1 /* Copyright (c) 2018 The Chromium OS Authors. All rights reserved.
2  * Use of this source code is governed by a BSD-style license that can be
3  * found in the LICENSE file.
4  */
5 
6 /* Host communication command constants for Chrome EC */
7 
8 #ifndef __CROS_EC_COMMANDS_H
9 #define __CROS_EC_COMMANDS_H
10 
11 /*
12  * Protocol overview
13  *
14  * request:  CMD [ P0 P1 P2 ... Pn S ]
15  * response: ERR [ P0 P1 P2 ... Pn S ]
16  *
17  * where the bytes are defined as follow :
18  *      - CMD is the command code. (defined by EC_CMD_ constants)
19  *      - ERR is the error code. (defined by EC_RES_ constants)
20  *      - Px is the optional payload.
21  *        it is not sent if the error code is not success.
22  *        (defined by ec_params_ and ec_response_ structures)
23  *      - S is the checksum which is the sum of all payload bytes.
24  *
25  * On LPC, CMD and ERR are sent/received at EC_LPC_ADDR_KERNEL|USER_CMD
26  * and the payloads are sent/received at EC_LPC_ADDR_KERNEL|USER_PARAM.
27  * On I2C, all bytes are sent serially in the same message.
28  */
29 
30 /*
31  * Current version of this protocol
32  *
33  * TODO(crosbug.com/p/11223): This is effectively useless; protocol is
34  * determined in other ways.  Remove this once the kernel code no longer
35  * depends on it.
36  */
37 #define EC_PROTO_VERSION          0x00000002
38 
39 /* Command version mask */
40 #define EC_VER_MASK(version) (1UL << (version))
41 
42 /* I/O addresses for ACPI commands */
43 #define EC_LPC_ADDR_ACPI_DATA  0x62
44 #define EC_LPC_ADDR_ACPI_CMD   0x66
45 
46 /* I/O addresses for host command */
47 #define EC_LPC_ADDR_HOST_DATA  0x200
48 #define EC_LPC_ADDR_HOST_CMD   0x204
49 
50 /* I/O addresses for host command args and params */
51 /* Protocol version 2 */
52 #define EC_LPC_ADDR_HOST_ARGS    0x800  /* And 0x801, 0x802, 0x803 */
53 #define EC_LPC_ADDR_HOST_PARAM   0x804  /* For version 2 params; size is
54 					 * EC_PROTO2_MAX_PARAM_SIZE */
55 /* Protocol version 3 */
56 #define EC_LPC_ADDR_HOST_PACKET  0x800  /* Offset of version 3 packet */
57 #define EC_LPC_HOST_PACKET_SIZE  0x100  /* Max size of version 3 packet */
58 
59 /* The actual block is 0x800-0x8ff, but some BIOSes think it's 0x880-0x8ff
60  * and they tell the kernel that so we have to think of it as two parts. */
61 #define EC_HOST_CMD_REGION0    0x800
62 #define EC_HOST_CMD_REGION1    0x880
63 #define EC_HOST_CMD_REGION_SIZE 0x80
64 
65 /* EC command register bit functions */
66 #define EC_LPC_CMDR_DATA	(1 << 0)  /* Data ready for host to read */
67 #define EC_LPC_CMDR_PENDING	(1 << 1)  /* Write pending to EC */
68 #define EC_LPC_CMDR_BUSY	(1 << 2)  /* EC is busy processing a command */
69 #define EC_LPC_CMDR_CMD		(1 << 3)  /* Last host write was a command */
70 #define EC_LPC_CMDR_ACPI_BRST	(1 << 4)  /* Burst mode (not used) */
71 #define EC_LPC_CMDR_SCI		(1 << 5)  /* SCI event is pending */
72 #define EC_LPC_CMDR_SMI		(1 << 6)  /* SMI event is pending */
73 
74 #define EC_LPC_ADDR_MEMMAP       0x900
75 #define EC_MEMMAP_SIZE         255 /* ACPI IO buffer max is 255 bytes */
76 #define EC_MEMMAP_TEXT_MAX     8   /* Size of a string in the memory map */
77 
78 /* The offset address of each type of data in mapped memory. */
79 #define EC_MEMMAP_TEMP_SENSOR      0x00 /* Temp sensors 0x00 - 0x0f */
80 #define EC_MEMMAP_FAN              0x10 /* Fan speeds 0x10 - 0x17 */
81 #define EC_MEMMAP_TEMP_SENSOR_B    0x18 /* More temp sensors 0x18 - 0x1f */
82 #define EC_MEMMAP_ID               0x20 /* 0x20 == 'E', 0x21 == 'C' */
83 #define EC_MEMMAP_ID_VERSION       0x22 /* Version of data in 0x20 - 0x2f */
84 #define EC_MEMMAP_THERMAL_VERSION  0x23 /* Version of data in 0x00 - 0x1f */
85 #define EC_MEMMAP_BATTERY_VERSION  0x24 /* Version of data in 0x40 - 0x7f */
86 #define EC_MEMMAP_SWITCHES_VERSION 0x25 /* Version of data in 0x30 - 0x33 */
87 #define EC_MEMMAP_EVENTS_VERSION   0x26 /* Version of data in 0x34 - 0x3f */
88 #define EC_MEMMAP_HOST_CMD_FLAGS   0x27 /* Host cmd interface flags (8 bits) */
89 /* Unused 0x28 - 0x2f */
90 #define EC_MEMMAP_SWITCHES         0x30	/* 8 bits */
91 /* Unused 0x31 - 0x33 */
92 #define EC_MEMMAP_HOST_EVENTS      0x34 /* 32 bits */
93 /* Reserve 0x38 - 0x3f for additional host event-related stuff */
94 /* Battery values are all 32 bits */
95 #define EC_MEMMAP_BATT_VOLT        0x40 /* Battery Present Voltage */
96 #define EC_MEMMAP_BATT_RATE        0x44 /* Battery Present Rate */
97 #define EC_MEMMAP_BATT_CAP         0x48 /* Battery Remaining Capacity */
98 #define EC_MEMMAP_BATT_FLAG        0x4c /* Battery State, defined below */
99 #define EC_MEMMAP_BATT_DCAP        0x50 /* Battery Design Capacity */
100 #define EC_MEMMAP_BATT_DVLT        0x54 /* Battery Design Voltage */
101 #define EC_MEMMAP_BATT_LFCC        0x58 /* Battery Last Full Charge Capacity */
102 #define EC_MEMMAP_BATT_CCNT        0x5c /* Battery Cycle Count */
103 /* Strings are all 8 bytes (EC_MEMMAP_TEXT_MAX) */
104 #define EC_MEMMAP_BATT_MFGR        0x60 /* Battery Manufacturer String */
105 #define EC_MEMMAP_BATT_MODEL       0x68 /* Battery Model Number String */
106 #define EC_MEMMAP_BATT_SERIAL      0x70 /* Battery Serial Number String */
107 #define EC_MEMMAP_BATT_TYPE        0x78 /* Battery Type String */
108 #define EC_MEMMAP_ALS              0x80 /* ALS readings in lux (2 X 16 bits) */
109 /* Unused 0x84 - 0x8f */
110 #define EC_MEMMAP_ACC_STATUS       0x90 /* Accelerometer status (8 bits )*/
111 /* Unused 0x91 */
112 #define EC_MEMMAP_ACC_DATA         0x92 /* Accelerometers data 0x92 - 0x9f */
113 /* 0x92: Lid Angle if available, LID_ANGLE_UNRELIABLE otherwise */
114 /* 0x94 - 0x99: 1st Accelerometer */
115 /* 0x9a - 0x9f: 2nd Accelerometer */
116 #define EC_MEMMAP_GYRO_DATA        0xa0 /* Gyroscope data 0xa0 - 0xa5 */
117 /* Unused 0xa6 - 0xdf */
118 
119 /*
120  * ACPI is unable to access memory mapped data at or above this offset due to
121  * limitations of the ACPI protocol. Do not place data in the range 0xe0 - 0xfe
122  * which might be needed by ACPI.
123  */
124 #define EC_MEMMAP_NO_ACPI 0xe0
125 
126 /* Define the format of the accelerometer mapped memory status byte. */
127 #define EC_MEMMAP_ACC_STATUS_SAMPLE_ID_MASK  0x0f
128 #define EC_MEMMAP_ACC_STATUS_BUSY_BIT        (1 << 4)
129 #define EC_MEMMAP_ACC_STATUS_PRESENCE_BIT    (1 << 7)
130 
131 /* Number of temp sensors at EC_MEMMAP_TEMP_SENSOR */
132 #define EC_TEMP_SENSOR_ENTRIES     16
133 /*
134  * Number of temp sensors at EC_MEMMAP_TEMP_SENSOR_B.
135  *
136  * Valid only if EC_MEMMAP_THERMAL_VERSION returns >= 2.
137  */
138 #define EC_TEMP_SENSOR_B_ENTRIES      8
139 
140 /* Special values for mapped temperature sensors */
141 #define EC_TEMP_SENSOR_NOT_PRESENT    0xff
142 #define EC_TEMP_SENSOR_ERROR          0xfe
143 #define EC_TEMP_SENSOR_NOT_POWERED    0xfd
144 #define EC_TEMP_SENSOR_NOT_CALIBRATED 0xfc
145 /*
146  * The offset of temperature value stored in mapped memory.  This allows
147  * reporting a temperature range of 200K to 454K = -73C to 181C.
148  */
149 #define EC_TEMP_SENSOR_OFFSET      200
150 
151 /*
152  * Number of ALS readings at EC_MEMMAP_ALS
153  */
154 #define EC_ALS_ENTRIES             2
155 
156 /*
157  * The default value a temperature sensor will return when it is present but
158  * has not been read this boot.  This is a reasonable number to avoid
159  * triggering alarms on the host.
160  */
161 #define EC_TEMP_SENSOR_DEFAULT     (296 - EC_TEMP_SENSOR_OFFSET)
162 
163 #define EC_FAN_SPEED_ENTRIES       4       /* Number of fans at EC_MEMMAP_FAN */
164 #define EC_FAN_SPEED_NOT_PRESENT   0xffff  /* Entry not present */
165 #define EC_FAN_SPEED_STALLED       0xfffe  /* Fan stalled */
166 
167 /* Battery bit flags at EC_MEMMAP_BATT_FLAG. */
168 #define EC_BATT_FLAG_AC_PRESENT   0x01
169 #define EC_BATT_FLAG_BATT_PRESENT 0x02
170 #define EC_BATT_FLAG_DISCHARGING  0x04
171 #define EC_BATT_FLAG_CHARGING     0x08
172 #define EC_BATT_FLAG_LEVEL_CRITICAL 0x10
173 
174 /* Switch flags at EC_MEMMAP_SWITCHES */
175 #define EC_SWITCH_LID_OPEN               0x01
176 #define EC_SWITCH_POWER_BUTTON_PRESSED   0x02
177 #define EC_SWITCH_WRITE_PROTECT_DISABLED 0x04
178 /* Was recovery requested via keyboard; now unused. */
179 #define EC_SWITCH_IGNORE1		 0x08
180 /* Recovery requested via dedicated signal (from servo board) */
181 #define EC_SWITCH_DEDICATED_RECOVERY     0x10
182 /* Was fake developer mode switch; now unused.  Remove in next refactor. */
183 #define EC_SWITCH_IGNORE0                0x20
184 
185 /* Host command interface flags */
186 /* Host command interface supports LPC args (LPC interface only) */
187 #define EC_HOST_CMD_FLAG_LPC_ARGS_SUPPORTED  0x01
188 /* Host command interface supports version 3 protocol */
189 #define EC_HOST_CMD_FLAG_VERSION_3   0x02
190 
191 /* Wireless switch flags */
192 #define EC_WIRELESS_SWITCH_ALL       ~0x00  /* All flags */
193 #define EC_WIRELESS_SWITCH_WLAN       0x01  /* WLAN radio */
194 #define EC_WIRELESS_SWITCH_BLUETOOTH  0x02  /* Bluetooth radio */
195 #define EC_WIRELESS_SWITCH_WWAN       0x04  /* WWAN power */
196 #define EC_WIRELESS_SWITCH_WLAN_POWER 0x08  /* WLAN power */
197 
198 /*****************************************************************************/
199 /*
200  * ACPI commands
201  *
202  * These are valid ONLY on the ACPI command/data port.
203  */
204 
205 /*
206  * ACPI Read Embedded Controller
207  *
208  * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
209  *
210  * Use the following sequence:
211  *
212  *    - Write EC_CMD_ACPI_READ to EC_LPC_ADDR_ACPI_CMD
213  *    - Wait for EC_LPC_CMDR_PENDING bit to clear
214  *    - Write address to EC_LPC_ADDR_ACPI_DATA
215  *    - Wait for EC_LPC_CMDR_DATA bit to set
216  *    - Read value from EC_LPC_ADDR_ACPI_DATA
217  */
218 #define EC_CMD_ACPI_READ 0x0080
219 
220 /*
221  * ACPI Write Embedded Controller
222  *
223  * This reads from ACPI memory space on the EC (EC_ACPI_MEM_*).
224  *
225  * Use the following sequence:
226  *
227  *    - Write EC_CMD_ACPI_WRITE to EC_LPC_ADDR_ACPI_CMD
228  *    - Wait for EC_LPC_CMDR_PENDING bit to clear
229  *    - Write address to EC_LPC_ADDR_ACPI_DATA
230  *    - Wait for EC_LPC_CMDR_PENDING bit to clear
231  *    - Write value to EC_LPC_ADDR_ACPI_DATA
232  */
233 #define EC_CMD_ACPI_WRITE 0x0081
234 
235 /*
236  * ACPI Burst Enable Embedded Controller
237  *
238  * This enables burst mode on the EC to allow the host to issue several
239  * commands back-to-back. While in this mode, writes to mapped multi-byte
240  * data are locked out to ensure data consistency.
241  */
242 #define EC_CMD_ACPI_BURST_ENABLE 0x0082
243 
244 /*
245  * ACPI Burst Disable Embedded Controller
246  *
247  * This disables burst mode on the EC and stops preventing EC writes to mapped
248  * multi-byte data.
249  */
250 #define EC_CMD_ACPI_BURST_DISABLE 0x0083
251 
252 /*
253  * ACPI Query Embedded Controller
254  *
255  * This clears the lowest-order bit in the currently pending host events, and
256  * sets the result code to the 1-based index of the bit (event 0x00000001 = 1,
257  * event 0x80000000 = 32), or 0 if no event was pending.
258  */
259 #define EC_CMD_ACPI_QUERY_EVENT 0x0084
260 
261 /* Valid addresses in ACPI memory space, for read/write commands */
262 
263 /* Memory space version; set to EC_ACPI_MEM_VERSION_CURRENT */
264 #define EC_ACPI_MEM_VERSION            0x00
265 /*
266  * Test location; writing value here updates test compliment byte to (0xff -
267  * value).
268  */
269 #define EC_ACPI_MEM_TEST               0x01
270 /* Test compliment; writes here are ignored. */
271 #define EC_ACPI_MEM_TEST_COMPLIMENT    0x02
272 
273 /* Keyboard backlight brightness percent (0 - 100) */
274 #define EC_ACPI_MEM_KEYBOARD_BACKLIGHT 0x03
275 /* DPTF Target Fan Duty (0-100, 0xff for auto/none) */
276 #define EC_ACPI_MEM_FAN_DUTY           0x04
277 
278 /*
279  * DPTF temp thresholds. Any of the EC's temp sensors can have up to two
280  * independent thresholds attached to them. The current value of the ID
281  * register determines which sensor is affected by the THRESHOLD and COMMIT
282  * registers. The THRESHOLD register uses the same EC_TEMP_SENSOR_OFFSET scheme
283  * as the memory-mapped sensors. The COMMIT register applies those settings.
284  *
285  * The spec does not mandate any way to read back the threshold settings
286  * themselves, but when a threshold is crossed the AP needs a way to determine
287  * which sensor(s) are responsible. Each reading of the ID register clears and
288  * returns one sensor ID that has crossed one of its threshold (in either
289  * direction) since the last read. A value of 0xFF means "no new thresholds
290  * have tripped". Setting or enabling the thresholds for a sensor will clear
291  * the unread event count for that sensor.
292  */
293 #define EC_ACPI_MEM_TEMP_ID            0x05
294 #define EC_ACPI_MEM_TEMP_THRESHOLD     0x06
295 #define EC_ACPI_MEM_TEMP_COMMIT        0x07
296 /*
297  * Here are the bits for the COMMIT register:
298  *   bit 0 selects the threshold index for the chosen sensor (0/1)
299  *   bit 1 enables/disables the selected threshold (0 = off, 1 = on)
300  * Each write to the commit register affects one threshold.
301  */
302 #define EC_ACPI_MEM_TEMP_COMMIT_SELECT_MASK (1 << 0)
303 #define EC_ACPI_MEM_TEMP_COMMIT_ENABLE_MASK (1 << 1)
304 /*
305  * Example:
306  *
307  * Set the thresholds for sensor 2 to 50 C and 60 C:
308  *   write 2 to [0x05]      --  select temp sensor 2
309  *   write 0x7b to [0x06]   --  C_TO_K(50) - EC_TEMP_SENSOR_OFFSET
310  *   write 0x2 to [0x07]    --  enable threshold 0 with this value
311  *   write 0x85 to [0x06]   --  C_TO_K(60) - EC_TEMP_SENSOR_OFFSET
312  *   write 0x3 to [0x07]    --  enable threshold 1 with this value
313  *
314  * Disable the 60 C threshold, leaving the 50 C threshold unchanged:
315  *   write 2 to [0x05]      --  select temp sensor 2
316  *   write 0x1 to [0x07]    --  disable threshold 1
317  */
318 
319 /* DPTF battery charging current limit */
320 #define EC_ACPI_MEM_CHARGING_LIMIT     0x08
321 
322 /* Charging limit is specified in 64 mA steps */
323 #define EC_ACPI_MEM_CHARGING_LIMIT_STEP_MA   64
324 /* Value to disable DPTF battery charging limit */
325 #define EC_ACPI_MEM_CHARGING_LIMIT_DISABLED  0xff
326 
327 /*
328  * Report device orientation
329  *   bit 0 device is tablet mode
330  */
331 #define EC_ACPI_MEM_DEVICE_ORIENTATION 0x09
332 #define EC_ACPI_MEM_DEVICE_TABLET_MODE 0x01
333 
334 /*
335  * ACPI addresses 0x20 - 0xff map to EC_MEMMAP offset 0x00 - 0xdf.  This data
336  * is read-only from the AP.  Added in EC_ACPI_MEM_VERSION 2.
337  */
338 #define EC_ACPI_MEM_MAPPED_BEGIN   0x20
339 #define EC_ACPI_MEM_MAPPED_SIZE    0xe0
340 
341 /* Current version of ACPI memory address space */
342 #define EC_ACPI_MEM_VERSION_CURRENT 2
343 
344 
345 /*
346  * This header file is used in coreboot both in C and ACPI code.  The ACPI code
347  * is pre-processed to handle constants but the ASL compiler is unable to
348  * handle actual C code so keep it separate.
349  */
350 #ifndef __ACPI__
351 
352 /*
353  * Define __packed if someone hasn't beat us to it.  Linux kernel style
354  * checking prefers __packed over __attribute__((packed)).
355  */
356 #ifndef __packed
357 #define __packed __attribute__((packed))
358 #endif
359 
360 #ifndef __aligned
361 #define __aligned(x) __attribute__((aligned(x)))
362 #endif
363 
364 /*
365  * Attributes for EC request and response packets.  Just defining __packed
366  * results in inefficient assembly code on ARM, if the structure is actually
367  * 32-bit aligned, as it should be for all buffers.
368  *
369  * Be very careful when adding these to existing structures.  They will round
370  * up the structure size to the specified boundary.
371  *
372  * Also be very careful to make that if a structure is included in some other
373  * parent structure that the alignment will still be true given the packing of
374  * the parent structure.  This is particularly important if the sub-structure
375  * will be passed as a pointer to another function, since that function will
376  * not know about the misaligment caused by the parent structure's packing.
377  *
378  * Also be very careful using __packed - particularly when nesting non-packed
379  * structures inside packed ones.  In fact, DO NOT use __packed directly;
380  * always use one of these attributes.
381  *
382  * Once everything is annotated properly, the following search strings should
383  * not return ANY matches in this file other than right here:
384  *
385  * "__packed" - generates inefficient code; all sub-structs must also be packed
386  *
387  * "struct [^_]" - all structs should be annotated, except for structs that are
388  * members of other structs/unions (and their original declarations should be
389  * annotated).
390  */
391 #ifdef CONFIG_HOSTCMD_ALIGNED
392 
393 /*
394  * Packed structures where offset and size are always aligned to 1, 2, or 4
395  * byte boundary.
396  */
397 #define __ec_align1 __packed
398 #define __ec_align2 __packed __aligned(2)
399 #define __ec_align4 __packed __aligned(4)
400 
401 /*
402  * Packed structure which must be under-aligned, because its size is not a
403  * 4-byte multiple.  This is sub-optimal because it forces byte-wise access
404  * of all multi-byte fields in it, even though they are themselves aligned.
405  *
406  * In theory, we could duplicate the structure with __aligned(4) for accessing
407  * its members, but use the __packed version for sizeof().
408  */
409 #define __ec_align_size1 __packed
410 
411 /*
412  * Packed structure which must be under-aligned, because its offset inside a
413  * parent structure is not a 4-byte multiple.
414  */
415 #define __ec_align_offset1 __packed
416 #define __ec_align_offset2 __packed __aligned(2)
417 
418 /*
419  * Structures which are complicated enough that I'm skipping them on the first
420  * pass.  They are effectively unchanged from their previous definitions.
421  *
422  * TODO(rspangler): Figure out what to do with these.  It's likely necessary
423  * to work out the size and offset of each member and add explicit padding to
424  * maintain those.
425  */
426 #define __ec_todo_packed __packed
427 #define __ec_todo_unpacked
428 
429 #else  /* !CONFIG_HOSTCMD_ALIGNED */
430 
431 /*
432  * Packed structures make no assumption about alignment, so they do inefficient
433  * byte-wise reads.
434  */
435 #define __ec_align1 __packed
436 #define __ec_align2 __packed
437 #define __ec_align4 __packed
438 #define __ec_align_size1 __packed
439 #define __ec_align_offset1 __packed
440 #define __ec_align_offset2 __packed
441 #define __ec_todo_packed __packed
442 #define __ec_todo_unpacked
443 
444 #endif  /* !CONFIG_HOSTCMD_ALIGNED */
445 
446 /* LPC command status byte masks */
447 /* EC has written a byte in the data register and host hasn't read it yet */
448 #define EC_LPC_STATUS_TO_HOST     0x01
449 /* Host has written a command/data byte and the EC hasn't read it yet */
450 #define EC_LPC_STATUS_FROM_HOST   0x02
451 /* EC is processing a command */
452 #define EC_LPC_STATUS_PROCESSING  0x04
453 /* Last write to EC was a command, not data */
454 #define EC_LPC_STATUS_LAST_CMD    0x08
455 /* EC is in burst mode */
456 #define EC_LPC_STATUS_BURST_MODE  0x10
457 /* SCI event is pending (requesting SCI query) */
458 #define EC_LPC_STATUS_SCI_PENDING 0x20
459 /* SMI event is pending (requesting SMI query) */
460 #define EC_LPC_STATUS_SMI_PENDING 0x40
461 /* (reserved) */
462 #define EC_LPC_STATUS_RESERVED    0x80
463 
464 /*
465  * EC is busy.  This covers both the EC processing a command, and the host has
466  * written a new command but the EC hasn't picked it up yet.
467  */
468 #define EC_LPC_STATUS_BUSY_MASK \
469 	(EC_LPC_STATUS_FROM_HOST | EC_LPC_STATUS_PROCESSING)
470 
471 /* Host command response codes (16-bit).  Note that response codes should be
472  * stored in a uint16_t rather than directly in a value of this type.
