1 /*
2  * <linux/usb/gadget.h>
3  *
4  * We call the USB code inside a Linux-based peripheral device a "gadget"
5  * driver, except for the hardware-specific bus glue.  One USB host can
6  * master many USB gadgets, but the gadgets are only slaved to one host.
7  *
8  *
9  * (C) Copyright 2002-2004 by David Brownell
10  * All Rights Reserved.
11  *
12  * This software is licensed under the GNU GPL version 2.
13  *
14  * Ported to U-Boot by: Thomas Smits <ts.smits@gmail.com> and
15  *                      Remy Bohmer <linux@bohmer.net>
16  */
17 
18 #ifndef __LINUX_USB_GADGET_H
19 #define __LINUX_USB_GADGET_H
20 
21 #include <errno.h>
22 #include <usb.h>
23 #include <linux/compat.h>
24 #include <linux/list.h>
25 
26 struct usb_ep;
27 
28 /**
29  * struct usb_request - describes one i/o request
30  * @buf: Buffer used for data.  Always provide this; some controllers
31  *	only use PIO, or don't use DMA for some endpoints.
32  * @dma: DMA address corresponding to 'buf'.  If you don't set this
33  *	field, and the usb controller needs one, it is responsible
34  *	for mapping and unmapping the buffer.
35  * @stream_id: The stream id, when USB3.0 bulk streams are being used
36  * @length: Length of that data
37  * @no_interrupt: If true, hints that no completion irq is needed.
38  *	Helpful sometimes with deep request queues that are handled
39  *	directly by DMA controllers.
40  * @zero: If true, when writing data, makes the last packet be "short"
41  *     by adding a zero length packet as needed;
42  * @short_not_ok: When reading data, makes short packets be
43  *     treated as errors (queue stops advancing till cleanup).
44  * @complete: Function called when request completes, so this request and
45  *	its buffer may be re-used.
46  *	Reads terminate with a short packet, or when the buffer fills,
47  *	whichever comes first.  When writes terminate, some data bytes
48  *	will usually still be in flight (often in a hardware fifo).
49  *	Errors (for reads or writes) stop the queue from advancing
50  *	until the completion function returns, so that any transfers
51  *	invalidated by the error may first be dequeued.
52  * @context: For use by the completion callback
53  * @list: For use by the gadget driver.
54  * @status: Reports completion code, zero or a negative errno.
55  *	Normally, faults block the transfer queue from advancing until
56  *	the completion callback returns.
57  *	Code "-ESHUTDOWN" indicates completion caused by device disconnect,
58  *	or when the driver disabled the endpoint.
59  * @actual: Reports bytes transferred to/from the buffer.  For reads (OUT
60  *	transfers) this may be less than the requested length.  If the
61  *	short_not_ok flag is set, short reads are treated as errors
62  *	even when status otherwise indicates successful completion.
63  *	Note that for writes (IN transfers) some data bytes may still
64  *	reside in a device-side FIFO when the request is reported as
65  *	complete.
66  *
67  * These are allocated/freed through the endpoint they're used with.  The
68  * hardware's driver can add extra per-request data to the memory it returns,
69  * which often avoids separate memory allocations (potential failures),
70  * later when the request is queued.
71  *
72  * Request flags affect request handling, such as whether a zero length
73  * packet is written (the "zero" flag), whether a short read should be
74  * treated as an error (blocking request queue advance, the "short_not_ok"
75  * flag), or hinting that an interrupt is not required (the "no_interrupt"
76  * flag, for use with deep request queues).
77  *
78  * Bulk endpoints can use any size buffers, and can also be used for interrupt
79  * transfers. interrupt-only endpoints can be much less functional.
80  *
81  * NOTE:  this is analagous to 'struct urb' on the host side, except that
82  * it's thinner and promotes more pre-allocation.
83  */
84 
85 struct usb_request {
86 	void			*buf;
87 	unsigned		length;
88 	dma_addr_t		dma;
89 
90 	unsigned		stream_id:16;
91 	unsigned		no_interrupt:1;
92 	unsigned		zero:1;
93 	unsigned		short_not_ok:1;
94 
95 	void			(*complete)(struct usb_ep *ep,
96 					struct usb_request *req);
97 	void			*context;
98 	struct list_head	list;
99 
100 	int			status;
101 	unsigned		actual;
102 };
103 
104 /*-------------------------------------------------------------------------*/
105 
106 /* endpoint-specific parts of the api to the usb controller hardware.
107  * unlike the urb model, (de)multiplexing layers are not required.
108  * (so this api could slash overhead if used on the host side...)
109  *
110  * note that device side usb controllers commonly differ in how many
111  * endpoints they support, as well as their capabilities.
