
435     bn = bank_number(mode);
436     if (mode == ARM_CPU_MODE_FIQ) {
437         memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
438     } else {
439         memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
440     }
441     env->regs[13] = env->banked_r13[bn];
442     env->spsr = env->banked_spsr[bn];
443     env->regs[14] = env->banked_r14[r14_bank_number(mode)];
444 
445     /* VFP registers */
446     r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
447     for (i = 0; i < 32; i++) {
448         r.addr = (uintptr_t)aa32_vfp_dreg(env, i);
449         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
450         if (ret) {
451             return ret;
452         }
453         r.id++;
454     }
455 
456     r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
457         KVM_REG_ARM_VFP_FPSCR;
458     r.addr = (uintptr_t)&fpscr;
459     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
460     if (ret) {
461         return ret;
462     }
463     vfp_set_fpscr(env, fpscr);
464 
465     ret = kvm_get_vcpu_events(cpu);
466     if (ret) {
467         return ret;
468     }
469 
470     if (!write_kvmstate_to_list(cpu)) {
471         return EINVAL;
472     }
473     /* Note that it's OK to have registers which aren't in CPUState,
474      * so we can ignore a failure return here.
475      */
476     write_list_to_cpustate(cpu);
477 
478     kvm_arm_sync_mpstate_to_qemu(cpu);
479 
480     return 0;
481 }
482 
kvm_arch_insert_sw_breakpoint(CPUState * cs,struct kvm_sw_breakpoint * bp)483 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
484 {
485     qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
486     return -EINVAL;
487 }
488 
kvm_arch_remove_sw_breakpoint(CPUState * cs,struct kvm_sw_breakpoint * bp)489 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
490 {
491     qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
492     return -EINVAL;
493 }
494 
kvm_arm_handle_debug(CPUState * cs,struct kvm_debug_exit_arch * debug_exit)495 bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
496 {
497     qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
498     return false;
499 }
500 
kvm_arch_insert_hw_breakpoint(target_ulong addr,target_ulong len,int type)501 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
502                                   target_ulong len, int type)
503 {
504     qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
505     return -EINVAL;
506 }
507 
kvm_arch_remove_hw_breakpoint(target_ulong addr,target_ulong len,int type)508 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
509                                   target_ulong len, int type)
510 {
511     qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
512     return -EINVAL;
513 }
514 
kvm_arch_remove_all_hw_breakpoints(void)515 void kvm_arch_remove_all_hw_breakpoints(void)
516 {
517     qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
518 }
519 
kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch * ptr)520 void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
521 {
522     qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
523 }
524 
kvm_arm_hw_debug_active(CPUState * cs)525 bool kvm_arm_hw_debug_active(CPUState *cs)
526 {
527     return false;
528 }
529 
kvm_arm_pmu_set_irq(CPUState * cs,int irq)530 void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
531 {
532     qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
533 }
534 
kvm_arm_pmu_init(CPUState * cs)535 void kvm_arm_pmu_init(CPUState *cs)
536 {
537     qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
538 }
539