1 //===-- AArch64BaseInfo.h - Top level definitions for AArch64- --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains small standalone helper functions and enum definitions for
11 // the AArch64 target useful for the compiler back-end and the MC libraries.
12 // As such, it deliberately does not include references to LLVM core
13 // code gen types, passes, etc..
14 //
15 //===----------------------------------------------------------------------===//
16 
17 /* Capstone Disassembly Engine */
18 /* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013-2019 */
19 
20 #ifndef CS_LLVM_AARCH64_BASEINFO_H
21 #define CS_LLVM_AARCH64_BASEINFO_H
22 
23 #include <ctype.h>
24 #include <string.h>
25 #include "AArch64Mapping.h"
26 
27 #ifndef __cplusplus
28 #if defined (WIN32) || defined (WIN64) || defined (_WIN32) || defined (_WIN64)
29 #define inline /* inline */
30 #endif
31 #endif
32 
getWRegFromXReg(unsigned Reg)33 inline static unsigned getWRegFromXReg(unsigned Reg)
34 {
35 	switch (Reg) {
36 		default: break;
37 		case ARM64_REG_X0: return ARM64_REG_W0;
38 		case ARM64_REG_X1: return ARM64_REG_W1;
39 		case ARM64_REG_X2: return ARM64_REG_W2;
40 		case ARM64_REG_X3: return ARM64_REG_W3;
41 		case ARM64_REG_X4: return ARM64_REG_W4;
42 		case ARM64_REG_X5: return ARM64_REG_W5;
43 		case ARM64_REG_X6: return ARM64_REG_W6;
44 		case ARM64_REG_X7: return ARM64_REG_W7;
45 		case ARM64_REG_X8: return ARM64_REG_W8;
46 		case ARM64_REG_X9: return ARM64_REG_W9;
47 		case ARM64_REG_X10: return ARM64_REG_W10;
48 		case ARM64_REG_X11: return ARM64_REG_W11;
49 		case ARM64_REG_X12: return ARM64_REG_W12;
50 		case ARM64_REG_X13: return ARM64_REG_W13;
51 		case ARM64_REG_X14: return ARM64_REG_W14;
52 		case ARM64_REG_X15: return ARM64_REG_W15;
53 		case ARM64_REG_X16: return ARM64_REG_W16;
54 		case ARM64_REG_X17: return ARM64_REG_W17;
55 		case ARM64_REG_X18: return ARM64_REG_W18;
56 		case ARM64_REG_X19: return ARM64_REG_W19;
57 		case ARM64_REG_X20: return ARM64_REG_W20;
58 		case ARM64_REG_X21: return ARM64_REG_W21;
59 		case ARM64_REG_X22: return ARM64_REG_W22;
60 		case ARM64_REG_X23: return ARM64_REG_W23;
61 		case ARM64_REG_X24: return ARM64_REG_W24;
62 		case ARM64_REG_X25: return ARM64_REG_W25;
63 		case ARM64_REG_X26: return ARM64_REG_W26;
64 		case ARM64_REG_X27: return ARM64_REG_W27;
65 		case ARM64_REG_X28: return ARM64_REG_W28;
66 		case ARM64_REG_FP: return ARM64_REG_W29;
67 		case ARM64_REG_LR: return ARM64_REG_W30;
68 		case ARM64_REG_SP: return ARM64_REG_WSP;
69 		case ARM64_REG_XZR: return ARM64_REG_WZR;
70 	}
71 
72 	// For anything else, return it unchanged.
