1 /*
2  * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3  * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4  * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
5  * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
6  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7  *
8  * Lightly modified for iPXE, July 2009, by Joshua Oreman <oremanj@rwcr.net>.
9  *
10  * Permission to use, copy, modify, and distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  *
22  */
23 
24 FILE_LICENCE ( MIT );
25 
26 #define _ATH5K_RESET
27 
28 /*****************************\
29   Reset functions and helpers
30 \*****************************/
31 
32 #include <ipxe/pci.h> 		/* To determine if a card is pci-e */
33 #include <unistd.h>
34 
35 #include "ath5k.h"
36 #include "reg.h"
37 #include "base.h"
38 
39 /* Find last set bit; fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32 */
fls(int x)40 static int fls(int x)
41 {
42         int r = 32;
43 
44         if (!x)
45                 return 0;
46         if (!(x & 0xffff0000u)) {
47                 x <<= 16;
48                 r -= 16;
49         }
50         if (!(x & 0xff000000u)) {
51                 x <<= 8;
52                 r -= 8;
53         }
54         if (!(x & 0xf0000000u)) {
55                 x <<= 4;
56                 r -= 4;
57         }
58         if (!(x & 0xc0000000u)) {
59                 x <<= 2;
60                 r -= 2;
61         }
62         if (!(x & 0x80000000u)) {
63                 x <<= 1;
64                 r -= 1;
65         }
66         return r;
67 }
68 
69 
70 /**
71  * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
72  *
73  * @ah: the &struct ath5k_hw
74  * @channel: the currently set channel upon reset
75  *
76  * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
77  * operation on the AR5212 upon reset. This is a helper for ath5k_hw_reset().
78  *
79  * Since delta slope is floating point we split it on its exponent and
80  * mantissa and provide these values on hw.
81  *
82  * For more infos i think this patent is related
83  * http://www.freepatentsonline.com/7184495.html
84  */
ath5k_hw_write_ofdm_timings(struct ath5k_hw * ah,struct net80211_channel * channel)85 static int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
86 	struct net80211_channel *channel)
87 {
88 	/* Get exponent and mantissa and set it */
89 	u32 coef_scaled, coef_exp, coef_man,
90 		ds_coef_exp, ds_coef_man, clock;
91 
92 	if (!(ah->ah_version == AR5K_AR5212) ||
93 	    !(channel->hw_value & CHANNEL_OFDM)) {
94 		DBG("ath5k: attempt to set OFDM timings on non-OFDM channel\n");
95 		return -EFAULT;
96 	}
97 
98 	/* Get coefficient
99 	 * ALGO: coef = (5 * clock * carrier_freq) / 2)
100 	 * we scale coef by shifting clock value by 24 for
101 	 * better precision since we use integers */
102 	/* TODO: Half/quarter rate */
103 	clock =  ath5k_hw_htoclock(1, channel->hw_value & CHANNEL_TURBO);
104 
105 	coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
106 
107 	/* Get exponent
108 	 * ALGO: coef_exp = 14 - highest set bit position */
109 	coef_exp = fls(coef_scaled) - 1;
110 
111 	/* Doesn't make sense if it's zero*/
112 	if (!coef_scaled || !coef_exp)
113 		return -EINVAL;
114 
115 	/* Note: we've shifted coef_scaled by 24 */
116 	coef_exp = 14 - (coef_exp - 24);
117 
118 
119 	/* Get mantissa (significant digits)
120 	 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
121 	coef_man = coef_scaled +
122 		(1 << (24 - coef_exp - 1));
123 
124 	/* Calculate delta slope coefficient exponent
125 	 * and mantissa (remove scaling) and set them on hw */
126 	ds_coef_man = coef_man >> (24 - coef_exp);
127 	ds_coef_exp = coef_exp - 16;
128 
129 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
130 		AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
131 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
132 		AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
133 
134 	return 0;
135 }
136 
137 /**
138  * ath5k_hw_write_rate_duration - fill rate code to duration table
139  *
140  * @ah: the &struct ath5k_hw
141  * @mode: one of enum ath5k_driver_mode
142  *
143  * Write the rate code to duration table upon hw reset. This is a helper for
144  * ath5k_hw_reset(). It seems all this is doing is setting an ACK timeout on
145  * the hardware, based on current mode, for each rate. The rates which are
146  * capable of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have
147  * different rate code so we write their value twice (one for long preample
148  * and one for short).
149  *
150  * Note: Band doesn't matter here, if we set the values for OFDM it works
151  * on both a and g modes. So all we have to do is set values for all g rates
152  * that include all OFDM and CCK rates. If we operate in turbo or xr/half/
153  * quarter rate mode, we need to use another set of bitrates (that's why we
154  * need the mode parameter) but we don't handle these proprietary modes yet.
155  */
ath5k_hw_write_rate_duration(struct ath5k_hw * ah,unsigned int mode __unused)156 static inline void ath5k_hw_write_rate_duration(struct ath5k_hw *ah,
157        unsigned int mode __unused)
158 {
159 	struct ath5k_softc *sc = ah->ah_sc;
160 	u16 rate;
161 	int i;
162 
163 	/* Write rate duration table */
164 	for (i = 0; i < sc->hwinfo->nr_rates[NET80211_BAND_2GHZ]; i++) {
165 		u32 reg;
166 		u16 tx_time;
167 
168 		rate = sc->hwinfo->rates[NET80211_BAND_2GHZ][i];
169 
170 		/* Set ACK timeout */
171 		reg = AR5K_RATE_DUR(ath5k_bitrate_to_hw_rix(rate));
172 
173 		/* An ACK frame consists of 10 bytes. If you add the FCS,
174 		 * it's 14 bytes. Note we use the control rate and not the
175 		 * actual rate for this rate. See mac80211 tx.c
176 		 * ieee80211_duration() for a brief description of
177 		 * what rate we should choose to TX ACKs. */
178 		tx_time = net80211_duration(sc->dev, 14, rate);
179 
180 		ath5k_hw_reg_write(ah, tx_time, reg);
181 
182 		if (rate != 20 && rate != 55 && rate != 110)
183 			continue;
184 
185 		/*
186 		 * We're not distinguishing short preamble here,
187 		 * This is true, all we'll get is a longer value here
188 		 * which is not necessarilly bad.