112  */
113 struct usb_ep_ops {
114 	int (*enable) (struct usb_ep *ep,
115 		const struct usb_endpoint_descriptor *desc);
116 	int (*disable) (struct usb_ep *ep);
117 
118 	struct usb_request *(*alloc_request) (struct usb_ep *ep,
119 		gfp_t gfp_flags);
120 	void (*free_request) (struct usb_ep *ep, struct usb_request *req);
121 
122 	int (*queue) (struct usb_ep *ep, struct usb_request *req,
123 		gfp_t gfp_flags);
124 	int (*dequeue) (struct usb_ep *ep, struct usb_request *req);
125 
126 	int (*set_halt) (struct usb_ep *ep, int value);
127 	int (*set_wedge)(struct usb_ep *ep);
128 	int (*fifo_status) (struct usb_ep *ep);
129 	void (*fifo_flush) (struct usb_ep *ep);
130 };
131 
132 /**
133  * struct usb_ep - device side representation of USB endpoint
134  * @name:identifier for the endpoint, such as "ep-a" or "ep9in-bulk"
135  * @ops: Function pointers used to access hardware-specific operations.
136  * @ep_list:the gadget's ep_list holds all of its endpoints
137  * @maxpacket:The maximum packet size used on this endpoint.  The initial
138  *	value can sometimes be reduced (hardware allowing), according to
139  *      the endpoint descriptor used to configure the endpoint.
140  * @maxpacket_limit:The maximum packet size value which can be handled by this
141  *	endpoint. It's set once by UDC driver when endpoint is initialized, and
142  *	should not be changed. Should not be confused with maxpacket.
143  * @max_streams: The maximum number of streams supported
144  * 	by this EP (0 - 16, actual number is 2^n)
145  * @maxburst: the maximum number of bursts supported by this EP (for usb3)
146  * @driver_data:for use by the gadget driver.  all other fields are
147  *	read-only to gadget drivers.
148  * @desc: endpoint descriptor.  This pointer is set before the endpoint is
149  * 	enabled and remains valid until the endpoint is disabled.
150  * @comp_desc: In case of SuperSpeed support, this is the endpoint companion
151  * 	descriptor that is used to configure the endpoint
152  *
153  * the bus controller driver lists all the general purpose endpoints in
154  * gadget->ep_list.  the control endpoint (gadget->ep0) is not in that list,
155  * and is accessed only in response to a driver setup() callback.
156  */
157 struct usb_ep {
158 	void			*driver_data;
159 	const char		*name;
160 	const struct usb_ep_ops	*ops;
161 	struct list_head	ep_list;
162 	unsigned		maxpacket:16;
163 	unsigned		maxpacket_limit:16;
164 	unsigned		max_streams:16;
165 	unsigned		maxburst:5;
166 	const struct usb_endpoint_descriptor	*desc;
167 	const struct usb_ss_ep_comp_descriptor	*comp_desc;
168 };
169 
170 /*-------------------------------------------------------------------------*/
171 
172 /**
173  * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
174  * @ep:the endpoint being configured
175  * @maxpacket_limit:value of maximum packet size limit
176  *
177  * This function shoud be used only in UDC drivers to initialize endpoint
178  * (usually in probe function).
179  */
usb_ep_set_maxpacket_limit(struct usb_ep * ep,unsigned maxpacket_limit)180 static inline void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
181 					      unsigned maxpacket_limit)
182 {
183 	ep->maxpacket_limit = maxpacket_limit;
184 	ep->maxpacket = maxpacket_limit;
185 }
186 
187 /**
188  * usb_ep_enable - configure endpoint, making it usable
189  * @ep:the endpoint being configured.  may not be the endpoint named "ep0".
190  *	drivers discover endpoints through the ep_list of a usb_gadget.
191  * @desc:descriptor for desired behavior.  caller guarantees this pointer
192  *	remains valid until the endpoint is disabled; the data byte order
193  *	is little-endian (usb-standard).
194  *
195  * when configurations are set, or when interface settings change, the driver
196  * will enable or disable the relevant endpoints.  while it is enabled, an
197  * endpoint may be used for i/o until the driver receives a disconnect() from
198  * the host or until the endpoint is disabled.
199  *
200  * the ep0 implementation (which calls this routine) must ensure that the
201  * hardware capabilities of each endpoint match the descriptor provided
202  * for it.  for example, an endpoint named "ep2in-bulk" would be usable
203  * for interrupt transfers as well as bulk, but it likely couldn't be used
204  * for iso transfers or for endpoint 14.  some endpoints are fully
205  * configurable, with more generic names like "ep-a".  (remember that for
206  * USB, "in" means "towards the USB master".)
207  *
208  * returns zero, or a negative error code.
209  */
usb_ep_enable(struct usb_ep * ep,const struct usb_endpoint_descriptor * desc)210 static inline int usb_ep_enable(struct usb_ep *ep,
211 				const struct usb_endpoint_descriptor *desc)
212 {
213 	return ep->ops->enable(ep, desc);
214 }
215 
216 /**
217  * usb_ep_disable - endpoint is no longer usable
218  * @ep:the endpoint being unconfigured.  may not be the endpoint named "ep0".
219  *
220  * no other task may be using this endpoint when this is called.
221  * any pending and uncompleted requests will complete with status
222  * indicating disconnect (-ESHUTDOWN) before this call returns.
223  * gadget drivers must call usb_ep_enable() again before queueing
224  * requests to the endpoint.
225  *
226  * returns zero, or a negative error code.
