1 /*
2 * OpenEXR (.exr) image decoder
3 * Copyright (c) 2009 Jimmy Christensen
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 /**
23 * @file
24 * OpenEXR decoder
25 * @author Jimmy Christensen
26 *
27 * For more information on the OpenEXR format, visit:
28 * http://openexr.com/
29 *
30 * exr_flt2uint() and exr_halflt2uint() is credited to Reimar Döffinger.
31 * exr_half2float() is credited to Aaftab Munshi; Dan Ginsburg, Dave Shreiner.
32 *
33 */
34
35 #include <zconf.h>
36 #ifdef Z_HAVE_STDARG_H
37 #include <stdarg.h>
38 #endif
39 #include <zlib.h>
40 #include <float.h>
41
42 #include "libavutil/imgutils.h"
43 #include "libavutil/opt.h"
44 #include "libavutil/intfloat.h"
45
46 #include "avcodec.h"
47 #include "bytestream.h"
48 #include "get_bits.h"
49 #include "internal.h"
50 #include "mathops.h"
51 #include "thread.h"
52
53 enum ExrCompr {
54 EXR_RAW,
55 EXR_RLE,
56 EXR_ZIP1,
57 EXR_ZIP16,
58 EXR_PIZ,
59 EXR_PXR24,
60 EXR_B44,
61 EXR_B44A,
62 EXR_UNKN,
63 };
64
65 enum ExrPixelType {
66 EXR_UINT,
67 EXR_HALF,
68 EXR_FLOAT,
69 EXR_UNKNOWN,
70 };
71
72 typedef struct EXRChannel {
73 int xsub, ysub;
74 enum ExrPixelType pixel_type;
75 } EXRChannel;
76
77 typedef struct EXRThreadData {
78 uint8_t *uncompressed_data;
79 int uncompressed_size;
80
81 uint8_t *tmp;
82 int tmp_size;
83
84 uint8_t *bitmap;
85 uint16_t *lut;
86 } EXRThreadData;
87
88 typedef struct EXRContext {
89 AVClass *class;
90 AVFrame *picture;
91 AVCodecContext *avctx;
92
93 enum ExrCompr compression;
94 enum ExrPixelType pixel_type;
95 int channel_offsets[4]; // 0 = red, 1 = green, 2 = blue and 3 = alpha
96 const AVPixFmtDescriptor *desc;
97
98 int w, h;
99 uint32_t xmax, xmin;
100 uint32_t ymax, ymin;
101 uint32_t xdelta, ydelta;
102 int ysize;
103
104 uint64_t scan_line_size;
105 int scan_lines_per_block;
106
107 GetByteContext gb;
108 const uint8_t *buf;
109 int buf_size;
110
111 EXRChannel *channels;
112 int nb_channels;
113
114 EXRThreadData *thread_data;
115
116 const char *layer;
117
118 float gamma;
119
120 uint16_t gamma_table[65536];
121
122 } EXRContext;
123
124 /* -15 stored using a single precision bias of 127 */
125 #define HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP 0x38000000
126 /* max exponent value in single precision that will be converted
127 * to Inf or Nan when stored as a half-float */
128 #define HALF_FLOAT_MAX_BIASED_EXP_AS_SINGLE_FP_EXP 0x47800000
129
130 /* 255 is the max exponent biased value */
131 #define FLOAT_MAX_BIASED_EXP (0xFF << 23)
132
133 #define HALF_FLOAT_MAX_BIASED_EXP (0x1F << 10)
134
135 /*
136 * Convert a half float as a uint16_t into a full float.
137 *
138 * @param hf half float as uint16_t
139 *
140 * @return float value
141 */
exr_half2float(uint16_t hf)142 static union av_intfloat32 exr_half2float(uint16_t hf)
143 {
144 unsigned int sign = (unsigned int)(hf >> 15);
145 unsigned int mantissa = (unsigned int)(hf & ((1 << 10) - 1));
146 unsigned int exp = (unsigned int)(hf & HALF_FLOAT_MAX_BIASED_EXP);
147 union av_intfloat32 f;
148
149 if (exp == HALF_FLOAT_MAX_BIASED_EXP) {
150 // we have a half-float NaN or Inf
151 // half-float NaNs will be converted to a single precision NaN
152 // half-float Infs will be converted to a single precision Inf
153 exp = FLOAT_MAX_BIASED_EXP;
154 if (mantissa)
155 mantissa = (1 << 23) - 1; // set all bits to indicate a NaN
156 } else if (exp == 0x0) {
157 // convert half-float zero/denorm to single precision value
158 if (mantissa) {
159 mantissa <<= 1;
160 exp = HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP;
161 // check for leading 1 in denorm mantissa
162 while ((mantissa & (1 << 10))) {
163 // for every leading 0, decrement single precision exponent by 1
164 // and shift half-float mantissa value to the left
165 mantissa <<= 1;
166 exp -= (1 << 23);
167 }
168 // clamp the mantissa to 10-bits
169 mantissa &= ((1 << 10) - 1);
170 // shift left to generate single-precision mantissa of 23-bits
171 mantissa <<= 13;
172 }
173 } else {
174 // shift left to generate single-precision mantissa of 23-bits
175 mantissa <<= 13;
176 // generate single precision biased exponent value
177 exp = (exp << 13) + HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP;
178 }
179
180 f.i = (sign << 31) | exp | mantissa;
181
182 return f;
183 }
184
185
186 /**
187 * Convert from 32-bit float as uint32_t to uint16_t.
188 *
189 * @param v 32-bit float
190 *
191 * @return normalized 16-bit unsigned int
192 */
exr_flt2uint(uint32_t v)193 static inline uint16_t exr_flt2uint(uint32_t v)
194 {
195 unsigned int exp = v >> 23;
196 // "HACK": negative values result in exp< 0, so clipping them to 0
197 // is also handled by this condition, avoids explicit check for sign bit.
198 if (exp <= 127 + 7 - 24) // we would shift out all bits anyway
199 return 0;
200 if (exp >= 127)
201 return 0xffff;
202 v &= 0x007fffff;
203 return (v + (1 << 23)) >> (127 + 7 - exp);
204 }
205
206 /**
207 * Convert from 16-bit float as uint16_t to uint16_t.