189 		 */
190 		ath5k_hw_reg_write(ah, tx_time,
191 			reg + (AR5K_SET_SHORT_PREAMBLE << 2));
192 	}
193 }
194 
195 /*
196  * Reset chipset
197  */
ath5k_hw_nic_reset(struct ath5k_hw * ah,u32 val)198 static int ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val)
199 {
200 	int ret;
201 	u32 mask = val ? val : ~0U;
202 
203 	/* Read-and-clear RX Descriptor Pointer*/
204 	ath5k_hw_reg_read(ah, AR5K_RXDP);
205 
206 	/*
207 	 * Reset the device and wait until success
208 	 */
209 	ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL);
210 
211 	/* Wait at least 128 PCI clocks */
212 	udelay(15);
213 
214 	if (ah->ah_version == AR5K_AR5210) {
215 		val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
216 			| AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
217 		mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
218 			| AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
219 	} else {
220 		val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
221 		mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
222 	}
223 
224 	ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, 0);
225 
226 	/*
227 	 * Reset configuration register (for hw byte-swap). Note that this
228 	 * is only set for big endian. We do the necessary magic in
229 	 * AR5K_INIT_CFG.
230 	 */
231 	if ((val & AR5K_RESET_CTL_PCU) == 0)
232 		ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
233 
234 	return ret;
235 }
236 
237 /*
238  * Sleep control
239  */
ath5k_hw_wake(struct ath5k_hw * ah)240 int ath5k_hw_wake(struct ath5k_hw *ah)
241 {
242 	unsigned int i;
243 	u32 staid, data;
244 
245 	staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1);
246 	staid &= ~AR5K_STA_ID1_PWR_SV;
247 
248 	/* Preserve sleep duration */
249 	data = ath5k_hw_reg_read(ah, AR5K_SLEEP_CTL);
250 	if (data & 0xffc00000)
251 		data = 0;
252 	else
253 		data = data & 0xfffcffff;
254 
255 	ath5k_hw_reg_write(ah, data, AR5K_SLEEP_CTL);
256 	udelay(15);
257 
258 	for (i = 50; i > 0; i--) {
259 		/* Check if the chip did wake up */
260 		if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) &
261 		     AR5K_PCICFG_SPWR_DN) == 0)
262 			break;
263 
264 		/* Wait a bit and retry */
265 		udelay(200);
266 		ath5k_hw_reg_write(ah, data, AR5K_SLEEP_CTL);
267 	}
268 
269 	/* Fail if the chip didn't wake up */
270 	if (i <= 0)
271 		return -EIO;
272 
273 	ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1);
274 
275 	return 0;
276 }
277 
278 /*
279  * Bring up MAC + PHY Chips and program PLL
280  * TODO: Half/Quarter rate support
281  */
ath5k_hw_nic_wakeup(struct ath5k_hw * ah,int flags,int initial __unused)282 int ath5k_hw_nic_wakeup(struct ath5k_hw *ah, int flags, int initial __unused)
283 {
284 	struct pci_device *pdev = ah->ah_sc->pdev;
285 	u32 turbo, mode, clock, bus_flags;
286 	int ret;
287 
288 	turbo = 0;
289 	mode = 0;
290 	clock = 0;
291 
292 	/* Wakeup the device */
293 	ret = ath5k_hw_wake(ah);
294 	if (ret) {
295 		DBG("ath5k: failed to wake up the MAC chip\n");
296 		return ret;
297 	}
298 
299 	if (ah->ah_version != AR5K_AR5210) {
300 		/*
301 		 * Get channel mode flags
302 		 */
303 
304 		if (ah->ah_radio >= AR5K_RF5112) {
305 			mode = AR5K_PHY_MODE_RAD_RF5112;
306 			clock = AR5K_PHY_PLL_RF5112;
307 		} else {
308 			mode = AR5K_PHY_MODE_RAD_RF5111;	/*Zero*/
309 			clock = AR5K_PHY_PLL_RF5111;		/*Zero*/
310 		}
311 
312 		if (flags & CHANNEL_2GHZ) {
313 			mode |= AR5K_PHY_MODE_FREQ_2GHZ;
314 			clock |= AR5K_PHY_PLL_44MHZ;
315 
316 			if (flags & CHANNEL_CCK) {
317 				mode |= AR5K_PHY_MODE_MOD_CCK;
318 			} else if (flags & CHANNEL_OFDM) {
319 				/* XXX Dynamic OFDM/CCK is not supported by the
320 				 * AR5211 so we set MOD_OFDM for plain g (no
321 				 * CCK headers) operation. We need to test
322 				 * this, 5211 might support ofdm-only g after
323 				 * all, there are also initial register values
324 				 * in the code for g mode (see initvals.c). */
325 				if (ah->ah_version == AR5K_AR5211)
326 					mode |= AR5K_PHY_MODE_MOD_OFDM;
327 				else
328 					mode |= AR5K_PHY_MODE_MOD_DYN;
329 			} else {
330 				DBG("ath5k: invalid radio modulation mode\n");
331 				return -EINVAL;
332 			}
333 		} else if (flags & CHANNEL_5GHZ) {
334 			mode |= AR5K_PHY_MODE_FREQ_5GHZ;
335 
336 			if (ah->ah_radio == AR5K_RF5413)
337 				clock = AR5K_PHY_PLL_40MHZ_5413;
338 			else
339 				clock |= AR5K_PHY_PLL_40MHZ;