473  */
474 enum ec_status {
475 	EC_RES_SUCCESS = 0,
476 	EC_RES_INVALID_COMMAND = 1,
477 	EC_RES_ERROR = 2,
478 	EC_RES_INVALID_PARAM = 3,
479 	EC_RES_ACCESS_DENIED = 4,
480 	EC_RES_INVALID_RESPONSE = 5,
481 	EC_RES_INVALID_VERSION = 6,
482 	EC_RES_INVALID_CHECKSUM = 7,
483 	EC_RES_IN_PROGRESS = 8,		/* Accepted, command in progress */
484 	EC_RES_UNAVAILABLE = 9,		/* No response available */
485 	EC_RES_TIMEOUT = 10,		/* We got a timeout */
486 	EC_RES_OVERFLOW = 11,		/* Table / data overflow */
487 	EC_RES_INVALID_HEADER = 12,     /* Header contains invalid data */
488 	EC_RES_REQUEST_TRUNCATED = 13,  /* Didn't get the entire request */
489 	EC_RES_RESPONSE_TOO_BIG = 14,   /* Response was too big to handle */
490 	EC_RES_BUS_ERROR = 15,		/* Communications bus error */
491 	EC_RES_BUSY = 16		/* Up but too busy.  Should retry */
492 };
493 
494 /*
495  * Host event codes.  Note these are 1-based, not 0-based, because ACPI query
496  * EC command uses code 0 to mean "no event pending".  We explicitly specify
497  * each value in the enum listing so they won't change if we delete/insert an
498  * item or rearrange the list (it needs to be stable across platforms, not
499  * just within a single compiled instance).
500  */
501 enum host_event_code {
502 	EC_HOST_EVENT_LID_CLOSED = 1,
503 	EC_HOST_EVENT_LID_OPEN = 2,
504 	EC_HOST_EVENT_POWER_BUTTON = 3,
505 	EC_HOST_EVENT_AC_CONNECTED = 4,
506 	EC_HOST_EVENT_AC_DISCONNECTED = 5,
507 	EC_HOST_EVENT_BATTERY_LOW = 6,
508 	EC_HOST_EVENT_BATTERY_CRITICAL = 7,
509 	EC_HOST_EVENT_BATTERY = 8,
510 	EC_HOST_EVENT_THERMAL_THRESHOLD = 9,
511 	/* Event generated by a device attached to the EC */
512 	EC_HOST_EVENT_DEVICE = 10,
513 	EC_HOST_EVENT_THERMAL = 11,
514 	EC_HOST_EVENT_USB_CHARGER = 12,
515 	EC_HOST_EVENT_KEY_PRESSED = 13,
516 	/*
517 	 * EC has finished initializing the host interface.  The host can check
518 	 * for this event following sending a EC_CMD_REBOOT_EC command to
519 	 * determine when the EC is ready to accept subsequent commands.
520 	 */
521 	EC_HOST_EVENT_INTERFACE_READY = 14,
522 	/* Keyboard recovery combo has been pressed */
523 	EC_HOST_EVENT_KEYBOARD_RECOVERY = 15,
524 
525 	/* Shutdown due to thermal overload */
526 	EC_HOST_EVENT_THERMAL_SHUTDOWN = 16,
527 	/* Shutdown due to battery level too low */
528 	EC_HOST_EVENT_BATTERY_SHUTDOWN = 17,
529 
530 	/* Suggest that the AP throttle itself */
531 	EC_HOST_EVENT_THROTTLE_START = 18,
532 	/* Suggest that the AP resume normal speed */
533 	EC_HOST_EVENT_THROTTLE_STOP = 19,
534 
535 	/* Hang detect logic detected a hang and host event timeout expired */
536 	EC_HOST_EVENT_HANG_DETECT = 20,
537 	/* Hang detect logic detected a hang and warm rebooted the AP */
538 	EC_HOST_EVENT_HANG_REBOOT = 21,
539 
540 	/* PD MCU triggering host event */
541 	EC_HOST_EVENT_PD_MCU = 22,
542 
543 	/* Battery Status flags have changed */
544 	EC_HOST_EVENT_BATTERY_STATUS = 23,
545 
546 	/* EC encountered a panic, triggering a reset */
547 	EC_HOST_EVENT_PANIC = 24,
548 
549 	/* Keyboard fastboot combo has been pressed */
550 	EC_HOST_EVENT_KEYBOARD_FASTBOOT = 25,
551 
552 	/* EC RTC event occurred */
553 	EC_HOST_EVENT_RTC = 26,
554 
555 	/* Emulate MKBP event */
556 	EC_HOST_EVENT_MKBP = 27,
557 
558 	/* EC desires to change state of host-controlled USB mux */
559 	EC_HOST_EVENT_USB_MUX = 28,
560 
561 	/* TABLET/LAPTOP mode event*/
562 	EC_HOST_EVENT_MODE_CHANGE = 29,
563 
564 	/* Keyboard recovery combo with hardware reinitialization */
565 	EC_HOST_EVENT_KEYBOARD_RECOVERY_HW_REINIT = 30,
566 
567 	/*
568 	 * Reserve this last bit to indicate that at least one bit in a
569 	 * secondary host event word is set.  See crbug.com/633646.
570 	 */
571 	EC_HOST_EVENT_EXTENDED = 31,
572 
573 	/*
574 	 * The high bit of the event mask is not used as a host event code.  If
575 	 * it reads back as set, then the entire event mask should be
576 	 * considered invalid by the host.  This can happen when reading the
577 	 * raw event status via EC_MEMMAP_HOST_EVENTS but the LPC interface is
578 	 * not initialized on the EC, or improperly configured on the host.
579 	 */
580 	EC_HOST_EVENT_INVALID = 32
581 };
582 /* Host event mask */
583 #define EC_HOST_EVENT_MASK(event_code) (1ULL << ((event_code) - 1))
584 
585 /* Arguments at EC_LPC_ADDR_HOST_ARGS */
586 struct __ec_align4 ec_lpc_host_args {
587 	uint8_t flags;
588 	uint8_t command_version;
589 	uint8_t data_size;
590 	/*
591 	 * Checksum; sum of command + flags + command_version + data_size +
592 	 * all params/response data bytes.
593 	 */
594 	uint8_t checksum;
595 };
596 
597 /* Flags for ec_lpc_host_args.flags */
598 /*
599  * Args are from host.  Data area at EC_LPC_ADDR_HOST_PARAM contains command
600  * params.
601  *
602  * If EC gets a command and this flag is not set, this is an old-style command.
603  * Command version is 0 and params from host are at EC_LPC_ADDR_OLD_PARAM with
604  * unknown length.  EC must respond with an old-style response (that is,
605  * without setting EC_HOST_ARGS_FLAG_TO_HOST).
606  */
607 #define EC_HOST_ARGS_FLAG_FROM_HOST 0x01
608 /*
609  * Args are from EC.  Data area at EC_LPC_ADDR_HOST_PARAM contains response.
610  *
611  * If EC responds to a command and this flag is not set, this is an old-style
612  * response.  Command version is 0 and response data from EC is at
613  * EC_LPC_ADDR_OLD_PARAM with unknown length.
614  */
615 #define EC_HOST_ARGS_FLAG_TO_HOST   0x02
616 
617 /*****************************************************************************/
618 /*
619  * Byte codes returned by EC over SPI interface.
620  *
621  * These can be used by the AP to debug the EC interface, and to determine
622  * when the EC is not in a state where it will ever get around to responding
623  * to the AP.
624  *
625  * Example of sequence of bytes read from EC for a current good transfer:
626  *   1. -                  - AP asserts chip select (CS#)
627  *   2. EC_SPI_OLD_READY   - AP sends first byte(s) of request
628  *   3. -                  - EC starts handling CS# interrupt
629  *   4. EC_SPI_RECEIVING   - AP sends remaining byte(s) of request
630  *   5. EC_SPI_PROCESSING  - EC starts processing request; AP is clocking in
631  *                           bytes looking for EC_SPI_FRAME_START
632  *   6. -                  - EC finishes processing and sets up response
633  *   7. EC_SPI_FRAME_START - AP reads frame byte
634  *   8. (response packet)  - AP reads response packet
635  *   9. EC_SPI_PAST_END    - Any additional bytes read by AP
636  *   10 -                  - AP deasserts chip select
637  *   11 -                  - EC processes CS# interrupt and sets up DMA for
638  *                           next request
639  *
640  * If the AP is waiting for EC_SPI_FRAME_START and sees any value other than
641  * the following byte values:
642  *   EC_SPI_OLD_READY
643  *   EC_SPI_RX_READY
644  *   EC_SPI_RECEIVING
645  *   EC_SPI_PROCESSING
646  *
647  * Then the EC found an error in the request, or was not ready for the request
648  * and lost data.  The AP should give up waiting for EC_SPI_FRAME_START,
649  * because the EC is unable to tell when the AP is done sending its request.
650  */
651 
652 /*
653  * Framing byte which precedes a response packet from the EC.  After sending a
654  * request, the AP will clock in bytes until it sees the framing byte, then
655  * clock in the response packet.
656  */
657 #define EC_SPI_FRAME_START    0xec
658 
659 /*
660  * Padding bytes which are clocked out after the end of a response packet.
661  */
662 #define EC_SPI_PAST_END       0xed
663 
664 /*
665  * EC is ready to receive, and has ignored the byte sent by the AP.  EC expects
666  * that the AP will send a valid packet header (starting with
667  * EC_COMMAND_PROTOCOL_3) in the next 32 bytes.
668  */
669 #define EC_SPI_RX_READY       0xf8
670 
671 /*
672  * EC has started receiving the request from the AP, but hasn't started
673  * processing it yet.
674  */
675 #define EC_SPI_RECEIVING      0xf9
676 
677 /* EC has received the entire request from the AP and is processing it. */
678 #define EC_SPI_PROCESSING     0xfa
679 
680 /*
681  * EC received bad data from the AP, such as a packet header with an invalid
682  * length.  EC will ignore all data until chip select deasserts.
683  */
684 #define EC_SPI_RX_BAD_DATA    0xfb
685 
686 /*
687  * EC received data from the AP before it was ready.  That is, the AP asserted
688  * chip select and started clocking data before the EC was ready to receive it.
689  * EC will ignore all data until chip select deasserts.
690  */
691 #define EC_SPI_NOT_READY      0xfc
692 
693 /*
694  * EC was ready to receive a request from the AP.  EC has treated the byte sent
695  * by the AP as part of a request packet, or (for old-style ECs) is processing
696  * a fully received packet but is not ready to respond yet.
697  */
698 #define EC_SPI_OLD_READY      0xfd
699 
700 /*****************************************************************************/
701 
702 /*
703  * Protocol version 2 for I2C and SPI send a request this way:
704  *
705  *	0	EC_CMD_VERSION0 + (command version)
706  *	1	Command number
707  *	2	Length of params = N
708  *	3..N+2	Params, if any
709  *	N+3	8-bit checksum of bytes 0..N+2
710  *
711  * The corresponding response is:
712  *
713  *	0	Result code (EC_RES_*)
714  *	1	Length of params = M
715  *	2..M+1	Params, if any
716  *	M+2	8-bit checksum of bytes 0..M+1
717  */
718 #define EC_PROTO2_REQUEST_HEADER_BYTES 3
719 #define EC_PROTO2_REQUEST_TRAILER_BYTES 1
720 #define EC_PROTO2_REQUEST_OVERHEAD (EC_PROTO2_REQUEST_HEADER_BYTES +	\
721 				    EC_PROTO2_REQUEST_TRAILER_BYTES)
722 
723 #define EC_PROTO2_RESPONSE_HEADER_BYTES 2
724 #define EC_PROTO2_RESPONSE_TRAILER_BYTES 1
725 #define EC_PROTO2_RESPONSE_OVERHEAD (EC_PROTO2_RESPONSE_HEADER_BYTES +	\
726 				     EC_PROTO2_RESPONSE_TRAILER_BYTES)
727 
728 /* Parameter length was limited by the LPC interface */
729 #define EC_PROTO2_MAX_PARAM_SIZE 0xfc
730 
731 /* Maximum request and response packet sizes for protocol version 2 */
732 #define EC_PROTO2_MAX_REQUEST_SIZE (EC_PROTO2_REQUEST_OVERHEAD +	\
733 				    EC_PROTO2_MAX_PARAM_SIZE)
734 #define EC_PROTO2_MAX_RESPONSE_SIZE (EC_PROTO2_RESPONSE_OVERHEAD +	\
735 				     EC_PROTO2_MAX_PARAM_SIZE)
736 
737 /*****************************************************************************/
738 
739 /*
740  * Value written to legacy command port / prefix byte to indicate protocol
741  * 3+ structs are being used.  Usage is bus-dependent.
742  */
743 #define EC_COMMAND_PROTOCOL_3 0xda
744 
745 #define EC_HOST_REQUEST_VERSION 3
746 
747 /* Version 3 request from host */
748 struct __ec_align4 ec_host_request {
749 	/* Structure version (=3)
750 	 *
751 	 * EC will return EC_RES_INVALID_HEADER if it receives a header with a
752 	 * version it doesn't know how to parse.
753 	 */
754 	uint8_t struct_version;
755 
756 	/*
757 	 * Checksum of request and data; sum of all bytes including checksum
758 	 * should total to 0.
759 	 */
760 	uint8_t checksum;
761 
762 	/* Command code */
763 	uint16_t command;
764 
765 	/* Command version */
766 	uint8_t command_version;
767 
768 	/* Unused byte in current protocol version; set to 0 */
769 	uint8_t reserved;
770 
771 	/* Length of data which follows this header */
772 	uint16_t data_len;
773 };
774 
775 #define EC_HOST_RESPONSE_VERSION 3
776 
777 /* Version 3 response from EC */
778 struct __ec_align4 ec_host_response {
779 	/* Structure version (=3) */
780 	uint8_t struct_version;
781 
782 	/*
783 	 * Checksum of response and data; sum of all bytes including checksum
784 	 * should total to 0.
785 	 */
786 	uint8_t checksum;
787 
788 	/* Result code (EC_RES_*) */
789 	uint16_t result;
790 
791 	/* Length of data which follows this header */
792 	uint16_t data_len;
793 
794 	/* Unused bytes in current protocol version; set to 0 */
795 	uint16_t reserved;
796 };
797 
798 /*****************************************************************************/
799 /*
800  * Notes on commands:
801  *
802  * Each command is an 16-bit command value.  Commands which take params or
803  * return response data specify structures for that data.  If no structure is
804  * specified, the command does not input or output data, respectively.
805  * Parameter/response length is implicit in the structs.  Some underlying
806  * communication protocols (I2C, SPI) may add length or checksum headers, but
807  * those are implementation-dependent and not defined here.
808  *
809  * All commands MUST be #defined to be 4-digit UPPER CASE hex values
810  * (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work.
811  */
812 
813 /*****************************************************************************/
814 /* General / test commands */
815 
816 /*
817  * Get protocol version, used to deal with non-backward compatible protocol
818  * changes.
819  */
820 #define EC_CMD_PROTO_VERSION 0x0000
821 
822 struct __ec_align4 ec_response_proto_version {
823 	uint32_t version;
824 };
825 
826 /*
827  * Hello.  This is a simple command to test the EC is responsive to
828  * commands.
829  */
830 #define EC_CMD_HELLO 0x0001
831 
832 struct __ec_align4 ec_params_hello {
833 	uint32_t in_data;  /* Pass anything here */
834 };
835 
836 struct __ec_align4 ec_response_hello {
837 	uint32_t out_data;  /* Output will be in_data + 0x01020304 */
838 };
839 
840 /* Get version number */
841 #define EC_CMD_GET_VERSION 0x0002
842 
843 enum ec_current_image {
844 	EC_IMAGE_UNKNOWN = 0,
845 	EC_IMAGE_RO,
846 	EC_IMAGE_RW
847 };
848 
849 struct __ec_align4 ec_response_get_version {
850 	/* Null-terminated version strings for RO, RW */
851 	char version_string_ro[32];
852 	char version_string_rw[32];
853 	char reserved[32];       /* Was previously RW-B string */
854 	uint32_t current_image;  /* One of ec_current_image */
855 };
856 
857 /* Read test */
858 #define EC_CMD_READ_TEST 0x0003
859 
860 struct __ec_align4 ec_params_read_test {
861 	uint32_t offset;   /* Starting value for read buffer */
862 	uint32_t size;     /* Size to read in bytes */
863 };
864 
865 struct __ec_align4 ec_response_read_test {
866 	uint32_t data[32];
867 };
868 
869 /*
870  * Get build information
871  *
872  * Response is null-terminated string.
873  */
874 #define EC_CMD_GET_BUILD_INFO 0x0004
875 
876 /* Get chip info */
877 #define EC_CMD_GET_CHIP_INFO 0x0005
878 
879 struct __ec_align4 ec_response_get_chip_info {
880 	/* Null-terminated strings */
881 	char vendor[32];
882 	char name[32];
883 	char revision[32];  /* Mask version */
884 };
885 
886 /* Get board HW version */
887 #define EC_CMD_GET_BOARD_VERSION 0x0006
888 
889 struct __ec_align2 ec_response_board_version {
890 	uint16_t board_version;  /* A monotonously incrementing number. */
891 };
892 
893 /*
894  * Read memory-mapped data.
895  *
896  * This is an alternate interface to memory-mapped data for bus protocols
897  * which don't support direct-mapped memory - I2C, SPI, etc.
898  *
899  * Response is params.size bytes of data.
900  */
901 #define EC_CMD_READ_MEMMAP 0x0007
902 
903 struct __ec_align1 ec_params_read_memmap {
904 	uint8_t offset;   /* Offset in memmap (EC_MEMMAP_*) */
905 	uint8_t size;     /* Size to read in bytes */
906 };
907 
908 /* Read versions supported for a command */
909 #define EC_CMD_GET_CMD_VERSIONS 0x0008
910 
911 struct __ec_align1 ec_params_get_cmd_versions {
912 	uint8_t cmd;      /* Command to check */
913 };
914 
915 struct __ec_align2 ec_params_get_cmd_versions_v1 {
916 	uint16_t cmd;     /* Command to check */
917 };
918 
919 struct __ec_align4 ec_response_get_cmd_versions {
920 	/*
921 	 * Mask of supported versions; use EC_VER_MASK() to compare with a
922 	 * desired version.
923 	 */
924 	uint32_t version_mask;
925 };
926 
927 /*
928  * Check EC communications status (busy). This is needed on i2c/spi but not
929  * on lpc since it has its own out-of-band busy indicator.
930  *
931  * lpc must read the status from the command register. Attempting this on
932  * lpc will overwrite the args/parameter space and corrupt its data.
933  */
934 #define EC_CMD_GET_COMMS_STATUS		0x0009
935 
936 /* Avoid using ec_status which is for return values */
937 enum ec_comms_status {
938 	EC_COMMS_STATUS_PROCESSING	= 1 << 0,	/* Processing cmd */
939 };
940 
941 struct __ec_align4 ec_response_get_comms_status {
942 	uint32_t flags;		/* Mask of enum ec_comms_status */
943 };
944 
945 /* Fake a variety of responses, purely for testing purposes. */
946 #define EC_CMD_TEST_PROTOCOL		0x000A
947 
948 /* Tell the EC what to send back to us. */
949 struct __ec_align4 ec_params_test_protocol {
950 	uint32_t ec_result;
951 	uint32_t ret_len;
952 	uint8_t buf[32];
953 };
954 
955 /* Here it comes... */
956 struct __ec_align4 ec_response_test_protocol {
957 	uint8_t buf[32];
958 };
959 
960 /* Get protocol information */
961 #define EC_CMD_GET_PROTOCOL_INFO	0x000B
962 
963 /* Flags for ec_response_get_protocol_info.flags */
964 /* EC_RES_IN_PROGRESS may be returned if a command is slow */
965 #define EC_PROTOCOL_INFO_IN_PROGRESS_SUPPORTED (1 << 0)
966 
967 struct __ec_align4 ec_response_get_protocol_info {
968 	/* Fields which exist if at least protocol version 3 supported */
969 
970 	/* Bitmask of protocol versions supported (1 << n means version n)*/
971 	uint32_t protocol_versions;
972 
973 	/* Maximum request packet size, in bytes */
974 	uint16_t max_request_packet_size;
975 
976 	/* Maximum response packet size, in bytes */
977 	uint16_t max_response_packet_size;
978 
979 	/* Flags; see EC_PROTOCOL_INFO_* */
980 	uint32_t flags;
981 };
982 
983 
984 /*****************************************************************************/
985 /* Get/Set miscellaneous values */
986 
987 /* The upper byte of .flags tells what to do (nothing means "get") */
988 #define EC_GSV_SET        0x80000000
989 
990 /* The lower three bytes of .flags identifies the parameter, if that has
991    meaning for an individual command. */
992 #define EC_GSV_PARAM_MASK 0x00ffffff
993 
994 struct __ec_align4 ec_params_get_set_value {
995 	uint32_t flags;
996 	uint32_t value;
997 };
998 
999 struct __ec_align4 ec_response_get_set_value {
1000 	uint32_t flags;
1001 	uint32_t value;
1002 };
1003 
1004 /* More than one command can use these structs to get/set parameters. */
1005 #define EC_CMD_GSV_PAUSE_IN_S5	0x000C
1006 
1007 /*****************************************************************************/
1008 /* List the features supported by the firmware */
1009 #define EC_CMD_GET_FEATURES  0x000D
1010 
1011 /* Supported features */
1012 enum ec_feature_code {
1013 	/*
1014 	 * This image contains a limited set of features. Another image
1015 	 * in RW partition may support more features.
1016 	 */
1017 	EC_FEATURE_LIMITED = 0,
1018 	/*
1019 	 * Commands for probing/reading/writing/erasing the flash in the
1020 	 * EC are present.
1021 	 */
1022 	EC_FEATURE_FLASH = 1,
1023 	/*
1024 	 * Can control the fan speed directly.
1025 	 */
1026 	EC_FEATURE_PWM_FAN = 2,
1027 	/*
1028 	 * Can control the intensity of the keyboard backlight.
1029 	 */
1030 	EC_FEATURE_PWM_KEYB = 3,
1031 	/*
1032 	 * Support Google lightbar, introduced on Pixel.
1033 	 */
1034 	EC_FEATURE_LIGHTBAR = 4,
1035 	/* Control of LEDs  */
1036 	EC_FEATURE_LED = 5,
1037 	/* Exposes an interface to control gyro and sensors.
1038 	 * The host goes through the EC to access these sensors.
1039 	 * In addition, the EC may provide composite sensors, like lid angle.
1040 	 */
1041 	EC_FEATURE_MOTION_SENSE = 6,
1042 	/* The keyboard is controlled by the EC */
1043 	EC_FEATURE_KEYB = 7,
1044 	/* The AP can use part of the EC flash as persistent storage. */
1045 	EC_FEATURE_PSTORE = 8,
1046 	/* The EC monitors BIOS port 80h, and can return POST codes. */
1047 	EC_FEATURE_PORT80 = 9,
1048 	/*
1049 	 * Thermal management: include TMP specific commands.
1050 	 * Higher level than direct fan control.
1051 	 */
1052 	EC_FEATURE_THERMAL = 10,
1053 	/* Can switch the screen backlight on/off */
1054 	EC_FEATURE_BKLIGHT_SWITCH = 11,
1055 	/* Can switch the wifi module on/off */
1056 	EC_FEATURE_WIFI_SWITCH = 12,
1057 	/* Monitor host events, through for example SMI or SCI */
1058 	EC_FEATURE_HOST_EVENTS = 13,
1059 	/* The EC exposes GPIO commands to control/monitor connected devices. */
1060 	EC_FEATURE_GPIO = 14,
1061 	/* The EC can send i2c messages to downstream devices. */
1062 	EC_FEATURE_I2C = 15,
1063 	/* Command to control charger are included */
1064 	EC_FEATURE_CHARGER = 16,
1065 	/* Simple battery support. */
1066 	EC_FEATURE_BATTERY = 17,
1067 	/*
1068 	 * Support Smart battery protocol
1069 	 * (Common Smart Battery System Interface Specification)
1070 	 */
1071 	EC_FEATURE_SMART_BATTERY = 18,
1072 	/* EC can detect when the host hangs. */
1073 	EC_FEATURE_HANG_DETECT = 19,
1074 	/* Report power information, for pit only */
1075 	EC_FEATURE_PMU = 20,
1076 	/* Another Cros EC device is present downstream of this one */
1077 	EC_FEATURE_SUB_MCU = 21,
1078 	/* Support USB Power delivery (PD) commands */
1079 	EC_FEATURE_USB_PD = 22,
1080 	/* Control USB multiplexer, for audio through USB port for instance. */
1081 	EC_FEATURE_USB_MUX = 23,
1082 	/* Motion Sensor code has an internal software FIFO */
1083 	EC_FEATURE_MOTION_SENSE_FIFO = 24,
1084 	/* Support temporary secure vstore */
1085 	EC_FEATURE_VSTORE = 25,
1086 	/* EC decides on USB-C SS mux state, muxes configured by host */
1087 	EC_FEATURE_USBC_SS_MUX_VIRTUAL = 26,
1088 	/* EC has RTC feature that can be controlled by host commands */
1089 	EC_FEATURE_RTC = 27,
1090 	/* The MCU exposes a Fingerprint sensor */
1091 	EC_FEATURE_FINGERPRINT = 28,
1092 	/* The MCU exposes a Touchpad */
1093 	EC_FEATURE_TOUCHPAD = 29,
1094 	/* The MCU has RWSIG task enabled */
1095 	EC_FEATURE_RWSIG = 30,
1096 	/* EC has device events support */
1097 	EC_FEATURE_DEVICE_EVENT = 31,
1098 	/* EC supports the unified wake masks for LPC/eSPI systems */
1099 	EC_FEATURE_UNIFIED_WAKE_MASKS = 32,
1100 };
1101 
1102 #define EC_FEATURE_MASK_0(event_code) (1UL << (event_code % 32))
1103 #define EC_FEATURE_MASK_1(event_code) (1UL << (event_code - 32))
1104 struct __ec_align4 ec_response_get_features {
1105 	uint32_t flags[2];
1106 };
1107 
1108 /*****************************************************************************/
1109 /* Get the board's SKU ID from EC */
1110 #define EC_CMD_GET_SKU_ID 0x000E
1111 
1112 /* Set SKU ID from AP */
1113 #define EC_CMD_SET_SKU_ID 0x000F
1114 
1115 struct __ec_align4 ec_sku_id_info {
1116 	uint32_t sku_id;
1117 };
1118 
1119 /*****************************************************************************/
1120 /* Flash commands */
1121 
1122 /* Get flash info */
1123 #define EC_CMD_FLASH_INFO 0x0010
1124 #define EC_VER_FLASH_INFO 2
1125 
1126 /* Version 0 returns these fields */
1127 struct __ec_align4 ec_response_flash_info {
1128 	/* Usable flash size, in bytes */
1129 	uint32_t flash_size;
1130 	/*
1131 	 * Write block size.  Write offset and size must be a multiple
1132 	 * of this.
