1 /*
2  * Copyright (c) 2012 Clément Bœsch
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License along
17  * with FFmpeg; if not, write to the Free Software Foundation, Inc.,
18  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
19  */
20 
21 /**
22  * @file
23  * EBU R.128 implementation
24  * @see http://tech.ebu.ch/loudness
25  * @see https://www.youtube.com/watch?v=iuEtQqC-Sqo "EBU R128 Introduction - Florian Camerer"
26  * @todo implement start/stop/reset through filter command injection
27  * @todo support other frequencies to avoid resampling
28  */
29 
30 #include <math.h>
31 
32 #include "libavutil/avassert.h"
33 #include "libavutil/avstring.h"
34 #include "libavutil/channel_layout.h"
35 #include "libavutil/dict.h"
36 #include "libavutil/xga_font_data.h"
37 #include "libavutil/opt.h"
38 #include "libavutil/timestamp.h"
39 #include "libswresample/swresample.h"
40 #include "audio.h"
41 #include "avfilter.h"
42 #include "formats.h"
43 #include "internal.h"
44 
45 #define MAX_CHANNELS 63
46 
47 /* pre-filter coefficients */
48 #define PRE_B0  1.53512485958697
49 #define PRE_B1 -2.69169618940638
50 #define PRE_B2  1.19839281085285
51 #define PRE_A1 -1.69065929318241
52 #define PRE_A2  0.73248077421585
53 
54 /* RLB-filter coefficients */
55 #define RLB_B0  1.0
56 #define RLB_B1 -2.0
57 #define RLB_B2  1.0
58 #define RLB_A1 -1.99004745483398
59 #define RLB_A2  0.99007225036621
60 
61 #define ABS_THRES    -70            ///< silence gate: we discard anything below this absolute (LUFS) threshold
62 #define ABS_UP_THRES  10            ///< upper loud limit to consider (ABS_THRES being the minimum)
63 #define HIST_GRAIN   100            ///< defines histogram precision
64 #define HIST_SIZE  ((ABS_UP_THRES - ABS_THRES) * HIST_GRAIN + 1)
65 
66 /**
67  * A histogram is an array of HIST_SIZE hist_entry storing all the energies
68  * recorded (with an accuracy of 1/HIST_GRAIN) of the loudnesses from ABS_THRES
69  * (at 0) to ABS_UP_THRES (at HIST_SIZE-1).
70  * This fixed-size system avoids the need of a list of energies growing
71  * infinitely over the time and is thus more scalable.
72  */
73 struct hist_entry {
74     int count;                      ///< how many times the corresponding value occurred
75     double energy;                  ///< E = 10^((L + 0.691) / 10)
76     double loudness;                ///< L = -0.691 + 10 * log10(E)
77 };
78 
79 struct integrator {
80     double *cache[MAX_CHANNELS];    ///< window of filtered samples (N ms)
81     int cache_pos;                  ///< focus on the last added bin in the cache array
82     double sum[MAX_CHANNELS];       ///< sum of the last N ms filtered samples (cache content)
83     int filled;                     ///< 1 if the cache is completely filled, 0 otherwise
84     double rel_threshold;           ///< relative threshold
85     double sum_kept_powers;         ///< sum of the powers (weighted sums) above absolute threshold
86     int nb_kept_powers;             ///< number of sum above absolute threshold
87     struct hist_entry *histogram;   ///< histogram of the powers, used to compute LRA and I
88 };
89 
90 struct rect { int x, y, w, h; };
91 
92 typedef struct {
93     const AVClass *class;           ///< AVClass context for log and options purpose
94 
95     /* peak metering */
96     int peak_mode;                  ///< enabled peak modes
97     double *true_peaks;             ///< true peaks per channel
98     double *sample_peaks;           ///< sample peaks per channel
99     double *true_peaks_per_frame;   ///< true peaks in a frame per channel
100 #if CONFIG_SWRESAMPLE
101     SwrContext *swr_ctx;            ///< over-sampling context for true peak metering
102 
103     /* type pun fix */
104     union {
105         double *t_double;           ///< resampled audio data for true peak metering
106         uint8_t *t_uint8_t;
107     } swr_buf;
108 
109     int swr_linesize;
110 #endif
111 
112     /* video  */
113     int do_video;                   ///< 1 if video output enabled, 0 otherwise
114     int w, h;                       ///< size of the video output
115     struct rect text;               ///< rectangle for the LU legend on the left
116     struct rect graph;              ///< rectangle for the main graph in the center
117     struct rect gauge;              ///< rectangle for the gauge on the right
118     AVFrame *outpicref;             ///< output picture reference, updated regularly
119     int meter;                      ///< select a EBU mode between +9 and +18
120     int scale_range;                ///< the range of LU values according to the meter
121     int y_zero_lu;                  ///< the y value (pixel position) for 0 LU
122     int *y_line_ref;                ///< y reference values for drawing the LU lines in the graph and the gauge
123 
124     /* audio */
125     int nb_channels;                ///< number of channels in the input
126     double *ch_weighting;           ///< channel weighting mapping
127     int sample_count;               ///< sample count used for refresh frequency, reset at refresh
128 
129     /* Filter caches.