340 
341 			if (flags & CHANNEL_OFDM)
342 				mode |= AR5K_PHY_MODE_MOD_OFDM;
343 			else {
344 				DBG("ath5k: invalid radio modulation mode\n");
345 				return -EINVAL;
346 			}
347 		} else {
348 			DBG("ath5k: invalid radio frequency mode\n");
349 			return -EINVAL;
350 		}
351 
352 		if (flags & CHANNEL_TURBO)
353 			turbo = AR5K_PHY_TURBO_MODE | AR5K_PHY_TURBO_SHORT;
354 	} else { /* Reset the device */
355 
356 		/* ...enable Atheros turbo mode if requested */
357 		if (flags & CHANNEL_TURBO)
358 			ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE,
359 					AR5K_PHY_TURBO);
360 	}
361 
362 	/* reseting PCI on PCI-E cards results card to hang
363 	 * and always return 0xffff... so we ingore that flag
364 	 * for PCI-E cards */
365 	if (pci_find_capability(pdev, PCI_CAP_ID_EXP))
366 		bus_flags = 0;
367 	else
368 		bus_flags = AR5K_RESET_CTL_PCI;
369 
370 	/* Reset chipset */
371 	if (ah->ah_version == AR5K_AR5210) {
372 		ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
373 			AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
374 			AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
375 		mdelay(2);
376 	} else {
377 		ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
378 			AR5K_RESET_CTL_BASEBAND | bus_flags);
379 	}
380 	if (ret) {
381 		DBG("ath5k: failed to reset the MAC chip\n");
382 		return -EIO;
383 	}
384 
385 	/* ...wakeup again!*/
386 	ret = ath5k_hw_wake(ah);
387 	if (ret) {
388 		DBG("ath5k: failed to resume the MAC chip\n");
389 		return ret;
390 	}
391 
392 	/* ...final warm reset */
393 	if (ath5k_hw_nic_reset(ah, 0)) {
394 		DBG("ath5k: failed to warm reset the MAC chip\n");
395 		return -EIO;
396 	}
397 
398 	if (ah->ah_version != AR5K_AR5210) {
399 
400 		/* ...update PLL if needed */
401 		if (ath5k_hw_reg_read(ah, AR5K_PHY_PLL) != clock) {
402 			ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL);
403 			udelay(300);
404 		}
405 
406 		/* ...set the PHY operating mode */
407 		ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE);
408 		ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO);
409 	}
410 
411 	return 0;
412 }
413 
ath5k_hw_chan_has_spur_noise(struct ath5k_hw * ah,struct net80211_channel * channel)414 static int ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
415 				struct net80211_channel *channel)
416 {
417 	u8 refclk_freq;
418 
419 	if ((ah->ah_radio == AR5K_RF5112) ||
420 	(ah->ah_radio == AR5K_RF5413) ||
421 	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
422 		refclk_freq = 40;
423 	else
424 		refclk_freq = 32;
425 
426 	if ((channel->center_freq % refclk_freq != 0) &&
427 	((channel->center_freq % refclk_freq < 10) ||
428 	(channel->center_freq % refclk_freq > 22)))
429 		return 1;
430 	else
431 		return 0;
432 }
433 
434 /* TODO: Half/Quarter rate */
ath5k_hw_tweak_initval_settings(struct ath5k_hw * ah,struct net80211_channel * channel)435 static void ath5k_hw_tweak_initval_settings(struct ath5k_hw *ah,
436 				struct net80211_channel *channel)
437 {
438 	if (ah->ah_version == AR5K_AR5212 &&
439 	    ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
440 
441 		/* Setup ADC control */
442 		ath5k_hw_reg_write(ah,
443 				(AR5K_REG_SM(2,
444 				AR5K_PHY_ADC_CTL_INBUFGAIN_OFF) |
445 				AR5K_REG_SM(2,
446 				AR5K_PHY_ADC_CTL_INBUFGAIN_ON) |
447 				AR5K_PHY_ADC_CTL_PWD_DAC_OFF |
448 				AR5K_PHY_ADC_CTL_PWD_ADC_OFF),
449 				AR5K_PHY_ADC_CTL);
450 
451 
452 
453 		/* Disable barker RSSI threshold */
454 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
455 				AR5K_PHY_DAG_CCK_CTL_EN_RSSI_THR);
456 
457 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
458 			AR5K_PHY_DAG_CCK_CTL_RSSI_THR, 2);
459 
460 		/* Set the mute mask */
461 		ath5k_hw_reg_write(ah, 0x0000000f, AR5K_SEQ_MASK);
462 	}
463 
464 	/* Clear PHY_BLUETOOTH to allow RX_CLEAR line debug */
465 	if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212B)
466 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BLUETOOTH);
467 
468 	/* Enable DCU double buffering */
469 	if (ah->ah_phy_revision > AR5K_SREV_PHY_5212B)
470 		AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
471 				AR5K_TXCFG_DCU_DBL_BUF_DIS);
472 
473 	/* Set DAC/ADC delays */
474 	if (ah->ah_version == AR5K_AR5212) {
475 		u32 scal;
476 		if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))
477 			scal = AR5K_PHY_SCAL_32MHZ_2417;