1133 	 */
1134 	uint32_t write_block_size;
1135 	/*
1136 	 * Erase block size.  Erase offset and size must be a multiple
1137 	 * of this.
1138 	 */
1139 	uint32_t erase_block_size;
1140 	/*
1141 	 * Protection block size.  Protection offset and size must be a
1142 	 * multiple of this.
1143 	 */
1144 	uint32_t protect_block_size;
1145 };
1146 
1147 /* Flags for version 1+ flash info command */
1148 /* EC flash erases bits to 0 instead of 1 */
1149 #define EC_FLASH_INFO_ERASE_TO_0 (1 << 0)
1150 
1151 /* Flash must be selected for read/write/erase operations to succeed.  This may
1152  * be necessary on a chip where write/erase can be corrupted by other board
1153  * activity, or where the chip needs to enable some sort of programming voltage,
1154  * or where the read/write/erase operations require cleanly suspending other
1155  * chip functionality. */
1156 #define EC_FLASH_INFO_SELECT_REQUIRED (1 << 1)
1157 
1158 /*
1159  * Version 1 returns the same initial fields as version 0, with additional
1160  * fields following.
1161  *
1162  * gcc anonymous structs don't seem to get along with the __packed directive;
1163  * if they did we'd define the version 0 structure as a sub-structure of this
1164  * one.
1165  *
1166  * Version 2 supports flash banks of different sizes:
1167  * The caller specified the number of banks it has preallocated
1168  * (num_banks_desc)
1169  * The EC returns the number of banks describing the flash memory.
1170  * It adds banks descriptions up to num_banks_desc.
1171  */
1172 struct __ec_align4 ec_response_flash_info_1 {
1173 	/* Version 0 fields; see above for description */
1174 	uint32_t flash_size;
1175 	uint32_t write_block_size;
1176 	uint32_t erase_block_size;
1177 	uint32_t protect_block_size;
1178 
1179 	/* Version 1 adds these fields: */
1180 	/*
1181 	 * Ideal write size in bytes.  Writes will be fastest if size is
1182 	 * exactly this and offset is a multiple of this.  For example, an EC
1183 	 * may have a write buffer which can do half-page operations if data is
1184 	 * aligned, and a slower word-at-a-time write mode.
1185 	 */
1186 	uint32_t write_ideal_size;
1187 
1188 	/* Flags; see EC_FLASH_INFO_* */
1189 	uint32_t flags;
1190 };
1191 
1192 struct __ec_align4 ec_params_flash_info_2 {
1193 	/* Number of banks to describe */
1194 	uint16_t num_banks_desc;
1195 	/* Reserved; set 0; ignore on read */
1196 	uint8_t reserved[2];
1197 };
1198 
1199 struct ec_flash_bank {
1200 	/* Number of sector is in this bank. */
1201 	uint16_t count;
1202 	/* Size in power of 2 of each sector (8 --> 256 bytes) */
1203 	uint8_t size_exp;
1204 	/* Minimal write size for the sectors in this bank */
1205 	uint8_t write_size_exp;
1206 	/* Erase size for the sectors in this bank */
1207 	uint8_t erase_size_exp;
1208 	/* Size for write protection, usually identical to erase size. */
1209 	uint8_t protect_size_exp;
1210 	/* Reserved; set 0; ignore on read */
1211 	uint8_t reserved[2];
1212 };
1213 
1214 struct __ec_align4 ec_response_flash_info_2 {
1215 	/* Total flash in the EC. */
1216 	uint32_t flash_size;
1217 	/* Flags; see EC_FLASH_INFO_* */
1218 	uint32_t flags;
1219 	/* Maximum size to use to send data to write to the EC. */
1220 	uint32_t write_ideal_size;
1221 	/* Number of banks present in the EC. */
1222 	uint16_t num_banks_total;
1223 	/* Number of banks described in banks array. */
1224 	uint16_t num_banks_desc;
1225 	struct ec_flash_bank banks[0];
1226 };
1227 
1228 /*
1229  * Read flash
1230  *
1231  * Response is params.size bytes of data.
1232  */
1233 #define EC_CMD_FLASH_READ 0x0011
1234 
1235 struct __ec_align4 ec_params_flash_read {
1236 	uint32_t offset;   /* Byte offset to read */
1237 	uint32_t size;     /* Size to read in bytes */
1238 };
1239 
1240 /* Write flash */
1241 #define EC_CMD_FLASH_WRITE 0x0012
1242 #define EC_VER_FLASH_WRITE 1
1243 
1244 /* Version 0 of the flash command supported only 64 bytes of data */
1245 #define EC_FLASH_WRITE_VER0_SIZE 64
1246 
1247 struct __ec_align4 ec_params_flash_write {
1248 	uint32_t offset;   /* Byte offset to write */
1249 	uint32_t size;     /* Size to write in bytes */
1250 	/* Followed by data to write */
1251 };
1252 
1253 /* Erase flash */
1254 #define EC_CMD_FLASH_ERASE 0x0013
1255 
1256 /* v0 */
1257 struct __ec_align4 ec_params_flash_erase {
1258 	uint32_t offset;   /* Byte offset to erase */
1259 	uint32_t size;     /* Size to erase in bytes */
1260 };
1261 
1262 
1263 #define EC_VER_FLASH_WRITE 1
1264 /* v1 add async erase:
1265  * subcommands can returns:
1266  * EC_RES_SUCCESS : erased (see ERASE_SECTOR_ASYNC case below).
1267  * EC_RES_INVALID_PARAM : offset/size are not aligned on a erase boundary.
1268  * EC_RES_ERROR : other errors.
1269  * EC_RES_BUSY : an existing erase operation is in progress.
1270  * EC_RES_ACCESS_DENIED: Trying to erase running image.
1271  *
1272  * When ERASE_SECTOR_ASYNC returns EC_RES_SUCCESS, the operation is just
1273  * properly queued. The user must call ERASE_GET_RESULT subcommand to get
1274  * the proper result.
1275  * When ERASE_GET_RESULT returns EC_RES_BUSY, the caller must wait and send
1276  * ERASE_GET_RESULT again to get the result of ERASE_SECTOR_ASYNC.
1277  * ERASE_GET_RESULT command may timeout on EC where flash access is not
1278  * permitted while erasing. (For instance, STM32F4).
1279  */
1280 enum ec_flash_erase_cmd {
1281 	FLASH_ERASE_SECTOR,     /* Erase and wait for result */
1282 	FLASH_ERASE_SECTOR_ASYNC,  /* Erase and return immediately. */
1283 	FLASH_ERASE_GET_RESULT,  /* Ask for last erase result */
1284 };
1285 
1286 struct __ec_align4 ec_params_flash_erase_v1 {
1287 	/* One of ec_flash_erase_cmd. */
1288 	uint8_t  cmd;
1289 	/* Pad byte; currently always contains 0 */
1290 	uint8_t  reserved;
1291 	/* No flags defined yet; set to 0 */
1292 	uint16_t flag;
1293 	/* Same as v0 parameters. */
1294 	struct ec_params_flash_erase params;
1295 };
1296 
1297 /*
1298  * Get/set flash protection.
1299  *
1300  * If mask!=0, sets/clear the requested bits of flags.  Depending on the
1301  * firmware write protect GPIO, not all flags will take effect immediately;
1302  * some flags require a subsequent hard reset to take effect.  Check the
1303  * returned flags bits to see what actually happened.
1304  *
1305  * If mask=0, simply returns the current flags state.
1306  */
1307 #define EC_CMD_FLASH_PROTECT 0x0015
1308 #define EC_VER_FLASH_PROTECT 1  /* Command version 1 */
1309 
1310 /* Flags for flash protection */
1311 /* RO flash code protected when the EC boots */
1312 #define EC_FLASH_PROTECT_RO_AT_BOOT         (1 << 0)
1313 /*
1314  * RO flash code protected now.  If this bit is set, at-boot status cannot
1315  * be changed.
1316  */
1317 #define EC_FLASH_PROTECT_RO_NOW             (1 << 1)
1318 /* Entire flash code protected now, until reboot. */
1319 #define EC_FLASH_PROTECT_ALL_NOW            (1 << 2)
1320 /* Flash write protect GPIO is asserted now */
1321 #define EC_FLASH_PROTECT_GPIO_ASSERTED      (1 << 3)
1322 /* Error - at least one bank of flash is stuck locked, and cannot be unlocked */
1323 #define EC_FLASH_PROTECT_ERROR_STUCK        (1 << 4)
1324 /*
1325  * Error - flash protection is in inconsistent state.  At least one bank of
1326  * flash which should be protected is not protected.  Usually fixed by
1327  * re-requesting the desired flags, or by a hard reset if that fails.
1328  */
1329 #define EC_FLASH_PROTECT_ERROR_INCONSISTENT (1 << 5)
1330 /* Entire flash code protected when the EC boots */
1331 #define EC_FLASH_PROTECT_ALL_AT_BOOT        (1 << 6)
1332 /* RW flash code protected when the EC boots */
1333 #define EC_FLASH_PROTECT_RW_AT_BOOT         (1 << 7)
1334 /* RW flash code protected now. */
1335 #define EC_FLASH_PROTECT_RW_NOW             (1 << 8)
1336 /* Rollback information flash region protected when the EC boots */
1337 #define EC_FLASH_PROTECT_ROLLBACK_AT_BOOT   (1 << 9)
1338 /* Rollback information flash region protected now */
1339 #define EC_FLASH_PROTECT_ROLLBACK_NOW       (1 << 10)
1340 
1341 struct __ec_align4 ec_params_flash_protect {
1342 	uint32_t mask;   /* Bits in flags to apply */
1343 	uint32_t flags;  /* New flags to apply */
1344 };
1345 
1346 struct __ec_align4 ec_response_flash_protect {
1347 	/* Current value of flash protect flags */
1348 	uint32_t flags;
1349 	/*
1350 	 * Flags which are valid on this platform.  This allows the caller
1351 	 * to distinguish between flags which aren't set vs. flags which can't
1352 	 * be set on this platform.
1353 	 */
1354 	uint32_t valid_flags;
1355 	/* Flags which can be changed given the current protection state */
1356 	uint32_t writable_flags;
1357 };
1358 
1359 /*
1360  * Note: commands 0x14 - 0x19 version 0 were old commands to get/set flash
1361  * write protect.  These commands may be reused with version > 0.
1362  */
1363 
1364 /* Get the region offset/size */
1365 #define EC_CMD_FLASH_REGION_INFO 0x0016
1366 #define EC_VER_FLASH_REGION_INFO 1
1367 
1368 enum ec_flash_region {
1369 	/* Region which holds read-only EC image */
1370 	EC_FLASH_REGION_RO = 0,
1371 	/* Region which holds active rewritable EC image */
1372 	EC_FLASH_REGION_ACTIVE,
1373 	/*
1374 	 * Region which should be write-protected in the factory (a superset of
1375 	 * EC_FLASH_REGION_RO)
1376 	 */
1377 	EC_FLASH_REGION_WP_RO,
1378 	/* Region which holds updatable image */
1379 	EC_FLASH_REGION_UPDATE,
1380 	/* Number of regions */
1381 	EC_FLASH_REGION_COUNT,
1382 };
1383 
1384 struct __ec_align4 ec_params_flash_region_info {
1385 	uint32_t region;  /* enum ec_flash_region */
1386 };
1387 
1388 struct __ec_align4 ec_response_flash_region_info {
1389 	uint32_t offset;
1390 	uint32_t size;
1391 };
1392 
1393 /* Read/write VbNvContext */
1394 #define EC_CMD_VBNV_CONTEXT 0x0017
1395 #define EC_VER_VBNV_CONTEXT 1
1396 #define EC_VBNV_BLOCK_SIZE 16
1397 #define EC_VBNV_BLOCK_SIZE_V2 64
1398 
1399 enum ec_vbnvcontext_op {
1400 	EC_VBNV_CONTEXT_OP_READ,
1401 	EC_VBNV_CONTEXT_OP_WRITE,
1402 };
1403 
1404 struct __ec_align4 ec_params_vbnvcontext {
1405 	uint32_t op;
1406 	uint8_t block[EC_VBNV_BLOCK_SIZE_V2];
1407 };
1408 
1409 struct __ec_align4 ec_response_vbnvcontext {
1410 	uint8_t block[EC_VBNV_BLOCK_SIZE_V2];
1411 };
1412 
1413 
1414 /* Get SPI flash information */
1415 #define EC_CMD_FLASH_SPI_INFO 0x0018
1416 
1417 struct __ec_align1 ec_response_flash_spi_info {
1418 	/* JEDEC info from command 0x9F (manufacturer, memory type, size) */
1419 	uint8_t jedec[3];
1420 
1421 	/* Pad byte; currently always contains 0 */
1422 	uint8_t reserved0;
1423 
1424 	/* Manufacturer / device ID from command 0x90 */
1425 	uint8_t mfr_dev_id[2];
1426 
1427 	/* Status registers from command 0x05 and 0x35 */
1428 	uint8_t sr1, sr2;
1429 };
1430 
1431 
1432 /* Select flash during flash operations */
1433 #define EC_CMD_FLASH_SELECT 0x0019
1434 
1435 struct __ec_align4 ec_params_flash_select {
1436 	/* 1 to select flash, 0 to deselect flash */
1437 	uint8_t select;
1438 };
1439 
1440 /*****************************************************************************/
1441 /* PWM commands */
1442 
1443 /* Get fan target RPM */
1444 #define EC_CMD_PWM_GET_FAN_TARGET_RPM 0x0020
1445 
1446 struct __ec_align4 ec_response_pwm_get_fan_rpm {
1447 	uint32_t rpm;
1448 };
1449 
1450 /* Set target fan RPM */
1451 #define EC_CMD_PWM_SET_FAN_TARGET_RPM 0x0021
1452 
1453 /* Version 0 of input params */
1454 struct __ec_align4 ec_params_pwm_set_fan_target_rpm_v0 {
1455 	uint32_t rpm;
1456 };
1457 
1458 /* Version 1 of input params */
1459 struct __ec_align_size1 ec_params_pwm_set_fan_target_rpm_v1 {
1460 	uint32_t rpm;
1461 	uint8_t fan_idx;
1462 };
1463 
1464 /* Get keyboard backlight */
1465 /* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */
1466 #define EC_CMD_PWM_GET_KEYBOARD_BACKLIGHT 0x0022
1467 
1468 struct __ec_align1 ec_response_pwm_get_keyboard_backlight {
1469 	uint8_t percent;
1470 	uint8_t enabled;
1471 };
1472 
1473 /* Set keyboard backlight */
1474 /* OBSOLETE - Use EC_CMD_PWM_SET_DUTY */
1475 #define EC_CMD_PWM_SET_KEYBOARD_BACKLIGHT 0x0023
1476 
1477 struct __ec_align1 ec_params_pwm_set_keyboard_backlight {
1478 	uint8_t percent;
1479 };
1480 
1481 /* Set target fan PWM duty cycle */
1482 #define EC_CMD_PWM_SET_FAN_DUTY 0x0024
1483 
1484 /* Version 0 of input params */
1485 struct __ec_align4 ec_params_pwm_set_fan_duty_v0 {
1486 	uint32_t percent;
1487 };
1488 
1489 /* Version 1 of input params */
1490 struct __ec_align_size1 ec_params_pwm_set_fan_duty_v1 {
1491 	uint32_t percent;
1492 	uint8_t fan_idx;
1493 };
1494 
1495 #define EC_CMD_PWM_SET_DUTY 0x0025
1496 /* 16 bit duty cycle, 0xffff = 100% */
1497 #define EC_PWM_MAX_DUTY 0xffff
1498 
1499 enum ec_pwm_type {
1500 	/* All types, indexed by board-specific enum pwm_channel */
1501 	EC_PWM_TYPE_GENERIC = 0,
1502 	/* Keyboard backlight */
1503 	EC_PWM_TYPE_KB_LIGHT,
1504 	/* Display backlight */
1505 	EC_PWM_TYPE_DISPLAY_LIGHT,
1506 	EC_PWM_TYPE_COUNT,
1507 };
1508 
1509 struct __ec_align4 ec_params_pwm_set_duty {
1510 	uint16_t duty;     /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
1511 	uint8_t pwm_type;  /* ec_pwm_type */
1512 	uint8_t index;     /* Type-specific index, or 0 if unique */
1513 };
1514 
1515 #define EC_CMD_PWM_GET_DUTY 0x0026
1516 
1517 struct __ec_align1 ec_params_pwm_get_duty {
1518 	uint8_t pwm_type;  /* ec_pwm_type */
1519 	uint8_t index;     /* Type-specific index, or 0 if unique */
1520 };
1521 
1522 struct __ec_align2 ec_response_pwm_get_duty {
1523 	uint16_t duty;     /* Duty cycle, EC_PWM_MAX_DUTY = 100% */
1524 };
1525 
1526 /*****************************************************************************/
1527 /*
1528  * Lightbar commands. This looks worse than it is. Since we only use one HOST
1529  * command to say "talk to the lightbar", we put the "and tell it to do X" part
1530  * into a subcommand. We'll make separate structs for subcommands with
1531  * different input args, so that we know how much to expect.
1532  */
1533 #define EC_CMD_LIGHTBAR_CMD 0x0028
1534 
1535 struct __ec_todo_unpacked rgb_s {
1536 	uint8_t r, g, b;
1537 };
1538 
1539 #define LB_BATTERY_LEVELS 4
1540 /* List of tweakable parameters. NOTE: It's __packed so it can be sent in a
1541  * host command, but the alignment is the same regardless. Keep it that way.
1542  */
1543 struct __ec_todo_packed lightbar_params_v0 {
1544 	/* Timing */
1545 	int32_t google_ramp_up;
1546 	int32_t google_ramp_down;
1547 	int32_t s3s0_ramp_up;
1548 	int32_t s0_tick_delay[2];		/* AC=0/1 */
1549 	int32_t s0a_tick_delay[2];		/* AC=0/1 */
1550 	int32_t s0s3_ramp_down;
1551 	int32_t s3_sleep_for;
1552 	int32_t s3_ramp_up;
1553 	int32_t s3_ramp_down;
1554 
1555 	/* Oscillation */
1556 	uint8_t new_s0;
1557 	uint8_t osc_min[2];			/* AC=0/1 */
1558 	uint8_t osc_max[2];			/* AC=0/1 */
1559 	uint8_t w_ofs[2];			/* AC=0/1 */
1560 
1561 	/* Brightness limits based on the backlight and AC. */
1562 	uint8_t bright_bl_off_fixed[2];		/* AC=0/1 */
1563 	uint8_t bright_bl_on_min[2];		/* AC=0/1 */
1564 	uint8_t bright_bl_on_max[2];		/* AC=0/1 */
1565 
1566 	/* Battery level thresholds */
1567 	uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1568 
1569 	/* Map [AC][battery_level] to color index */
1570 	uint8_t s0_idx[2][LB_BATTERY_LEVELS];	/* AP is running */
1571 	uint8_t s3_idx[2][LB_BATTERY_LEVELS];	/* AP is sleeping */
1572 
1573 	/* Color palette */
1574 	struct rgb_s color[8];			/* 0-3 are Google colors */
1575 };
1576 
1577 struct __ec_todo_packed lightbar_params_v1 {
1578 	/* Timing */
1579 	int32_t google_ramp_up;
1580 	int32_t google_ramp_down;
1581 	int32_t s3s0_ramp_up;
1582 	int32_t s0_tick_delay[2];		/* AC=0/1 */
1583 	int32_t s0a_tick_delay[2];		/* AC=0/1 */
1584 	int32_t s0s3_ramp_down;
1585 	int32_t s3_sleep_for;
1586 	int32_t s3_ramp_up;
1587 	int32_t s3_ramp_down;
1588 	int32_t s5_ramp_up;
1589 	int32_t s5_ramp_down;
1590 	int32_t tap_tick_delay;
1591 	int32_t tap_gate_delay;
1592 	int32_t tap_display_time;
1593 
1594 	/* Tap-for-battery params */
1595 	uint8_t tap_pct_red;
1596 	uint8_t tap_pct_green;
1597 	uint8_t tap_seg_min_on;
1598 	uint8_t tap_seg_max_on;
1599 	uint8_t tap_seg_osc;
1600 	uint8_t tap_idx[3];
1601 
1602 	/* Oscillation */
1603 	uint8_t osc_min[2];			/* AC=0/1 */
1604 	uint8_t osc_max[2];			/* AC=0/1 */
1605 	uint8_t w_ofs[2];			/* AC=0/1 */
1606 
1607 	/* Brightness limits based on the backlight and AC. */
1608 	uint8_t bright_bl_off_fixed[2];		/* AC=0/1 */
1609 	uint8_t bright_bl_on_min[2];		/* AC=0/1 */
1610 	uint8_t bright_bl_on_max[2];		/* AC=0/1 */
1611 
1612 	/* Battery level thresholds */
1613 	uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1614 
1615 	/* Map [AC][battery_level] to color index */
1616 	uint8_t s0_idx[2][LB_BATTERY_LEVELS];	/* AP is running */
1617 	uint8_t s3_idx[2][LB_BATTERY_LEVELS];	/* AP is sleeping */
1618 
1619 	/* s5: single color pulse on inhibited power-up */
1620 	uint8_t s5_idx;
1621 
1622 	/* Color palette */
1623 	struct rgb_s color[8];			/* 0-3 are Google colors */
1624 };
1625 
1626 /* Lightbar command params v2
1627  * crbug.com/467716
1628  *
1629  * lightbar_parms_v1 was too big for i2c, therefore in v2, we split them up by
1630  * logical groups to make it more manageable ( < 120 bytes).
1631  *
1632  * NOTE: Each of these groups must be less than 120 bytes.