73 	return Reg;
74 }
75 
getXRegFromWReg(unsigned Reg)76 inline static unsigned getXRegFromWReg(unsigned Reg)
77 {
78 	switch (Reg) {
79 		case ARM64_REG_W0: return ARM64_REG_X0;
80 		case ARM64_REG_W1: return ARM64_REG_X1;
81 		case ARM64_REG_W2: return ARM64_REG_X2;
82 		case ARM64_REG_W3: return ARM64_REG_X3;
83 		case ARM64_REG_W4: return ARM64_REG_X4;
84 		case ARM64_REG_W5: return ARM64_REG_X5;
85 		case ARM64_REG_W6: return ARM64_REG_X6;
86 		case ARM64_REG_W7: return ARM64_REG_X7;
87 		case ARM64_REG_W8: return ARM64_REG_X8;
88 		case ARM64_REG_W9: return ARM64_REG_X9;
89 		case ARM64_REG_W10: return ARM64_REG_X10;
90 		case ARM64_REG_W11: return ARM64_REG_X11;
91 		case ARM64_REG_W12: return ARM64_REG_X12;
92 		case ARM64_REG_W13: return ARM64_REG_X13;
93 		case ARM64_REG_W14: return ARM64_REG_X14;
94 		case ARM64_REG_W15: return ARM64_REG_X15;
95 		case ARM64_REG_W16: return ARM64_REG_X16;
96 		case ARM64_REG_W17: return ARM64_REG_X17;
97 		case ARM64_REG_W18: return ARM64_REG_X18;
98 		case ARM64_REG_W19: return ARM64_REG_X19;
99 		case ARM64_REG_W20: return ARM64_REG_X20;
100 		case ARM64_REG_W21: return ARM64_REG_X21;
101 		case ARM64_REG_W22: return ARM64_REG_X22;
102 		case ARM64_REG_W23: return ARM64_REG_X23;
103 		case ARM64_REG_W24: return ARM64_REG_X24;
104 		case ARM64_REG_W25: return ARM64_REG_X25;
105 		case ARM64_REG_W26: return ARM64_REG_X26;
106 		case ARM64_REG_W27: return ARM64_REG_X27;
107 		case ARM64_REG_W28: return ARM64_REG_X28;
108 		case ARM64_REG_W29: return ARM64_REG_FP;
109 		case ARM64_REG_W30: return ARM64_REG_LR;
110 		case ARM64_REG_WSP: return ARM64_REG_SP;
111 		case ARM64_REG_WZR: return ARM64_REG_XZR;
112 	}
113 
114 	// For anything else, return it unchanged.
115 	return Reg;
116 }
117 
getBRegFromDReg(unsigned Reg)118 inline static unsigned getBRegFromDReg(unsigned Reg)
119 {
120 	switch (Reg) {
121 		case ARM64_REG_D0:  return ARM64_REG_B0;
122 		case ARM64_REG_D1:  return ARM64_REG_B1;
123 		case ARM64_REG_D2:  return ARM64_REG_B2;
124 		case ARM64_REG_D3:  return ARM64_REG_B3;
125 		case ARM64_REG_D4:  return ARM64_REG_B4;
126 		case ARM64_REG_D5:  return ARM64_REG_B5;
127 		case ARM64_REG_D6:  return ARM64_REG_B6;
128 		case ARM64_REG_D7:  return ARM64_REG_B7;
129 		case ARM64_REG_D8:  return ARM64_REG_B8;
130 		case ARM64_REG_D9:  return ARM64_REG_B9;
131 		case ARM64_REG_D10: return ARM64_REG_B10;
132 		case ARM64_REG_D11: return ARM64_REG_B11;
133 		case ARM64_REG_D12: return ARM64_REG_B12;
134 		case ARM64_REG_D13: return ARM64_REG_B13;
135 		case ARM64_REG_D14: return ARM64_REG_B14;
136 		case ARM64_REG_D15: return ARM64_REG_B15;
137 		case ARM64_REG_D16: return ARM64_REG_B16;
138 		case ARM64_REG_D17: return ARM64_REG_B17;
139 		case ARM64_REG_D18: return ARM64_REG_B18;
140 		case ARM64_REG_D19: return ARM64_REG_B19;
141 		case ARM64_REG_D20: return ARM64_REG_B20;
142 		case ARM64_REG_D21: return ARM64_REG_B21;
143 		case ARM64_REG_D22: return ARM64_REG_B22;
144 		case ARM64_REG_D23: return ARM64_REG_B23;
145 		case ARM64_REG_D24: return ARM64_REG_B24;
146 		case ARM64_REG_D25: return ARM64_REG_B25;
147 		case ARM64_REG_D26: return ARM64_REG_B26;
148 		case ARM64_REG_D27: return ARM64_REG_B27;
149 		case ARM64_REG_D28: return ARM64_REG_B28;
150 		case ARM64_REG_D29: return ARM64_REG_B29;
151 		case ARM64_REG_D30: return ARM64_REG_B30;
152 		case ARM64_REG_D31: return ARM64_REG_B31;
153 	}
154 
155 	// For anything else, return it unchanged.