227  */
usb_ep_disable(struct usb_ep * ep)228 static inline int usb_ep_disable(struct usb_ep *ep)
229 {
230 	return ep->ops->disable(ep);
231 }
232 
233 /**
234  * usb_ep_alloc_request - allocate a request object to use with this endpoint
235  * @ep:the endpoint to be used with with the request
236  * @gfp_flags:GFP_* flags to use
237  *
238  * Request objects must be allocated with this call, since they normally
239  * need controller-specific setup and may even need endpoint-specific
240  * resources such as allocation of DMA descriptors.
241  * Requests may be submitted with usb_ep_queue(), and receive a single
242  * completion callback.  Free requests with usb_ep_free_request(), when
243  * they are no longer needed.
244  *
245  * Returns the request, or null if one could not be allocated.
246  */
usb_ep_alloc_request(struct usb_ep * ep,gfp_t gfp_flags)247 static inline struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
248 						       gfp_t gfp_flags)
249 {
250 	return ep->ops->alloc_request(ep, gfp_flags);
251 }
252 
253 /**
254  * usb_ep_free_request - frees a request object
255  * @ep:the endpoint associated with the request
256  * @req:the request being freed
257  *
258  * Reverses the effect of usb_ep_alloc_request().
259  * Caller guarantees the request is not queued, and that it will
260  * no longer be requeued (or otherwise used).
261  */
usb_ep_free_request(struct usb_ep * ep,struct usb_request * req)262 static inline void usb_ep_free_request(struct usb_ep *ep,
263 				       struct usb_request *req)
264 {
265 	ep->ops->free_request(ep, req);
266 }
267 
268 /**
269  * usb_ep_queue - queues (submits) an I/O request to an endpoint.
270  * @ep:the endpoint associated with the request
271  * @req:the request being submitted
272  * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
273  *	pre-allocate all necessary memory with the request.
274  *
275  * This tells the device controller to perform the specified request through
276  * that endpoint (reading or writing a buffer).  When the request completes,
277  * including being canceled by usb_ep_dequeue(), the request's completion
278  * routine is called to return the request to the driver.  Any endpoint
279  * (except control endpoints like ep0) may have more than one transfer
280  * request queued; they complete in FIFO order.  Once a gadget driver
281  * submits a request, that request may not be examined or modified until it
282  * is given back to that driver through the completion callback.
283  *
284  * Each request is turned into one or more packets.  The controller driver
285  * never merges adjacent requests into the same packet.  OUT transfers
286  * will sometimes use data that's already buffered in the hardware.
287  * Drivers can rely on the fact that the first byte of the request's buffer
288  * always corresponds to the first byte of some USB packet, for both
289  * IN and OUT transfers.
290  *
291  * Bulk endpoints can queue any amount of data; the transfer is packetized
292  * automatically.  The last packet will be short if the request doesn't fill it
293  * out completely.  Zero length packets (ZLPs) should be avoided in portable
294  * protocols since not all usb hardware can successfully handle zero length
295  * packets.  (ZLPs may be explicitly written, and may be implicitly written if
296  * the request 'zero' flag is set.)  Bulk endpoints may also be used
297  * for interrupt transfers; but the reverse is not true, and some endpoints
298  * won't support every interrupt transfer.  (Such as 768 byte packets.)
299  *
300  * Interrupt-only endpoints are less functional than bulk endpoints, for
301  * example by not supporting queueing or not handling buffers that are
302  * larger than the endpoint's maxpacket size.  They may also treat data
303  * toggle differently.
304  *
305  * Control endpoints ... after getting a setup() callback, the driver queues
306  * one response (even if it would be zero length).  That enables the
307  * status ack, after transfering data as specified in the response.  Setup
308  * functions may return negative error codes to generate protocol stalls.
309  * (Note that some USB device controllers disallow protocol stall responses
310  * in some cases.)  When control responses are deferred (the response is
311  * written after the setup callback returns), then usb_ep_set_halt() may be
312  * used on ep0 to trigger protocol stalls.
313  *
314  * For periodic endpoints, like interrupt or isochronous ones, the usb host
315  * arranges to poll once per interval, and the gadget driver usually will
316  * have queued some data to transfer at that time.
317  *
318  * Returns zero, or a negative error code.  Endpoints that are not enabled
319  * report errors; errors will also be
320  * reported when the usb peripheral is disconnected.
321  */
usb_ep_queue(struct usb_ep * ep,struct usb_request * req,gfp_t gfp_flags)322 static inline int usb_ep_queue(struct usb_ep *ep,
323 			       struct usb_request *req, gfp_t gfp_flags)
324 {
325 	return ep->ops->queue(ep, req, gfp_flags);
326 }
327 
328 /**
329  * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
330  * @ep:the endpoint associated with the request
331  * @req:the request being canceled
332  *
333  * if the request is still active on the endpoint, it is dequeued and its
334  * completion routine is called (with status -ECONNRESET); else a negative
335  * error code is returned.
336  *
337  * note that some hardware can't clear out write fifos (to unlink the request
338  * at the head of the queue) except as part of disconnecting from usb.  such
339  * restrictions prevent drivers from supporting configuration changes,
340  * even to configuration zero (a "chapter 9" requirement).
341  */
usb_ep_dequeue(struct usb_ep * ep,struct usb_request * req)342 static inline int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
343 {
344 	return ep->ops->dequeue(ep, req);
345 }
346 
347 /**
348  * usb_ep_set_halt - sets the endpoint halt feature.