1633  */
1634 
1635 struct __ec_todo_packed lightbar_params_v2_timing {
1636 	/* Timing */
1637 	int32_t google_ramp_up;
1638 	int32_t google_ramp_down;
1639 	int32_t s3s0_ramp_up;
1640 	int32_t s0_tick_delay[2];		/* AC=0/1 */
1641 	int32_t s0a_tick_delay[2];		/* AC=0/1 */
1642 	int32_t s0s3_ramp_down;
1643 	int32_t s3_sleep_for;
1644 	int32_t s3_ramp_up;
1645 	int32_t s3_ramp_down;
1646 	int32_t s5_ramp_up;
1647 	int32_t s5_ramp_down;
1648 	int32_t tap_tick_delay;
1649 	int32_t tap_gate_delay;
1650 	int32_t tap_display_time;
1651 };
1652 
1653 struct __ec_todo_packed lightbar_params_v2_tap {
1654 	/* Tap-for-battery params */
1655 	uint8_t tap_pct_red;
1656 	uint8_t tap_pct_green;
1657 	uint8_t tap_seg_min_on;
1658 	uint8_t tap_seg_max_on;
1659 	uint8_t tap_seg_osc;
1660 	uint8_t tap_idx[3];
1661 };
1662 
1663 struct __ec_todo_packed lightbar_params_v2_oscillation {
1664 	/* Oscillation */
1665 	uint8_t osc_min[2];			/* AC=0/1 */
1666 	uint8_t osc_max[2];			/* AC=0/1 */
1667 	uint8_t w_ofs[2];			/* AC=0/1 */
1668 };
1669 
1670 struct __ec_todo_packed lightbar_params_v2_brightness {
1671 	/* Brightness limits based on the backlight and AC. */
1672 	uint8_t bright_bl_off_fixed[2];		/* AC=0/1 */
1673 	uint8_t bright_bl_on_min[2];		/* AC=0/1 */
1674 	uint8_t bright_bl_on_max[2];		/* AC=0/1 */
1675 };
1676 
1677 struct __ec_todo_packed lightbar_params_v2_thresholds {
1678 	/* Battery level thresholds */
1679 	uint8_t battery_threshold[LB_BATTERY_LEVELS - 1];
1680 };
1681 
1682 struct __ec_todo_packed lightbar_params_v2_colors {
1683 	/* Map [AC][battery_level] to color index */
1684 	uint8_t s0_idx[2][LB_BATTERY_LEVELS];	/* AP is running */
1685 	uint8_t s3_idx[2][LB_BATTERY_LEVELS];	/* AP is sleeping */
1686 
1687 	/* s5: single color pulse on inhibited power-up */
1688 	uint8_t s5_idx;
1689 
1690 	/* Color palette */
1691 	struct rgb_s color[8];			/* 0-3 are Google colors */
1692 };
1693 
1694 /* Lightbyte program. */
1695 #define EC_LB_PROG_LEN 192
1696 struct __ec_todo_unpacked lightbar_program {
1697 	uint8_t size;
1698 	uint8_t data[EC_LB_PROG_LEN];
1699 };
1700 
1701 struct __ec_todo_packed ec_params_lightbar {
1702 	uint8_t cmd;		      /* Command (see enum lightbar_command) */
1703 	union {
1704 		struct __ec_todo_unpacked {
1705 			/* no args */
1706 		} dump, off, on, init, get_seq, get_params_v0, get_params_v1,
1707 			version, get_brightness, get_demo, suspend, resume,
1708 			get_params_v2_timing, get_params_v2_tap,
1709 			get_params_v2_osc, get_params_v2_bright,
1710 			get_params_v2_thlds, get_params_v2_colors;
1711 
1712 		struct __ec_todo_unpacked {
1713 			uint8_t num;
1714 		} set_brightness, seq, demo;
1715 
1716 		struct __ec_todo_unpacked {
1717 			uint8_t ctrl, reg, value;
1718 		} reg;
1719 
1720 		struct __ec_todo_unpacked {
1721 			uint8_t led, red, green, blue;
1722 		} set_rgb;
1723 
1724 		struct __ec_todo_unpacked {
1725 			uint8_t led;
1726 		} get_rgb;
1727 
1728 		struct __ec_todo_unpacked {
1729 			uint8_t enable;
1730 		} manual_suspend_ctrl;
1731 
1732 		struct lightbar_params_v0 set_params_v0;
1733 		struct lightbar_params_v1 set_params_v1;
1734 
1735 		struct lightbar_params_v2_timing set_v2par_timing;
1736 		struct lightbar_params_v2_tap set_v2par_tap;
1737 		struct lightbar_params_v2_oscillation set_v2par_osc;
1738 		struct lightbar_params_v2_brightness set_v2par_bright;
1739 		struct lightbar_params_v2_thresholds set_v2par_thlds;
1740 		struct lightbar_params_v2_colors set_v2par_colors;
1741 
1742 		struct lightbar_program set_program;
1743 	};
1744 };
1745 
1746 struct __ec_todo_packed ec_response_lightbar {
1747 	union {
1748 		struct __ec_todo_unpacked {
1749 			struct __ec_todo_unpacked {
1750 				uint8_t reg;
1751 				uint8_t ic0;
1752 				uint8_t ic1;
1753 			} vals[23];
1754 		} dump;
1755 
1756 		struct __ec_todo_unpacked {
1757 			uint8_t num;
1758 		} get_seq, get_brightness, get_demo;
1759 
1760 		struct lightbar_params_v0 get_params_v0;
1761 		struct lightbar_params_v1 get_params_v1;
1762 
1763 
1764 		struct lightbar_params_v2_timing get_params_v2_timing;
1765 		struct lightbar_params_v2_tap get_params_v2_tap;
1766 		struct lightbar_params_v2_oscillation get_params_v2_osc;
1767 		struct lightbar_params_v2_brightness get_params_v2_bright;
1768 		struct lightbar_params_v2_thresholds get_params_v2_thlds;
1769 		struct lightbar_params_v2_colors get_params_v2_colors;
1770 
1771 		struct __ec_todo_unpacked {
1772 			uint32_t num;
1773 			uint32_t flags;
1774 		} version;
1775 
1776 		struct __ec_todo_unpacked {
1777 			uint8_t red, green, blue;
1778 		} get_rgb;
1779 
1780 		struct __ec_todo_unpacked {
1781 			/* no return params */
1782 		} off, on, init, set_brightness, seq, reg, set_rgb,
1783 			demo, set_params_v0, set_params_v1,
1784 			set_program, manual_suspend_ctrl, suspend, resume,
1785 			set_v2par_timing, set_v2par_tap,
1786 			set_v2par_osc, set_v2par_bright, set_v2par_thlds,
1787 			set_v2par_colors;
1788 	};
1789 };
1790 
1791 /* Lightbar commands */
1792 enum lightbar_command {
1793 	LIGHTBAR_CMD_DUMP = 0,
1794 	LIGHTBAR_CMD_OFF = 1,
1795 	LIGHTBAR_CMD_ON = 2,
1796 	LIGHTBAR_CMD_INIT = 3,
1797 	LIGHTBAR_CMD_SET_BRIGHTNESS = 4,
1798 	LIGHTBAR_CMD_SEQ = 5,
1799 	LIGHTBAR_CMD_REG = 6,
1800 	LIGHTBAR_CMD_SET_RGB = 7,
1801 	LIGHTBAR_CMD_GET_SEQ = 8,
1802 	LIGHTBAR_CMD_DEMO = 9,
1803 	LIGHTBAR_CMD_GET_PARAMS_V0 = 10,
1804 	LIGHTBAR_CMD_SET_PARAMS_V0 = 11,
1805 	LIGHTBAR_CMD_VERSION = 12,
1806 	LIGHTBAR_CMD_GET_BRIGHTNESS = 13,
1807 	LIGHTBAR_CMD_GET_RGB = 14,
1808 	LIGHTBAR_CMD_GET_DEMO = 15,
1809 	LIGHTBAR_CMD_GET_PARAMS_V1 = 16,
1810 	LIGHTBAR_CMD_SET_PARAMS_V1 = 17,
1811 	LIGHTBAR_CMD_SET_PROGRAM = 18,
1812 	LIGHTBAR_CMD_MANUAL_SUSPEND_CTRL = 19,
1813 	LIGHTBAR_CMD_SUSPEND = 20,
1814 	LIGHTBAR_CMD_RESUME = 21,
1815 	LIGHTBAR_CMD_GET_PARAMS_V2_TIMING = 22,
1816 	LIGHTBAR_CMD_SET_PARAMS_V2_TIMING = 23,
1817 	LIGHTBAR_CMD_GET_PARAMS_V2_TAP = 24,
1818 	LIGHTBAR_CMD_SET_PARAMS_V2_TAP = 25,
1819 	LIGHTBAR_CMD_GET_PARAMS_V2_OSCILLATION = 26,
1820 	LIGHTBAR_CMD_SET_PARAMS_V2_OSCILLATION = 27,
1821 	LIGHTBAR_CMD_GET_PARAMS_V2_BRIGHTNESS = 28,
1822 	LIGHTBAR_CMD_SET_PARAMS_V2_BRIGHTNESS = 29,
1823 	LIGHTBAR_CMD_GET_PARAMS_V2_THRESHOLDS = 30,
1824 	LIGHTBAR_CMD_SET_PARAMS_V2_THRESHOLDS = 31,
1825 	LIGHTBAR_CMD_GET_PARAMS_V2_COLORS = 32,
1826 	LIGHTBAR_CMD_SET_PARAMS_V2_COLORS = 33,
1827 	LIGHTBAR_NUM_CMDS
1828 };
1829 
1830 /*****************************************************************************/
1831 /* LED control commands */
1832 
1833 #define EC_CMD_LED_CONTROL 0x0029
1834 
1835 enum ec_led_id {
1836 	/* LED to indicate battery state of charge */
1837 	EC_LED_ID_BATTERY_LED = 0,
1838 	/*
1839 	 * LED to indicate system power state (on or in suspend).
1840 	 * May be on power button or on C-panel.
1841 	 */
1842 	EC_LED_ID_POWER_LED,
1843 	/* LED on power adapter or its plug */
1844 	EC_LED_ID_ADAPTER_LED,
1845 	/* LED to indicate left side */
1846 	EC_LED_ID_LEFT_LED,
1847 	/* LED to indicate right side */
1848 	EC_LED_ID_RIGHT_LED,
1849 	/* LED to indicate recovery mode with HW_REINIT */
1850 	EC_LED_ID_RECOVERY_HW_REINIT_LED,
1851 	/* LED to indicate sysrq debug mode. */
1852 	EC_LED_ID_SYSRQ_DEBUG_LED,
1853 
1854 	EC_LED_ID_COUNT
1855 };
1856 
1857 /* LED control flags */
1858 #define EC_LED_FLAGS_QUERY (1 << 0) /* Query LED capability only */
1859 #define EC_LED_FLAGS_AUTO  (1 << 1) /* Switch LED back to automatic control */
1860 
1861 enum ec_led_colors {
1862 	EC_LED_COLOR_RED = 0,
1863 	EC_LED_COLOR_GREEN,
1864 	EC_LED_COLOR_BLUE,
1865 	EC_LED_COLOR_YELLOW,
1866 	EC_LED_COLOR_WHITE,
1867 	EC_LED_COLOR_AMBER,
1868 
1869 	EC_LED_COLOR_COUNT
1870 };
1871 
1872 struct __ec_align1 ec_params_led_control {
1873 	uint8_t led_id;     /* Which LED to control */
1874 	uint8_t flags;      /* Control flags */
1875 
1876 	uint8_t brightness[EC_LED_COLOR_COUNT];
1877 };
1878 
1879 struct __ec_align1 ec_response_led_control {
1880 	/*
1881 	 * Available brightness value range.
1882 	 *
1883 	 * Range 0 means color channel not present.
1884 	 * Range 1 means on/off control.
1885 	 * Other values means the LED is control by PWM.
1886 	 */
1887 	uint8_t brightness_range[EC_LED_COLOR_COUNT];
1888 };
1889 
1890 /*****************************************************************************/
1891 /* Verified boot commands */
1892 
1893 /*
1894  * Note: command code 0x29 version 0 was VBOOT_CMD in Link EVT; it may be
1895  * reused for other purposes with version > 0.
1896  */
1897 
1898 /* Verified boot hash command */
1899 #define EC_CMD_VBOOT_HASH 0x002A
1900 
1901 struct __ec_align4 ec_params_vboot_hash {
1902 	uint8_t cmd;             /* enum ec_vboot_hash_cmd */
1903 	uint8_t hash_type;       /* enum ec_vboot_hash_type */
1904 	uint8_t nonce_size;      /* Nonce size; may be 0 */
1905 	uint8_t reserved0;       /* Reserved; set 0 */
1906 	uint32_t offset;         /* Offset in flash to hash */
1907 	uint32_t size;           /* Number of bytes to hash */
1908 	uint8_t nonce_data[64];  /* Nonce data; ignored if nonce_size=0 */
1909 };
1910 
1911 struct __ec_align4 ec_response_vboot_hash {
1912 	uint8_t status;          /* enum ec_vboot_hash_status */
1913 	uint8_t hash_type;       /* enum ec_vboot_hash_type */
1914 	uint8_t digest_size;     /* Size of hash digest in bytes */
1915 	uint8_t reserved0;       /* Ignore; will be 0 */
1916 	uint32_t offset;         /* Offset in flash which was hashed */
1917 	uint32_t size;           /* Number of bytes hashed */
1918 	uint8_t hash_digest[64]; /* Hash digest data */
1919 };
1920 
1921 enum ec_vboot_hash_cmd {
1922 	EC_VBOOT_HASH_GET = 0,       /* Get current hash status */
1923 	EC_VBOOT_HASH_ABORT = 1,     /* Abort calculating current hash */
1924 	EC_VBOOT_HASH_START = 2,     /* Start computing a new hash */
1925 	EC_VBOOT_HASH_RECALC = 3,    /* Synchronously compute a new hash */
1926 };
1927 
1928 enum ec_vboot_hash_type {
1929 	EC_VBOOT_HASH_TYPE_SHA256 = 0, /* SHA-256 */
1930 };
1931 
1932 enum ec_vboot_hash_status {
1933 	EC_VBOOT_HASH_STATUS_NONE = 0, /* No hash (not started, or aborted) */
1934 	EC_VBOOT_HASH_STATUS_DONE = 1, /* Finished computing a hash */
1935 	EC_VBOOT_HASH_STATUS_BUSY = 2, /* Busy computing a hash */
1936 };
1937 
1938 /*
1939  * Special values for offset for EC_VBOOT_HASH_START and EC_VBOOT_HASH_RECALC.
1940  * If one of these is specified, the EC will automatically update offset and
1941  * size to the correct values for the specified image (RO or RW).
1942  */
1943 #define EC_VBOOT_HASH_OFFSET_RO		0xfffffffe
1944 #define EC_VBOOT_HASH_OFFSET_ACTIVE	0xfffffffd
1945 #define EC_VBOOT_HASH_OFFSET_UPDATE	0xfffffffc
1946 
1947 /*****************************************************************************/
1948 /*
1949  * Motion sense commands. We'll make separate structs for sub-commands with
1950  * different input args, so that we know how much to expect.
1951  */
1952 #define EC_CMD_MOTION_SENSE_CMD 0x002B
1953 
1954 /* Motion sense commands */
1955 enum motionsense_command {
1956 	/*
1957 	 * Dump command returns all motion sensor data including motion sense
1958 	 * module flags and individual sensor flags.
1959 	 */
1960 	MOTIONSENSE_CMD_DUMP = 0,
1961 
1962 	/*
1963 	 * Info command returns data describing the details of a given sensor,
1964 	 * including enum motionsensor_type, enum motionsensor_location, and
1965 	 * enum motionsensor_chip.
1966 	 */
1967 	MOTIONSENSE_CMD_INFO = 1,
1968 
1969 	/*
1970 	 * EC Rate command is a setter/getter command for the EC sampling rate
1971 	 * in milliseconds.
1972 	 * It is per sensor, the EC run sample task  at the minimum of all
1973 	 * sensors EC_RATE.
1974 	 * For sensors without hardware FIFO, EC_RATE should be equals to 1/ODR
1975 	 * to collect all the sensor samples.
1976 	 * For sensor with hardware FIFO, EC_RATE is used as the maximal delay
1977 	 * to process of all motion sensors in milliseconds.
1978 	 */
1979 	MOTIONSENSE_CMD_EC_RATE = 2,
1980 
1981 	/*
1982 	 * Sensor ODR command is a setter/getter command for the output data
1983 	 * rate of a specific motion sensor in millihertz.
1984 	 */
1985 	MOTIONSENSE_CMD_SENSOR_ODR = 3,
1986 
1987 	/*
1988 	 * Sensor range command is a setter/getter command for the range of
1989 	 * a specified motion sensor in +/-G's or +/- deg/s.
1990 	 */
1991 	MOTIONSENSE_CMD_SENSOR_RANGE = 4,
1992 
1993 	/*
1994 	 * Setter/getter command for the keyboard wake angle. When the lid
1995 	 * angle is greater than this value, keyboard wake is disabled in S3,
1996 	 * and when the lid angle goes less than this value, keyboard wake is
1997 	 * enabled. Note, the lid angle measurement is an approximate,
1998 	 * un-calibrated value, hence the wake angle isn't exact.
1999 	 */
2000 	MOTIONSENSE_CMD_KB_WAKE_ANGLE = 5,
2001 
2002 	/*
2003 	 * Returns a single sensor data.
2004 	 */
2005 	MOTIONSENSE_CMD_DATA = 6,
2006 
2007 	/*
2008 	 * Return sensor fifo info.
2009 	 */
2010 	MOTIONSENSE_CMD_FIFO_INFO = 7,
2011 
2012 	/*
2013 	 * Insert a flush element in the fifo and return sensor fifo info.
2014 	 * The host can use that element to synchronize its operation.
2015 	 */
2016 	MOTIONSENSE_CMD_FIFO_FLUSH = 8,
2017 
2018 	/*
2019 	 * Return a portion of the fifo.
2020 	 */
2021 	MOTIONSENSE_CMD_FIFO_READ = 9,
2022 
2023 	/*
2024 	 * Perform low level calibration.
2025 	 * On sensors that support it, ask to do offset calibration.
2026 	 */
2027 	MOTIONSENSE_CMD_PERFORM_CALIB = 10,
2028 
2029 	/*
2030 	 * Sensor Offset command is a setter/getter command for the offset
2031 	 * used for calibration.
2032 	 * The offsets can be calculated by the host, or via
2033 	 * PERFORM_CALIB command.
2034 	 */
2035 	MOTIONSENSE_CMD_SENSOR_OFFSET = 11,
2036 
2037 	/*
2038 	 * List available activities for a MOTION sensor.
2039 	 * Indicates if they are enabled or disabled.
2040 	 */
2041 	MOTIONSENSE_CMD_LIST_ACTIVITIES = 12,
2042 
2043 	/*
2044 	 * Activity management
2045 	 * Enable/Disable activity recognition.
2046 	 */
2047 	MOTIONSENSE_CMD_SET_ACTIVITY = 13,
2048 
2049 	/*
2050 	 * Lid Angle
2051 	 */
2052 	MOTIONSENSE_CMD_LID_ANGLE = 14,
2053 
2054 	/*
2055 	 * Allow the FIFO to trigger interrupt via MKBP events.
2056 	 * By default the FIFO does not send interrupt to process the FIFO
2057 	 * until the AP is ready or it is coming from a wakeup sensor.
2058 	 */
2059 	MOTIONSENSE_CMD_FIFO_INT_ENABLE = 15,
2060 
2061 	/*
2062 	 * Spoof the readings of the sensors.  The spoofed readings can be set
2063 	 * to arbitrary values, or will lock to the last read actual values.
2064 	 */
2065 	MOTIONSENSE_CMD_SPOOF = 16,
2066 
2067 	/* Number of motionsense sub-commands. */
2068 	MOTIONSENSE_NUM_CMDS
2069 };
2070 
2071 /* List of motion sensor types. */
2072 enum motionsensor_type {
2073 	MOTIONSENSE_TYPE_ACCEL = 0,
2074 	MOTIONSENSE_TYPE_GYRO = 1,
2075 	MOTIONSENSE_TYPE_MAG = 2,
2076 	MOTIONSENSE_TYPE_PROX = 3,
2077 	MOTIONSENSE_TYPE_LIGHT = 4,
2078 	MOTIONSENSE_TYPE_ACTIVITY = 5,
2079 	MOTIONSENSE_TYPE_BARO = 6,
2080 	MOTIONSENSE_TYPE_MAX,
2081 };
2082 
2083 /* List of motion sensor locations. */
2084 enum motionsensor_location {
2085 	MOTIONSENSE_LOC_BASE = 0,
2086 	MOTIONSENSE_LOC_LID = 1,
2087 	MOTIONSENSE_LOC_MAX,
2088 };
2089 
2090 /* List of motion sensor chips. */
2091 enum motionsensor_chip {
2092 	MOTIONSENSE_CHIP_KXCJ9 = 0,
2093 	MOTIONSENSE_CHIP_LSM6DS0 = 1,
2094 	MOTIONSENSE_CHIP_BMI160 = 2,
2095 	MOTIONSENSE_CHIP_SI1141 = 3,
2096 	MOTIONSENSE_CHIP_SI1142 = 4,
2097 	MOTIONSENSE_CHIP_SI1143 = 5,
2098 	MOTIONSENSE_CHIP_KX022 = 6,
2099 	MOTIONSENSE_CHIP_L3GD20H = 7,
2100 	MOTIONSENSE_CHIP_BMA255 = 8,
2101 	MOTIONSENSE_CHIP_BMP280 = 9,
2102 	MOTIONSENSE_CHIP_OPT3001 = 10,
2103 };
2104 
2105 struct __ec_todo_packed ec_response_motion_sensor_data {
2106 	/* Flags for each sensor. */
2107 	uint8_t flags;
2108 	/* sensor number the data comes from */
2109 	uint8_t sensor_num;
2110 	/* Each sensor is up to 3-axis. */
2111 	union {
2112 		int16_t             data[3];
2113 		struct __ec_todo_packed {
2114 			uint16_t    reserved;
2115 			uint32_t    timestamp;
2116 		};
2117 		struct __ec_todo_unpacked {
2118 			uint8_t     activity; /* motionsensor_activity */
2119 			uint8_t     state;
2120 			int16_t     add_info[2];
2121 		};
2122 	};
2123 };
2124 
2125 /* Note: used in ec_response_get_next_data */
2126 struct __ec_todo_packed ec_response_motion_sense_fifo_info {
2127 	/* Size of the fifo */
2128 	uint16_t size;
2129 	/* Amount of space used in the fifo */
2130 	uint16_t count;
2131 	/* Timestamp recorded in us */
2132 	uint32_t timestamp;
2133 	/* Total amount of vector lost */
2134 	uint16_t total_lost;
2135 	/* Lost events since the last fifo_info, per sensors */
2136 	uint16_t lost[0];
2137 };
2138 
2139 struct __ec_todo_packed ec_response_motion_sense_fifo_data {
2140 	uint32_t number_data;
2141 	struct ec_response_motion_sensor_data data[0];
2142 };
2143 
2144 /* List supported activity recognition */
2145 enum motionsensor_activity {
2146 	MOTIONSENSE_ACTIVITY_RESERVED = 0,
2147 	MOTIONSENSE_ACTIVITY_SIG_MOTION = 1,
2148 	MOTIONSENSE_ACTIVITY_DOUBLE_TAP = 2,
2149 };
2150 
2151 struct __ec_todo_unpacked ec_motion_sense_activity {
2152 	uint8_t sensor_num;
2153 	uint8_t activity; /* one of enum motionsensor_activity */
2154 	uint8_t enable;   /* 1: enable, 0: disable */
2155 	uint8_t reserved;
2156 	uint16_t parameters[3]; /* activity dependent parameters */
2157 };
2158 
2159 /* Module flag masks used for the dump sub-command. */
2160 #define MOTIONSENSE_MODULE_FLAG_ACTIVE (1<<0)
2161 
2162 /* Sensor flag masks used for the dump sub-command. */
2163 #define MOTIONSENSE_SENSOR_FLAG_PRESENT (1<<0)
2164 
2165 /*
2166  * Flush entry for synchronization.
2167  * data contains time stamp
2168  */
2169 #define MOTIONSENSE_SENSOR_FLAG_FLUSH (1<<0)
2170 #define MOTIONSENSE_SENSOR_FLAG_TIMESTAMP (1<<1)
2171 #define MOTIONSENSE_SENSOR_FLAG_WAKEUP (1<<2)
2172 #define MOTIONSENSE_SENSOR_FLAG_TABLET_MODE (1<<3)
2173 
2174 /*
2175  * Send this value for the data element to only perform a read. If you
2176  * send any other value, the EC will interpret it as data to set and will
2177  * return the actual value set.
2178  */
2179 #define EC_MOTION_SENSE_NO_VALUE -1
2180 
2181 #define EC_MOTION_SENSE_INVALID_CALIB_TEMP 0x8000
2182 
2183 /* MOTIONSENSE_CMD_SENSOR_OFFSET subcommand flag */
2184 /* Set Calibration information */
2185 #define MOTION_SENSE_SET_OFFSET 1
2186 
2187 #define LID_ANGLE_UNRELIABLE 500
2188 
2189 enum motionsense_spoof_mode {
2190 	/* Disable spoof mode. */
2191 	MOTIONSENSE_SPOOF_MODE_DISABLE = 0,
2192 
2193 	/* Enable spoof mode, but use provided component values. */
2194 	MOTIONSENSE_SPOOF_MODE_CUSTOM,
2195 
2196 	/* Enable spoof mode, but use the current sensor values. */
2197 	MOTIONSENSE_SPOOF_MODE_LOCK_CURRENT,
2198 
2199 	/* Query the current spoof mode status for the sensor. */
2200 	MOTIONSENSE_SPOOF_MODE_QUERY,
2201 };
2202 
2203 struct __ec_todo_packed ec_params_motion_sense {
2204 	uint8_t cmd;
2205 	union {
2206 		/* Used for MOTIONSENSE_CMD_DUMP */
2207 		struct __ec_todo_unpacked {
2208 			/*
2209 			 * Maximal number of sensor the host is expecting.