478 		else if (ath5k_eeprom_is_hb63(ah))
479 			scal = AR5K_PHY_SCAL_32MHZ_HB63;
480 		else
481 			scal = AR5K_PHY_SCAL_32MHZ;
482 		ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL);
483 	}
484 
485 	/* Set fast ADC */
486 	if ((ah->ah_radio == AR5K_RF5413) ||
487 	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
488 		u32 fast_adc = 1;
489 
490 		if (channel->center_freq == 2462 ||
491 		channel->center_freq == 2467)
492 			fast_adc = 0;
493 
494 		/* Only update if needed */
495 		if (ath5k_hw_reg_read(ah, AR5K_PHY_FAST_ADC) != fast_adc)
496 				ath5k_hw_reg_write(ah, fast_adc,
497 						AR5K_PHY_FAST_ADC);
498 	}
499 
500 	/* Fix for first revision of the RF5112 RF chipset */
501 	if (ah->ah_radio == AR5K_RF5112 &&
502 			ah->ah_radio_5ghz_revision <
503 			AR5K_SREV_RAD_5112A) {
504 		u32 data;
505 		ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD,
506 				AR5K_PHY_CCKTXCTL);
507 		if (channel->hw_value & CHANNEL_5GHZ)
508 			data = 0xffb81020;
509 		else
510 			data = 0xffb80d20;
511 		ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL);
512 	}
513 
514 	if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
515 		u32 usec_reg;
516 		/* 5311 has different tx/rx latency masks
517 		 * from 5211, since we deal 5311 the same
518 		 * as 5211 when setting initvals, shift
519 		 * values here to their proper locations */
520 		usec_reg = ath5k_hw_reg_read(ah, AR5K_USEC_5211);
521 		ath5k_hw_reg_write(ah, usec_reg & (AR5K_USEC_1 |
522 				AR5K_USEC_32 |
523 				AR5K_USEC_TX_LATENCY_5211 |
524 				AR5K_REG_SM(29,
525 				AR5K_USEC_RX_LATENCY_5210)),
526 				AR5K_USEC_5211);
527 		/* Clear QCU/DCU clock gating register */
528 		ath5k_hw_reg_write(ah, 0, AR5K_QCUDCU_CLKGT);
529 		/* Set DAC/ADC delays */
530 		ath5k_hw_reg_write(ah, 0x08, AR5K_PHY_SCAL);
531 		/* Enable PCU FIFO corruption ECO */
532 		AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5211,
533 					AR5K_DIAG_SW_ECO_ENABLE);
534 	}
535 }
536 
ath5k_hw_commit_eeprom_settings(struct ath5k_hw * ah,struct net80211_channel * channel,u8 * ant,u8 ee_mode)537 static void ath5k_hw_commit_eeprom_settings(struct ath5k_hw *ah,
538 		struct net80211_channel *channel, u8 *ant, u8 ee_mode)
539 {
540 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
541 	s16 cck_ofdm_pwr_delta;
542 
543 	/* Adjust power delta for channel 14 */
544 	if (channel->center_freq == 2484)
545 		cck_ofdm_pwr_delta =
546 			((ee->ee_cck_ofdm_power_delta -
547 			ee->ee_scaled_cck_delta) * 2) / 10;
548 	else
549 		cck_ofdm_pwr_delta =
550 			(ee->ee_cck_ofdm_power_delta * 2) / 10;
551 
552 	/* Set CCK to OFDM power delta on tx power
553 	 * adjustment register */
554 	if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
555 		if (channel->hw_value == CHANNEL_G)
556 			ath5k_hw_reg_write(ah,
557 			AR5K_REG_SM((ee->ee_cck_ofdm_gain_delta * -1),
558 				AR5K_PHY_TX_PWR_ADJ_CCK_GAIN_DELTA) |
559 			AR5K_REG_SM((cck_ofdm_pwr_delta * -1),
560 				AR5K_PHY_TX_PWR_ADJ_CCK_PCDAC_INDEX),
561 				AR5K_PHY_TX_PWR_ADJ);
562 		else
563 			ath5k_hw_reg_write(ah, 0, AR5K_PHY_TX_PWR_ADJ);
564 	} else {
565 		/* For older revs we scale power on sw during tx power
566 		 * setup */
567 		ah->ah_txpower.txp_cck_ofdm_pwr_delta = cck_ofdm_pwr_delta;
568 		ah->ah_txpower.txp_cck_ofdm_gainf_delta =
569 						ee->ee_cck_ofdm_gain_delta;
570 	}
571 
572 	/* Set antenna idle switch table */
573 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
574 			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
575 			(ah->ah_antenna[ee_mode][0] |
576 			AR5K_PHY_ANT_CTL_TXRX_EN));
577 
578 	/* Set antenna switch table */
579 	ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[0]],
580 		AR5K_PHY_ANT_SWITCH_TABLE_0);
581 	ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[1]],
582 		AR5K_PHY_ANT_SWITCH_TABLE_1);
583 
584 	/* Noise floor threshold */
585 	ath5k_hw_reg_write(ah,
586 		AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]),
587 		AR5K_PHY_NFTHRES);
588 
589 	if ((channel->hw_value & CHANNEL_TURBO) &&
590 	(ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0)) {
591 		/* Switch settling time (Turbo) */
592 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
593 				AR5K_PHY_SETTLING_SWITCH,
594 				ee->ee_switch_settling_turbo[ee_mode]);
595 
596 		/* Tx/Rx attenuation (Turbo) */
597 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