208 *
209 * @param v 16-bit float
210 *
211 * @return normalized 16-bit unsigned int
212 */
exr_halflt2uint(uint16_t v)213 static inline uint16_t exr_halflt2uint(uint16_t v)
214 {
215 unsigned exp = 14 - (v >> 10);
216 if (exp >= 14) {
217 if (exp == 14)
218 return (v >> 9) & 1;
219 else
220 return (v & 0x8000) ? 0 : 0xffff;
221 }
222 v <<= 6;
223 return (v + (1 << 16)) >> (exp + 1);
224 }
225
predictor(uint8_t * src,int size)226 static void predictor(uint8_t *src, int size)
227 {
228 uint8_t *t = src + 1;
229 uint8_t *stop = src + size;
230
231 while (t < stop) {
232 int d = (int) t[-1] + (int) t[0] - 128;
233 t[0] = d;
234 ++t;
235 }
236 }
237
reorder_pixels(uint8_t * src,uint8_t * dst,int size)238 static void reorder_pixels(uint8_t *src, uint8_t *dst, int size)
239 {
240 const int8_t *t1 = src;
241 const int8_t *t2 = src + (size + 1) / 2;
242 int8_t *s = dst;
243 int8_t *stop = s + size;
244
245 while (1) {
246 if (s < stop)
247 *(s++) = *(t1++);
248 else
249 break;
250
251 if (s < stop)
252 *(s++) = *(t2++);
253 else
254 break;
255 }
256 }
257
zip_uncompress(const uint8_t * src,int compressed_size,int uncompressed_size,EXRThreadData * td)258 static int zip_uncompress(const uint8_t *src, int compressed_size,
259 int uncompressed_size, EXRThreadData *td)
260 {
261 unsigned long dest_len = uncompressed_size;
262
263 if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK ||
264 dest_len != uncompressed_size)
265 return AVERROR_INVALIDDATA;
266
267 predictor(td->tmp, uncompressed_size);
268 reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size);
269
270 return 0;
271 }
272
rle_uncompress(const uint8_t * src,int compressed_size,int uncompressed_size,EXRThreadData * td)273 static int rle_uncompress(const uint8_t *src, int compressed_size,
274 int uncompressed_size, EXRThreadData *td)
275 {
276 uint8_t *d = td->tmp;
277 const int8_t *s = src;
278 int ssize = compressed_size;
279 int dsize = uncompressed_size;
280 uint8_t *dend = d + dsize;
281 int count;
282
283 while (ssize > 0) {
284 count = *s++;
285
286 if (count < 0) {
287 count = -count;
288
289 if ((dsize -= count) < 0 ||
290 (ssize -= count + 1) < 0)
291 return AVERROR_INVALIDDATA;
292
293 while (count--)
294 *d++ = *s++;
295 } else {
296 count++;
297
298 if ((dsize -= count) < 0 ||
299 (ssize -= 2) < 0)
300 return AVERROR_INVALIDDATA;
301
302 while (count--)
303 *d++ = *s;
304
305 s++;
306 }
307 }
308
309 if (dend != d)
310 return AVERROR_INVALIDDATA;
311
312 predictor(td->tmp, uncompressed_size);
313 reorder_pixels(td->tmp, td->uncompressed_data, uncompressed_size);
314
315 return 0;
316 }
317
318 #define USHORT_RANGE (1 << 16)
319 #define BITMAP_SIZE (1 << 13)
320
reverse_lut(const uint8_t * bitmap,uint16_t * lut)321 static uint16_t reverse_lut(const uint8_t *bitmap, uint16_t *lut)
322 {
323 int i, k = 0;
324
325 for (i = 0; i < USHORT_RANGE; i++)
326 if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7))))
327 lut[k++] = i;
328
329 i = k - 1;
330
331 memset(lut + k, 0, (USHORT_RANGE - k) * 2);
332
333 return i;
334 }
335
apply_lut(const uint16_t * lut,uint16_t * dst,int dsize)336 static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize)
337 {
338 int i;
339
340 for (i = 0; i < dsize; ++i)
341 dst[i] = lut[dst[i]];
342 }
343
344 #define HUF_ENCBITS 16 // literal (value) bit length
345 #define HUF_DECBITS 14 // decoding bit size (>= 8)
346
347 #define HUF_ENCSIZE ((1 << HUF_ENCBITS) + 1) // encoding table size
348 #define HUF_DECSIZE (1 << HUF_DECBITS) // decoding table size
349 #define HUF_DECMASK (HUF_DECSIZE - 1)
350
351 typedef struct HufDec {
352 int len;
353 int lit;
354 int *p;
355 } HufDec;
356
huf_canonical_code_table(uint64_t * hcode)357 static void huf_canonical_code_table(uint64_t *hcode)
358 {
359 uint64_t c, n[59] = { 0 };
360 int i;
361
362 for (i = 0; i < HUF_ENCSIZE; ++i)
363 n[hcode[i]] += 1;
364
365 c = 0;
366 for (i = 58; i > 0; --i) {
367 uint64_t nc = ((c + n[i]) >> 1);
368 n[i] = c;
369 c = nc;
370 }
371
372 for (i = 0; i < HUF_ENCSIZE; ++i) {
373 int l = hcode[i];
374
375 if (l > 0)
376 hcode[i] = l | (n[l]++ << 6);
377 }
378 }
379
380 #define SHORT_ZEROCODE_RUN 59
381 #define LONG_ZEROCODE_RUN 63
382 #define SHORTEST_LONG_RUN (2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN)
383 #define LONGEST_LONG_RUN (255 + SHORTEST_LONG_RUN)
384
huf_unpack_enc_table(GetByteContext * gb,int32_t im,int32_t iM,uint64_t * hcode)385 static int huf_unpack_enc_table(GetByteContext *gb,
386 int32_t im, int32_t iM, uint64_t *hcode)
387 {
388 GetBitContext gbit;
389
390 init_get_bits8(&gbit, gb->buffer, bytestream2_get_bytes_left(gb));
391
392 for (; im <= iM; im++) {
393 uint64_t l = hcode[im] = get_bits(&gbit, 6);
394
395 if (l == LONG_ZEROCODE_RUN) {
396 int zerun = get_bits(&gbit, 8) + SHORTEST_LONG_RUN;
397
398 if (im + zerun > iM + 1)
399 return AVERROR_INVALIDDATA;
400
401 while (zerun--)
402 hcode[im++] = 0;
403
404 im--;
405 } else if (l >= SHORT_ZEROCODE_RUN) {