156 	return Reg;
157 }
158 
getDRegFromBReg(unsigned Reg)159 inline static unsigned getDRegFromBReg(unsigned Reg)
160 {
161 	switch (Reg) {
162 		case ARM64_REG_B0:  return ARM64_REG_D0;
163 		case ARM64_REG_B1:  return ARM64_REG_D1;
164 		case ARM64_REG_B2:  return ARM64_REG_D2;
165 		case ARM64_REG_B3:  return ARM64_REG_D3;
166 		case ARM64_REG_B4:  return ARM64_REG_D4;
167 		case ARM64_REG_B5:  return ARM64_REG_D5;
168 		case ARM64_REG_B6:  return ARM64_REG_D6;
169 		case ARM64_REG_B7:  return ARM64_REG_D7;
170 		case ARM64_REG_B8:  return ARM64_REG_D8;
171 		case ARM64_REG_B9:  return ARM64_REG_D9;
172 		case ARM64_REG_B10: return ARM64_REG_D10;
173 		case ARM64_REG_B11: return ARM64_REG_D11;
174 		case ARM64_REG_B12: return ARM64_REG_D12;
175 		case ARM64_REG_B13: return ARM64_REG_D13;
176 		case ARM64_REG_B14: return ARM64_REG_D14;
177 		case ARM64_REG_B15: return ARM64_REG_D15;
178 		case ARM64_REG_B16: return ARM64_REG_D16;
179 		case ARM64_REG_B17: return ARM64_REG_D17;
180 		case ARM64_REG_B18: return ARM64_REG_D18;
181 		case ARM64_REG_B19: return ARM64_REG_D19;
182 		case ARM64_REG_B20: return ARM64_REG_D20;
183 		case ARM64_REG_B21: return ARM64_REG_D21;
184 		case ARM64_REG_B22: return ARM64_REG_D22;
185 		case ARM64_REG_B23: return ARM64_REG_D23;
186 		case ARM64_REG_B24: return ARM64_REG_D24;
187 		case ARM64_REG_B25: return ARM64_REG_D25;
188 		case ARM64_REG_B26: return ARM64_REG_D26;
189 		case ARM64_REG_B27: return ARM64_REG_D27;
190 		case ARM64_REG_B28: return ARM64_REG_D28;
191 		case ARM64_REG_B29: return ARM64_REG_D29;
192 		case ARM64_REG_B30: return ARM64_REG_D30;
193 		case ARM64_REG_B31: return ARM64_REG_D31;
194 	}
195 
196 	// For anything else, return it unchanged.
197 	return Reg;
198 }
199 
200 // // Enums corresponding to AArch64 condition codes
201 // The CondCodes constants map directly to the 4-bit encoding of the
202 // condition field for predicated instructions.
203 typedef enum AArch64CC_CondCode { // Meaning (integer)     Meaning (floating-point)
204 	AArch64CC_EQ = 0x0,      // Equal                      Equal
205 	AArch64CC_NE = 0x1,      // Not equal                  Not equal, or unordered
206 	AArch64CC_HS = 0x2,      // Unsigned higher or same    >, ==, or unordered
207 	AArch64CC_LO = 0x3,      // Unsigned lower             Less than
208 	AArch64CC_MI = 0x4,      // Minus, negative            Less than
209 	AArch64CC_PL = 0x5,      // Plus, positive or zero     >, ==, or unordered
210 	AArch64CC_VS = 0x6,      // Overflow                   Unordered
211 	AArch64CC_VC = 0x7,      // No overflow                Not unordered
212 	AArch64CC_HI = 0x8,      // Unsigned higher            Greater than, or unordered
213 	AArch64CC_LS = 0x9,      // Unsigned lower or same     Less than or equal
214 	AArch64CC_GE = 0xa,      // Greater than or equal      Greater than or equal
215 	AArch64CC_LT = 0xb,      // Less than                  Less than, or unordered
216 	AArch64CC_GT = 0xc,      // Greater than               Greater than
217 	AArch64CC_LE = 0xd,      // Less than or equal         <, ==, or unordered
218 	AArch64CC_AL = 0xe,      // Always (unconditional)     Always (unconditional)
219 	AArch64CC_NV = 0xf,      // Always (unconditional)     Always (unconditional)
220 	// Note the NV exists purely to disassemble 0b1111. Execution is "always".