598 				AR5K_PHY_GAIN_TXRX_ATTEN,
599 				ee->ee_atn_tx_rx_turbo[ee_mode]);
600 
601 		/* ADC/PGA desired size (Turbo) */
602 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
603 				AR5K_PHY_DESIRED_SIZE_ADC,
604 				ee->ee_adc_desired_size_turbo[ee_mode]);
605 
606 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
607 				AR5K_PHY_DESIRED_SIZE_PGA,
608 				ee->ee_pga_desired_size_turbo[ee_mode]);
609 
610 		/* Tx/Rx margin (Turbo) */
611 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
612 				AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
613 				ee->ee_margin_tx_rx_turbo[ee_mode]);
614 
615 	} else {
616 		/* Switch settling time */
617 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
618 				AR5K_PHY_SETTLING_SWITCH,
619 				ee->ee_switch_settling[ee_mode]);
620 
621 		/* Tx/Rx attenuation */
622 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
623 				AR5K_PHY_GAIN_TXRX_ATTEN,
624 				ee->ee_atn_tx_rx[ee_mode]);
625 
626 		/* ADC/PGA desired size */
627 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
628 				AR5K_PHY_DESIRED_SIZE_ADC,
629 				ee->ee_adc_desired_size[ee_mode]);
630 
631 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
632 				AR5K_PHY_DESIRED_SIZE_PGA,
633 				ee->ee_pga_desired_size[ee_mode]);
634 
635 		/* Tx/Rx margin */
636 		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
637 			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
638 				AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
639 				ee->ee_margin_tx_rx[ee_mode]);
640 	}
641 
642 	/* XPA delays */
643 	ath5k_hw_reg_write(ah,
644 		(ee->ee_tx_end2xpa_disable[ee_mode] << 24) |
645 		(ee->ee_tx_end2xpa_disable[ee_mode] << 16) |
646 		(ee->ee_tx_frm2xpa_enable[ee_mode] << 8) |
647 		(ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY_RF_CTL4);
648 
649 	/* XLNA delay */
650 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL3,
651 			AR5K_PHY_RF_CTL3_TXE2XLNA_ON,
652 			ee->ee_tx_end2xlna_enable[ee_mode]);
653 
654 	/* Thresh64 (ANI) */
655 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_NF,
656 			AR5K_PHY_NF_THRESH62,
657 			ee->ee_thr_62[ee_mode]);
658 
659 
660 	/* False detect backoff for channels
661 	 * that have spur noise. Write the new
662 	 * cyclic power RSSI threshold. */
663 	if (ath5k_hw_chan_has_spur_noise(ah, channel))
664 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
665 				AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
666 				AR5K_INIT_CYCRSSI_THR1 +
667 				ee->ee_false_detect[ee_mode]);
668 	else
669 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
670 				AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
671 				AR5K_INIT_CYCRSSI_THR1);
672 
673 	/* I/Q correction
674 	 * TODO: Per channel i/q infos ? */
675 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
676 		AR5K_PHY_IQ_CORR_ENABLE |
677 		(ee->ee_i_cal[ee_mode] << AR5K_PHY_IQ_CORR_Q_I_COFF_S) |
678 		ee->ee_q_cal[ee_mode]);
679 
680 	/* Heavy clipping -disable for now */
681 	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_1)
682 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_HEAVY_CLIP_ENABLE);
683 
684 	return;
685 }
686 
687 /*
688  * Main reset function
689  */
ath5k_hw_reset(struct ath5k_hw * ah,struct net80211_channel * channel,int change_channel)690 int ath5k_hw_reset(struct ath5k_hw *ah,
691 	struct net80211_channel *channel, int change_channel)
692 {
693 	u32 s_seq[10], s_ant, s_led[3], staid1_flags;
694 	u32 phy_tst1;
695 	u8 mode, freq, ee_mode, ant[2];
696 	int i, ret;
697 
698 	s_ant = 0;
699 	ee_mode = 0;
700 	staid1_flags = 0;
701 	freq = 0;
702 	mode = 0;
703 
704 	/*
705 	 * Save some registers before a reset
706 	 */
707 	/*DCU/Antenna selection not available on 5210*/
708 	if (ah->ah_version != AR5K_AR5210) {
709 
710 		switch (channel->hw_value & CHANNEL_MODES) {
711 		case CHANNEL_A:
712 			mode = AR5K_MODE_11A;
713 			freq = AR5K_INI_RFGAIN_5GHZ;
714 			ee_mode = AR5K_EEPROM_MODE_11A;
715 			break;
716 		case CHANNEL_G:
717 			mode = AR5K_MODE_11G;
718 			freq = AR5K_INI_RFGAIN_2GHZ;
719 			ee_mode = AR5K_EEPROM_MODE_11G;
720 			break;
721 		case CHANNEL_B:
722 			mode = AR5K_MODE_11B;
723 			freq = AR5K_INI_RFGAIN_2GHZ;
724 			ee_mode = AR5K_EEPROM_MODE_11B;
725 			break;
726 		case CHANNEL_T:
727 			mode = AR5K_MODE_11A_TURBO;
728 			freq = AR5K_INI_RFGAIN_5GHZ;
729 			ee_mode = AR5K_EEPROM_MODE_11A;