406 int zerun = l - SHORT_ZEROCODE_RUN + 2;
407
408 if (im + zerun > iM + 1)
409 return AVERROR_INVALIDDATA;
410
411 while (zerun--)
412 hcode[im++] = 0;
413
414 im--;
415 }
416 }
417
418 bytestream2_skip(gb, (get_bits_count(&gbit) + 7) / 8);
419 huf_canonical_code_table(hcode);
420
421 return 0;
422 }
423
huf_build_dec_table(const uint64_t * hcode,int im,int iM,HufDec * hdecod)424 static int huf_build_dec_table(const uint64_t *hcode, int im,
425 int iM, HufDec *hdecod)
426 {
427 for (; im <= iM; im++) {
428 uint64_t c = hcode[im] >> 6;
429 int i, l = hcode[im] & 63;
430
431 if (c >> l)
432 return AVERROR_INVALIDDATA;
433
434 if (l > HUF_DECBITS) {
435 HufDec *pl = hdecod + (c >> (l - HUF_DECBITS));
436 if (pl->len)
437 return AVERROR_INVALIDDATA;
438
439 pl->lit++;
440
441 pl->p = av_realloc(pl->p, pl->lit * sizeof(int));
442 if (!pl->p)
443 return AVERROR(ENOMEM);
444
445 pl->p[pl->lit - 1] = im;
446 } else if (l) {
447 HufDec *pl = hdecod + (c << (HUF_DECBITS - l));
448
449 for (i = 1 << (HUF_DECBITS - l); i > 0; i--, pl++) {
450 if (pl->len || pl->p)
451 return AVERROR_INVALIDDATA;
452 pl->len = l;
453 pl->lit = im;
454 }
455 }
456 }
457
458 return 0;
459 }
460
461 #define get_char(c, lc, gb) \
462 { \
463 c = (c << 8) | bytestream2_get_byte(gb); \
464 lc += 8; \
465 }
466
467 #define get_code(po, rlc, c, lc, gb, out, oe) \
468 { \
469 if (po == rlc) { \
470 if (lc < 8) \
471 get_char(c, lc, gb); \
472 lc -= 8; \
473 \
474 cs = c >> lc; \
475 \
476 if (out + cs > oe) \
477 return AVERROR_INVALIDDATA; \
478 \
479 s = out[-1]; \
480 \
481 while (cs-- > 0) \
482 *out++ = s; \
483 } else if (out < oe) { \
484 *out++ = po; \
485 } else { \
486 return AVERROR_INVALIDDATA; \
487 } \
488 }
489
huf_decode(const uint64_t * hcode,const HufDec * hdecod,GetByteContext * gb,int nbits,int rlc,int no,uint16_t * out)490 static int huf_decode(const uint64_t *hcode, const HufDec *hdecod,
491 GetByteContext *gb, int nbits,
492 int rlc, int no, uint16_t *out)
493 {
494 uint64_t c = 0;
495 uint16_t *outb = out;
496 uint16_t *oe = out + no;
497 const uint8_t *ie = gb->buffer + (nbits + 7) / 8; // input byte size
498 uint8_t cs, s;
499 int i, lc = 0;
500
501 while (gb->buffer < ie) {
502 get_char(c, lc, gb);
503
504 while (lc >= HUF_DECBITS) {
505 const HufDec pl = hdecod[(c >> (lc - HUF_DECBITS)) & HUF_DECMASK];
506
507 if (pl.len) {
508 lc -= pl.len;
509 get_code(pl.lit, rlc, c, lc, gb, out, oe);
510 } else {
511 int j;
512
513 if (!pl.p)
514 return AVERROR_INVALIDDATA;
515
516 for (j = 0; j < pl.lit; j++) {
517 int l = hcode[pl.p[j]] & 63;
518
519 while (lc < l && bytestream2_get_bytes_left(gb) > 0)
520 get_char(c, lc, gb);
521
522 if (lc >= l) {
523 if ((hcode[pl.p[j]] >> 6) ==
524 ((c >> (lc - l)) & ((1LL << l) - 1))) {
525 lc -= l;
526 get_code(pl.p[j], rlc, c, lc, gb, out, oe);
527 break;
528 }
529 }
530 }
531
532 if (j == pl.lit)
533 return AVERROR_INVALIDDATA;
534 }
535 }
536 }
537
538 i = (8 - nbits) & 7;
539 c >>= i;
540 lc -= i;
541
542 while (lc > 0) {
543 const HufDec pl = hdecod[(c << (HUF_DECBITS - lc)) & HUF_DECMASK];
544
545 if (pl.len) {
546 lc -= pl.len;
547 get_code(pl.lit, rlc, c, lc, gb, out, oe);
548 } else {
549 return AVERROR_INVALIDDATA;
550 }
551 }
552
553 if (out - outb != no)
554 return AVERROR_INVALIDDATA;
555 return 0;
556 }
557
huf_uncompress(GetByteContext * gb,uint16_t * dst,int dst_size)558 static int huf_uncompress(GetByteContext *gb,
559 uint16_t *dst, int dst_size)
560 {
561 int32_t src_size, im, iM;
562 uint32_t nBits;
563 uint64_t *freq;
564 HufDec *hdec;
565 int ret, i;
566
567 src_size = bytestream2_get_le32(gb);
568 im = bytestream2_get_le32(gb);
569 iM = bytestream2_get_le32(gb);
570 bytestream2_skip(gb, 4);
571 nBits = bytestream2_get_le32(gb);
572 if (im < 0 || im >= HUF_ENCSIZE ||
573 iM < 0 || iM >= HUF_ENCSIZE ||
574 src_size < 0)
575 return AVERROR_INVALIDDATA;
576
577 bytestream2_skip(gb, 4);
578
579 freq = av_mallocz_array(HUF_ENCSIZE, sizeof(*freq));
580 hdec = av_mallocz_array(HUF_DECSIZE, sizeof(*hdec));
581 if (!freq || !hdec) {
582 ret = AVERROR(ENOMEM);
583 goto fail;
584 }
585
586 if ((ret = huf_unpack_enc_table(gb, im, iM, freq)) < 0)
587 goto fail;
588
589 if (nBits > 8 * bytestream2_get_bytes_left(gb)) {
590 ret = AVERROR_INVALIDDATA;
591 goto fail;
592 }
593
594 if ((ret = huf_build_dec_table(freq, im, iM, hdec)) < 0)
595 goto fail;
596 ret = huf_decode(freq, hdec, gb, nBits, iM, dst_size, dst);
597
598 fail:
599 for (i = 0; i < HUF_DECSIZE; i++)
600 if (hdec)
601 av_freep(&hdec[i].p);
602
603 av_free(freq);
604 av_free(hdec);
605
606 return ret;
607 }
608
wdec14(uint16_t l,uint16_t h,uint16_t * a,uint16_t * b)609 static inline void wdec14(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
610 {
611 int16_t ls = l;
612 int16_t hs = h;
613 int hi = hs;
614 int ai = ls + (hi & 1) + (hi >> 1);
615 int16_t as = ai;
616 int16_t bs = ai - hi;
617
618 *a = as;
619 *b = bs;
620 }
621
622 #define NBITS 16
623 #define A_OFFSET (1 << (NBITS - 1))