130      * The mult by 3 in the following is for X[i], X[i-1] and X[i-2] */
131     double x[MAX_CHANNELS * 3];     ///< 3 input samples cache for each channel
132     double y[MAX_CHANNELS * 3];     ///< 3 pre-filter samples cache for each channel
133     double z[MAX_CHANNELS * 3];     ///< 3 RLB-filter samples cache for each channel
134 
135 #define I400_BINS  (48000 * 4 / 10)
136 #define I3000_BINS (48000 * 3)
137     struct integrator i400;         ///< 400ms integrator, used for Momentary loudness  (M), and Integrated loudness (I)
138     struct integrator i3000;        ///<    3s integrator, used for Short term loudness (S), and Loudness Range      (LRA)
139 
140     /* I and LRA specific */
141     double integrated_loudness;     ///< integrated loudness in LUFS (I)
142     double loudness_range;          ///< loudness range in LU (LRA)
143     double lra_low, lra_high;       ///< low and high LRA values
144 
145     /* misc */
146     int loglevel;                   ///< log level for frame logging
147     int metadata;                   ///< whether or not to inject loudness results in frames
148 } EBUR128Context;
149 
150 enum {
151     PEAK_MODE_NONE          = 0,
152     PEAK_MODE_SAMPLES_PEAKS = 1<<1,
153     PEAK_MODE_TRUE_PEAKS    = 1<<2,
154 };
155 
156 #define OFFSET(x) offsetof(EBUR128Context, x)
157 #define A AV_OPT_FLAG_AUDIO_PARAM
158 #define V AV_OPT_FLAG_VIDEO_PARAM
159 #define F AV_OPT_FLAG_FILTERING_PARAM
160 static const AVOption ebur128_options[] = {
161 	{ "video", "set video output", OFFSET(do_video), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, V|F },
162     { "size",  "set video size",   OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x480"}, 0, 0, V|F },
163     { "meter", "set scale meter (+9 to +18)",  OFFSET(meter), AV_OPT_TYPE_INT, {.i64 = 9}, 9, 18, V|F },
164     { "framelog", "force frame logging level", OFFSET(loglevel), AV_OPT_TYPE_INT, {.i64 = -1},   INT_MIN, INT_MAX, A|V|F, "level" },
165         { "info",    "information logging level", 0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_INFO},    INT_MIN, INT_MAX, A|V|F, "level" },
166         { "verbose", "verbose logging level",     0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_VERBOSE}, INT_MIN, INT_MAX, A|V|F, "level" },
167     { "metadata", "inject metadata in the filtergraph", OFFSET(metadata), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, A|V|F },
168     { "peak", "set peak mode", OFFSET(peak_mode), AV_OPT_TYPE_FLAGS, {.i64 = PEAK_MODE_NONE}, 0, INT_MAX, A|F, "mode" },
169         { "none",   "disable any peak mode",   0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_NONE},          INT_MIN, INT_MAX, A|F, "mode" },
170         { "sample", "enable peak-sample mode", 0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_SAMPLES_PEAKS}, INT_MIN, INT_MAX, A|F, "mode" },
171         { "true",   "enable true-peak mode",   0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_TRUE_PEAKS},    INT_MIN, INT_MAX, A|F, "mode" },
172 	{ NULL },
173 };
174 
175 AVFILTER_DEFINE_CLASS(ebur128);
176 
177 static const uint8_t graph_colors[] = {
178     0xdd, 0x66, 0x66,   // value above 0LU non reached
179     0x66, 0x66, 0xdd,   // value below 0LU non reached
180     0x96, 0x33, 0x33,   // value above 0LU reached
181     0x33, 0x33, 0x96,   // value below 0LU reached
182     0xdd, 0x96, 0x96,   // value above 0LU line non reached
183     0x96, 0x96, 0xdd,   // value below 0LU line non reached
184     0xdd, 0x33, 0x33,   // value above 0LU line reached
185     0x33, 0x33, 0xdd,   // value below 0LU line reached
186 };
187 
get_graph_color(const EBUR128Context * ebur128,int v,int y)188 static const uint8_t *get_graph_color(const EBUR128Context *ebur128, int v, int y)
189 {
190     const int below0  = y > ebur128->y_zero_lu;
191     const int reached = y >= v;
192     const int line    = ebur128->y_line_ref[y] || y == ebur128->y_zero_lu;
193     const int colorid = 4*line + 2*reached + below0;
194     return graph_colors + 3*colorid;
195 }
196 
lu_to_y(const EBUR128Context * ebur128,double v)197 static inline int lu_to_y(const EBUR128Context *ebur128, double v)
198 {
199     v += 2 * ebur128->meter;                            // make it in range [0;...]