349  * @ep: the non-isochronous endpoint being stalled
350  *
351  * Use this to stall an endpoint, perhaps as an error report.
352  * Except for control endpoints,
353  * the endpoint stays halted (will not stream any data) until the host
354  * clears this feature; drivers may need to empty the endpoint's request
355  * queue first, to make sure no inappropriate transfers happen.
356  *
357  * Note that while an endpoint CLEAR_FEATURE will be invisible to the
358  * gadget driver, a SET_INTERFACE will not be.  To reset endpoints for the
359  * current altsetting, see usb_ep_clear_halt().  When switching altsettings,
360  * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
361  *
362  * Returns zero, or a negative error code.  On success, this call sets
363  * underlying hardware state that blocks data transfers.
364  * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
365  * transfer requests are still queued, or if the controller hardware
366  * (usually a FIFO) still holds bytes that the host hasn't collected.
367  */
usb_ep_set_halt(struct usb_ep * ep)368 static inline int usb_ep_set_halt(struct usb_ep *ep)
369 {
370 	return ep->ops->set_halt(ep, 1);
371 }
372 
373 /**
374  * usb_ep_clear_halt - clears endpoint halt, and resets toggle
375  * @ep:the bulk or interrupt endpoint being reset
376  *
377  * Use this when responding to the standard usb "set interface" request,
378  * for endpoints that aren't reconfigured, after clearing any other state
379  * in the endpoint's i/o queue.
380  *
381  * Returns zero, or a negative error code.  On success, this call clears
382  * the underlying hardware state reflecting endpoint halt and data toggle.
383  * Note that some hardware can't support this request (like pxa2xx_udc),
384  * and accordingly can't correctly implement interface altsettings.
385  */
usb_ep_clear_halt(struct usb_ep * ep)386 static inline int usb_ep_clear_halt(struct usb_ep *ep)
387 {
388 	return ep->ops->set_halt(ep, 0);
389 }
390 
391 /**
392  * usb_ep_fifo_status - returns number of bytes in fifo, or error
393  * @ep: the endpoint whose fifo status is being checked.
394  *
395  * FIFO endpoints may have "unclaimed data" in them in certain cases,
396  * such as after aborted transfers.  Hosts may not have collected all
397  * the IN data written by the gadget driver (and reported by a request
398  * completion).  The gadget driver may not have collected all the data
399  * written OUT to it by the host.  Drivers that need precise handling for
400  * fault reporting or recovery may need to use this call.
401  *
402  * This returns the number of such bytes in the fifo, or a negative
403  * errno if the endpoint doesn't use a FIFO or doesn't support such
404  * precise handling.
405  */
usb_ep_fifo_status(struct usb_ep * ep)406 static inline int usb_ep_fifo_status(struct usb_ep *ep)
407 {
408 	if (ep->ops->fifo_status)
409 		return ep->ops->fifo_status(ep);
410 	else
411 		return -EOPNOTSUPP;
412 }
413 
414 /**
415  * usb_ep_fifo_flush - flushes contents of a fifo
416  * @ep: the endpoint whose fifo is being flushed.
417  *
418  * This call may be used to flush the "unclaimed data" that may exist in
419  * an endpoint fifo after abnormal transaction terminations.  The call
420  * must never be used except when endpoint is not being used for any
421  * protocol translation.
422  */
usb_ep_fifo_flush(struct usb_ep * ep)423 static inline void usb_ep_fifo_flush(struct usb_ep *ep)
424 {
425 	if (ep->ops->fifo_flush)
426 		ep->ops->fifo_flush(ep);
427 }
428 
429 
430 /*-------------------------------------------------------------------------*/
431 
432 struct usb_gadget;
433 struct usb_gadget_driver;
434 
435 /* the rest of the api to the controller hardware: device operations,
436  * which don't involve endpoints (or i/o).
437  */
438 struct usb_gadget_ops {
439 	int	(*get_frame)(struct usb_gadget *);
440 	int	(*wakeup)(struct usb_gadget *);
441 	int	(*set_selfpowered) (struct usb_gadget *, int is_selfpowered);
442 	int	(*vbus_session) (struct usb_gadget *, int is_active);
443 	int	(*vbus_draw) (struct usb_gadget *, unsigned mA);
444 	int	(*pullup) (struct usb_gadget *, int is_on);
445 	int	(*ioctl)(struct usb_gadget *,
446 				unsigned code, unsigned long param);
447 	int	(*udc_start)(struct usb_gadget *,
448 			     struct usb_gadget_driver *);
449 	int	(*udc_stop)(struct usb_gadget *);
450 };
451 
452 /**
453  * struct usb_gadget - represents a usb slave device
454  * @ops: Function pointers used to access hardware-specific operations.
455  * @ep0: Endpoint zero, used when reading or writing responses to
456  *	driver setup() requests
457  * @ep_list: List of other endpoints supported by the device.
458  * @speed: Speed of current connection to USB host.
459  * @max_speed: Maximal speed the UDC can handle.  UDC must support this
460  *      and all slower speeds.
461  * @is_dualspeed: true if the controller supports both high and full speed
462  *	operation.  If it does, the gadget driver must also support both.