624 #define MOD_MASK ((1 << NBITS) - 1)
625
wdec16(uint16_t l,uint16_t h,uint16_t * a,uint16_t * b)626 static inline void wdec16(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
627 {
628 int m = l;
629 int d = h;
630 int bb = (m - (d >> 1)) & MOD_MASK;
631 int aa = (d + bb - A_OFFSET) & MOD_MASK;
632 *b = bb;
633 *a = aa;
634 }
635
wav_decode(uint16_t * in,int nx,int ox,int ny,int oy,uint16_t mx)636 static void wav_decode(uint16_t *in, int nx, int ox,
637 int ny, int oy, uint16_t mx)
638 {
639 int w14 = (mx < (1 << 14));
640 int n = (nx > ny) ? ny : nx;
641 int p = 1;
642 int p2;
643
644 while (p <= n)
645 p <<= 1;
646
647 p >>= 1;
648 p2 = p;
649 p >>= 1;
650
651 while (p >= 1) {
652 uint16_t *py = in;
653 uint16_t *ey = in + oy * (ny - p2);
654 uint16_t i00, i01, i10, i11;
655 int oy1 = oy * p;
656 int oy2 = oy * p2;
657 int ox1 = ox * p;
658 int ox2 = ox * p2;
659
660 for (; py <= ey; py += oy2) {
661 uint16_t *px = py;
662 uint16_t *ex = py + ox * (nx - p2);
663
664 for (; px <= ex; px += ox2) {
665 uint16_t *p01 = px + ox1;
666 uint16_t *p10 = px + oy1;
667 uint16_t *p11 = p10 + ox1;
668
669 if (w14) {
670 wdec14(*px, *p10, &i00, &i10);
671 wdec14(*p01, *p11, &i01, &i11);
672 wdec14(i00, i01, px, p01);
673 wdec14(i10, i11, p10, p11);
674 } else {
675 wdec16(*px, *p10, &i00, &i10);
676 wdec16(*p01, *p11, &i01, &i11);
677 wdec16(i00, i01, px, p01);
678 wdec16(i10, i11, p10, p11);
679 }
680 }
681
682 if (nx & p) {
683 uint16_t *p10 = px + oy1;
684
685 if (w14)
686 wdec14(*px, *p10, &i00, p10);
687 else
688 wdec16(*px, *p10, &i00, p10);
689
690 *px = i00;
691 }
692 }
693
694 if (ny & p) {
695 uint16_t *px = py;
696 uint16_t *ex = py + ox * (nx - p2);
697
698 for (; px <= ex; px += ox2) {
699 uint16_t *p01 = px + ox1;
700
701 if (w14)
702 wdec14(*px, *p01, &i00, p01);
703 else
704 wdec16(*px, *p01, &i00, p01);
705
706 *px = i00;
707 }
708 }
709
710 p2 = p;
711 p >>= 1;
712 }
713 }
714
piz_uncompress(EXRContext * s,const uint8_t * src,int ssize,int dsize,EXRThreadData * td)715 static int piz_uncompress(EXRContext *s, const uint8_t *src, int ssize,
716 int dsize, EXRThreadData *td)
717 {
718 GetByteContext gb;
719 uint16_t maxval, min_non_zero, max_non_zero;
720 uint16_t *ptr;
721 uint16_t *tmp = (uint16_t *)td->tmp;
722 uint8_t *out;
723 int ret, i, j;
724
725 if (!td->bitmap)
726 td->bitmap = av_malloc(BITMAP_SIZE);
727 if (!td->lut)
728 td->lut = av_malloc(1 << 17);
729 if (!td->bitmap || !td->lut) {
730 av_freep(&td->bitmap);
731 av_freep(&td->lut);
732 return AVERROR(ENOMEM);
733 }
734
735 bytestream2_init(&gb, src, ssize);
736 min_non_zero = bytestream2_get_le16(&gb);
737 max_non_zero = bytestream2_get_le16(&gb);
738
739 if (max_non_zero >= BITMAP_SIZE)
740 return AVERROR_INVALIDDATA;
741
742 memset(td->bitmap, 0, FFMIN(min_non_zero, BITMAP_SIZE));
743 if (min_non_zero <= max_non_zero)
744 bytestream2_get_buffer(&gb, td->bitmap + min_non_zero,
745 max_non_zero - min_non_zero + 1);
746 memset(td->bitmap + max_non_zero, 0, BITMAP_SIZE - max_non_zero);
747
748 maxval = reverse_lut(td->bitmap, td->lut);
749
750 ret = huf_uncompress(&gb, tmp, dsize / sizeof(uint16_t));
751 if (ret)
752 return ret;
753
754 ptr = tmp;
755 for (i = 0; i < s->nb_channels; i++) {
756 EXRChannel *channel = &s->channels[i];
757 int size = channel->pixel_type;
758
759 for (j = 0; j < size; j++)
760 wav_decode(ptr + j, s->xdelta, size, s->ysize,
761 s->xdelta * size, maxval);
762 ptr += s->xdelta * s->ysize * size;
763 }
764
765 apply_lut(td->lut, tmp, dsize / sizeof(uint16_t));
766
767 out = td->uncompressed_data;
768 for (i = 0; i < s->ysize; i++)
769 for (j = 0; j < s->nb_channels; j++) {
770 uint16_t *in = tmp + j * s->xdelta * s->ysize + i * s->xdelta;
771 memcpy(out, in, s->xdelta * 2);
772 out += s->xdelta * 2;
773 }
774
775 return 0;
776 }
777
pxr24_uncompress(EXRContext * s,const uint8_t * src,int compressed_size,int uncompressed_size,EXRThreadData * td)778 static int pxr24_uncompress(EXRContext *s, const uint8_t *src,
779 int compressed_size, int uncompressed_size,
780 EXRThreadData *td)
781 {
782 unsigned long dest_len = uncompressed_size;
783 const uint8_t *in = td->tmp;
784 uint8_t *out;
785 int c, i, j;
786
787 if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK ||
788 dest_len != uncompressed_size)
789 return AVERROR_INVALIDDATA;
790
791 out = td->uncompressed_data;
792 for (i = 0; i < s->ysize; i++)
793 for (c = 0; c < s->nb_channels; c++) {
794 EXRChannel *channel = &s->channels[c];
795 const uint8_t *ptr[4];
796 uint32_t pixel = 0;
797
798 switch (channel->pixel_type) {
799 case EXR_FLOAT:
800 ptr[0] = in;
801 ptr[1] = ptr[0] + s->xdelta;
802 ptr[2] = ptr[1] + s->xdelta;
803 in = ptr[2] + s->xdelta;
804
805 for (j = 0; j < s->xdelta; ++j) {
806 uint32_t diff = (*(ptr[0]++) << 24) |
807 (*(ptr[1]++) << 16) |
808 (*(ptr[2]++) << 8);
809 pixel += diff;
810 bytestream_put_le32(&out, pixel);
811 }
812 break;
813 case EXR_HALF:
814 ptr[0] = in;