2210 			 * 0 means the host is only interested in the number
2211 			 * of sensors controlled by the EC.
2212 			 */
2213 			uint8_t max_sensor_count;
2214 		} dump;
2215 
2216 		/*
2217 		 * Used for MOTIONSENSE_CMD_KB_WAKE_ANGLE.
2218 		 */
2219 		struct __ec_todo_unpacked {
2220 			/* Data to set or EC_MOTION_SENSE_NO_VALUE to read.
2221 			 * kb_wake_angle: angle to wakup AP.
2222 			 */
2223 			int16_t data;
2224 		} kb_wake_angle;
2225 
2226 		/* Used for MOTIONSENSE_CMD_INFO, MOTIONSENSE_CMD_DATA
2227 		 * and MOTIONSENSE_CMD_PERFORM_CALIB. */
2228 		struct __ec_todo_unpacked {
2229 			uint8_t sensor_num;
2230 		} info, info_3, data, fifo_flush, perform_calib,
2231 				list_activities;
2232 
2233 		/*
2234 		 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR
2235 		 * and MOTIONSENSE_CMD_SENSOR_RANGE.
2236 		 */
2237 		struct __ec_todo_unpacked {
2238 			uint8_t sensor_num;
2239 
2240 			/* Rounding flag, true for round-up, false for down. */
2241 			uint8_t roundup;
2242 
2243 			uint16_t reserved;
2244 
2245 			/* Data to set or EC_MOTION_SENSE_NO_VALUE to read. */
2246 			int32_t data;
2247 		} ec_rate, sensor_odr, sensor_range;
2248 
2249 		/* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */
2250 		struct __ec_todo_packed {
2251 			uint8_t sensor_num;
2252 
2253 			/*
2254 			 * bit 0: If set (MOTION_SENSE_SET_OFFSET), set
2255 			 * the calibration information in the EC.
2256 			 * If unset, just retrieve calibration information.
2257 			 */
2258 			uint16_t flags;
2259 
2260 			/*
2261 			 * Temperature at calibration, in units of 0.01 C
2262 			 * 0x8000: invalid / unknown.
2263 			 * 0x0: 0C
2264 			 * 0x7fff: +327.67C
2265 			 */
2266 			int16_t temp;
2267 
2268 			/*
2269 			 * Offset for calibration.
2270 			 * Unit:
2271 			 * Accelerometer: 1/1024 g
2272 			 * Gyro:          1/1024 deg/s
2273 			 * Compass:       1/16 uT
2274 			 */
2275 			int16_t offset[3];
2276 		} sensor_offset;
2277 
2278 		/* Used for MOTIONSENSE_CMD_FIFO_INFO */
2279 		struct __ec_todo_unpacked {
2280 		} fifo_info;
2281 
2282 		/* Used for MOTIONSENSE_CMD_FIFO_READ */
2283 		struct __ec_todo_unpacked {
2284 			/*
2285 			 * Number of expected vector to return.
2286 			 * EC may return less or 0 if none available.
2287 			 */
2288 			uint32_t max_data_vector;
2289 		} fifo_read;
2290 
2291 		struct ec_motion_sense_activity set_activity;
2292 
2293 		/* Used for MOTIONSENSE_CMD_LID_ANGLE */
2294 		struct __ec_todo_unpacked {
2295 		} lid_angle;
2296 
2297 		/* Used for MOTIONSENSE_CMD_FIFO_INT_ENABLE */
2298 		struct __ec_todo_unpacked {
2299 			/*
2300 			 * 1: enable, 0 disable fifo,
2301 			 * EC_MOTION_SENSE_NO_VALUE return value.
2302 			 */
2303 			int8_t enable;
2304 		} fifo_int_enable;
2305 
2306 		/* Used for MOTIONSENSE_CMD_SPOOF */
2307 		struct __ec_todo_packed {
2308 			uint8_t sensor_id;
2309 
2310 			/* See enum motionsense_spoof_mode. */
2311 			uint8_t spoof_enable;
2312 
2313 			/* Ignored, used for alignment. */
2314 			uint8_t reserved;
2315 
2316 			/* Individual component values to spoof. */
2317 			int16_t components[3];
2318 		} spoof;
2319 	};
2320 };
2321 
2322 struct __ec_todo_packed ec_response_motion_sense {
2323 	union {
2324 		/* Used for MOTIONSENSE_CMD_DUMP */
2325 		struct __ec_todo_unpacked {
2326 			/* Flags representing the motion sensor module. */
2327 			uint8_t module_flags;
2328 
2329 			/* Number of sensors managed directly by the EC */
2330 			uint8_t sensor_count;
2331 
2332 			/*
2333 			 * sensor data is truncated if response_max is too small
2334 			 * for holding all the data.
2335 			 */
2336 			struct ec_response_motion_sensor_data sensor[0];
2337 		} dump;
2338 
2339 		/* Used for MOTIONSENSE_CMD_INFO. */
2340 		struct __ec_todo_unpacked {
2341 			/* Should be element of enum motionsensor_type. */
2342 			uint8_t type;
2343 
2344 			/* Should be element of enum motionsensor_location. */
2345 			uint8_t location;
2346 
2347 			/* Should be element of enum motionsensor_chip. */
2348 			uint8_t chip;
2349 		} info;
2350 
2351 		/* Used for MOTIONSENSE_CMD_INFO version 3 */
2352 		struct __ec_todo_unpacked {
2353 			/* Should be element of enum motionsensor_type. */
2354 			uint8_t type;
2355 
2356 			/* Should be element of enum motionsensor_location. */
2357 			uint8_t location;
2358 
2359 			/* Should be element of enum motionsensor_chip. */
2360 			uint8_t chip;
2361 
2362 			/* Minimum sensor sampling frequency */
2363 			uint32_t min_frequency;
2364 
2365 			/* Maximum sensor sampling frequency */
2366 			uint32_t max_frequency;
2367 
2368 			/* Max number of sensor events that could be in fifo */
2369 			uint32_t fifo_max_event_count;
2370 		} info_3;
2371 
2372 		/* Used for MOTIONSENSE_CMD_DATA */
2373 		struct ec_response_motion_sensor_data data;
2374 
2375 		/*
2376 		 * Used for MOTIONSENSE_CMD_EC_RATE, MOTIONSENSE_CMD_SENSOR_ODR,
2377 		 * MOTIONSENSE_CMD_SENSOR_RANGE,
2378 		 * MOTIONSENSE_CMD_KB_WAKE_ANGLE,
2379 		 * MOTIONSENSE_CMD_FIFO_INT_ENABLE and
2380 		 * MOTIONSENSE_CMD_SPOOF.
2381 		 */
2382 		struct __ec_todo_unpacked {
2383 			/* Current value of the parameter queried. */
2384 			int32_t ret;
2385 		} ec_rate, sensor_odr, sensor_range, kb_wake_angle,
2386 		  fifo_int_enable, spoof;
2387 
2388 		/* Used for MOTIONSENSE_CMD_SENSOR_OFFSET */
2389 		struct __ec_todo_unpacked  {
2390 			int16_t temp;
2391 			int16_t offset[3];
2392 		} sensor_offset, perform_calib;
2393 
2394 		struct ec_response_motion_sense_fifo_info fifo_info, fifo_flush;
2395 
2396 		struct ec_response_motion_sense_fifo_data fifo_read;
2397 
2398 		struct __ec_todo_packed {
2399 			uint16_t reserved;
2400 			uint32_t enabled;
2401 			uint32_t disabled;
2402 		} list_activities;
2403 
2404 		struct __ec_todo_unpacked {
2405 		} set_activity;
2406 
2407 		/* Used for MOTIONSENSE_CMD_LID_ANGLE */
2408 		struct __ec_todo_unpacked {
2409 			/*
2410 			 * Angle between 0 and 360 degree if available,
2411 			 * LID_ANGLE_UNRELIABLE otherwise.
2412 			 */
2413 			uint16_t value;
2414 		} lid_angle;
2415 	};
2416 };
2417 
2418 /*****************************************************************************/
2419 /* Force lid open command */
2420 
2421 /* Make lid event always open */
2422 #define EC_CMD_FORCE_LID_OPEN 0x002C
2423 
2424 struct __ec_align1 ec_params_force_lid_open {
2425 	uint8_t enabled;
2426 };
2427 
2428 /*****************************************************************************/
2429 /* Configure the behavior of the power button */
2430 #define EC_CMD_CONFIG_POWER_BUTTON 0x002D
2431 
2432 enum ec_config_power_button_flags {
2433 	/* Enable/Disable power button pulses for x86 devices */
2434 	EC_POWER_BUTTON_ENABLE_PULSE = (1 << 0),
2435 };
2436 
2437 struct __ec_align1 ec_params_config_power_button {
2438 	/* See enum ec_config_power_button_flags */
2439 	uint8_t flags;
2440 };
2441 
2442 /*****************************************************************************/
2443 /* USB charging control commands */
2444 
2445 /* Set USB port charging mode */
2446 #define EC_CMD_USB_CHARGE_SET_MODE 0x0030
2447 
2448 struct __ec_align1 ec_params_usb_charge_set_mode {
2449 	uint8_t usb_port_id;
2450 	uint8_t mode;
2451 };
2452 
2453 /*****************************************************************************/
2454 /* Persistent storage for host */
2455 
2456 /* Maximum bytes that can be read/written in a single command */
2457 #define EC_PSTORE_SIZE_MAX 64
2458 
2459 /* Get persistent storage info */
2460 #define EC_CMD_PSTORE_INFO 0x0040
2461 
2462 struct __ec_align4 ec_response_pstore_info {
2463 	/* Persistent storage size, in bytes */
2464 	uint32_t pstore_size;
2465 	/* Access size; read/write offset and size must be a multiple of this */
2466 	uint32_t access_size;
2467 };
2468 
2469 /*
2470  * Read persistent storage
2471  *
2472  * Response is params.size bytes of data.
2473  */
2474 #define EC_CMD_PSTORE_READ 0x0041
2475 
2476 struct __ec_align4 ec_params_pstore_read {
2477 	uint32_t offset;   /* Byte offset to read */
2478 	uint32_t size;     /* Size to read in bytes */
2479 };
2480 
2481 /* Write persistent storage */
2482 #define EC_CMD_PSTORE_WRITE 0x0042
2483 
2484 struct __ec_align4 ec_params_pstore_write {
2485 	uint32_t offset;   /* Byte offset to write */
2486 	uint32_t size;     /* Size to write in bytes */
2487 	uint8_t data[EC_PSTORE_SIZE_MAX];
2488 };
2489 
2490 /*****************************************************************************/
2491 /* Real-time clock */
2492 
2493 /* RTC params and response structures */
2494 struct __ec_align4 ec_params_rtc {
2495 	uint32_t time;
2496 };
2497 
2498 struct __ec_align4 ec_response_rtc {
2499 	uint32_t time;
2500 };
2501 
2502 /* These use ec_response_rtc */
2503 #define EC_CMD_RTC_GET_VALUE 0x0044
2504 #define EC_CMD_RTC_GET_ALARM 0x0045
2505 
2506 /* These all use ec_params_rtc */
2507 #define EC_CMD_RTC_SET_VALUE 0x0046
2508 #define EC_CMD_RTC_SET_ALARM 0x0047
2509 
2510 /* Pass as time param to SET_ALARM to clear the current alarm */
2511 #define EC_RTC_ALARM_CLEAR 0
2512 
2513 /*****************************************************************************/
2514 /* Port80 log access */
2515 
2516 /* Maximum entries that can be read/written in a single command */
2517 #define EC_PORT80_SIZE_MAX 32
2518 
2519 /* Get last port80 code from previous boot */
2520 #define EC_CMD_PORT80_LAST_BOOT 0x0048
2521 #define EC_CMD_PORT80_READ 0x0048
2522 
2523 enum ec_port80_subcmd {
2524 	EC_PORT80_GET_INFO = 0,
2525 	EC_PORT80_READ_BUFFER,
2526 };
2527 
2528 struct __ec_todo_packed ec_params_port80_read {
2529 	uint16_t subcmd;
2530 	union {
2531 		struct __ec_todo_unpacked {
2532 			uint32_t offset;
2533 			uint32_t num_entries;
2534 		} read_buffer;
2535 	};
2536 };
2537 
2538 struct __ec_todo_packed ec_response_port80_read {
2539 	union {
2540 		struct __ec_todo_unpacked {
2541 			uint32_t writes;
2542 			uint32_t history_size;
2543 			uint32_t last_boot;
2544 		} get_info;
2545 		struct __ec_todo_unpacked {
2546 			uint16_t codes[EC_PORT80_SIZE_MAX];
2547 		} data;
2548 	};
2549 };
2550 
2551 struct __ec_align2 ec_response_port80_last_boot {
2552 	uint16_t code;
2553 };
2554 
2555 /*****************************************************************************/
2556 /* Temporary secure storage for host verified boot use */
2557 
2558 /* Number of bytes in a vstore slot */
2559 #define EC_VSTORE_SLOT_SIZE 64
2560 
2561 /* Maximum number of vstore slots */
2562 #define EC_VSTORE_SLOT_MAX 32
2563 
2564 /* Get persistent storage info */
2565 #define EC_CMD_VSTORE_INFO 0x0049
2566 struct __ec_align_size1 ec_response_vstore_info {
2567 	/* Indicates which slots are locked */
2568 	uint32_t slot_locked;
2569 	/* Total number of slots available */
2570 	uint8_t slot_count;
2571 };
2572 
2573 /*
2574  * Read temporary secure storage
2575  *
2576  * Response is EC_VSTORE_SLOT_SIZE bytes of data.
2577  */
2578 #define EC_CMD_VSTORE_READ 0x004A
2579 
2580 struct __ec_align1 ec_params_vstore_read {
2581 	uint8_t slot; /* Slot to read from */
2582 };
2583 
2584 struct __ec_align1 ec_response_vstore_read {
2585 	uint8_t data[EC_VSTORE_SLOT_SIZE];
2586 };
2587 
2588 /*
2589  * Write temporary secure storage and lock it.
2590  */
2591 #define EC_CMD_VSTORE_WRITE 0x004B
2592 
2593 struct __ec_align1 ec_params_vstore_write {
2594 	uint8_t slot; /* Slot to write to */
2595 	uint8_t data[EC_VSTORE_SLOT_SIZE];
2596 };
2597 
2598 /*****************************************************************************/
2599 /* Thermal engine commands. Note that there are two implementations. We'll
2600  * reuse the command number, but the data and behavior is incompatible.
2601  * Version 0 is what originally shipped on Link.
2602  * Version 1 separates the CPU thermal limits from the fan control.
2603  */
2604 
2605 #define EC_CMD_THERMAL_SET_THRESHOLD 0x0050
2606 #define EC_CMD_THERMAL_GET_THRESHOLD 0x0051
2607 
2608 /* The version 0 structs are opaque. You have to know what they are for
2609  * the get/set commands to make any sense.
2610  */
2611 
2612 /* Version 0 - set */
2613 struct __ec_align2 ec_params_thermal_set_threshold {
2614 	uint8_t sensor_type;
2615 	uint8_t threshold_id;
2616 	uint16_t value;
2617 };
2618 
2619 /* Version 0 - get */
2620 struct __ec_align1 ec_params_thermal_get_threshold {
2621 	uint8_t sensor_type;
2622 	uint8_t threshold_id;
2623 };
2624 
2625 struct __ec_align2 ec_response_thermal_get_threshold {
2626 	uint16_t value;
2627 };
2628 
2629 
2630 /* The version 1 structs are visible. */
2631 enum ec_temp_thresholds {
2632 	EC_TEMP_THRESH_WARN = 0,
2633 	EC_TEMP_THRESH_HIGH,
2634 	EC_TEMP_THRESH_HALT,
2635 
2636 	EC_TEMP_THRESH_COUNT
2637 };
2638 
2639 /*
2640  * Thermal configuration for one temperature sensor. Temps are in degrees K.
2641  * Zero values will be silently ignored by the thermal task.
2642  *
2643  * Note that this structure is a sub-structure of
2644  * ec_params_thermal_set_threshold_v1, but maintains its alignment there.
2645  */
2646 struct __ec_align4 ec_thermal_config {
2647 	uint32_t temp_host[EC_TEMP_THRESH_COUNT]; /* levels of hotness */
2648 	uint32_t temp_fan_off;		/* no active cooling needed */
2649 	uint32_t temp_fan_max;		/* max active cooling needed */
2650 };
2651 
2652 /* Version 1 - get config for one sensor. */
2653 struct __ec_align4 ec_params_thermal_get_threshold_v1 {
2654 	uint32_t sensor_num;
2655 };
2656 /* This returns a struct ec_thermal_config */
2657 
2658 /* Version 1 - set config for one sensor.
2659  * Use read-modify-write for best results! */
2660 struct __ec_align4 ec_params_thermal_set_threshold_v1 {
2661 	uint32_t sensor_num;
2662 	struct ec_thermal_config cfg;
2663 };
2664 /* This returns no data */
2665 
2666 /****************************************************************************/
2667 
2668 /* Toggle automatic fan control */
2669 #define EC_CMD_THERMAL_AUTO_FAN_CTRL 0x0052
2670 
2671 /* Version 1 of input params */
2672 struct __ec_align1 ec_params_auto_fan_ctrl_v1 {
2673 	uint8_t fan_idx;
2674 };
2675 
2676 /* Get/Set TMP006 calibration data */
2677 #define EC_CMD_TMP006_GET_CALIBRATION 0x0053
2678 #define EC_CMD_TMP006_SET_CALIBRATION 0x0054
2679 
2680 /*
2681  * The original TMP006 calibration only needed four params, but now we need
2682  * more. Since the algorithm is nothing but magic numbers anyway, we'll leave
2683  * the params opaque. The v1 "get" response will include the algorithm number
2684  * and how many params it requires. That way we can change the EC code without
2685  * needing to update this file. We can also use a different algorithm on each
2686  * sensor.
2687  */
2688 
2689 /* This is the same struct for both v0 and v1. */
2690 struct __ec_align1 ec_params_tmp006_get_calibration {
2691 	uint8_t index;
2692 };
2693 
2694 /* Version 0 */
2695 struct __ec_align4 ec_response_tmp006_get_calibration_v0 {
2696 	float s0;
2697 	float b0;
2698 	float b1;
2699 	float b2;
2700 };
2701 
2702 struct __ec_align4 ec_params_tmp006_set_calibration_v0 {
2703 	uint8_t index;
2704 	uint8_t reserved[3];
2705 	float s0;
2706 	float b0;
2707 	float b1;
2708 	float b2;
2709 };
2710 
2711 /* Version 1 */
2712 struct __ec_align4 ec_response_tmp006_get_calibration_v1 {
2713 	uint8_t algorithm;
2714 	uint8_t num_params;
2715 	uint8_t reserved[2];
2716 	float val[0];
2717 };
2718 
2719 struct __ec_align4 ec_params_tmp006_set_calibration_v1 {
2720 	uint8_t index;
2721 	uint8_t algorithm;
2722 	uint8_t num_params;
2723 	uint8_t reserved;
2724 	float val[0];
2725 };
2726 
2727 
2728 /* Read raw TMP006 data */
2729 #define EC_CMD_TMP006_GET_RAW 0x0055
2730 
2731 struct __ec_align1 ec_params_tmp006_get_raw {
2732 	uint8_t index;
2733 };
2734 
2735 struct __ec_align4 ec_response_tmp006_get_raw {
2736 	int32_t t;  /* In 1/100 K */
2737 	int32_t v;  /* In nV */
2738 };
2739 
2740 /*****************************************************************************/
2741 /* MKBP - Matrix KeyBoard Protocol */
2742 
2743 /*
2744  * Read key state
2745  *
2746  * Returns raw data for keyboard cols; see ec_response_mkbp_info.cols for
2747  * expected response size.
2748  *
2749  * NOTE: This has been superseded by EC_CMD_MKBP_GET_NEXT_EVENT.  If you wish
2750  * to obtain the instantaneous state, use EC_CMD_MKBP_INFO with the type
2751  * EC_MKBP_INFO_CURRENT and event EC_MKBP_EVENT_KEY_MATRIX.
2752  */
2753 #define EC_CMD_MKBP_STATE 0x0060
2754 
2755 /*
2756  * Provide information about various MKBP things.  See enum ec_mkbp_info_type.
2757  */
2758 #define EC_CMD_MKBP_INFO 0x0061
2759 
2760 struct __ec_align_size1 ec_response_mkbp_info {
2761 	uint32_t rows;
2762 	uint32_t cols;
2763 	/* Formerly "switches", which was 0. */
2764 	uint8_t reserved;
2765 };
2766 
2767 struct __ec_align1 ec_params_mkbp_info {
2768 	uint8_t info_type;
2769 	uint8_t event_type;
2770 };
2771 
2772 enum ec_mkbp_info_type {
2773 	/*
2774 	 * Info about the keyboard matrix: number of rows and columns.
2775 	 *
2776 	 * Returns struct ec_response_mkbp_info.
2777 	 */
2778 	EC_MKBP_INFO_KBD = 0,
2779 
2780 	/*
2781 	 * For buttons and switches, info about which specifically are
2782 	 * supported.  event_type must be set to one of the values in enum
2783 	 * ec_mkbp_event.
2784 	 *
2785 	 * For EC_MKBP_EVENT_BUTTON and EC_MKBP_EVENT_SWITCH, returns a 4 byte
2786 	 * bitmask indicating which buttons or switches are present.  See the
2787 	 * bit inidices below.
2788 	 */
2789 	EC_MKBP_INFO_SUPPORTED = 1,
2790 
2791 	/*
2792 	 * Instantaneous state of buttons and switches.
2793 	 *
2794 	 * event_type must be set to one of the values in enum ec_mkbp_event.
2795 	 *
2796 	 * For EC_MKBP_EVENT_KEY_MATRIX, returns uint8_t key_matrix[13]
2797 	 * indicating the current state of the keyboard matrix.
2798 	 *
2799 	 * For EC_MKBP_EVENT_HOST_EVENT, return uint32_t host_event, the raw
2800 	 * event state.
2801 	 *
2802 	 * For EC_MKBP_EVENT_BUTTON, returns uint32_t buttons, indicating the
2803 	 * state of supported buttons.
2804 	 *
2805 	 * For EC_MKBP_EVENT_SWITCH, returns uint32_t switches, indicating the
2806 	 * state of supported switches.
2807 	 */
2808 	EC_MKBP_INFO_CURRENT = 2,
2809 };
2810 
2811 /* Simulate key press */
2812 #define EC_CMD_MKBP_SIMULATE_KEY 0x0062
2813 
2814 struct __ec_align1 ec_params_mkbp_simulate_key {
2815 	uint8_t col;
2816 	uint8_t row;
2817 	uint8_t pressed;
2818 };
2819 
2820 /* Configure keyboard scanning */
2821 #define EC_CMD_MKBP_SET_CONFIG 0x0064
2822 #define EC_CMD_MKBP_GET_CONFIG 0x0065
2823 
2824 /* flags */
2825 enum mkbp_config_flags {
2826 	EC_MKBP_FLAGS_ENABLE = 1,	/* Enable keyboard scanning */
2827 };
2828 
2829 enum mkbp_config_valid {
2830 	EC_MKBP_VALID_SCAN_PERIOD		= 1 << 0,
2831 	EC_MKBP_VALID_POLL_TIMEOUT		= 1 << 1,
2832 	EC_MKBP_VALID_MIN_POST_SCAN_DELAY	= 1 << 3,
2833 	EC_MKBP_VALID_OUTPUT_SETTLE		= 1 << 4,
2834 	EC_MKBP_VALID_DEBOUNCE_DOWN		= 1 << 5,
2835 	EC_MKBP_VALID_DEBOUNCE_UP		= 1 << 6,
2836 	EC_MKBP_VALID_FIFO_MAX_DEPTH		= 1 << 7,
2837 };
2838 
2839 /*
2840  * Configuration for our key scanning algorithm.
2841  *
2842  * Note that this is used as a sub-structure of
2843  * ec_{params/response}_mkbp_get_config.