730 			break;
731 		case CHANNEL_TG:
732 			if (ah->ah_version == AR5K_AR5211) {
733 				DBG("ath5k: TurboG not available on 5211\n");
734 				return -EINVAL;
735 			}
736 			mode = AR5K_MODE_11G_TURBO;
737 			freq = AR5K_INI_RFGAIN_2GHZ;
738 			ee_mode = AR5K_EEPROM_MODE_11G;
739 			break;
740 		case CHANNEL_XR:
741 			if (ah->ah_version == AR5K_AR5211) {
742 				DBG("ath5k: XR mode not available on 5211\n");
743 				return -EINVAL;
744 			}
745 			mode = AR5K_MODE_XR;
746 			freq = AR5K_INI_RFGAIN_5GHZ;
747 			ee_mode = AR5K_EEPROM_MODE_11A;
748 			break;
749 		default:
750 			DBG("ath5k: invalid channel (%d MHz)\n",
751 			    channel->center_freq);
752 			return -EINVAL;
753 		}
754 
755 		if (change_channel) {
756 			/*
757 			 * Save frame sequence count
758 			 * For revs. after Oahu, only save
759 			 * seq num for DCU 0 (Global seq num)
760 			 */
761 			if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
762 
763 				for (i = 0; i < 10; i++)
764 					s_seq[i] = ath5k_hw_reg_read(ah,
765 						AR5K_QUEUE_DCU_SEQNUM(i));
766 
767 			} else {
768 				s_seq[0] = ath5k_hw_reg_read(ah,
769 						AR5K_QUEUE_DCU_SEQNUM(0));
770 			}
771 		}
772 
773 		/* Save default antenna */
774 		s_ant = ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA);
775 
776 		if (ah->ah_version == AR5K_AR5212) {
777 			/* Since we are going to write rf buffer
778 			 * check if we have any pending gain_F
779 			 * optimization settings */
780 			if (change_channel && ah->ah_rf_banks != NULL)
781 				ath5k_hw_gainf_calibrate(ah);
782 		}
783 	}
784 
785 	/*GPIOs*/
786 	s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) &
787 					AR5K_PCICFG_LEDSTATE;
788 	s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR);
789 	s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO);
790 
791 	/* AR5K_STA_ID1 flags, only preserve antenna
792 	 * settings and ack/cts rate mode */
793 	staid1_flags = ath5k_hw_reg_read(ah, AR5K_STA_ID1) &
794 			(AR5K_STA_ID1_DEFAULT_ANTENNA |
795 			AR5K_STA_ID1_DESC_ANTENNA |
796 			AR5K_STA_ID1_RTS_DEF_ANTENNA |
797 			AR5K_STA_ID1_ACKCTS_6MB |
798 			AR5K_STA_ID1_BASE_RATE_11B |
799 			AR5K_STA_ID1_SELFGEN_DEF_ANT);
800 
801 	/* Wakeup the device */
802 	ret = ath5k_hw_nic_wakeup(ah, channel->hw_value, 0);
803 	if (ret)
804 		return ret;
805 
806 	/* PHY access enable */
807 	if (ah->ah_mac_srev >= AR5K_SREV_AR5211)
808 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
809 	else
810 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ | 0x40,
811 							AR5K_PHY(0));
812 
813 	/* Write initial settings */
814 	ret = ath5k_hw_write_initvals(ah, mode, change_channel);
815 	if (ret)
816 		return ret;
817 
818 	/*
819 	 * 5211/5212 Specific
820 	 */
821 	if (ah->ah_version != AR5K_AR5210) {
822 
823 		/*
824 		 * Write initial RF gain settings
825 		 * This should work for both 5111/5112
826 		 */
827 		ret = ath5k_hw_rfgain_init(ah, freq);
828 		if (ret)
829 			return ret;
830 
831 		mdelay(1);
832 
833 		/*
834 		 * Tweak initval settings for revised
835 		 * chipsets and add some more config
836 		 * bits
837 		 */
838 		ath5k_hw_tweak_initval_settings(ah, channel);
839 
840 		/*
841 		 * Set TX power (FIXME)
842 		 */
843 		ret = ath5k_hw_txpower(ah, channel, ee_mode,
844 					AR5K_TUNE_DEFAULT_TXPOWER);
845 		if (ret)
846 			return ret;
847 
848 		/* Write rate duration table only on AR5212 */
849 		if (ah->ah_version == AR5K_AR5212)
850 			ath5k_hw_write_rate_duration(ah, mode);
851 
852 		/*
853 		 * Write RF buffer
854 		 */
855 		ret = ath5k_hw_rfregs_init(ah, channel, mode);
856 		if (ret)
857 			return ret;
858 
859 
860 		/* Write OFDM timings on 5212*/
861 		if (ah->ah_version == AR5K_AR5212 &&
862 			channel->hw_value & CHANNEL_OFDM) {
863 			ret = ath5k_hw_write_ofdm_timings(ah, channel);
864 			if (ret)
865 				return ret;
866 		}
867 
868 		/*Enable/disable 802.11b mode on 5111
869 		(enable 2111 frequency converter + CCK)*/
870 		if (ah->ah_radio == AR5K_RF5111) {
871 			if (mode == AR5K_MODE_11B)
872 				AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
873 				    AR5K_TXCFG_B_MODE);
874 			else
875 				AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
876 				    AR5K_TXCFG_B_MODE);
877 		}
878 
879 		/*
880 		 * In case a fixed antenna was set as default
881 		 * write the same settings on both AR5K_PHY_ANT_SWITCH_TABLE
882 		 * registers.