815 ptr[1] = ptr[0] + s->xdelta;
816 in = ptr[1] + s->xdelta;
817 for (j = 0; j < s->xdelta; j++) {
818 uint32_t diff = (*(ptr[0]++) << 8) | *(ptr[1]++);
819
820 pixel += diff;
821 bytestream_put_le16(&out, pixel);
822 }
823 break;
824 default:
825 return AVERROR_INVALIDDATA;
826 }
827 }
828
829 return 0;
830 }
831
decode_block(AVCodecContext * avctx,void * tdata,int jobnr,int threadnr)832 static int decode_block(AVCodecContext *avctx, void *tdata,
833 int jobnr, int threadnr)
834 {
835 EXRContext *s = avctx->priv_data;
836 AVFrame *const p = s->picture;
837 EXRThreadData *td = &s->thread_data[threadnr];
838 const uint8_t *channel_buffer[4] = { 0 };
839 const uint8_t *buf = s->buf;
840 uint64_t line_offset, uncompressed_size;
841 uint32_t xdelta = s->xdelta;
842 uint16_t *ptr_x;
843 uint8_t *ptr;
844 uint32_t data_size, line;
845 const uint8_t *src;
846 int axmax = (avctx->width - (s->xmax + 1)) * 2 * s->desc->nb_components;
847 int bxmin = s->xmin * 2 * s->desc->nb_components;
848 int i, x, buf_size = s->buf_size;
849 int ret;
850 float one_gamma = 1.0f / s->gamma;
851
852 line_offset = AV_RL64(s->gb.buffer + jobnr * 8);
853 // Check if the buffer has the required bytes needed from the offset
854 if (line_offset > buf_size - 8)
855 return AVERROR_INVALIDDATA;
856
857 src = buf + line_offset + 8;
858 line = AV_RL32(src - 8);
859 if (line < s->ymin || line > s->ymax)
860 return AVERROR_INVALIDDATA;
861
862 data_size = AV_RL32(src - 4);
863 if (data_size <= 0 || data_size > buf_size)
864 return AVERROR_INVALIDDATA;
865
866 s->ysize = FFMIN(s->scan_lines_per_block, s->ymax - line + 1);
867 uncompressed_size = s->scan_line_size * s->ysize;
868 if ((s->compression == EXR_RAW && (data_size != uncompressed_size ||
869 line_offset > buf_size - uncompressed_size)) ||
870 (s->compression != EXR_RAW && (data_size > uncompressed_size ||
871 line_offset > buf_size - data_size))) {
872 return AVERROR_INVALIDDATA;
873 }
874
875 if (data_size < uncompressed_size) {
876 av_fast_padded_malloc(&td->uncompressed_data,
877 &td->uncompressed_size, uncompressed_size);
878 av_fast_padded_malloc(&td->tmp, &td->tmp_size, uncompressed_size);
879 if (!td->uncompressed_data || !td->tmp)
880 return AVERROR(ENOMEM);
881
882 ret = AVERROR_INVALIDDATA;
883 switch (s->compression) {
884 case EXR_ZIP1:
885 case EXR_ZIP16:
886 ret = zip_uncompress(src, data_size, uncompressed_size, td);
887 break;
888 case EXR_PIZ:
889 ret = piz_uncompress(s, src, data_size, uncompressed_size, td);
890 break;
891 case EXR_PXR24:
892 ret = pxr24_uncompress(s, src, data_size, uncompressed_size, td);
893 break;
894 case EXR_RLE:
895 ret = rle_uncompress(src, data_size, uncompressed_size, td);
896 }
897 if (ret < 0) {
898 av_log(avctx, AV_LOG_ERROR, "decode_block() failed.\n");
899 return ret;
900 }
901 src = td->uncompressed_data;
902 }
903
904 channel_buffer[0] = src + xdelta * s->channel_offsets[0];
905 channel_buffer[1] = src + xdelta * s->channel_offsets[1];
906 channel_buffer[2] = src + xdelta * s->channel_offsets[2];
907 if (s->channel_offsets[3] >= 0)
908 channel_buffer[3] = src + xdelta * s->channel_offsets[3];
909
910 ptr = p->data[0] + line * p->linesize[0];
911 for (i = 0;
912 i < s->scan_lines_per_block && line + i <= s->ymax;
913 i++, ptr += p->linesize[0]) {
914 const uint8_t *r, *g, *b;
915 const uint8_t *a = NULL;
916
917 r = channel_buffer[0];
918 g = channel_buffer[1];
919 b = channel_buffer[2];
920 if (channel_buffer[3])
921 a = channel_buffer[3];
922
923 ptr_x = (uint16_t *) ptr;
924
925 // Zero out the start if xmin is not 0
926 memset(ptr_x, 0, bxmin);
927 ptr_x += s->xmin * s->desc->nb_components;
928 if (s->pixel_type == EXR_FLOAT) {
929 // 32-bit
930 for (x = 0; x < xdelta; x++) {
931 union av_intfloat32 t;
932 t.i = bytestream_get_le32(&r);
933 if ( t.f > 0.0f ) /* avoid negative values */
934 t.f = powf(t.f, one_gamma);
935 *ptr_x++ = exr_flt2uint(t.i);
936
937 t.i = bytestream_get_le32(&g);
938 if ( t.f > 0.0f )
939 t.f = powf(t.f, one_gamma);
940 *ptr_x++ = exr_flt2uint(t.i);
941
942 t.i = bytestream_get_le32(&b);
943 if ( t.f > 0.0f )
944 t.f = powf(t.f, one_gamma);
945 *ptr_x++ = exr_flt2uint(t.i);
946 if (channel_buffer[3])
947 *ptr_x++ = exr_flt2uint(bytestream_get_le32(&a));
948 }
949 } else {
950 // 16-bit
951 for (x = 0; x < xdelta; x++) {
952 *ptr_x++ = s->gamma_table[bytestream_get_le16(&r)];
953 *ptr_x++ = s->gamma_table[bytestream_get_le16(&g)];
954 *ptr_x++ = s->gamma_table[bytestream_get_le16(&b)];
955 if (channel_buffer[3])
956 *ptr_x++ = exr_halflt2uint(bytestream_get_le16(&a));
957 }
958 }
959
960 // Zero out the end if xmax+1 is not w
961 memset(ptr_x, 0, axmax);
962
963 channel_buffer[0] += s->scan_line_size;
964 channel_buffer[1] += s->scan_line_size;
965 channel_buffer[2] += s->scan_line_size;
966 if (channel_buffer[3])
967 channel_buffer[3] += s->scan_line_size;
968 }
969
970 return 0;
971 }
972
973 /**
974 * Check if the variable name corresponds to its data type.