2844  */
2845 struct __ec_align_size1 ec_mkbp_config {
2846 	uint32_t valid_mask;		/* valid fields */
2847 	uint8_t flags;		/* some flags (enum mkbp_config_flags) */
2848 	uint8_t valid_flags;		/* which flags are valid */
2849 	uint16_t scan_period_us;	/* period between start of scans */
2850 	/* revert to interrupt mode after no activity for this long */
2851 	uint32_t poll_timeout_us;
2852 	/*
2853 	 * minimum post-scan relax time. Once we finish a scan we check
2854 	 * the time until we are due to start the next one. If this time is
2855 	 * shorter this field, we use this instead.
2856 	 */
2857 	uint16_t min_post_scan_delay_us;
2858 	/* delay between setting up output and waiting for it to settle */
2859 	uint16_t output_settle_us;
2860 	uint16_t debounce_down_us;	/* time for debounce on key down */
2861 	uint16_t debounce_up_us;	/* time for debounce on key up */
2862 	/* maximum depth to allow for fifo (0 = no keyscan output) */
2863 	uint8_t fifo_max_depth;
2864 };
2865 
2866 struct __ec_align_size1 ec_params_mkbp_set_config {
2867 	struct ec_mkbp_config config;
2868 };
2869 
2870 struct __ec_align_size1 ec_response_mkbp_get_config {
2871 	struct ec_mkbp_config config;
2872 };
2873 
2874 /* Run the key scan emulation */
2875 #define EC_CMD_KEYSCAN_SEQ_CTRL 0x0066
2876 
2877 enum ec_keyscan_seq_cmd {
2878 	EC_KEYSCAN_SEQ_STATUS = 0,	/* Get status information */
2879 	EC_KEYSCAN_SEQ_CLEAR = 1,	/* Clear sequence */
2880 	EC_KEYSCAN_SEQ_ADD = 2,		/* Add item to sequence */
2881 	EC_KEYSCAN_SEQ_START = 3,	/* Start running sequence */
2882 	EC_KEYSCAN_SEQ_COLLECT = 4,	/* Collect sequence summary data */
2883 };
2884 
2885 enum ec_collect_flags {
2886 	/*
2887 	 * Indicates this scan was processed by the EC. Due to timing, some
2888 	 * scans may be skipped.
2889 	 */
2890 	EC_KEYSCAN_SEQ_FLAG_DONE	= 1 << 0,
2891 };
2892 
2893 struct __ec_align1 ec_collect_item {
2894 	uint8_t flags;		/* some flags (enum ec_collect_flags) */
2895 };
2896 
2897 struct __ec_todo_packed ec_params_keyscan_seq_ctrl {
2898 	uint8_t cmd;	/* Command to send (enum ec_keyscan_seq_cmd) */
2899 	union {
2900 		struct __ec_align1 {
2901 			uint8_t active;		/* still active */
2902 			uint8_t num_items;	/* number of items */
2903 			/* Current item being presented */
2904 			uint8_t cur_item;
2905 		} status;
2906 		struct __ec_todo_unpacked {
2907 			/*
2908 			 * Absolute time for this scan, measured from the
2909 			 * start of the sequence.
2910 			 */
2911 			uint32_t time_us;
2912 			uint8_t scan[0];	/* keyscan data */
2913 		} add;
2914 		struct __ec_align1 {
2915 			uint8_t start_item;	/* First item to return */
2916 			uint8_t num_items;	/* Number of items to return */
2917 		} collect;
2918 	};
2919 };
2920 
2921 struct __ec_todo_packed ec_result_keyscan_seq_ctrl {
2922 	union {
2923 		struct __ec_todo_unpacked {
2924 			uint8_t num_items;	/* Number of items */
2925 			/* Data for each item */
2926 			struct ec_collect_item item[0];
2927 		} collect;
2928 	};
2929 };
2930 
2931 /*
2932  * Get the next pending MKBP event.
2933  *
2934  * Returns EC_RES_UNAVAILABLE if there is no event pending.
2935  */
2936 #define EC_CMD_GET_NEXT_EVENT 0x0067
2937 
2938 enum ec_mkbp_event {
2939 	/* Keyboard matrix changed. The event data is the new matrix state. */
2940 	EC_MKBP_EVENT_KEY_MATRIX = 0,
2941 
2942 	/* New host event. The event data is 4 bytes of host event flags. */
2943 	EC_MKBP_EVENT_HOST_EVENT = 1,
2944 
2945 	/* New Sensor FIFO data. The event data is fifo_info structure. */
2946 	EC_MKBP_EVENT_SENSOR_FIFO = 2,
2947 
2948 	/* The state of the non-matrixed buttons have changed. */
2949 	EC_MKBP_EVENT_BUTTON = 3,
2950 
2951 	/* The state of the switches have changed. */
2952 	EC_MKBP_EVENT_SWITCH = 4,
2953 
2954 	/* New Fingerprint sensor event, the event data is fp_events bitmap. */
2955 	EC_MKBP_EVENT_FINGERPRINT = 5,
2956 
2957 	/*
2958 	 * Sysrq event: send emulated sysrq. The event data is sysrq,
2959 	 * corresponding to the key to be pressed.
2960 	 */
2961 	EC_MKBP_EVENT_SYSRQ = 6,
2962 
2963 	/* Number of MKBP events */
2964 	EC_MKBP_EVENT_COUNT,
2965 };
2966 
2967 union __ec_align_offset1 ec_response_get_next_data {
2968 	uint8_t key_matrix[13];
2969 
2970 	/* Unaligned */
2971 	uint32_t host_event;
2972 
2973 	struct __ec_todo_unpacked {
2974 		/* For aligning the fifo_info */
2975 		uint8_t reserved[3];
2976 		struct ec_response_motion_sense_fifo_info info;
2977 	} sensor_fifo;
2978 
2979 	uint32_t buttons;
2980 
2981 	uint32_t switches;
2982 
2983 	uint32_t fp_events;
2984 
2985 	uint32_t sysrq;
2986 };
2987 
2988 struct __ec_align1 ec_response_get_next_event {
2989 	uint8_t event_type;
2990 	/* Followed by event data if any */
2991 	union ec_response_get_next_data data;
2992 };
2993 
2994 /* Bit indices for buttons and switches.*/
2995 /* Buttons */
2996 #define EC_MKBP_POWER_BUTTON	0
2997 #define EC_MKBP_VOL_UP		1
2998 #define EC_MKBP_VOL_DOWN	2
2999 #define EC_MKBP_RECOVERY	3
3000 
3001 /* Switches */
3002 #define EC_MKBP_LID_OPEN	0
3003 #define EC_MKBP_TABLET_MODE	1
3004 
3005 /* Run keyboard factory test scanning */
3006 #define EC_CMD_KEYBOARD_FACTORY_TEST 0x0068
3007 
3008 struct __ec_align2 ec_response_keyboard_factory_test {
3009 	uint16_t shorted;	/* Keyboard pins are shorted */
3010 };
3011 
3012 /* Fingerprint events in 'fp_events' for EC_MKBP_EVENT_FINGERPRINT */
3013 #define EC_MKBP_FP_RAW_EVENT(fp_events) ((fp_events) & 0x00FFFFFF)
3014 #define EC_MKBP_FP_FINGER_DOWN          (1 << 29)
3015 #define EC_MKBP_FP_FINGER_UP            (1 << 30)
3016 #define EC_MKBP_FP_IMAGE_READY          (1 << 31)
3017 
3018 /*****************************************************************************/
3019 /* Temperature sensor commands */
3020 
3021 /* Read temperature sensor info */
3022 #define EC_CMD_TEMP_SENSOR_GET_INFO 0x0070
3023 
3024 struct __ec_align1 ec_params_temp_sensor_get_info {
3025 	uint8_t id;
3026 };
3027 
3028 struct __ec_align1 ec_response_temp_sensor_get_info {
3029 	char sensor_name[32];
3030 	uint8_t sensor_type;
3031 };
3032 
3033 /*****************************************************************************/
3034 
3035 /*
3036  * Note: host commands 0x80 - 0x87 are reserved to avoid conflict with ACPI
3037  * commands accidentally sent to the wrong interface.  See the ACPI section
3038  * below.
3039  */
3040 
3041 /*****************************************************************************/
3042 /* Host event commands */
3043 
3044 
3045 /* Obsolete. New implementation should use EC_CMD_PROGRAM_HOST_EVENT instead */
3046 /*
3047  * Host event mask params and response structures, shared by all of the host
3048  * event commands below.
3049  */
3050 struct __ec_align4 ec_params_host_event_mask {
3051 	uint32_t mask;
3052 };
3053 
3054 struct __ec_align4 ec_response_host_event_mask {
3055 	uint32_t mask;
3056 };
3057 
3058 /* These all use ec_response_host_event_mask */
3059 #define EC_CMD_HOST_EVENT_GET_B         0x0087
3060 #define EC_CMD_HOST_EVENT_GET_SMI_MASK  0x0088
3061 #define EC_CMD_HOST_EVENT_GET_SCI_MASK  0x0089
3062 #define EC_CMD_HOST_EVENT_GET_WAKE_MASK 0x008D
3063 
3064 /* These all use ec_params_host_event_mask */
3065 #define EC_CMD_HOST_EVENT_SET_SMI_MASK  0x008A
3066 #define EC_CMD_HOST_EVENT_SET_SCI_MASK  0x008B
3067 #define EC_CMD_HOST_EVENT_CLEAR         0x008C
3068 #define EC_CMD_HOST_EVENT_SET_WAKE_MASK 0x008E
3069 #define EC_CMD_HOST_EVENT_CLEAR_B       0x008F
3070 
3071 /*
3072  * Unified host event programming interface - Should be used by newer versions
3073  * of BIOS/OS to program host events and masks
3074  */
3075 
3076 struct __ec_align4 ec_params_host_event {
3077 
3078 	/* Action requested by host - one of enum ec_host_event_action. */
3079 	uint8_t action;
3080 
3081 	/*
3082 	 * Mask type that the host requested the action on - one of
3083 	 * enum ec_host_event_mask_type.
3084 	 */
3085 	uint8_t mask_type;
3086 
3087 	/* Set to 0, ignore on read */
3088 	uint16_t reserved;
3089 
3090 	/* Value to be used in case of set operations. */
3091 	uint64_t value;
3092 };
3093 
3094 /*
3095  * Response structure returned by EC_CMD_HOST_EVENT.
3096  * Update the value on a GET request. Set to 0 on GET/CLEAR
3097  */
3098 
3099 struct __ec_align4 ec_response_host_event {
3100 
3101 	/* Mask value in case of get operation */
3102 	uint64_t value;
3103 };
3104 
3105 enum ec_host_event_action {
3106 	/*
3107 	 * params.value is ignored. Value of mask_type populated
3108 	 * in response.value
3109 	 */
3110 	EC_HOST_EVENT_GET,
3111 
3112 	/* Bits in params.value are set */
3113 	EC_HOST_EVENT_SET,
3114 
3115 	/* Bits in params.value are cleared */
3116 	EC_HOST_EVENT_CLEAR,
3117 };
3118 
3119 enum ec_host_event_mask_type {
3120 
3121 	/* Main host event copy */
3122 	EC_HOST_EVENT_MAIN,
3123 
3124 	/* Copy B of host events */
3125 	EC_HOST_EVENT_B,
3126 
3127 	/* SCI Mask */
3128 	EC_HOST_EVENT_SCI_MASK,
3129 
3130 	/* SMI Mask */
3131 	EC_HOST_EVENT_SMI_MASK,
3132 
3133 	/* Mask of events that should be always reported in hostevents */
3134 	EC_HOST_EVENT_ALWAYS_REPORT_MASK,
3135 
3136 	/* Active wake mask */
3137 	EC_HOST_EVENT_ACTIVE_WAKE_MASK,
3138 
3139 	/* Lazy wake mask for S0ix */
3140 	EC_HOST_EVENT_LAZY_WAKE_MASK_S0IX,
3141 
3142 	/* Lazy wake mask for S3 */
3143 	EC_HOST_EVENT_LAZY_WAKE_MASK_S3,
3144 
3145 	/* Lazy wake mask for S5 */
3146 	EC_HOST_EVENT_LAZY_WAKE_MASK_S5,
3147 };
3148 
3149 #define EC_CMD_HOST_EVENT       0x00A4
3150 
3151 /*****************************************************************************/
3152 /* Switch commands */
3153 
3154 /* Enable/disable LCD backlight */
3155 #define EC_CMD_SWITCH_ENABLE_BKLIGHT 0x0090
3156 
3157 struct __ec_align1 ec_params_switch_enable_backlight {
3158 	uint8_t enabled;
3159 };
3160 
3161 /* Enable/disable WLAN/Bluetooth */
3162 #define EC_CMD_SWITCH_ENABLE_WIRELESS 0x0091
3163 #define EC_VER_SWITCH_ENABLE_WIRELESS 1
3164 
3165 /* Version 0 params; no response */
3166 struct __ec_align1 ec_params_switch_enable_wireless_v0 {
3167 	uint8_t enabled;
3168 };
3169 
3170 /* Version 1 params */
3171 struct __ec_align1 ec_params_switch_enable_wireless_v1 {
3172 	/* Flags to enable now */
3173 	uint8_t now_flags;
3174 
3175 	/* Which flags to copy from now_flags */
3176 	uint8_t now_mask;
3177 
3178 	/*
3179 	 * Flags to leave enabled in S3, if they're on at the S0->S3
3180 	 * transition.  (Other flags will be disabled by the S0->S3
3181 	 * transition.)
3182 	 */
3183 	uint8_t suspend_flags;
3184 
3185 	/* Which flags to copy from suspend_flags */
3186 	uint8_t suspend_mask;
3187 };
3188 
3189 /* Version 1 response */
3190 struct __ec_align1 ec_response_switch_enable_wireless_v1 {
3191 	/* Flags to enable now */
3192 	uint8_t now_flags;
3193 
3194 	/* Flags to leave enabled in S3 */
3195 	uint8_t suspend_flags;
3196 };
3197 
3198 /*****************************************************************************/
3199 /* GPIO commands. Only available on EC if write protect has been disabled. */
3200 
3201 /* Set GPIO output value */
3202 #define EC_CMD_GPIO_SET 0x0092
3203 
3204 struct __ec_align1 ec_params_gpio_set {
3205 	char name[32];
3206 	uint8_t val;
3207 };
3208 
3209 /* Get GPIO value */
3210 #define EC_CMD_GPIO_GET 0x0093
3211 
3212 /* Version 0 of input params and response */
3213 struct __ec_align1 ec_params_gpio_get {
3214 	char name[32];
3215 };
3216 
3217 struct __ec_align1 ec_response_gpio_get {
3218 	uint8_t val;
3219 };
3220 
3221 /* Version 1 of input params and response */
3222 struct __ec_align1 ec_params_gpio_get_v1 {
3223 	uint8_t subcmd;
3224 	union {
3225 		struct __ec_align1 {
3226 			char name[32];
3227 		} get_value_by_name;
3228 		struct __ec_align1 {
3229 			uint8_t index;
3230 		} get_info;
3231 	};
3232 };
3233 
3234 struct __ec_todo_packed ec_response_gpio_get_v1 {
3235 	union {
3236 		struct __ec_align1 {
3237 			uint8_t val;
3238 		} get_value_by_name, get_count;
3239 		struct __ec_todo_unpacked {
3240 			uint8_t val;
3241 			char name[32];
3242 			uint32_t flags;
3243 		} get_info;
3244 	};
3245 };
3246 
3247 enum gpio_get_subcmd {
3248 	EC_GPIO_GET_BY_NAME = 0,
3249 	EC_GPIO_GET_COUNT = 1,
3250 	EC_GPIO_GET_INFO = 2,
3251 };
3252 
3253 /*****************************************************************************/
3254 /* I2C commands. Only available when flash write protect is unlocked. */
3255 
3256 /*
3257  * CAUTION: These commands are deprecated, and are not supported anymore in EC
3258  * builds >= 8398.0.0 (see crosbug.com/p/23570).
3259  *
3260  * Use EC_CMD_I2C_PASSTHRU instead.
3261  */
3262 
3263 /* Read I2C bus */
3264 #define EC_CMD_I2C_READ 0x0094
3265 
3266 struct __ec_align_size1 ec_params_i2c_read {
3267 	uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
3268 	uint8_t read_size; /* Either 8 or 16. */
3269 	uint8_t port;
3270 	uint8_t offset;
3271 };
3272 
3273 struct __ec_align2 ec_response_i2c_read {
3274 	uint16_t data;
3275 };
3276 
3277 /* Write I2C bus */
3278 #define EC_CMD_I2C_WRITE 0x0095
3279 
3280 struct __ec_align_size1 ec_params_i2c_write {
3281 	uint16_t data;
3282 	uint16_t addr; /* 8-bit address (7-bit shifted << 1) */
3283 	uint8_t write_size; /* Either 8 or 16. */
3284 	uint8_t port;
3285 	uint8_t offset;
3286 };
3287 
3288 /*****************************************************************************/
3289 /* Charge state commands. Only available when flash write protect unlocked. */
3290 
3291 /* Force charge state machine to stop charging the battery or force it to
3292  * discharge the battery.
3293  */
3294 #define EC_CMD_CHARGE_CONTROL 0x0096
3295 #define EC_VER_CHARGE_CONTROL 1
3296 
3297 enum ec_charge_control_mode {
3298 	CHARGE_CONTROL_NORMAL = 0,
3299 	CHARGE_CONTROL_IDLE,
3300 	CHARGE_CONTROL_DISCHARGE,
3301 };
3302 
3303 struct __ec_align4 ec_params_charge_control {
3304 	uint32_t mode;  /* enum charge_control_mode */
3305 };
3306 
3307 /*****************************************************************************/
3308 /* Console commands. Only available when flash write protect is unlocked. */
3309 
3310 /* Snapshot console output buffer for use by EC_CMD_CONSOLE_READ. */
3311 #define EC_CMD_CONSOLE_SNAPSHOT 0x0097
3312 
3313 /*
3314  * Read data from the saved snapshot. If the subcmd parameter is
3315  * CONSOLE_READ_NEXT, this will return data starting from the beginning of
3316  * the latest snapshot. If it is CONSOLE_READ_RECENT, it will start from the
3317  * end of the previous snapshot.
3318  *
3319  * The params are only looked at in version >= 1 of this command. Prior
3320  * versions will just default to CONSOLE_READ_NEXT behavior.
3321  *
3322  * Response is null-terminated string.  Empty string, if there is no more
3323  * remaining output.
3324  */
3325 #define EC_CMD_CONSOLE_READ 0x0098
3326 
3327 enum ec_console_read_subcmd {
3328 	CONSOLE_READ_NEXT = 0,
3329 	CONSOLE_READ_RECENT
3330 };
3331 
3332 struct __ec_align1 ec_params_console_read_v1 {
3333 	uint8_t subcmd; /* enum ec_console_read_subcmd */
3334 };
3335 
3336 /*****************************************************************************/
3337 
3338 /*
3339  * Cut off battery power immediately or after the host has shut down.
3340  *
3341  * return EC_RES_INVALID_COMMAND if unsupported by a board/battery.
3342  *	  EC_RES_SUCCESS if the command was successful.
3343  *	  EC_RES_ERROR if the cut off command failed.
3344  */
3345 #define EC_CMD_BATTERY_CUT_OFF 0x0099
3346 
3347 #define EC_BATTERY_CUTOFF_FLAG_AT_SHUTDOWN	(1 << 0)
3348 
3349 struct __ec_align1 ec_params_battery_cutoff {
3350 	uint8_t flags;
3351 };
3352 
3353 /*****************************************************************************/
3354 /* USB port mux control. */
3355 
3356 /*
3357  * Switch USB mux or return to automatic switching.
3358  */
3359 #define EC_CMD_USB_MUX 0x009A
3360 
3361 struct __ec_align1 ec_params_usb_mux {
3362 	uint8_t mux;
3363 };
3364 
3365 /*****************************************************************************/
3366 /* LDOs / FETs control. */
3367 
3368 enum ec_ldo_state {
3369 	EC_LDO_STATE_OFF = 0,	/* the LDO / FET is shut down */
3370 	EC_LDO_STATE_ON = 1,	/* the LDO / FET is ON / providing power */
3371 };
3372 
3373 /*
3374  * Switch on/off a LDO.
3375  */
3376 #define EC_CMD_LDO_SET 0x009B
3377 
3378 struct __ec_align1 ec_params_ldo_set {
3379 	uint8_t index;
3380 	uint8_t state;
3381 };
3382 
3383 /*
3384  * Get LDO state.
3385  */
3386 #define EC_CMD_LDO_GET 0x009C
3387 
3388 struct __ec_align1 ec_params_ldo_get {
3389 	uint8_t index;
3390 };
3391 
3392 struct __ec_align1 ec_response_ldo_get {
3393 	uint8_t state;
3394 };
3395 
3396 /*****************************************************************************/
3397 /* Power info. */
3398 
3399 /*
3400  * Get power info.
3401  */
3402 #define EC_CMD_POWER_INFO 0x009D
3403 
3404 struct __ec_align4 ec_response_power_info {
3405 	uint32_t usb_dev_type;
3406 	uint16_t voltage_ac;
3407 	uint16_t voltage_system;
3408 	uint16_t current_system;
3409 	uint16_t usb_current_limit;
3410 };
3411 
3412 /*****************************************************************************/
3413 /* I2C passthru command */
3414 
3415 #define EC_CMD_I2C_PASSTHRU 0x009E
3416 
3417 /* Read data; if not present, message is a write */
3418 #define EC_I2C_FLAG_READ	(1 << 15)
3419 
3420 /* Mask for address */
3421 #define EC_I2C_ADDR_MASK	0x3ff
3422 
3423 #define EC_I2C_STATUS_NAK	(1 << 0) /* Transfer was not acknowledged */
3424 #define EC_I2C_STATUS_TIMEOUT	(1 << 1) /* Timeout during transfer */
3425 
3426 /* Any error */
3427 #define EC_I2C_STATUS_ERROR	(EC_I2C_STATUS_NAK | EC_I2C_STATUS_TIMEOUT)
3428 
3429 struct __ec_align2 ec_params_i2c_passthru_msg {
3430 	uint16_t addr_flags;	/* I2C slave address (7 or 10 bits) and flags */
3431 	uint16_t len;		/* Number of bytes to read or write */
3432 };
3433 
3434 struct __ec_align2 ec_params_i2c_passthru {
3435 	uint8_t port;		/* I2C port number */
3436 	uint8_t num_msgs;	/* Number of messages */
3437 	struct ec_params_i2c_passthru_msg msg[];
3438 	/* Data to write for all messages is concatenated here */
3439 };
3440 
3441 struct __ec_align1 ec_response_i2c_passthru {
3442 	uint8_t i2c_status;	/* Status flags (EC_I2C_STATUS_...) */
3443 	uint8_t num_msgs;	/* Number of messages processed */
3444 	uint8_t data[];		/* Data read by messages concatenated here */
3445 };
3446 
3447 /*****************************************************************************/
3448 /* Power button hang detect */
3449 
3450 #define EC_CMD_HANG_DETECT 0x009F
3451 
3452 /* Reasons to start hang detection timer */
3453 /* Power button pressed */
3454 #define EC_HANG_START_ON_POWER_PRESS  (1 << 0)
3455 
3456 /* Lid closed */
3457 #define EC_HANG_START_ON_LID_CLOSE    (1 << 1)
3458 
3459  /* Lid opened */
3460 #define EC_HANG_START_ON_LID_OPEN     (1 << 2)
3461 
3462 /* Start of AP S3->S0 transition (booting or resuming from suspend) */
3463 #define EC_HANG_START_ON_RESUME       (1 << 3)
3464 
3465 /* Reasons to cancel hang detection */
3466 
3467 /* Power button released */
3468 #define EC_HANG_STOP_ON_POWER_RELEASE (1 << 8)
3469 
3470 /* Any host command from AP received */
3471 #define EC_HANG_STOP_ON_HOST_COMMAND  (1 << 9)
3472 
3473 /* Stop on end of AP S0->S3 transition (suspending or shutting down) */
3474 #define EC_HANG_STOP_ON_SUSPEND       (1 << 10)
3475 
3476 /*
3477  * If this flag is set, all the other fields are ignored, and the hang detect
3478  * timer is started.  This provides the AP a way to start the hang timer
3479  * without reconfiguring any of the other hang detect settings.  Note that
3480  * you must previously have configured the timeouts.
3481  */
3482 #define EC_HANG_START_NOW             (1 << 30)
3483 
3484 /*
3485  * If this flag is set, all the other fields are ignored (including
3486  * EC_HANG_START_NOW).  This provides the AP a way to stop the hang timer
3487  * without reconfiguring any of the other hang detect settings.