883 		 */
884 		if (s_ant != 0) {
885 			if (s_ant == AR5K_ANT_FIXED_A) /* 1 - Main */
886 				ant[0] = ant[1] = AR5K_ANT_FIXED_A;
887 			else	/* 2 - Aux */
888 				ant[0] = ant[1] = AR5K_ANT_FIXED_B;
889 		} else {
890 			ant[0] = AR5K_ANT_FIXED_A;
891 			ant[1] = AR5K_ANT_FIXED_B;
892 		}
893 
894 		/* Commit values from EEPROM */
895 		ath5k_hw_commit_eeprom_settings(ah, channel, ant, ee_mode);
896 
897 	} else {
898 		/*
899 		 * For 5210 we do all initialization using
900 		 * initvals, so we don't have to modify
901 		 * any settings (5210 also only supports
902 		 * a/aturbo modes)
903 		 */
904 		mdelay(1);
905 		/* Disable phy and wait */
906 		ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
907 		mdelay(1);
908 	}
909 
910 	/*
911 	 * Restore saved values
912 	 */
913 
914 	/*DCU/Antenna selection not available on 5210*/
915 	if (ah->ah_version != AR5K_AR5210) {
916 
917 		if (change_channel) {
918 			if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
919 				for (i = 0; i < 10; i++)
920 					ath5k_hw_reg_write(ah, s_seq[i],
921 						AR5K_QUEUE_DCU_SEQNUM(i));
922 			} else {
923 				ath5k_hw_reg_write(ah, s_seq[0],
924 					AR5K_QUEUE_DCU_SEQNUM(0));
925 			}
926 		}
927 
928 		ath5k_hw_reg_write(ah, s_ant, AR5K_DEFAULT_ANTENNA);
929 	}
930 
931 	/* Ledstate */
932 	AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]);
933 
934 	/* Gpio settings */
935 	ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR);
936 	ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO);
937 
938 	/* Restore sta_id flags and preserve our mac address*/
939 	ath5k_hw_reg_write(ah, AR5K_LOW_ID(ah->ah_sta_id),
940 						AR5K_STA_ID0);
941 	ath5k_hw_reg_write(ah, staid1_flags | AR5K_HIGH_ID(ah->ah_sta_id),
942 						AR5K_STA_ID1);
943 
944 
945 	/*
946 	 * Configure PCU
947 	 */
948 
949 	/* Restore bssid and bssid mask */
950 	/* XXX: add ah->aid once mac80211 gives this to us */
951 	ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
952 
953 	/* Set PCU config */
954 	ath5k_hw_set_opmode(ah);
955 
956 	/* Clear any pending interrupts
957 	 * PISR/SISR Not available on 5210 */
958 	if (ah->ah_version != AR5K_AR5210)
959 		ath5k_hw_reg_write(ah, 0xffffffff, AR5K_PISR);
960 
961 	/* Set RSSI/BRSSI thresholds
962 	 *
963 	 * Note: If we decide to set this value
964 	 * dynamicaly, have in mind that when AR5K_RSSI_THR
965 	 * register is read it might return 0x40 if we haven't
966 	 * wrote anything to it plus BMISS RSSI threshold is zeroed.
967 	 * So doing a save/restore procedure here isn't the right
968 	 * choice. Instead store it on ath5k_hw */
969 	ath5k_hw_reg_write(ah, (AR5K_TUNE_RSSI_THRES |
970 				AR5K_TUNE_BMISS_THRES <<
971 				AR5K_RSSI_THR_BMISS_S),
972 				AR5K_RSSI_THR);
973 
974 	/* MIC QoS support */
975 	if (ah->ah_mac_srev >= AR5K_SREV_AR2413) {
976 		ath5k_hw_reg_write(ah, 0x000100aa, AR5K_MIC_QOS_CTL);
977 		ath5k_hw_reg_write(ah, 0x00003210, AR5K_MIC_QOS_SEL);
978 	}
979 
980 	/* QoS NOACK Policy */
981 	if (ah->ah_version == AR5K_AR5212) {
982 		ath5k_hw_reg_write(ah,
983 			AR5K_REG_SM(2, AR5K_QOS_NOACK_2BIT_VALUES) |
984 			AR5K_REG_SM(5, AR5K_QOS_NOACK_BIT_OFFSET)  |
985 			AR5K_REG_SM(0, AR5K_QOS_NOACK_BYTE_OFFSET),
986 			AR5K_QOS_NOACK);
987 	}
988 
989 
990 	/*
991 	 * Configure PHY
992 	 */
993 
994 	/* Set channel on PHY */
995 	ret = ath5k_hw_channel(ah, channel);
996 	if (ret)
997 		return ret;
998 
999 	/*
1000 	 * Enable the PHY and wait until completion
1001 	 * This includes BaseBand and Synthesizer
1002 	 * activation.
1003 	 */
1004 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1005 
1006 	/*
1007 	 * On 5211+ read activation -> rx delay
1008 	 * and use it.
1009 	 *
1010 	 * TODO: Half/quarter rate support
1011 	 */
1012 	if (ah->ah_version != AR5K_AR5210) {
1013 		u32 delay;
1014 		delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
1015 			AR5K_PHY_RX_DELAY_M;
1016 		delay = (channel->hw_value & CHANNEL_CCK) ?
1017 			((delay << 2) / 22) : (delay / 10);
1018 
1019 		udelay(100 + (2 * delay));
1020 	} else {
1021 		mdelay(1);
1022 	}
1023 
1024 	/*
1025 	 * Perform ADC test to see if baseband is ready
1026 	 * Set tx hold and check adc test register
1027 	 */
1028 	phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
1029 	ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
1030 	for (i = 0; i <= 20; i++) {
1031 		if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
1032 			break;
1033 		udelay(200);
1034 	}
1035 	ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
1036 
1037 	/*
1038 	 * Start automatic gain control calibration
1039 	 *
1040 	 * During AGC calibration RX path is re-routed to
1041 	 * a power detector so we don't receive anything.