975 *
976 * @param s the EXRContext
977 * @param value_name name of the variable to check
978 * @param value_type type of the variable to check
979 * @param minimum_length minimum length of the variable data
980 *
981 * @return bytes to read containing variable data
982 * -1 if variable is not found
983 * 0 if buffer ended prematurely
984 */
check_header_variable(EXRContext * s,const char * value_name,const char * value_type,unsigned int minimum_length)985 static int check_header_variable(EXRContext *s,
986 const char *value_name,
987 const char *value_type,
988 unsigned int minimum_length)
989 {
990 int var_size = -1;
991
992 if (bytestream2_get_bytes_left(&s->gb) >= minimum_length &&
993 !strcmp(s->gb.buffer, value_name)) {
994 // found value_name, jump to value_type (null terminated strings)
995 s->gb.buffer += strlen(value_name) + 1;
996 if (!strcmp(s->gb.buffer, value_type)) {
997 s->gb.buffer += strlen(value_type) + 1;
998 var_size = bytestream2_get_le32(&s->gb);
999 // don't go read past boundaries
1000 if (var_size > bytestream2_get_bytes_left(&s->gb))
1001 var_size = 0;
1002 } else {
1003 // value_type not found, reset the buffer
1004 s->gb.buffer -= strlen(value_name) + 1;
1005 av_log(s->avctx, AV_LOG_WARNING,
1006 "Unknown data type %s for header variable %s.\n",
1007 value_type, value_name);
1008 }
1009 }
1010
1011 return var_size;
1012 }
1013
decode_header(EXRContext * s)1014 static int decode_header(EXRContext *s)
1015 {
1016 int current_channel_offset = 0;
1017 int magic_number, version, flags, i;
1018
1019 if (bytestream2_get_bytes_left(&s->gb) < 10) {
1020 av_log(s->avctx, AV_LOG_ERROR, "Header too short to parse.\n");
1021 return AVERROR_INVALIDDATA;
1022 }
1023
1024 magic_number = bytestream2_get_le32(&s->gb);
1025 if (magic_number != 20000630) {
1026 /* As per documentation of OpenEXR, it is supposed to be
1027 * int 20000630 little-endian */
1028 av_log(s->avctx, AV_LOG_ERROR, "Wrong magic number %d.\n", magic_number);
1029 return AVERROR_INVALIDDATA;
1030 }
1031
1032 version = bytestream2_get_byte(&s->gb);
1033 if (version != 2) {
1034 avpriv_report_missing_feature(s->avctx, "Version %d", version);
1035 return AVERROR_PATCHWELCOME;
1036 }
1037
1038 flags = bytestream2_get_le24(&s->gb);
1039 if (flags & 0x02) {
1040 avpriv_report_missing_feature(s->avctx, "Tile support");
1041 return AVERROR_PATCHWELCOME;
1042 }
1043
1044 // Parse the header
1045 while (bytestream2_get_bytes_left(&s->gb) > 0 && *s->gb.buffer) {
1046 int var_size;
1047 if ((var_size = check_header_variable(s, "channels",
1048 "chlist", 38)) >= 0) {
1049 GetByteContext ch_gb;
1050 if (!var_size)
1051 return AVERROR_INVALIDDATA;
1052
1053 bytestream2_init(&ch_gb, s->gb.buffer, var_size);
1054
1055 while (bytestream2_get_bytes_left(&ch_gb) >= 19) {
1056 EXRChannel *channel;
1057 enum ExrPixelType current_pixel_type;
1058 int channel_index = -1;
1059 int xsub, ysub;
1060
1061 if (strcmp(s->layer, "") != 0) {
1062 if (strncmp(ch_gb.buffer, s->layer, strlen(s->layer)) == 0) {
1063 ch_gb.buffer += strlen(s->layer);
1064 if (*ch_gb.buffer == '.')
1065 ch_gb.buffer++; /* skip dot if not given */
1066 av_log(s->avctx, AV_LOG_INFO,
1067 "Layer %s.%s matched.\n", s->layer, ch_gb.buffer);
1068 }
1069 }
1070
1071 if (!strcmp(ch_gb.buffer, "R") ||
1072 !strcmp(ch_gb.buffer, "X") ||
1073 !strcmp(ch_gb.buffer, "U"))
1074 channel_index = 0;
1075 else if (!strcmp(ch_gb.buffer, "G") ||
1076 !strcmp(ch_gb.buffer, "Y") ||
1077 !strcmp(ch_gb.buffer, "V"))
1078 channel_index = 1;
1079 else if (!strcmp(ch_gb.buffer, "B") ||
1080 !strcmp(ch_gb.buffer, "Z") ||
1081 !strcmp(ch_gb.buffer, "W"))
1082 channel_index = 2;
1083 else if (!strcmp(ch_gb.buffer, "A"))
1084 channel_index = 3;
1085 else
1086 av_log(s->avctx, AV_LOG_WARNING,
1087 "Unsupported channel %.256s.\n", ch_gb.buffer);
1088
1089 /* skip until you get a 0 */
1090 while (bytestream2_get_bytes_left(&ch_gb) > 0 &&
1091 bytestream2_get_byte(&ch_gb))
1092 continue;
1093
1094 if (bytestream2_get_bytes_left(&ch_gb) < 4) {
1095 av_log(s->avctx, AV_LOG_ERROR, "Incomplete header.\n");
1096 return AVERROR_INVALIDDATA;
1097 }
1098
1099 current_pixel_type = bytestream2_get_le32(&ch_gb);
1100 if (current_pixel_type >= EXR_UNKNOWN) {
1101 avpriv_report_missing_feature(s->avctx,
1102 "Pixel type %d.\n",
1103 current_pixel_type);
1104 return AVERROR_PATCHWELCOME;
1105 }
1106
1107 bytestream2_skip(&ch_gb, 4);
1108 xsub = bytestream2_get_le32(&ch_gb);
1109 ysub = bytestream2_get_le32(&ch_gb);
1110 if (xsub != 1 || ysub != 1) {
1111 avpriv_report_missing_feature(s->avctx,
1112 "Subsampling %dx%d",
1113 xsub, ysub);
1114 return AVERROR_PATCHWELCOME;
1115 }
1116
1117 if (channel_index >= 0) {
1118 if (s->pixel_type != EXR_UNKNOWN &&
1119 s->pixel_type != current_pixel_type) {
1120 av_log(s->avctx, AV_LOG_ERROR,
1121 "RGB channels not of the same depth.\n");
1122 return AVERROR_INVALIDDATA;
1123 }
1124 s->pixel_type = current_pixel_type;
1125 s->channel_offsets[channel_index] = current_channel_offset;
1126 }
1127
1128 s->channels = av_realloc(s->channels,