3488  */
3489 #define EC_HANG_STOP_NOW              (1 << 31)
3490 
3491 struct __ec_align4 ec_params_hang_detect {
3492 	/* Flags; see EC_HANG_* */
3493 	uint32_t flags;
3494 
3495 	/* Timeout in msec before generating host event, if enabled */
3496 	uint16_t host_event_timeout_msec;
3497 
3498 	/* Timeout in msec before generating warm reboot, if enabled */
3499 	uint16_t warm_reboot_timeout_msec;
3500 };
3501 
3502 /*****************************************************************************/
3503 /* Commands for battery charging */
3504 
3505 /*
3506  * This is the single catch-all host command to exchange data regarding the
3507  * charge state machine (v2 and up).
3508  */
3509 #define EC_CMD_CHARGE_STATE 0x00A0
3510 
3511 /* Subcommands for this host command */
3512 enum charge_state_command {
3513 	CHARGE_STATE_CMD_GET_STATE,
3514 	CHARGE_STATE_CMD_GET_PARAM,
3515 	CHARGE_STATE_CMD_SET_PARAM,
3516 	CHARGE_STATE_NUM_CMDS
3517 };
3518 
3519 /*
3520  * Known param numbers are defined here. Ranges are reserved for board-specific
3521  * params, which are handled by the particular implementations.
3522  */
3523 enum charge_state_params {
3524 	CS_PARAM_CHG_VOLTAGE,	      /* charger voltage limit */
3525 	CS_PARAM_CHG_CURRENT,	      /* charger current limit */
3526 	CS_PARAM_CHG_INPUT_CURRENT,   /* charger input current limit */
3527 	CS_PARAM_CHG_STATUS,	      /* charger-specific status */
3528 	CS_PARAM_CHG_OPTION,	      /* charger-specific options */
3529 	CS_PARAM_LIMIT_POWER,	      /*
3530 				       * Check if power is limited due to
3531 				       * low battery and / or a weak external
3532 				       * charger. READ ONLY.
3533 				       */
3534 	/* How many so far? */
3535 	CS_NUM_BASE_PARAMS,
3536 
3537 	/* Range for CONFIG_CHARGER_PROFILE_OVERRIDE params */
3538 	CS_PARAM_CUSTOM_PROFILE_MIN = 0x10000,
3539 	CS_PARAM_CUSTOM_PROFILE_MAX = 0x1ffff,
3540 
3541 	/* Other custom param ranges go here... */
3542 };
3543 
3544 struct __ec_todo_packed ec_params_charge_state {
3545 	uint8_t cmd;				/* enum charge_state_command */
3546 	union {
3547 		struct __ec_align1 {
3548 			/* no args */
3549 		} get_state;
3550 
3551 		struct __ec_todo_unpacked {
3552 			uint32_t param;		/* enum charge_state_param */
3553 		} get_param;
3554 
3555 		struct __ec_todo_unpacked {
3556 			uint32_t param;		/* param to set */
3557 			uint32_t value;		/* value to set */
3558 		} set_param;
3559 	};
3560 };
3561 
3562 struct __ec_align4 ec_response_charge_state {
3563 	union {
3564 		struct __ec_align4 {
3565 			int ac;
3566 			int chg_voltage;
3567 			int chg_current;
3568 			int chg_input_current;
3569 			int batt_state_of_charge;
3570 		} get_state;
3571 
3572 		struct __ec_align4 {
3573 			uint32_t value;
3574 		} get_param;
3575 		struct __ec_align4 {
3576 			/* no return values */
3577 		} set_param;
3578 	};
3579 };
3580 
3581 
3582 /*
3583  * Set maximum battery charging current.
3584  */
3585 #define EC_CMD_CHARGE_CURRENT_LIMIT 0x00A1
3586 
3587 struct __ec_align4 ec_params_current_limit {
3588 	uint32_t limit; /* in mA */
3589 };
3590 
3591 /*
3592  * Set maximum external voltage / current.
3593  */
3594 #define EC_CMD_EXTERNAL_POWER_LIMIT 0x00A2
3595 
3596 /* Command v0 is used only on Spring and is obsolete + unsupported */
3597 struct __ec_align2 ec_params_external_power_limit_v1 {
3598 	uint16_t current_lim; /* in mA, or EC_POWER_LIMIT_NONE to clear limit */
3599 	uint16_t voltage_lim; /* in mV, or EC_POWER_LIMIT_NONE to clear limit */
3600 };
3601 
3602 #define EC_POWER_LIMIT_NONE 0xffff
3603 
3604 /*
3605  * Set maximum voltage & current of a dedicated charge port
3606  */
3607 #define EC_CMD_OVERRIDE_DEDICATED_CHARGER_LIMIT 0x00A3
3608 
3609 struct __ec_align2 ec_params_dedicated_charger_limit {
3610 	uint16_t current_lim; /* in mA */
3611 	uint16_t voltage_lim; /* in mV */
3612 };
3613 
3614 /*****************************************************************************/
3615 /* Hibernate/Deep Sleep Commands */
3616 
3617 /* Set the delay before going into hibernation. */
3618 #define EC_CMD_HIBERNATION_DELAY 0x00A8
3619 
3620 struct __ec_align4 ec_params_hibernation_delay {
3621 	/*
3622 	 * Seconds to wait in G3 before hibernate.  Pass in 0 to read the
3623 	 * current settings without changing them.
3624 	 */
3625 	uint32_t seconds;
3626 };
3627 
3628 struct __ec_align4 ec_response_hibernation_delay {
3629 	/*
3630 	 * The current time in seconds in which the system has been in the G3
3631 	 * state.  This value is reset if the EC transitions out of G3.
3632 	 */
3633 	uint32_t time_g3;
3634 
3635 	/*
3636 	 * The current time remaining in seconds until the EC should hibernate.
3637 	 * This value is also reset if the EC transitions out of G3.
3638 	 */
3639 	uint32_t time_remaining;
3640 
3641 	/*
3642 	 * The current time in seconds that the EC should wait in G3 before
3643 	 * hibernating.
3644 	 */
3645 	uint32_t hibernate_delay;
3646 };
3647 
3648 /* Inform the EC when entering a sleep state */
3649 #define EC_CMD_HOST_SLEEP_EVENT 0x00A9
3650 
3651 enum host_sleep_event {
3652 	HOST_SLEEP_EVENT_S3_SUSPEND   = 1,
3653 	HOST_SLEEP_EVENT_S3_RESUME    = 2,
3654 	HOST_SLEEP_EVENT_S0IX_SUSPEND = 3,
3655 	HOST_SLEEP_EVENT_S0IX_RESUME  = 4
3656 };
3657 
3658 struct __ec_align1 ec_params_host_sleep_event {
3659 	uint8_t sleep_event;
3660 };
3661 
3662 /*****************************************************************************/
3663 /* Device events */
3664 #define EC_CMD_DEVICE_EVENT 0x00AA
3665 
3666 enum ec_device_event {
3667 	EC_DEVICE_EVENT_TRACKPAD,
3668 	EC_DEVICE_EVENT_DSP,
3669 	EC_DEVICE_EVENT_WIFI,
3670 };
3671 
3672 enum ec_device_event_param {
3673 	/* Get and clear pending device events */
3674 	EC_DEVICE_EVENT_PARAM_GET_CURRENT_EVENTS,
3675 	/* Get device event mask */
3676 	EC_DEVICE_EVENT_PARAM_GET_ENABLED_EVENTS,
3677 	/* Set device event mask */
3678 	EC_DEVICE_EVENT_PARAM_SET_ENABLED_EVENTS,
3679 };
3680 
3681 #define EC_DEVICE_EVENT_MASK(event_code) (1UL << (event_code % 32))
3682 
3683 struct __ec_align_size1 ec_params_device_event {
3684 	uint32_t event_mask;
3685 	uint8_t param;
3686 };
3687 
3688 struct __ec_align4 ec_response_device_event {
3689 	uint32_t event_mask;
3690 };
3691 
3692 /*****************************************************************************/
3693 /* Smart battery pass-through */
3694 
3695 /* Get / Set 16-bit smart battery registers */
3696 #define EC_CMD_SB_READ_WORD   0x00B0
3697 #define EC_CMD_SB_WRITE_WORD  0x00B1
3698 
3699 /* Get / Set string smart battery parameters
3700  * formatted as SMBUS "block".
3701  */
3702 #define EC_CMD_SB_READ_BLOCK  0x00B2
3703 #define EC_CMD_SB_WRITE_BLOCK 0x00B3
3704 
3705 struct __ec_align1 ec_params_sb_rd {
3706 	uint8_t reg;
3707 };
3708 
3709 struct __ec_align2 ec_response_sb_rd_word {
3710 	uint16_t value;
3711 };
3712 
3713 struct __ec_align1 ec_params_sb_wr_word {
3714 	uint8_t reg;
3715 	uint16_t value;
3716 };
3717 
3718 struct __ec_align1 ec_response_sb_rd_block {
3719 	uint8_t data[32];
3720 };
3721 
3722 struct __ec_align1 ec_params_sb_wr_block {
3723 	uint8_t reg;
3724 	uint16_t data[32];
3725 };
3726 
3727 /*****************************************************************************/
3728 /* Battery vendor parameters
3729  *
3730  * Get or set vendor-specific parameters in the battery. Implementations may
3731  * differ between boards or batteries. On a set operation, the response
3732  * contains the actual value set, which may be rounded or clipped from the
3733  * requested value.
3734  */
3735 
3736 #define EC_CMD_BATTERY_VENDOR_PARAM 0x00B4
3737 
3738 enum ec_battery_vendor_param_mode {
3739 	BATTERY_VENDOR_PARAM_MODE_GET = 0,
3740 	BATTERY_VENDOR_PARAM_MODE_SET,
3741 };
3742 
3743 struct __ec_align_size1 ec_params_battery_vendor_param {
3744 	uint32_t param;
3745 	uint32_t value;
3746 	uint8_t mode;
3747 };
3748 
3749 struct __ec_align4 ec_response_battery_vendor_param {
3750 	uint32_t value;
3751 };
3752 
3753 /*****************************************************************************/
3754 /*
3755  * Smart Battery Firmware Update Commands
3756  */
3757 #define EC_CMD_SB_FW_UPDATE 0x00B5
3758 
3759 enum ec_sb_fw_update_subcmd {
3760 	EC_SB_FW_UPDATE_PREPARE  = 0x0,
3761 	EC_SB_FW_UPDATE_INFO     = 0x1, /*query sb info */
3762 	EC_SB_FW_UPDATE_BEGIN    = 0x2, /*check if protected */
3763 	EC_SB_FW_UPDATE_WRITE    = 0x3, /*check if protected */
3764 	EC_SB_FW_UPDATE_END      = 0x4,
3765 	EC_SB_FW_UPDATE_STATUS   = 0x5,
3766 	EC_SB_FW_UPDATE_PROTECT  = 0x6,
3767 	EC_SB_FW_UPDATE_MAX      = 0x7,
3768 };
3769 
3770 #define SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE 32
3771 #define SB_FW_UPDATE_CMD_STATUS_SIZE 2
3772 #define SB_FW_UPDATE_CMD_INFO_SIZE 8
3773 
3774 struct __ec_align4 ec_sb_fw_update_header {
3775 	uint16_t subcmd;  /* enum ec_sb_fw_update_subcmd */
3776 	uint16_t fw_id;   /* firmware id */
3777 };
3778 
3779 struct __ec_align4 ec_params_sb_fw_update {
3780 	struct ec_sb_fw_update_header hdr;
3781 	union {
3782 		/* EC_SB_FW_UPDATE_PREPARE  = 0x0 */
3783 		/* EC_SB_FW_UPDATE_INFO     = 0x1 */
3784 		/* EC_SB_FW_UPDATE_BEGIN    = 0x2 */
3785 		/* EC_SB_FW_UPDATE_END      = 0x4 */
3786 		/* EC_SB_FW_UPDATE_STATUS   = 0x5 */
3787 		/* EC_SB_FW_UPDATE_PROTECT  = 0x6 */
3788 		struct __ec_align4 {
3789 			/* no args */
3790 		} dummy;
3791 
3792 		/* EC_SB_FW_UPDATE_WRITE    = 0x3 */
3793 		struct __ec_align4 {
3794 			uint8_t  data[SB_FW_UPDATE_CMD_WRITE_BLOCK_SIZE];
3795 		} write;
3796 	};
3797 };
3798 
3799 struct __ec_align1 ec_response_sb_fw_update {
3800 	union {
3801 		/* EC_SB_FW_UPDATE_INFO     = 0x1 */
3802 		struct __ec_align1 {
3803 			uint8_t data[SB_FW_UPDATE_CMD_INFO_SIZE];
3804 		} info;
3805 
3806 		/* EC_SB_FW_UPDATE_STATUS   = 0x5 */
3807 		struct __ec_align1 {
3808 			uint8_t data[SB_FW_UPDATE_CMD_STATUS_SIZE];
3809 		} status;
3810 	};
3811 };
3812 
3813 /*
3814  * Entering Verified Boot Mode Command
3815  * Default mode is VBOOT_MODE_NORMAL if EC did not receive this command.
3816  * Valid Modes are: normal, developer, and recovery.
3817  */
3818 #define EC_CMD_ENTERING_MODE 0x00B6
3819 
3820 struct __ec_align4 ec_params_entering_mode {
3821 	int vboot_mode;
3822 };
3823 
3824 #define VBOOT_MODE_NORMAL    0
3825 #define VBOOT_MODE_DEVELOPER 1
3826 #define VBOOT_MODE_RECOVERY  2
3827 
3828 /*****************************************************************************/
3829 /*
3830  * I2C passthru protection command: Protects I2C tunnels against access on
3831  * certain addresses (board-specific).
3832  */
3833 #define EC_CMD_I2C_PASSTHRU_PROTECT 0x00B7
3834 
3835 enum ec_i2c_passthru_protect_subcmd {
3836 	EC_CMD_I2C_PASSTHRU_PROTECT_STATUS = 0x0,
3837 	EC_CMD_I2C_PASSTHRU_PROTECT_ENABLE = 0x1,
3838 };
3839 
3840 struct __ec_align1 ec_params_i2c_passthru_protect {
3841 	uint8_t subcmd;
3842 	uint8_t port;		/* I2C port number */
3843 };
3844 
3845 struct __ec_align1 ec_response_i2c_passthru_protect {
3846 	uint8_t status;		/* Status flags (0: unlocked, 1: locked) */
3847 };
3848 
3849 /*****************************************************************************/
3850 /* System commands */
3851 
3852 /*
3853  * TODO(crosbug.com/p/23747): This is a confusing name, since it doesn't
3854  * necessarily reboot the EC.  Rename to "image" or something similar?
3855  */
3856 #define EC_CMD_REBOOT_EC 0x00D2
3857 
3858 /* Command */
3859 enum ec_reboot_cmd {
3860 	EC_REBOOT_CANCEL = 0,        /* Cancel a pending reboot */
3861 	EC_REBOOT_JUMP_RO = 1,       /* Jump to RO without rebooting */
3862 	EC_REBOOT_JUMP_RW = 2,       /* Jump to RW without rebooting */
3863 	/* (command 3 was jump to RW-B) */
3864 	EC_REBOOT_COLD = 4,          /* Cold-reboot */
3865 	EC_REBOOT_DISABLE_JUMP = 5,  /* Disable jump until next reboot */
3866 	EC_REBOOT_HIBERNATE = 6,     /* Hibernate EC */
3867 	EC_REBOOT_HIBERNATE_CLEAR_AP_OFF = 7, /* and clears AP_OFF flag */
3868 };
3869 
3870 /* Flags for ec_params_reboot_ec.reboot_flags */
3871 #define EC_REBOOT_FLAG_RESERVED0      (1 << 0)  /* Was recovery request */
3872 #define EC_REBOOT_FLAG_ON_AP_SHUTDOWN (1 << 1)  /* Reboot after AP shutdown */
3873 #define EC_REBOOT_FLAG_SWITCH_RW_SLOT (1 << 2)  /* Switch RW slot */
3874 
3875 struct __ec_align1 ec_params_reboot_ec {
3876 	uint8_t cmd;           /* enum ec_reboot_cmd */
3877 	uint8_t flags;         /* See EC_REBOOT_FLAG_* */
3878 };
3879 
3880 /*
3881  * Get information on last EC panic.
3882  *
3883  * Returns variable-length platform-dependent panic information.  See panic.h
3884  * for details.
3885  */
3886 #define EC_CMD_GET_PANIC_INFO 0x00D3
3887 
3888 /*****************************************************************************/
3889 /*
3890  * Special commands
3891  *
3892  * These do not follow the normal rules for commands.  See each command for
3893  * details.
3894  */
3895 
3896 /*
3897  * Reboot NOW
3898  *
3899  * This command will work even when the EC LPC interface is busy, because the
3900  * reboot command is processed at interrupt level.  Note that when the EC
3901  * reboots, the host will reboot too, so there is no response to this command.
3902  *
3903  * Use EC_CMD_REBOOT_EC to reboot the EC more politely.
3904  */
3905 #define EC_CMD_REBOOT 0x00D1  /* Think "die" */
3906 
3907 /*
3908  * Resend last response (not supported on LPC).
3909  *
3910  * Returns EC_RES_UNAVAILABLE if there is no response available - for example,
3911  * there was no previous command, or the previous command's response was too
3912  * big to save.
3913  */
3914 #define EC_CMD_RESEND_RESPONSE 0x00DB
3915 
3916 /*
3917  * This header byte on a command indicate version 0. Any header byte less
3918  * than this means that we are talking to an old EC which doesn't support
3919  * versioning. In that case, we assume version 0.
3920  *
3921  * Header bytes greater than this indicate a later version. For example,
3922  * EC_CMD_VERSION0 + 1 means we are using version 1.
3923  *
3924  * The old EC interface must not use commands 0xdc or higher.
3925  */
3926 #define EC_CMD_VERSION0 0x00DC
3927 
3928 /*****************************************************************************/
3929 /*
3930  * PD commands
3931  *
3932  * These commands are for PD MCU communication.
3933  */
3934 
3935 /* EC to PD MCU exchange status command */
3936 #define EC_CMD_PD_EXCHANGE_STATUS 0x0100
3937 #define EC_VER_PD_EXCHANGE_STATUS 2
3938 
3939 enum pd_charge_state {
3940 	PD_CHARGE_NO_CHANGE = 0, /* Don't change charge state */
3941 	PD_CHARGE_NONE,          /* No charging allowed */
3942 	PD_CHARGE_5V,            /* 5V charging only */
3943 	PD_CHARGE_MAX            /* Charge at max voltage */
3944 };
3945 
3946 /* Status of EC being sent to PD */
3947 #define EC_STATUS_HIBERNATING	(1 << 0)
3948 
3949 struct __ec_align1 ec_params_pd_status {
3950 	uint8_t status;       /* EC status */
3951 	int8_t batt_soc;      /* battery state of charge */
3952 	uint8_t charge_state; /* charging state (from enum pd_charge_state) */
3953 };
3954 
3955 /* Status of PD being sent back to EC */
3956 #define PD_STATUS_HOST_EVENT      (1 << 0) /* Forward host event to AP */
3957 #define PD_STATUS_IN_RW           (1 << 1) /* Running RW image */
3958 #define PD_STATUS_JUMPED_TO_IMAGE (1 << 2) /* Current image was jumped to */
3959 #define PD_STATUS_TCPC_ALERT_0    (1 << 3) /* Alert active in port 0 TCPC */
3960 #define PD_STATUS_TCPC_ALERT_1    (1 << 4) /* Alert active in port 1 TCPC */
3961 #define PD_STATUS_TCPC_ALERT_2    (1 << 5) /* Alert active in port 2 TCPC */
3962 #define PD_STATUS_TCPC_ALERT_3    (1 << 6) /* Alert active in port 3 TCPC */
3963 #define PD_STATUS_EC_INT_ACTIVE  (PD_STATUS_TCPC_ALERT_0 | \
3964 				      PD_STATUS_TCPC_ALERT_1 | \
3965 				      PD_STATUS_HOST_EVENT)
3966 struct __ec_align_size1 ec_response_pd_status {
3967 	uint32_t curr_lim_ma;       /* input current limit */
3968 	uint16_t status;            /* PD MCU status */
3969 	int8_t active_charge_port;  /* active charging port */
3970 };
3971 
3972 /* AP to PD MCU host event status command, cleared on read */
3973 #define EC_CMD_PD_HOST_EVENT_STATUS 0x0104
3974 
3975 /* PD MCU host event status bits */
3976 #define PD_EVENT_UPDATE_DEVICE     (1 << 0)
3977 #define PD_EVENT_POWER_CHANGE      (1 << 1)
3978 #define PD_EVENT_IDENTITY_RECEIVED (1 << 2)
3979 #define PD_EVENT_DATA_SWAP         (1 << 3)
3980 struct __ec_align4 ec_response_host_event_status {
3981 	uint32_t status;      /* PD MCU host event status */
3982 };
3983 
3984 /* Set USB type-C port role and muxes */
3985 #define EC_CMD_USB_PD_CONTROL 0x0101
3986 
3987 enum usb_pd_control_role {
3988 	USB_PD_CTRL_ROLE_NO_CHANGE = 0,
3989 	USB_PD_CTRL_ROLE_TOGGLE_ON = 1, /* == AUTO */
3990 	USB_PD_CTRL_ROLE_TOGGLE_OFF = 2,
3991 	USB_PD_CTRL_ROLE_FORCE_SINK = 3,
3992 	USB_PD_CTRL_ROLE_FORCE_SOURCE = 4,
3993 	USB_PD_CTRL_ROLE_COUNT
3994 };
3995 
3996 enum usb_pd_control_mux {
3997 	USB_PD_CTRL_MUX_NO_CHANGE = 0,
3998 	USB_PD_CTRL_MUX_NONE = 1,
3999 	USB_PD_CTRL_MUX_USB = 2,
4000 	USB_PD_CTRL_MUX_DP = 3,
4001 	USB_PD_CTRL_MUX_DOCK = 4,
4002 	USB_PD_CTRL_MUX_AUTO = 5,
4003 	USB_PD_CTRL_MUX_COUNT
4004 };
4005 
4006 enum usb_pd_control_swap {
4007 	USB_PD_CTRL_SWAP_NONE = 0,
4008 	USB_PD_CTRL_SWAP_DATA = 1,
4009 	USB_PD_CTRL_SWAP_POWER = 2,
4010 	USB_PD_CTRL_SWAP_VCONN = 3,
4011 	USB_PD_CTRL_SWAP_COUNT
4012 };
4013 
4014 struct __ec_align1 ec_params_usb_pd_control {
4015 	uint8_t port;
4016 	uint8_t role;
4017 	uint8_t mux;
4018 	uint8_t swap;
4019 };
4020 
4021 #define PD_CTRL_RESP_ENABLED_COMMS      (1 << 0) /* Communication enabled */
4022 #define PD_CTRL_RESP_ENABLED_CONNECTED  (1 << 1) /* Device connected */
4023 #define PD_CTRL_RESP_ENABLED_PD_CAPABLE (1 << 2) /* Partner is PD capable */
4024 
4025 #define PD_CTRL_RESP_ROLE_POWER         (1 << 0) /* 0=SNK/1=SRC */
4026 #define PD_CTRL_RESP_ROLE_DATA          (1 << 1) /* 0=UFP/1=DFP */
4027 #define PD_CTRL_RESP_ROLE_VCONN         (1 << 2) /* Vconn status */
4028 #define PD_CTRL_RESP_ROLE_DR_POWER      (1 << 3) /* Partner is dualrole power */
4029 #define PD_CTRL_RESP_ROLE_DR_DATA       (1 << 4) /* Partner is dualrole data */
4030 #define PD_CTRL_RESP_ROLE_USB_COMM      (1 << 5) /* Partner USB comm capable */
4031 #define PD_CTRL_RESP_ROLE_EXT_POWERED   (1 << 6) /* Partner externally powerd */
4032 
4033 struct __ec_align1 ec_response_usb_pd_control {
4034 	uint8_t enabled;
4035 	uint8_t role;
4036 	uint8_t polarity;
4037 	uint8_t state;
4038 };
4039 
4040 struct __ec_align1 ec_response_usb_pd_control_v1 {
4041 	uint8_t enabled;
4042 	uint8_t role;
4043 	uint8_t polarity;
4044 	char state[32];
4045 };
4046 
4047 #define EC_CMD_USB_PD_PORTS 0x0102
4048 
4049 /* Maximum number of PD ports on a device, num_ports will be <= this */
4050 #define EC_USB_PD_MAX_PORTS 8
4051 
4052 struct __ec_align1 ec_response_usb_pd_ports {
4053 	uint8_t num_ports;
4054 };
4055 
4056 #define EC_CMD_USB_PD_POWER_INFO 0x0103
4057 
4058 #define PD_POWER_CHARGING_PORT 0xff
4059 struct __ec_align1 ec_params_usb_pd_power_info {
4060 	uint8_t port;
4061 };
4062 
4063 enum usb_chg_type {
4064 	USB_CHG_TYPE_NONE,
4065 	USB_CHG_TYPE_PD,
4066 	USB_CHG_TYPE_C,
4067 	USB_CHG_TYPE_PROPRIETARY,
4068 	USB_CHG_TYPE_BC12_DCP,
4069 	USB_CHG_TYPE_BC12_CDP,
4070 	USB_CHG_TYPE_BC12_SDP,
4071 	USB_CHG_TYPE_OTHER,
4072 	USB_CHG_TYPE_VBUS,
4073 	USB_CHG_TYPE_UNKNOWN,
4074 };
4075 enum usb_power_roles {
4076 	USB_PD_PORT_POWER_DISCONNECTED,
4077 	USB_PD_PORT_POWER_SOURCE,
4078 	USB_PD_PORT_POWER_SINK,
4079 	USB_PD_PORT_POWER_SINK_NOT_CHARGING,
4080 };
4081 
4082 struct __ec_align2 usb_chg_measures {
4083 	uint16_t voltage_max;
4084 	uint16_t voltage_now;
4085 	uint16_t current_max;
4086 	uint16_t current_lim;
4087 };
4088 
4089 struct __ec_align4 ec_response_usb_pd_power_info {
4090 	uint8_t role;
4091 	uint8_t type;
4092 	uint8_t dualrole;
4093 	uint8_t reserved1;
4094 	struct usb_chg_measures meas;
4095 	uint32_t max_power;
4096 };
4097 
4098 /* Write USB-PD device FW */
4099 #define EC_CMD_USB_PD_FW_UPDATE 0x0110
4100 
4101 enum usb_pd_fw_update_cmds {
4102 	USB_PD_FW_REBOOT,
4103 	USB_PD_FW_FLASH_ERASE,
4104 	USB_PD_FW_FLASH_WRITE,
4105 	USB_PD_FW_ERASE_SIG,
4106 };
4107 
4108 struct __ec_align4 ec_params_usb_pd_fw_update {
4109 	uint16_t dev_id;
4110 	uint8_t cmd;
4111 	uint8_t port;
4112 	uint32_t size;     /* Size to write in bytes */
4113 	/* Followed by data to write */
4114 };
4115 
4116 /* Write USB-PD Accessory RW_HASH table entry */
4117 #define EC_CMD_USB_PD_RW_HASH_ENTRY 0x0111
4118 /* RW hash is first 20 bytes of SHA-256 of RW section */
4119 #define PD_RW_HASH_SIZE 20
4120 struct __ec_align1 ec_params_usb_pd_rw_hash_entry {
4121 	uint16_t dev_id;
4122 	uint8_t dev_rw_hash[PD_RW_HASH_SIZE];
4123 	uint8_t reserved;        /* For alignment of current_image
4124 				  * TODO(rspangler) but it's not aligned!