463  * @is_otg: true if the USB device port uses a Mini-AB jack, so that the
464  *	gadget driver must provide a USB OTG descriptor.
465  * @is_a_peripheral: false unless is_otg, the "A" end of a USB cable
466  *	is in the Mini-AB jack, and HNP has been used to switch roles
467  *	so that the "A" device currently acts as A-Peripheral, not A-Host.
468  * @a_hnp_support: OTG device feature flag, indicating that the A-Host
469  *	supports HNP at this port.
470  * @a_alt_hnp_support: OTG device feature flag, indicating that the A-Host
471  *	only supports HNP on a different root port.
472  * @b_hnp_enable: OTG device feature flag, indicating that the A-Host
473  *	enabled HNP support.
474  * @name: Identifies the controller hardware type.  Used in diagnostics
475  *	and sometimes configuration.
476  * @dev: Driver model state for this abstract device.
477  * @quirk_ep_out_aligned_size: epout requires buffer size to be aligned to
478  *	MaxPacketSize.
479  *
480  * Gadgets have a mostly-portable "gadget driver" implementing device
481  * functions, handling all usb configurations and interfaces.  Gadget
482  * drivers talk to hardware-specific code indirectly, through ops vectors.
483  * That insulates the gadget driver from hardware details, and packages
484  * the hardware endpoints through generic i/o queues.  The "usb_gadget"
485  * and "usb_ep" interfaces provide that insulation from the hardware.
486  *
487  * Except for the driver data, all fields in this structure are
488  * read-only to the gadget driver.  That driver data is part of the
489  * "driver model" infrastructure in 2.6 (and later) kernels, and for
490  * earlier systems is grouped in a similar structure that's not known
491  * to the rest of the kernel.
492  *
493  * Values of the three OTG device feature flags are updated before the
494  * setup() call corresponding to USB_REQ_SET_CONFIGURATION, and before
495  * driver suspend() calls.  They are valid only when is_otg, and when the
496  * device is acting as a B-Peripheral (so is_a_peripheral is false).
497  */
498 struct usb_gadget {
499 	/* readonly to gadget driver */
500 	const struct usb_gadget_ops	*ops;
501 	struct usb_ep			*ep0;
502 	struct list_head		ep_list;	/* of usb_ep */
503 	enum usb_device_speed		speed;
504 	enum usb_device_speed		max_speed;
505 	enum usb_device_state		state;
506 	unsigned			is_dualspeed:1;
507 	unsigned			is_otg:1;
508 	unsigned			is_a_peripheral:1;
509 	unsigned			b_hnp_enable:1;
510 	unsigned			a_hnp_support:1;
511 	unsigned			a_alt_hnp_support:1;
512 	const char			*name;
513 	struct device			dev;
514 	unsigned			quirk_ep_out_aligned_size:1;
515 };
516 
set_gadget_data(struct usb_gadget * gadget,void * data)517 static inline void set_gadget_data(struct usb_gadget *gadget, void *data)
518 {
519 	gadget->dev.driver_data = data;
520 }
521 
get_gadget_data(struct usb_gadget * gadget)522 static inline void *get_gadget_data(struct usb_gadget *gadget)
523 {
524 	return gadget->dev.driver_data;
525 }
526 
dev_to_usb_gadget(struct device * dev)527 static inline struct usb_gadget *dev_to_usb_gadget(struct device *dev)
528 {
529 	return container_of(dev, struct usb_gadget, dev);
530 }
531 
532 /* iterates the non-control endpoints; 'tmp' is a struct usb_ep pointer */
533 #define gadget_for_each_ep(tmp, gadget) \
534 	list_for_each_entry(tmp, &(gadget)->ep_list, ep_list)
535 
536 
537 /**
538  * gadget_is_dualspeed - return true iff the hardware handles high speed
539  * @g: controller that might support both high and full speeds
540  */
gadget_is_dualspeed(struct usb_gadget * g)541 static inline int gadget_is_dualspeed(struct usb_gadget *g)
542 {
543 #ifdef CONFIG_USB_GADGET_DUALSPEED
544 	/* runtime test would check "g->is_dualspeed" ... that might be
545 	 * useful to work around hardware bugs, but is mostly pointless
546 	 */
547 	return 1;
548 #else
549 	return 0;
550 #endif
551 }
552 
553 /**
554  * gadget_is_otg - return true iff the hardware is OTG-ready
555  * @g: controller that might have a Mini-AB connector
556  *
557  * This is a runtime test, since kernels with a USB-OTG stack sometimes
558  * run on boards which only have a Mini-B (or Mini-A) connector.
559  */
gadget_is_otg(struct usb_gadget * g)560 static inline int gadget_is_otg(struct usb_gadget *g)
561 {
562 #ifdef CONFIG_USB_OTG
563 	return g->is_otg;
564 #else
565 	return 0;
566 #endif
567 }
568 
569 /**
570  * usb_gadget_frame_number - returns the current frame number
571  * @gadget: controller that reports the frame number
572  *
573  * Returns the usb frame number, normally eleven bits from a SOF packet,
574  * or negative errno if this device doesn't support this capability.