1129 ++s->nb_channels * sizeof(EXRChannel));
1130 if (!s->channels)
1131 return AVERROR(ENOMEM);
1132 channel = &s->channels[s->nb_channels - 1];
1133 channel->pixel_type = current_pixel_type;
1134 channel->xsub = xsub;
1135 channel->ysub = ysub;
1136
1137 current_channel_offset += 1 << current_pixel_type;
1138 }
1139
1140 /* Check if all channels are set with an offset or if the channels
1141 * are causing an overflow */
1142 if (FFMIN3(s->channel_offsets[0],
1143 s->channel_offsets[1],
1144 s->channel_offsets[2]) < 0) {
1145 if (s->channel_offsets[0] < 0)
1146 av_log(s->avctx, AV_LOG_ERROR, "Missing red channel.\n");
1147 if (s->channel_offsets[1] < 0)
1148 av_log(s->avctx, AV_LOG_ERROR, "Missing green channel.\n");
1149 if (s->channel_offsets[2] < 0)
1150 av_log(s->avctx, AV_LOG_ERROR, "Missing blue channel.\n");
1151 return AVERROR_INVALIDDATA;
1152 }
1153
1154 // skip one last byte and update main gb
1155 s->gb.buffer = ch_gb.buffer + 1;
1156 continue;
1157 } else if ((var_size = check_header_variable(s, "dataWindow", "box2i",
1158 31)) >= 0) {
1159 if (!var_size)
1160 return AVERROR_INVALIDDATA;
1161
1162 s->xmin = bytestream2_get_le32(&s->gb);
1163 s->ymin = bytestream2_get_le32(&s->gb);
1164 s->xmax = bytestream2_get_le32(&s->gb);
1165 s->ymax = bytestream2_get_le32(&s->gb);
1166 s->xdelta = (s->xmax - s->xmin) + 1;
1167 s->ydelta = (s->ymax - s->ymin) + 1;
1168
1169 continue;
1170 } else if ((var_size = check_header_variable(s, "displayWindow",
1171 "box2i", 34)) >= 0) {
1172 if (!var_size)
1173 return AVERROR_INVALIDDATA;
1174
1175 bytestream2_skip(&s->gb, 8);
1176 s->w = bytestream2_get_le32(&s->gb) + 1;
1177 s->h = bytestream2_get_le32(&s->gb) + 1;
1178
1179 continue;
1180 } else if ((var_size = check_header_variable(s, "lineOrder",
1181 "lineOrder", 25)) >= 0) {
1182 int line_order;
1183 if (!var_size)
1184 return AVERROR_INVALIDDATA;
1185
1186 line_order = bytestream2_get_byte(&s->gb);
1187 av_log(s->avctx, AV_LOG_DEBUG, "line order: %d.\n", line_order);
1188 if (line_order > 2) {
1189 av_log(s->avctx, AV_LOG_ERROR, "Unknown line order.\n");
1190 return AVERROR_INVALIDDATA;
1191 }
1192
1193 continue;
1194 } else if ((var_size = check_header_variable(s, "pixelAspectRatio",
1195 "float", 31)) >= 0) {
1196 if (!var_size)
1197 return AVERROR_INVALIDDATA;
1198
1199 ff_set_sar(s->avctx,
1200 av_d2q(av_int2float(bytestream2_get_le32(&s->gb)), 255));
1201
1202 continue;
1203 } else if ((var_size = check_header_variable(s, "compression",
1204 "compression", 29)) >= 0) {
1205 if (!var_size)
1206 return AVERROR_INVALIDDATA;
1207
1208 if (s->compression == EXR_UNKN)
1209 s->compression = bytestream2_get_byte(&s->gb);
1210 else
1211 av_log(s->avctx, AV_LOG_WARNING,
1212 "Found more than one compression attribute.\n");
1213
1214 continue;
1215 }
1216
1217 // Check if there are enough bytes for a header
1218 if (bytestream2_get_bytes_left(&s->gb) <= 9) {
1219 av_log(s->avctx, AV_LOG_ERROR, "Incomplete header\n");
1220 return AVERROR_INVALIDDATA;
1221 }
1222
1223 // Process unknown variables
1224 for (i = 0; i < 2; i++) // value_name and value_type
1225 while (bytestream2_get_byte(&s->gb) != 0);
1226
1227 // Skip variable length
1228 bytestream2_skip(&s->gb, bytestream2_get_le32(&s->gb));
1229 }
1230
1231 if (s->compression == EXR_UNKN) {
1232 av_log(s->avctx, AV_LOG_ERROR, "Missing compression attribute.\n");
1233 return AVERROR_INVALIDDATA;
1234 }
1235 s->scan_line_size = s->xdelta * current_channel_offset;
1236
1237 if (bytestream2_get_bytes_left(&s->gb) <= 0) {
1238 av_log(s->avctx, AV_LOG_ERROR, "Incomplete frame.\n");
1239 return AVERROR_INVALIDDATA;
1240 }
1241
1242 // aaand we are done
1243 bytestream2_skip(&s->gb, 1);
1244 return 0;
1245 }
1246
decode_frame(AVCodecContext * avctx,void * data,int * got_frame,AVPacket * avpkt)1247 static int decode_frame(AVCodecContext *avctx, void *data,
1248 int *got_frame, AVPacket *avpkt)
1249 {
1250 EXRContext *s = avctx->priv_data;
1251 ThreadFrame frame = { .f = data };
1252 AVFrame *picture = data;
1253 uint8_t *ptr;
1254
1255 int y, ret;
1256 int out_line_size;
1257 int scan_line_blocks;
1258
1259 bytestream2_init(&s->gb, avpkt->data, avpkt->size);
1260
1261 if ((ret = decode_header(s)) < 0)
1262 return ret;
1263
1264 switch (s->pixel_type) {
1265 case EXR_FLOAT:
1266 case EXR_HALF:
1267 if (s->channel_offsets[3] >= 0)
1268 avctx->pix_fmt = AV_PIX_FMT_RGBA64;
1269 else
1270 avctx->pix_fmt = AV_PIX_FMT_RGB48;
1271 break;
1272 case EXR_UINT:
1273 avpriv_request_sample(avctx, "32-bit unsigned int");
1274 return AVERROR_PATCHWELCOME;
1275 default:
1276 av_log(avctx, AV_LOG_ERROR, "Missing channel list.\n");
1277 return AVERROR_INVALIDDATA;
1278 }
1279
1280 switch (s->compression) {
1281 case EXR_RAW:
1282 case EXR_RLE:
1283 case EXR_ZIP1:
1284 s->scan_lines_per_block = 1;
1285 break;
1286 case EXR_PXR24:
1287 case EXR_ZIP16:
1288 s->scan_lines_per_block = 16;
1289 break;
1290 case EXR_PIZ:
1291 s->scan_lines_per_block = 32;
1292 break;
1293 default:
1294 avpriv_report_missing_feature(avctx, "Compression %d", s->compression);