221 	AArch64CC_Invalid
222 } AArch64CC_CondCode;
223 
getInvertedCondCode(AArch64CC_CondCode Code)224 inline static AArch64CC_CondCode getInvertedCondCode(AArch64CC_CondCode Code)
225 {
226 	// To reverse a condition it's necessary to only invert the low bit:
227 	return (AArch64CC_CondCode)((unsigned)Code ^ 0x1);
228 }
229 
getCondCodeName(AArch64CC_CondCode CC)230 inline static const char *getCondCodeName(AArch64CC_CondCode CC)
231 {
232 	switch (CC) {
233 		default: return NULL;	// never reach
234 		case AArch64CC_EQ:  return "eq";
235 		case AArch64CC_NE:  return "ne";
236 		case AArch64CC_HS:  return "hs";
237 		case AArch64CC_LO:  return "lo";
238 		case AArch64CC_MI:  return "mi";
239 		case AArch64CC_PL:  return "pl";
240 		case AArch64CC_VS:  return "vs";
241 		case AArch64CC_VC:  return "vc";
242 		case AArch64CC_HI:  return "hi";
243 		case AArch64CC_LS:  return "ls";
244 		case AArch64CC_GE:  return "ge";
245 		case AArch64CC_LT:  return "lt";
246 		case AArch64CC_GT:  return "gt";
247 		case AArch64CC_LE:  return "le";
248 		case AArch64CC_AL:  return "al";
249 		case AArch64CC_NV:  return "nv";
250 	}
251 }
252 
253 /// Given a condition code, return NZCV flags that would satisfy that condition.
254 /// The flag bits are in the format expected by the ccmp instructions.
255 /// Note that many different flag settings can satisfy a given condition code,
256 /// this function just returns one of them.
getNZCVToSatisfyCondCode(AArch64CC_CondCode Code)257 inline static unsigned getNZCVToSatisfyCondCode(AArch64CC_CondCode Code)
258 {
259 	// NZCV flags encoded as expected by ccmp instructions, ARMv8 ISA 5.5.7.
260 	enum { N = 8, Z = 4, C = 2, V = 1 };
261 	switch (Code) {
262 		default: // llvm_unreachable("Unknown condition code");
263 		case AArch64CC_EQ: return Z; // Z == 1
264 		case AArch64CC_NE: return 0; // Z == 0
265 		case AArch64CC_HS: return C; // C == 1
266 		case AArch64CC_LO: return 0; // C == 0
267 		case AArch64CC_MI: return N; // N == 1
268 		case AArch64CC_PL: return 0; // N == 0
269 		case AArch64CC_VS: return V; // V == 1
270 		case AArch64CC_VC: return 0; // V == 0
271 		case AArch64CC_HI: return C; // C == 1 && Z == 0
272 		case AArch64CC_LS: return 0; // C == 0 || Z == 1
273 		case AArch64CC_GE: return 0; // N == V
274 		case AArch64CC_LT: return N; // N != V
275 		case AArch64CC_GT: return 0; // Z == 0 && N == V
276 		case AArch64CC_LE: return Z; // Z == 1 || N != V
277 	}
278 }
279 
280 /// Instances of this class can perform bidirectional mapping from random
281 /// identifier strings to operand encodings. For example "MSR" takes a named
282 /// system-register which must be encoded somehow and decoded for printing. This
283 /// central location means that the information for those transformations is not
284 /// duplicated and remains in sync.
285 ///
286 /// FIXME: currently the algorithm is a completely unoptimised linear
287 /// search. Obviously this could be improved, but we would probably want to work
288 /// out just how often these instructions are emitted before working on it. It
289 /// might even be optimal to just reorder the tables for the common instructions
290 /// rather than changing the algorithm.