575  */
usb_gadget_frame_number(struct usb_gadget * gadget)576 static inline int usb_gadget_frame_number(struct usb_gadget *gadget)
577 {
578 	return gadget->ops->get_frame(gadget);
579 }
580 
581 /**
582  * usb_gadget_wakeup - tries to wake up the host connected to this gadget
583  * @gadget: controller used to wake up the host
584  *
585  * Returns zero on success, else negative error code if the hardware
586  * doesn't support such attempts, or its support has not been enabled
587  * by the usb host.  Drivers must return device descriptors that report
588  * their ability to support this, or hosts won't enable it.
589  *
590  * This may also try to use SRP to wake the host and start enumeration,
591  * even if OTG isn't otherwise in use.  OTG devices may also start
592  * remote wakeup even when hosts don't explicitly enable it.
593  */
usb_gadget_wakeup(struct usb_gadget * gadget)594 static inline int usb_gadget_wakeup(struct usb_gadget *gadget)
595 {
596 	if (!gadget->ops->wakeup)
597 		return -EOPNOTSUPP;
598 	return gadget->ops->wakeup(gadget);
599 }
600 
601 /**
602  * usb_gadget_set_selfpowered - sets the device selfpowered feature.
603  * @gadget:the device being declared as self-powered
604  *
605  * this affects the device status reported by the hardware driver
606  * to reflect that it now has a local power supply.
607  *
608  * returns zero on success, else negative errno.
609  */
usb_gadget_set_selfpowered(struct usb_gadget * gadget)610 static inline int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
611 {
612 	if (!gadget->ops->set_selfpowered)
613 		return -EOPNOTSUPP;
614 	return gadget->ops->set_selfpowered(gadget, 1);
615 }
616 
617 /**
618  * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
619  * @gadget:the device being declared as bus-powered
620  *
621  * this affects the device status reported by the hardware driver.
622  * some hardware may not support bus-powered operation, in which
623  * case this feature's value can never change.
624  *
625  * returns zero on success, else negative errno.
626  */
usb_gadget_clear_selfpowered(struct usb_gadget * gadget)627 static inline int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
628 {
629 	if (!gadget->ops->set_selfpowered)
630 		return -EOPNOTSUPP;
631 	return gadget->ops->set_selfpowered(gadget, 0);
632 }
633 
634 /**
635  * usb_gadget_vbus_connect - Notify controller that VBUS is powered
636  * @gadget:The device which now has VBUS power.
637  *
638  * This call is used by a driver for an external transceiver (or GPIO)
639  * that detects a VBUS power session starting.  Common responses include
640  * resuming the controller, activating the D+ (or D-) pullup to let the
641  * host detect that a USB device is attached, and starting to draw power
642  * (8mA or possibly more, especially after SET_CONFIGURATION).
643  *
644  * Returns zero on success, else negative errno.
645  */
usb_gadget_vbus_connect(struct usb_gadget * gadget)646 static inline int usb_gadget_vbus_connect(struct usb_gadget *gadget)
647 {
648 	if (!gadget->ops->vbus_session)
649 		return -EOPNOTSUPP;
650 	return gadget->ops->vbus_session(gadget, 1);
651 }
652 
653 /**
654  * usb_gadget_vbus_draw - constrain controller's VBUS power usage
655  * @gadget:The device whose VBUS usage is being described
656  * @mA:How much current to draw, in milliAmperes.  This should be twice
657  *	the value listed in the configuration descriptor bMaxPower field.
658  *
659  * This call is used by gadget drivers during SET_CONFIGURATION calls,
660  * reporting how much power the device may consume.  For example, this
661  * could affect how quickly batteries are recharged.
662  *
663  * Returns zero on success, else negative errno.
664  */
usb_gadget_vbus_draw(struct usb_gadget * gadget,unsigned mA)665 static inline int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
666 {
667 	if (!gadget->ops->vbus_draw)
668 		return -EOPNOTSUPP;
669 	return gadget->ops->vbus_draw(gadget, mA);
670 }
671 
672 /**
673  * usb_gadget_vbus_disconnect - notify controller about VBUS session end
674  * @gadget:the device whose VBUS supply is being described
675  *
676  * This call is used by a driver for an external transceiver (or GPIO)
677  * that detects a VBUS power session ending.  Common responses include
678  * reversing everything done in usb_gadget_vbus_connect().
679  *
680  * Returns zero on success, else negative errno.
681  */
usb_gadget_vbus_disconnect(struct usb_gadget * gadget)682 static inline int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
683 {
684 	if (!gadget->ops->vbus_session)
685 		return -EOPNOTSUPP;
686 	return gadget->ops->vbus_session(gadget, 0);
687 }
688 
689 /**
690  * usb_gadget_connect - software-controlled connect to USB host
691  * @gadget:the peripheral being connected
692  *
693  * Enables the D+ (or potentially D-) pullup.  The host will start
694  * enumerating this gadget when the pullup is active and a VBUS session
695  * is active (the link is powered).  This pullup is always enabled unless
696  * usb_gadget_disconnect() has been used to disable it.
697  *
698  * Returns zero on success, else negative errno.