1295 return AVERROR_PATCHWELCOME;
1296 }
1297
1298 /* Verify the xmin, xmax, ymin, ymax and xdelta before setting
1299 * the actual image size. */
1300 if (s->xmin > s->xmax ||
1301 s->ymin > s->ymax ||
1302 s->xdelta != s->xmax - s->xmin + 1 ||
1303 s->xmax >= s->w ||
1304 s->ymax >= s->h) {
1305 av_log(avctx, AV_LOG_ERROR, "Wrong or missing size information.\n");
1306 return AVERROR_INVALIDDATA;
1307 }
1308
1309 if ((ret = ff_set_dimensions(avctx, s->w, s->h)) < 0)
1310 return ret;
1311
1312 s->desc = av_pix_fmt_desc_get(avctx->pix_fmt);
1313 if (!s->desc)
1314 return AVERROR_INVALIDDATA;
1315 out_line_size = avctx->width * 2 * s->desc->nb_components;
1316 scan_line_blocks = (s->ydelta + s->scan_lines_per_block - 1) /
1317 s->scan_lines_per_block;
1318
1319 if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
1320 return ret;
1321
1322 if (bytestream2_get_bytes_left(&s->gb) < scan_line_blocks * 8)
1323 return AVERROR_INVALIDDATA;
1324
1325 // save pointer we are going to use in decode_block
1326 s->buf = avpkt->data;
1327 s->buf_size = avpkt->size;
1328 ptr = picture->data[0];
1329
1330 // Zero out the start if ymin is not 0
1331 for (y = 0; y < s->ymin; y++) {
1332 memset(ptr, 0, out_line_size);
1333 ptr += picture->linesize[0];
1334 }
1335
1336 s->picture = picture;
1337 avctx->execute2(avctx, decode_block, s->thread_data, NULL, scan_line_blocks);
1338
1339 // Zero out the end if ymax+1 is not h
1340 for (y = s->ymax + 1; y < avctx->height; y++) {
1341 memset(ptr, 0, out_line_size);
1342 ptr += picture->linesize[0];
1343 }
1344
1345 picture->pict_type = AV_PICTURE_TYPE_I;
1346 *got_frame = 1;
1347
1348 return avpkt->size;
1349 }
1350
decode_init(AVCodecContext * avctx)1351 static av_cold int decode_init(AVCodecContext *avctx)
1352 {
1353 uint32_t i;
1354 union av_intfloat32 t;
1355 EXRContext *s = avctx->priv_data;
1356 float one_gamma = 1.0f / s->gamma;
1357
1358 s->avctx = avctx;
1359 s->xmin = ~0;
1360 s->xmax = ~0;
1361 s->ymin = ~0;
1362 s->ymax = ~0;
1363 s->xdelta = ~0;
1364 s->ydelta = ~0;
1365 s->channel_offsets[0] = -1;
1366 s->channel_offsets[1] = -1;
1367 s->channel_offsets[2] = -1;
1368 s->channel_offsets[3] = -1;
1369 s->pixel_type = EXR_UNKNOWN;
1370 s->compression = EXR_UNKN;
1371 s->nb_channels = 0;
1372 s->w = 0;
1373 s->h = 0;
1374
1375 if ( one_gamma > 0.9999f && one_gamma < 1.0001f ) {
1376 for ( i = 0; i < 65536; ++i ) {
1377 s->gamma_table[i] = exr_halflt2uint(i);
1378 }
1379 } else {
1380 for ( i = 0; i < 65536; ++i ) {
1381 t = exr_half2float(i);
1382 /* If negative value we reuse half value */
1383 if ( t.f <= 0.0f ) {
1384 s->gamma_table[i] = exr_halflt2uint(i);
1385 } else {
1386 t.f = powf(t.f, one_gamma);
1387 s->gamma_table[i] = exr_flt2uint(t.i);
1388 }
1389 }
1390 }
1391
1392 // allocate thread data, used for non EXR_RAW compreesion types
1393 s->thread_data = av_mallocz_array(avctx->thread_count, sizeof(EXRThreadData));
1394 if (!s->thread_data)
1395 return AVERROR_INVALIDDATA;
1396
1397 return 0;
1398 }
1399
decode_init_thread_copy(AVCodecContext * avctx)1400 static int decode_init_thread_copy(AVCodecContext *avctx)
1401 { EXRContext *s = avctx->priv_data;
1402
1403 // allocate thread data, used for non EXR_RAW compreesion types
1404 s->thread_data = av_mallocz_array(avctx->thread_count, sizeof(EXRThreadData));
1405 if (!s->thread_data)
1406 return AVERROR_INVALIDDATA;
1407
1408 return 0;
1409 }
1410
decode_end(AVCodecContext * avctx)1411 static av_cold int decode_end(AVCodecContext *avctx)
1412 {
1413 EXRContext *s = avctx->priv_data;
1414 int i;
1415 for (i = 0; i < avctx->thread_count; i++) {
1416 EXRThreadData *td = &s->thread_data[i];
1417 av_freep(&td->uncompressed_data);
1418 av_freep(&td->tmp);
1419 av_freep(&td->bitmap);
1420 av_freep(&td->lut);
1421 }
1422
1423 av_freep(&s->thread_data);
1424 av_freep(&s->channels);
1425
1426 return 0;
1427 }
1428
1429 #define OFFSET(x) offsetof(EXRContext, x)
1430 #define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
1431 static const AVOption options[] = {
1432 { "layer", "Set the decoding layer", OFFSET(layer),
1433 AV_OPT_TYPE_STRING, { .str = "" }, 0, 0, VD },
1434 { "gamma", "Set the float gamma value when decoding (experimental/unsupported)", OFFSET(gamma),
1435 AV_OPT_TYPE_FLOAT, { .dbl = 1.0f }, 0.001, FLT_MAX, VD },
1436 { NULL },
1437 };
1438
1439 static const AVClass exr_class = {
1440 .class_name = "EXR",
1441 .item_name = av_default_item_name,
1442 .option = options,
1443 .version = LIBAVUTIL_VERSION_INT,
1444 };
1445
1446 AVCodec ff_exr_decoder = {
1447 .name = "exr",
1448 .long_name = NULL_IF_CONFIG_SMALL("OpenEXR image"),
1449 .type = AVMEDIA_TYPE_VIDEO,
1450 .id = AV_CODEC_ID_EXR,
1451 .priv_data_size = sizeof(EXRContext),
1452 .init = decode_init,
1453 .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
1454 .close = decode_end,
1455 .decode = decode_frame,
1456 .capabilities = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS |
1457 CODEC_CAP_SLICE_THREADS,
1458 .priv_class = &exr_class,
1459 };
1460