291 typedef struct A64NamedImmMapper_Mapping {
292 	const char *Name;
293 	uint32_t Value;
294 } A64NamedImmMapper_Mapping;
295 
296 typedef struct A64NamedImmMapper {
297 	const A64NamedImmMapper_Mapping *Pairs;
298 	size_t NumPairs;
299 	uint32_t TooBigImm;
300 } A64NamedImmMapper;
301 
302 typedef struct A64SysRegMapper {
303 	const A64NamedImmMapper_Mapping *SysRegPairs;
304 	const A64NamedImmMapper_Mapping *InstPairs;
305 	size_t NumInstPairs;
306 } A64SysRegMapper;
307 
308 typedef enum A64SE_ShiftExtSpecifiers {
309 	A64SE_Invalid = -1,
310 	A64SE_LSL,
311 	A64SE_MSL,
312 	A64SE_LSR,
313 	A64SE_ASR,
314 	A64SE_ROR,
315 
316 	A64SE_UXTB,
317 	A64SE_UXTH,
318 	A64SE_UXTW,
319 	A64SE_UXTX,
320 
321 	A64SE_SXTB,
322 	A64SE_SXTH,
323 	A64SE_SXTW,
324 	A64SE_SXTX
325 } A64SE_ShiftExtSpecifiers;
326 
327 typedef enum A64Layout_VectorLayout {
328 	A64Layout_Invalid = -1,
329 	A64Layout_VL_8B,
330 	A64Layout_VL_4H,
331 	A64Layout_VL_2S,
332 	A64Layout_VL_1D,
333 
334 	A64Layout_VL_16B,
335 	A64Layout_VL_8H,
336 	A64Layout_VL_4S,
337 	A64Layout_VL_2D,
338 
339 	// Bare layout for the 128-bit vector
340 	// (only show ".b", ".h", ".s", ".d" without vector number)
341 	A64Layout_VL_B,
342 	A64Layout_VL_H,
343 	A64Layout_VL_S,
344 	A64Layout_VL_D
345 } A64Layout_VectorLayout;
346 
AArch64VectorLayoutToString(A64Layout_VectorLayout Layout)347 inline static const char *AArch64VectorLayoutToString(A64Layout_VectorLayout Layout)
348 {
349 	switch (Layout) {
350 		default: return NULL;	// never reach
351 		case A64Layout_VL_8B:  return ".8b";
352 		case A64Layout_VL_4H:  return ".4h";
353 		case A64Layout_VL_2S:  return ".2s";
354 		case A64Layout_VL_1D:  return ".1d";
355 		case A64Layout_VL_16B:  return ".16b";
356 		case A64Layout_VL_8H:  return ".8h";
357 		case A64Layout_VL_4S:  return ".4s";
358 		case A64Layout_VL_2D:  return ".2d";
359 		case A64Layout_VL_B:  return ".b";
360 		case A64Layout_VL_H:  return ".h";
361 		case A64Layout_VL_S:  return ".s";
362 		case A64Layout_VL_D:  return ".d";
363 	}
364 }
365 
AArch64StringToVectorLayout(char * LayoutStr)366 inline static A64Layout_VectorLayout AArch64StringToVectorLayout(char *LayoutStr)
367 {
368 	if (!strcmp(LayoutStr, ".8b"))
369 		return A64Layout_VL_8B;
370 
371 	if (!strcmp(LayoutStr, ".4h"))
372 		return A64Layout_VL_4H;
373 
374 	if (!strcmp(LayoutStr, ".2s"))
375 		return A64Layout_VL_2S;
376 
377 	if (!strcmp(LayoutStr, ".1d"))
378 		return A64Layout_VL_1D;
379 
380 	if (!strcmp(LayoutStr, ".16b"))
381 		return A64Layout_VL_16B;
382 
383 	if (!strcmp(LayoutStr, ".8h"))
384 		return A64Layout_VL_8H;
385 
386 	if (!strcmp(LayoutStr, ".4s"))
387 		return A64Layout_VL_4S;
388 
389 	if (!strcmp(LayoutStr, ".2d"))
390 		return A64Layout_VL_2D;
391 
392 	if (!strcmp(LayoutStr, ".b"))
393 		return A64Layout_VL_B;
394 
395 	if (!strcmp(LayoutStr, ".s"))
396 		return A64Layout_VL_S;
397 
398 	if (!strcmp(LayoutStr, ".d"))
399 		return A64Layout_VL_D;
400 
401 	return A64Layout_Invalid;
402 }
403 
404 /// Target Operand Flag enum.
405 enum TOF {
406 	//===------------------------------------------------------------------===//
407 	// AArch64 Specific MachineOperand flags.
408 
409 	MO_NO_FLAG,
410 
411 	MO_FRAGMENT = 0xf,
412 
413 	/// MO_PAGE - A symbol operand with this flag represents the pc-relative
414 	/// offset of the 4K page containing the symbol.  This is used with the
415 	/// ADRP instruction.
416 	MO_PAGE = 1,
417 
418 	/// MO_PAGEOFF - A symbol operand with this flag represents the offset of
419 	/// that symbol within a 4K page.  This offset is added to the page address
420 	/// to produce the complete address.