699  */
usb_gadget_connect(struct usb_gadget * gadget)700 static inline int usb_gadget_connect(struct usb_gadget *gadget)
701 {
702 	if (!gadget->ops->pullup)
703 		return -EOPNOTSUPP;
704 	return gadget->ops->pullup(gadget, 1);
705 }
706 
707 /**
708  * usb_gadget_disconnect - software-controlled disconnect from USB host
709  * @gadget:the peripheral being disconnected
710  *
711  * Disables the D+ (or potentially D-) pullup, which the host may see
712  * as a disconnect (when a VBUS session is active).  Not all systems
713  * support software pullup controls.
714  *
715  * This routine may be used during the gadget driver bind() call to prevent
716  * the peripheral from ever being visible to the USB host, unless later
717  * usb_gadget_connect() is called.  For example, user mode components may
718  * need to be activated before the system can talk to hosts.
719  *
720  * Returns zero on success, else negative errno.
721  */
usb_gadget_disconnect(struct usb_gadget * gadget)722 static inline int usb_gadget_disconnect(struct usb_gadget *gadget)
723 {
724 	if (!gadget->ops->pullup)
725 		return -EOPNOTSUPP;
726 	return gadget->ops->pullup(gadget, 0);
727 }
728 
729 
730 /*-------------------------------------------------------------------------*/
731 
732 /**
733  * struct usb_gadget_driver - driver for usb 'slave' devices
734  * @function: String describing the gadget's function
735  * @speed: Highest speed the driver handles.
736  * @bind: Invoked when the driver is bound to a gadget, usually
737  *	after registering the driver.
738  *	At that point, ep0 is fully initialized, and ep_list holds
739  *	the currently-available endpoints.
740  *	Called in a context that permits sleeping.
741  * @setup: Invoked for ep0 control requests that aren't handled by
742  *	the hardware level driver. Most calls must be handled by
743  *	the gadget driver, including descriptor and configuration
744  *	management.  The 16 bit members of the setup data are in
745  *	USB byte order. Called in_interrupt; this may not sleep.  Driver
746  *	queues a response to ep0, or returns negative to stall.
747  * @disconnect: Invoked after all transfers have been stopped,
748  *	when the host is disconnected.  May be called in_interrupt; this
749  *	may not sleep.  Some devices can't detect disconnect, so this might
750  *	not be called except as part of controller shutdown.
751  * @unbind: Invoked when the driver is unbound from a gadget,
752  *	usually from rmmod (after a disconnect is reported).
753  *	Called in a context that permits sleeping.
754  * @suspend: Invoked on USB suspend.  May be called in_interrupt.
755  * @resume: Invoked on USB resume.  May be called in_interrupt.
756  * @reset: Invoked on USB bus reset. It is mandatory for all gadget drivers
757  *	and should be called in_interrupt.
758  *
759  * Devices are disabled till a gadget driver successfully bind()s, which
760  * means the driver will handle setup() requests needed to enumerate (and
761  * meet "chapter 9" requirements) then do some useful work.
762  *
763  * If gadget->is_otg is true, the gadget driver must provide an OTG
764  * descriptor during enumeration, or else fail the bind() call.  In such
765  * cases, no USB traffic may flow until both bind() returns without
766  * having called usb_gadget_disconnect(), and the USB host stack has
767  * initialized.
768  *
769  * Drivers use hardware-specific knowledge to configure the usb hardware.
770  * endpoint addressing is only one of several hardware characteristics that
771  * are in descriptors the ep0 implementation returns from setup() calls.
772  *
773  * Except for ep0 implementation, most driver code shouldn't need change to
774  * run on top of different usb controllers.  It'll use endpoints set up by
775  * that ep0 implementation.
776  *
777  * The usb controller driver handles a few standard usb requests.  Those
778  * include set_address, and feature flags for devices, interfaces, and
779  * endpoints (the get_status, set_feature, and clear_feature requests).
780  *
781  * Accordingly, the driver's setup() callback must always implement all
782  * get_descriptor requests, returning at least a device descriptor and
783  * a configuration descriptor.  Drivers must make sure the endpoint
784  * descriptors match any hardware constraints. Some hardware also constrains
785  * other descriptors. (The pxa250 allows only configurations 1, 2, or 3).
786  *
787  * The driver's setup() callback must also implement set_configuration,
788  * and should also implement set_interface, get_configuration, and
789  * get_interface.  Setting a configuration (or interface) is where
790  * endpoints should be activated or (config 0) shut down.
791  *
792  * (Note that only the default control endpoint is supported.  Neither
793  * hosts nor devices generally support control traffic except to ep0.)
794  *
795  * Most devices will ignore USB suspend/resume operations, and so will
796  * not provide those callbacks.  However, some may need to change modes
797  * when the host is not longer directing those activities.  For example,
798  * local controls (buttons, dials, etc) may need to be re-enabled since
799  * the (remote) host can't do that any longer; or an error state might
800  * be cleared, to make the device behave identically whether or not
801  * power is maintained.
802  */
803 struct usb_gadget_driver {
804 	char			*function;
805 	enum usb_device_speed	speed;
806 	int			(*bind)(struct usb_gadget *);
807 	void			(*unbind)(struct usb_gadget *);
808 	int			(*setup)(struct usb_gadget *,
809 					const struct usb_ctrlrequest *);
810 	void			(*disconnect)(struct usb_gadget *);
811 	void			(*suspend)(struct usb_gadget *);
812 	void			(*resume)(struct usb_gadget *);
813 	void			(*reset)(struct usb_gadget *);
814 };
815 
816 
817 /*-------------------------------------------------------------------------*/
818 
819 /* driver modules register and unregister, as usual.