1042 	 *
1043 	 * This method is used to calibrate some static offsets
1044 	 * used together with on-the fly I/Q calibration (the
1045 	 * one performed via ath5k_hw_phy_calibrate), that doesn't
1046 	 * interrupt rx path.
1047 	 *
1048 	 * While rx path is re-routed to the power detector we also
1049 	 * start a noise floor calibration, to measure the
1050 	 * card's noise floor (the noise we measure when we are not
1051 	 * transmiting or receiving anything).
1052 	 *
1053 	 * If we are in a noisy environment AGC calibration may time
1054 	 * out and/or noise floor calibration might timeout.
1055 	 */
1056 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1057 				AR5K_PHY_AGCCTL_CAL);
1058 
1059 	/* At the same time start I/Q calibration for QAM constellation
1060 	 * -no need for CCK- */
1061 	ah->ah_calibration = 0;
1062 	if (!(mode == AR5K_MODE_11B)) {
1063 		ah->ah_calibration = 1;
1064 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1065 				AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1066 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1067 				AR5K_PHY_IQ_RUN);
1068 	}
1069 
1070 	/* Wait for gain calibration to finish (we check for I/Q calibration
1071 	 * during ath5k_phy_calibrate) */
1072 	if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1073 			AR5K_PHY_AGCCTL_CAL, 0, 0)) {
1074 		DBG("ath5k: gain calibration timeout (%d MHz)\n",
1075 		    channel->center_freq);
1076 	}
1077 
1078 	/*
1079 	 * If we run NF calibration before AGC, it always times out.
1080 	 * Binary HAL starts NF and AGC calibration at the same time
1081 	 * and only waits for AGC to finish. Also if AGC or NF cal.
1082 	 * times out, reset doesn't fail on binary HAL. I believe
1083 	 * that's wrong because since rx path is routed to a detector,
1084 	 * if cal. doesn't finish we won't have RX. Sam's HAL for AR5210/5211
1085 	 * enables noise floor calibration after offset calibration and if noise
1086 	 * floor calibration fails, reset fails. I believe that's
1087 	 * a better approach, we just need to find a polling interval
1088 	 * that suits best, even if reset continues we need to make
1089 	 * sure that rx path is ready.
1090 	 */
1091 	ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
1092 
1093 
1094 	/*
1095 	 * Configure QCUs/DCUs
1096 	 */
1097 
1098 	/* TODO: HW Compression support for data queues */
1099 	/* TODO: Burst prefetch for data queues */
1100 
1101 	/*
1102 	 * Reset queues and start beacon timers at the end of the reset routine
1103 	 * This also sets QCU mask on each DCU for 1:1 qcu to dcu mapping
1104 	 * Note: If we want we can assign multiple qcus on one dcu.
1105 	 */
1106 	ret = ath5k_hw_reset_tx_queue(ah);
1107 	if (ret) {
1108 		DBG("ath5k: failed to reset TX queue\n");
1109 		return ret;
1110 	}
1111 
1112 	/*
1113 	 * Configure DMA/Interrupts
1114 	 */
1115 
1116 	/*
1117 	 * Set Rx/Tx DMA Configuration
1118 	 *
1119 	 * Set standard DMA size (128). Note that
1120 	 * a DMA size of 512 causes rx overruns and tx errors
1121 	 * on pci-e cards (tested on 5424 but since rx overruns
1122 	 * also occur on 5416/5418 with madwifi we set 128
1123 	 * for all PCI-E cards to be safe).
1124 	 *
1125 	 * XXX: need to check 5210 for this
1126 	 * TODO: Check out tx triger level, it's always 64 on dumps but I
1127 	 * guess we can tweak it and see how it goes ;-)
1128 	 */
1129 	if (ah->ah_version != AR5K_AR5210) {
1130 		AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG,
1131 			AR5K_TXCFG_SDMAMR, AR5K_DMASIZE_128B);
1132 		AR5K_REG_WRITE_BITS(ah, AR5K_RXCFG,
1133 			AR5K_RXCFG_SDMAMW, AR5K_DMASIZE_128B);
1134 	}
1135 
1136 	/* Pre-enable interrupts on 5211/5212*/
1137 	if (ah->ah_version != AR5K_AR5210)
1138 		ath5k_hw_set_imr(ah, ah->ah_imr);
1139 
1140 	/*
1141 	 * Setup RFKill interrupt if rfkill flag is set on eeprom.
1142 	 * TODO: Use gpio pin and polarity infos from eeprom
1143 	 * TODO: Handle this in ath5k_intr because it'll result
1144 	 * 	 a nasty interrupt storm.
1145 	 */
1146 #if 0
1147 	if (AR5K_EEPROM_HDR_RFKILL(ah->ah_capabilities.cap_eeprom.ee_header)) {
1148 		ath5k_hw_set_gpio_input(ah, 0);
1149 		ah->ah_gpio[0] = ath5k_hw_get_gpio(ah, 0);
1150 		if (ah->ah_gpio[0] == 0)
1151 			ath5k_hw_set_gpio_intr(ah, 0, 1);
1152 		else
1153 			ath5k_hw_set_gpio_intr(ah, 0, 0);
1154 	}
1155 #endif
1156 
1157 	/*
1158 	 * Disable beacons and reset the register
1159 	 */
1160 	AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE |
1161 			AR5K_BEACON_RESET_TSF);
1162 
1163 	return 0;
1164 }
1165 
1166 #undef _ATH5K_RESET
1167