4125 				  * Should have been reserved[2]. */
4126 	uint32_t current_image;  /* One of ec_current_image */
4127 };
4128 
4129 /* Read USB-PD Accessory info */
4130 #define EC_CMD_USB_PD_DEV_INFO 0x0112
4131 
4132 struct __ec_align1 ec_params_usb_pd_info_request {
4133 	uint8_t port;
4134 };
4135 
4136 /* Read USB-PD Device discovery info */
4137 #define EC_CMD_USB_PD_DISCOVERY 0x0113
4138 struct __ec_align_size1 ec_params_usb_pd_discovery_entry {
4139 	uint16_t vid;  /* USB-IF VID */
4140 	uint16_t pid;  /* USB-IF PID */
4141 	uint8_t ptype; /* product type (hub,periph,cable,ama) */
4142 };
4143 
4144 /* Override default charge behavior */
4145 #define EC_CMD_PD_CHARGE_PORT_OVERRIDE 0x0114
4146 
4147 /* Negative port parameters have special meaning */
4148 enum usb_pd_override_ports {
4149 	OVERRIDE_DONT_CHARGE = -2,
4150 	OVERRIDE_OFF = -1,
4151 	/* [0, CONFIG_USB_PD_PORT_COUNT): Port# */
4152 };
4153 
4154 struct __ec_align2 ec_params_charge_port_override {
4155 	int16_t override_port; /* Override port# */
4156 };
4157 
4158 /* Read (and delete) one entry of PD event log */
4159 #define EC_CMD_PD_GET_LOG_ENTRY 0x0115
4160 
4161 struct __ec_align4 ec_response_pd_log {
4162 	uint32_t timestamp; /* relative timestamp in milliseconds */
4163 	uint8_t type;       /* event type : see PD_EVENT_xx below */
4164 	uint8_t size_port;  /* [7:5] port number [4:0] payload size in bytes */
4165 	uint16_t data;      /* type-defined data payload */
4166 	uint8_t payload[0]; /* optional additional data payload: 0..16 bytes */
4167 };
4168 
4169 
4170 /* The timestamp is the microsecond counter shifted to get about a ms. */
4171 #define PD_LOG_TIMESTAMP_SHIFT 10 /* 1 LSB = 1024us */
4172 
4173 #define PD_LOG_SIZE_MASK  0x1f
4174 #define PD_LOG_PORT_MASK  0xe0
4175 #define PD_LOG_PORT_SHIFT    5
4176 #define PD_LOG_PORT_SIZE(port, size) (((port) << PD_LOG_PORT_SHIFT) | \
4177 				      ((size) & PD_LOG_SIZE_MASK))
4178 #define PD_LOG_PORT(size_port) ((size_port) >> PD_LOG_PORT_SHIFT)
4179 #define PD_LOG_SIZE(size_port) ((size_port) & PD_LOG_SIZE_MASK)
4180 
4181 /* PD event log : entry types */
4182 /* PD MCU events */
4183 #define PD_EVENT_MCU_BASE       0x00
4184 #define PD_EVENT_MCU_CHARGE             (PD_EVENT_MCU_BASE+0)
4185 #define PD_EVENT_MCU_CONNECT            (PD_EVENT_MCU_BASE+1)
4186 /* Reserved for custom board event */
4187 #define PD_EVENT_MCU_BOARD_CUSTOM       (PD_EVENT_MCU_BASE+2)
4188 /* PD generic accessory events */
4189 #define PD_EVENT_ACC_BASE       0x20
4190 #define PD_EVENT_ACC_RW_FAIL   (PD_EVENT_ACC_BASE+0)
4191 #define PD_EVENT_ACC_RW_ERASE  (PD_EVENT_ACC_BASE+1)
4192 /* PD power supply events */
4193 #define PD_EVENT_PS_BASE        0x40
4194 #define PD_EVENT_PS_FAULT      (PD_EVENT_PS_BASE+0)
4195 /* PD video dongles events */
4196 #define PD_EVENT_VIDEO_BASE     0x60
4197 #define PD_EVENT_VIDEO_DP_MODE (PD_EVENT_VIDEO_BASE+0)
4198 #define PD_EVENT_VIDEO_CODEC   (PD_EVENT_VIDEO_BASE+1)
4199 /* Returned in the "type" field, when there is no entry available */
4200 #define PD_EVENT_NO_ENTRY       0xff
4201 
4202 /*
4203  * PD_EVENT_MCU_CHARGE event definition :
4204  * the payload is "struct usb_chg_measures"
4205  * the data field contains the port state flags as defined below :
4206  */
4207 /* Port partner is a dual role device */
4208 #define CHARGE_FLAGS_DUAL_ROLE         (1 << 15)
4209 /* Port is the pending override port */
4210 #define CHARGE_FLAGS_DELAYED_OVERRIDE  (1 << 14)
4211 /* Port is the override port */
4212 #define CHARGE_FLAGS_OVERRIDE          (1 << 13)
4213 /* Charger type */
4214 #define CHARGE_FLAGS_TYPE_SHIFT               3
4215 #define CHARGE_FLAGS_TYPE_MASK       (0xf << CHARGE_FLAGS_TYPE_SHIFT)
4216 /* Power delivery role */
4217 #define CHARGE_FLAGS_ROLE_MASK         (7 <<  0)
4218 
4219 /*
4220  * PD_EVENT_PS_FAULT data field flags definition :
4221  */
4222 #define PS_FAULT_OCP                          1
4223 #define PS_FAULT_FAST_OCP                     2
4224 #define PS_FAULT_OVP                          3
4225 #define PS_FAULT_DISCH                        4
4226 
4227 /*
4228  * PD_EVENT_VIDEO_CODEC payload is "struct mcdp_info".
4229  */
4230 struct __ec_align4 mcdp_version {
4231 	uint8_t major;
4232 	uint8_t minor;
4233 	uint16_t build;
4234 };
4235 
4236 struct __ec_align4 mcdp_info {
4237 	uint8_t family[2];
4238 	uint8_t chipid[2];
4239 	struct mcdp_version irom;
4240 	struct mcdp_version fw;
4241 };
4242 
4243 /* struct mcdp_info field decoding */
4244 #define MCDP_CHIPID(chipid) ((chipid[0] << 8) | chipid[1])
4245 #define MCDP_FAMILY(family) ((family[0] << 8) | family[1])
4246 
4247 /* Get/Set USB-PD Alternate mode info */
4248 #define EC_CMD_USB_PD_GET_AMODE 0x0116
4249 struct __ec_align_size1 ec_params_usb_pd_get_mode_request {
4250 	uint16_t svid_idx; /* SVID index to get */
4251 	uint8_t port;      /* port */
4252 };
4253 
4254 struct __ec_align4 ec_params_usb_pd_get_mode_response {
4255 	uint16_t svid;   /* SVID */
4256 	uint16_t opos;    /* Object Position */
4257 	uint32_t vdo[6]; /* Mode VDOs */
4258 };
4259 
4260 #define EC_CMD_USB_PD_SET_AMODE 0x0117
4261 
4262 enum pd_mode_cmd {
4263 	PD_EXIT_MODE = 0,
4264 	PD_ENTER_MODE = 1,
4265 	/* Not a command.  Do NOT remove. */
4266 	PD_MODE_CMD_COUNT,
4267 };
4268 
4269 struct __ec_align4 ec_params_usb_pd_set_mode_request {
4270 	uint32_t cmd;  /* enum pd_mode_cmd */
4271 	uint16_t svid; /* SVID to set */
4272 	uint8_t opos;  /* Object Position */
4273 	uint8_t port;  /* port */
4274 };
4275 
4276 /* Ask the PD MCU to record a log of a requested type */
4277 #define EC_CMD_PD_WRITE_LOG_ENTRY 0x0118
4278 
4279 struct __ec_align1 ec_params_pd_write_log_entry {
4280 	uint8_t type; /* event type : see PD_EVENT_xx above */
4281 	uint8_t port; /* port#, or 0 for events unrelated to a given port */
4282 };
4283 
4284 
4285 /* Control USB-PD chip */
4286 #define EC_CMD_PD_CONTROL 0x0119
4287 
4288 enum ec_pd_control_cmd {
4289 	PD_SUSPEND = 0,      /* Suspend the PD chip (EC: stop talking to PD) */
4290 	PD_RESUME,           /* Resume the PD chip (EC: start talking to PD) */
4291 	PD_RESET,            /* Force reset the PD chip */
4292 	PD_CONTROL_DISABLE   /* Disable further calls to this command */
4293 };
4294 
4295 struct __ec_align1 ec_params_pd_control {
4296 	uint8_t chip;         /* chip id (should be 0) */
4297 	uint8_t subcmd;
4298 };
4299 
4300 /* Get info about USB-C SS muxes */
4301 #define EC_CMD_USB_PD_MUX_INFO 0x011A
4302 
4303 struct __ec_align1 ec_params_usb_pd_mux_info {
4304 	uint8_t port; /* USB-C port number */
4305 };
4306 
4307 /* Flags representing mux state */
4308 #define USB_PD_MUX_USB_ENABLED       (1 << 0)
4309 #define USB_PD_MUX_DP_ENABLED        (1 << 1)
4310 #define USB_PD_MUX_POLARITY_INVERTED (1 << 2)
4311 #define USB_PD_MUX_HPD_IRQ           (1 << 3)
4312 
4313 struct __ec_align1 ec_response_usb_pd_mux_info {
4314 	uint8_t flags; /* USB_PD_MUX_*-encoded USB mux state */
4315 };
4316 
4317 #define EC_CMD_PD_CHIP_INFO		0x011B
4318 
4319 struct __ec_align1 ec_params_pd_chip_info {
4320 	uint8_t port;	/* USB-C port number */
4321 	uint8_t renew;	/* Force renewal */
4322 };
4323 
4324 struct __ec_align2 ec_response_pd_chip_info {
4325 	uint16_t vendor_id;
4326 	uint16_t product_id;
4327 	uint16_t device_id;
4328 	union {
4329 		uint8_t fw_version_string[8];
4330 		uint64_t fw_version_number;
4331 	};
4332 };
4333 
4334 /* Run RW signature verification and get status */
4335 #define EC_CMD_RWSIG_CHECK_STATUS	0x011C
4336 
4337 struct __ec_align4 ec_response_rwsig_check_status {
4338 	uint32_t status;
4339 };
4340 
4341 /* For controlling RWSIG task */
4342 #define EC_CMD_RWSIG_ACTION	0x011D
4343 
4344 enum rwsig_action {
4345 	RWSIG_ACTION_ABORT = 0,		/* Abort RWSIG and prevent jumping */
4346 	RWSIG_ACTION_CONTINUE = 1,	/* Jump to RW immediately */
4347 };
4348 
4349 struct __ec_align4 ec_params_rwsig_action {
4350 	uint32_t action;
4351 };
4352 
4353 /* Run verification on a slot */
4354 #define EC_CMD_EFS_VERIFY	0x011E
4355 
4356 struct __ec_align1 ec_params_efs_verify {
4357 	uint8_t region;		/* enum ec_flash_region */
4358 };
4359 
4360 /*
4361  * Retrieve info from Cros Board Info store. Response is based on the data
4362  * type. Integers return a uint32. Strings return a string, using the response
4363  * size to determine how big it is.
4364  */
4365 #define EC_CMD_GET_CROS_BOARD_INFO	0x011F
4366 /*
4367  * Write info into Cros Board Info on EEPROM. Write fails if the board has
4368  * hardware write-protect enabled.
4369  */
4370 #define EC_CMD_SET_CROS_BOARD_INFO	0x0120
4371 
4372 enum cbi_data_tag {
4373 	CBI_TAG_BOARD_VERSION = 0, /* uint16_t or uint8_t[] = {minor,major} */
4374 	CBI_TAG_OEM_ID = 1,        /* uint8_t */
4375 	CBI_TAG_SKU_ID = 2,        /* uint8_t */
4376 	CBI_TAG_COUNT,
4377 };
4378 
4379 /*
4380  * Flags to control read operation
4381  *
4382  * RELOAD:  Invalidate cache and read data from EEPROM. Useful to verify
4383  *          write was successful without reboot.
4384  */
4385 #define CBI_GET_RELOAD		(1 << 0)
4386 
4387 struct __ec_align4 ec_params_get_cbi {
4388 	uint32_t type;		/* enum cbi_data_tag */
4389 	uint32_t flag;		/* CBI_GET_* */
4390 };
4391 
4392 /*
4393  * Flags to control write behavior.
4394  *
4395  * NO_SYNC: Makes EC update data in RAM but skip writing to EEPROM. It's
4396  *          useful when writing multiple fields in a row.
4397  * INIT:    Needs to be set when creating a new CBI from scratch. All fields
4398  *          will be initialized to zero first.
4399  */
4400 #define CBI_SET_NO_SYNC		(1 << 0)
4401 #define CBI_SET_INIT		(1 << 1)
4402 
4403 struct __ec_align1 ec_params_set_cbi {
4404 	uint32_t tag;		/* enum cbi_data_tag */
4405 	uint32_t flag;		/* CBI_SET_* */
4406 	uint32_t size;		/* Data size */
4407 	uint8_t data[];		/* For string and raw data */
4408 };
4409 
4410 /*****************************************************************************/
4411 /* The command range 0x200-0x2FF is reserved for Rotor. */
4412 
4413 /*****************************************************************************/
4414 /*
4415  * Reserve a range of host commands for the CR51 firmware.
4416  */
4417 #define EC_CMD_CR51_BASE 0x0300
4418 #define EC_CMD_CR51_LAST 0x03FF
4419 
4420 /*****************************************************************************/
4421 /* Fingerprint MCU commands: range 0x0400-0x040x */
4422 
4423 /* Fingerprint SPI sensor passthru command: prototyping ONLY */
4424 #define EC_CMD_FP_PASSTHRU 0x0400
4425 
4426 #define EC_FP_FLAG_NOT_COMPLETE 0x1
4427 
4428 struct __ec_align2 ec_params_fp_passthru {
4429 	uint16_t len;		/* Number of bytes to write then read */
4430 	uint16_t flags;		/* EC_FP_FLAG_xxx */
4431 	uint8_t data[];		/* Data to send */
4432 };
4433 
4434 /* Fingerprint sensor configuration command: prototyping ONLY */
4435 #define EC_CMD_FP_SENSOR_CONFIG 0x0401
4436 
4437 #define EC_FP_SENSOR_CONFIG_MAX_REGS 16
4438 
4439 struct __ec_align2 ec_params_fp_sensor_config {
4440 	uint8_t count;		/* Number of setup registers */
4441 	/*
4442 	 * the value to send to each of the 'count' setup registers
4443 	 * is stored in the 'data' array for 'len' bytes just after
4444 	 * the previous one.
4445 	 */
4446 	uint8_t len[EC_FP_SENSOR_CONFIG_MAX_REGS];
4447 	uint8_t data[];
4448 };
4449 
4450 /* Configure the Fingerprint MCU behavior */
4451 #define EC_CMD_FP_MODE 0x0402
4452 
4453 /* Put the sensor in its lowest power mode */
4454 #define FP_MODE_DEEPSLEEP     (1<<0)
4455 /* Wait to see a finger on the sensor */
4456 #define FP_MODE_FINGER_DOWN   (1<<1)
4457 /* Poll until the finger has left the sensor */
4458 #define FP_MODE_FINGER_UP     (1<<2)
4459 /* Capture the current finger image */
4460 #define FP_MODE_CAPTURE       (1<<3)
4461 /* special value: don't change anything just read back current mode */
4462 #define FP_MODE_DONT_CHANGE   (1<<31)
4463 
4464 struct __ec_align4 ec_params_fp_mode {
4465 	uint32_t mode; /* as defined by FP_MODE_ constants */
4466 	/* TBD */
4467 };
4468 
4469 struct __ec_align4 ec_response_fp_mode {
4470 	uint32_t mode; /* as defined by FP_MODE_ constants */
4471 	/* TBD */
4472 };
4473 
4474 /* Retrieve Fingerprint sensor information */
4475 #define EC_CMD_FP_INFO 0x0403
4476 
4477 struct __ec_align2 ec_response_fp_info {
4478 	/* Sensor identification */
4479 	uint32_t vendor_id;
4480 	uint32_t product_id;
4481 	uint32_t model_id;
4482 	uint32_t version;
4483 	/* Image frame characteristics */
4484 	uint32_t frame_size;
4485 	uint32_t pixel_format; /* using V4L2_PIX_FMT_ */
4486 	uint16_t width;
4487 	uint16_t height;
4488 	uint16_t bpp;
4489 };
4490 
4491 /* Get the last captured finger frame: TODO: will be AES-encrypted */
4492 #define EC_CMD_FP_FRAME 0x0404
4493 
4494 struct __ec_align4 ec_params_fp_frame {
4495 	uint32_t offset;
4496 	uint32_t size;
4497 };
4498 
4499 /*****************************************************************************/
4500 /* Touchpad MCU commands: range 0x0500-0x05FF */
4501 
4502 /* Perform touchpad self test */
4503 #define EC_CMD_TP_SELF_TEST 0x0500
4504 
4505 /* Get number of frame types, and the size of each type */
4506 #define EC_CMD_TP_FRAME_INFO 0x0501
4507 
4508 struct __ec_align4 ec_response_tp_frame_info {
4509 	uint32_t n_frames;
4510 	uint32_t frame_sizes[0];
4511 };
4512 
4513 /* Create a snapshot of current frame readings */
4514 #define EC_CMD_TP_FRAME_SNAPSHOT 0x0502
4515 
4516 /* Read the frame */
4517 #define EC_CMD_TP_FRAME_GET 0x0503
4518 
4519 struct __ec_align4 ec_params_tp_frame_get {
4520 	uint32_t frame_index;
4521 	uint32_t offset;
4522 	uint32_t size;
4523 };
4524 
4525 /*****************************************************************************/
4526 /*
4527  * Reserve a range of host commands for board-specific, experimental, or
4528  * special purpose features. These can be (re)used without updating this file.
4529  *
4530  * CAUTION: Don't go nuts with this. Shipping products should document ALL
4531  * their EC commands for easier development, testing, debugging, and support.
4532  *
4533  * All commands MUST be #defined to be 4-digit UPPER CASE hex values
4534  * (e.g., 0x00AB, not 0xab) for CONFIG_HOSTCMD_SECTION_SORTED to work.
4535  *
4536  * In your experimental code, you may want to do something like this:
4537  *
4538  *   #define EC_CMD_MAGIC_FOO 0x0000
4539  *   #define EC_CMD_MAGIC_BAR 0x0001
4540  *   #define EC_CMD_MAGIC_HEY 0x0002
4541  *
4542  *   DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_FOO, magic_foo_handler,
4543  *      EC_VER_MASK(0);
4544  *
4545  *   DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_BAR, magic_bar_handler,
4546  *      EC_VER_MASK(0);
4547  *
4548  *   DECLARE_PRIVATE_HOST_COMMAND(EC_CMD_MAGIC_HEY, magic_hey_handler,
4549  *      EC_VER_MASK(0);
4550  */
4551 #define EC_CMD_BOARD_SPECIFIC_BASE 0x3E00
4552 #define EC_CMD_BOARD_SPECIFIC_LAST 0x3FFF
4553 
4554 /*
4555  * Given the private host command offset, calculate the true private host
4556  * command value.
4557  */
4558 #define EC_PRIVATE_HOST_COMMAND_VALUE(command) \
4559 	(EC_CMD_BOARD_SPECIFIC_BASE + (command))
4560 
4561 /*****************************************************************************/
4562 /*
4563  * Passthru commands
4564  *
4565  * Some platforms have sub-processors chained to each other.  For example.
4566  *
4567  *     AP <--> EC <--> PD MCU
4568  *
4569  * The top 2 bits of the command number are used to indicate which device the
4570  * command is intended for.  Device 0 is always the device receiving the
4571  * command; other device mapping is board-specific.
4572  *
4573  * When a device receives a command to be passed to a sub-processor, it passes
4574  * it on with the device number set back to 0.  This allows the sub-processor
4575  * to remain blissfully unaware of whether the command originated on the next
4576  * device up the chain, or was passed through from the AP.
4577  *
4578  * In the above example, if the AP wants to send command 0x0002 to the PD MCU,
4579  *     AP sends command 0x4002 to the EC
4580  *     EC sends command 0x0002 to the PD MCU
4581  *     EC forwards PD MCU response back to the AP
4582  */
4583 
4584 /* Offset and max command number for sub-device n */
4585 #define EC_CMD_PASSTHRU_OFFSET(n) (0x4000 * (n))
4586 #define EC_CMD_PASSTHRU_MAX(n) (EC_CMD_PASSTHRU_OFFSET(n) + 0x3fff)
4587 
4588 /*****************************************************************************/
4589 /*
4590  * Deprecated constants. These constants have been renamed for clarity. The
4591  * meaning and size has not changed. Programs that use the old names should
4592  * switch to the new names soon, as the old names may not be carried forward
4593  * forever.
4594  */
4595 #define EC_HOST_PARAM_SIZE      EC_PROTO2_MAX_PARAM_SIZE
4596 #define EC_LPC_ADDR_OLD_PARAM   EC_HOST_CMD_REGION1
4597 #define EC_OLD_PARAM_SIZE       EC_HOST_CMD_REGION_SIZE
4598 
4599 #endif  /* !__ACPI__ && !__KERNEL__ */
4600 
4601 #endif  /* __CROS_EC_COMMANDS_H */
4602