820  * these calls must be made in a context that can sleep.
821  *
822  * these will usually be implemented directly by the hardware-dependent
823  * usb bus interface driver, which will only support a single driver.
824  */
825 
826 /**
827  * usb_gadget_register_driver - register a gadget driver
828  * @driver:the driver being registered
829  *
830  * Call this in your gadget driver's module initialization function,
831  * to tell the underlying usb controller driver about your driver.
832  * The driver's bind() function will be called to bind it to a
833  * gadget before this registration call returns.  It's expected that
834  * the bind() functions will be in init sections.
835  * This function must be called in a context that can sleep.
836  */
837 int usb_gadget_register_driver(struct usb_gadget_driver *driver);
838 
839 /**
840  * usb_gadget_unregister_driver - unregister a gadget driver
841  * @driver:the driver being unregistered
842  *
843  * Call this in your gadget driver's module cleanup function,
844  * to tell the underlying usb controller that your driver is
845  * going away.  If the controller is connected to a USB host,
846  * it will first disconnect().  The driver is also requested
847  * to unbind() and clean up any device state, before this procedure
848  * finally returns.  It's expected that the unbind() functions
849  * will in in exit sections, so may not be linked in some kernels.
850  * This function must be called in a context that can sleep.
851  */
852 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver);
853 
854 int usb_add_gadget_udc_release(struct device *parent,
855 		struct usb_gadget *gadget, void (*release)(struct device *dev));
856 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget);
857 void usb_del_gadget_udc(struct usb_gadget *gadget);
858 /*-------------------------------------------------------------------------*/
859 
860 /* utility to simplify dealing with string descriptors */
861 
862 /**
863  * struct usb_gadget_strings - a set of USB strings in a given language
864  * @language:identifies the strings' language (0x0409 for en-us)
865  * @strings:array of strings with their ids
866  *
867  * If you're using usb_gadget_get_string(), use this to wrap all the
868  * strings for a given language.
869  */
870 struct usb_gadget_strings {
871 	u16			language;	/* 0x0409 for en-us */
872 	struct usb_string	*strings;
873 };
874 
875 /* put descriptor for string with that id into buf (buflen >= 256) */
876 int usb_gadget_get_string(struct usb_gadget_strings *table, int id, u8 *buf);
877 
878 /*-------------------------------------------------------------------------*/
879 
880 /* utility to simplify managing config descriptors */
881 
882 /* write vector of descriptors into buffer */
883 int usb_descriptor_fillbuf(void *, unsigned,
884 		const struct usb_descriptor_header **);
885 
886 /* build config descriptor from single descriptor vector */
887 int usb_gadget_config_buf(const struct usb_config_descriptor *config,
888 	void *buf, unsigned buflen, const struct usb_descriptor_header **desc);
889 
890 /*-------------------------------------------------------------------------*/
891 /* utility to simplify map/unmap of usb_requests to/from DMA */
892 
893 extern int usb_gadget_map_request(struct usb_gadget *gadget,
894 				  struct usb_request *req, int is_in);
895 
896 extern void usb_gadget_unmap_request(struct usb_gadget *gadget,
897 				     struct usb_request *req, int is_in);
898 
899 /*-------------------------------------------------------------------------*/
900 
901 /* utility to set gadget state properly */
902 
903 extern void usb_gadget_set_state(struct usb_gadget *gadget,
904 				 enum usb_device_state state);
905 
906 /*-------------------------------------------------------------------------*/
907 
908 /* utility to tell udc core that the bus reset occurs */
909 extern void usb_gadget_udc_reset(struct usb_gadget *gadget,
910 				 struct usb_gadget_driver *driver);
911 
912 /*-------------------------------------------------------------------------*/
913 
914 /* utility to give requests back to the gadget layer */
915 
916 extern void usb_gadget_giveback_request(struct usb_ep *ep,
917 					struct usb_request *req);
918 
919 /*-------------------------------------------------------------------------*/
920 
921 /* utility wrapping a simple endpoint selection policy */
922 
923 extern struct usb_ep *usb_ep_autoconfig(struct usb_gadget *,
924 			struct usb_endpoint_descriptor *);
925 
926 extern void usb_ep_autoconfig_reset(struct usb_gadget *);
927 
928 extern int usb_gadget_handle_interrupts(int index);
929 
930 #if CONFIG_IS_ENABLED(DM_USB_GADGET)
931 int usb_gadget_initialize(int index);
932 int usb_gadget_release(int index);
933 int dm_usb_gadget_handle_interrupts(struct udevice *dev);
934 #else
935 #include <usb.h>
usb_gadget_initialize(int index)936 static inline int usb_gadget_initialize(int index)
937 {
938 	return board_usb_init(index, USB_INIT_DEVICE);
939 }
940 
usb_gadget_release(int index)941 static inline int usb_gadget_release(int index)
942 {
943 	return board_usb_cleanup(index, USB_INIT_DEVICE);
944 }
945 #endif
946 
947 #endif	/* __LINUX_USB_GADGET_H */
948