421 	MO_PAGEOFF = 2,
422 
423 	/// MO_G3 - A symbol operand with this flag (granule 3) represents the high
424 	/// 16-bits of a 64-bit address, used in a MOVZ or MOVK instruction
425 	MO_G3 = 3,
426 
427 	/// MO_G2 - A symbol operand with this flag (granule 2) represents the bits
428 	/// 32-47 of a 64-bit address, used in a MOVZ or MOVK instruction
429 	MO_G2 = 4,
430 
431 	/// MO_G1 - A symbol operand with this flag (granule 1) represents the bits
432 	/// 16-31 of a 64-bit address, used in a MOVZ or MOVK instruction
433 	MO_G1 = 5,
434 
435 	/// MO_G0 - A symbol operand with this flag (granule 0) represents the bits
436 	/// 0-15 of a 64-bit address, used in a MOVZ or MOVK instruction
437 	MO_G0 = 6,
438 
439 	/// MO_HI12 - This flag indicates that a symbol operand represents the bits
440 	/// 13-24 of a 64-bit address, used in a arithmetic immediate-shifted-left-
441 	/// by-12-bits instruction.
442 	MO_HI12 = 7,
443 
444 	/// MO_GOT - This flag indicates that a symbol operand represents the
445 	/// address of the GOT entry for the symbol, rather than the address of
446 	/// the symbol itself.
447 	MO_GOT = 0x10,
448 
449 	/// MO_NC - Indicates whether the linker is expected to check the symbol
450 	/// reference for overflow. For example in an ADRP/ADD pair of relocations
451 	/// the ADRP usually does check, but not the ADD.
452 	MO_NC = 0x20,
453 
454 	/// MO_TLS - Indicates that the operand being accessed is some kind of
455 	/// thread-local symbol. On Darwin, only one type of thread-local access
456 	/// exists (pre linker-relaxation), but on ELF the TLSModel used for the
457 	/// referee will affect interpretation.
458 	MO_TLS = 0x40,
459 
460 	/// MO_DLLIMPORT - On a symbol operand, this represents that the reference
461 	/// to the symbol is for an import stub.  This is used for DLL import
462 	/// storage class indication on Windows.
463 	MO_DLLIMPORT = 0x80,
464 };
465 
466 typedef struct SysAlias {
467 	const char *Name;
468 	uint16_t Encoding;
469 } SysAlias;
470 
471 #define AT SysAlias
472 #define DB SysAlias
473 #define DC SysAlias
474 #define SVEPRFM SysAlias
475 #define PRFM SysAlias
476 #define PSB SysAlias
477 #define ISB SysAlias
478 #define TSB SysAlias
479 #define PState SysAlias
480 #define SVEPREDPAT SysAlias
481 
482 typedef struct SysAliasReg {
483 	const char *Name;
484 	uint16_t Encoding;
485 	bool NeedsReg;
486 } SysAliasReg;
487 
488 #define IC SysAliasReg
489 #define TLBI SysAliasReg
490 
491 typedef struct SysAliasSysReg {
492 	const char *Name;
493 	uint16_t Encoding;
494 	bool Readable;
495 	bool Writeable;
496 } SysAliasSysReg;
497 
498 #define SysReg SysAliasSysReg
499 
500 typedef struct ExactFPImm {
501 	const char *Name;
502 	int Enum;
503 	const char *Repr;
504 } ExactFPImm;
505 
506 const AT *lookupATByEncoding(uint16_t Encoding);
507 const DB *lookupDBByEncoding(uint16_t Encoding);
508 const DC *lookupDCByEncoding(uint16_t Encoding);
509 const IC *lookupICByEncoding(uint16_t Encoding);
510 const TLBI *lookupTLBIByEncoding(uint16_t Encoding);
511 const SVEPRFM *lookupSVEPRFMByEncoding(uint16_t Encoding);
512 const PRFM *lookupPRFMByEncoding(uint16_t Encoding);
513 const PSB *AArch64PSBHint_lookupPSBByEncoding(uint16_t Encoding);
514 const ISB *lookupISBByEncoding(uint16_t Encoding);
515 const TSB *lookupTSBByEncoding(uint16_t Encoding);
516 const SysReg *lookupSysRegByEncoding(uint16_t Encoding);
517 const PState *lookupPStateByEncoding(uint16_t Encoding);
518 const SVEPREDPAT *lookupSVEPREDPATByEncoding(uint16_t Encoding);
519 const ExactFPImm *lookupExactFPImmByEnum(uint16_t Encoding);
520 
521 // NOTE: result must be 128 bytes to contain the result
522 void AArch64SysReg_genericRegisterString(uint32_t Bits, char *result);
523 
524 #include "AArch64GenSystemOperands_enum.inc"
525 
526 #endif
527