200     v  = av_clipf(v, 0, ebur128->scale_range);          // make sure it's in the graph scale
201     v  = ebur128->scale_range - v;                      // invert value (y=0 is on top)
202     return v * ebur128->graph.h / ebur128->scale_range; // rescale from scale range to px height
203 }
204 
205 #define FONT8   0
206 #define FONT16  1
207 
208 static const uint8_t font_colors[] = {
209     0xdd, 0xdd, 0x00,
210     0x00, 0x96, 0x96,
211 };
212 
drawtext(AVFrame * pic,int x,int y,int ftid,const uint8_t * color,const char * fmt,...)213 static void drawtext(AVFrame *pic, int x, int y, int ftid, const uint8_t *color, const char *fmt, ...)
214 {
215     int i;
216     char buf[128] = {0};
217     const uint8_t *font;
218     int font_height;
219     va_list vl;
220 
221     if      (ftid == FONT16) font = avpriv_vga16_font, font_height = 16;
222     else if (ftid == FONT8)  font = avpriv_cga_font,   font_height =  8;
223     else return;
224 
225     va_start(vl, fmt);
226     vsnprintf(buf, sizeof(buf), fmt, vl);
227     va_end(vl);
228 
229     for (i = 0; buf[i]; i++) {
230         int char_y, mask;
231         uint8_t *p = pic->data[0] + y*pic->linesize[0] + (x + i*8)*3;
232 
233         for (char_y = 0; char_y < font_height; char_y++) {
234             for (mask = 0x80; mask; mask >>= 1) {
235                 if (font[buf[i] * font_height + char_y] & mask)
236                     memcpy(p, color, 3);
237                 else
238                     memcpy(p, "\x00\x00\x00", 3);
239                 p += 3;
240             }
241             p += pic->linesize[0] - 8*3;
242         }
243     }
244 }
245 
drawline(AVFrame * pic,int x,int y,int len,int step)246 static void drawline(AVFrame *pic, int x, int y, int len, int step)
247 {
248     int i;
249     uint8_t *p = pic->data[0] + y*pic->linesize[0] + x*3;
250 
251     for (i = 0; i < len; i++) {
252         memcpy(p, "\x00\xff\x00", 3);
253         p += step;
254     }
255 }
256 
config_video_output(AVFilterLink * outlink)257 static int config_video_output(AVFilterLink *outlink)
258 {
259     int i, x, y;
260     uint8_t *p;
261     AVFilterContext *ctx = outlink->src;
262     EBUR128Context *ebur128 = ctx->priv;
263     AVFrame *outpicref;
264 
265     /* check if there is enough space to represent everything decently */
266     if (ebur128->w < 640 || ebur128->h < 480) {
267         av_log(ctx, AV_LOG_ERROR, "Video size %dx%d is too small, "
268                "minimum size is 640x480\n", ebur128->w, ebur128->h);
269         return AVERROR(EINVAL);
270     }
271     outlink->w = ebur128->w;
272     outlink->h = ebur128->h;
273 
274 #define PAD 8
275 
276     /* configure text area position and size */
277     ebur128->text.x  = PAD;
278     ebur128->text.y  = 40;
279     ebur128->text.w  = 3 * 8;   // 3 characters
280     ebur128->text.h  = ebur128->h - PAD - ebur128->text.y;
281 
282     /* configure gauge position and size */
283     ebur128->gauge.w = 20;
284     ebur128->gauge.h = ebur128->text.h;
285     ebur128->gauge.x = ebur128->w - PAD - ebur128->gauge.w;
286     ebur128->gauge.y = ebur128->text.y;
287 
288     /* configure graph position and size */
289     ebur128->graph.x = ebur128->text.x + ebur128->text.w + PAD;
290     ebur128->graph.y = ebur128->gauge.y;
291     ebur128->graph.w = ebur128->gauge.x - ebur128->graph.x - PAD;
292     ebur128->graph.h = ebur128->gauge.h;
293 
294     /* graph and gauge share the LU-to-pixel code */
295     av_assert0(ebur128->graph.h == ebur128->gauge.h);
296 
297     /* prepare the initial picref buffer */
298     av_frame_free(&ebur128->outpicref);
299     ebur128->outpicref = outpicref =
300         ff_get_video_buffer(outlink, outlink->w, outlink->h);
301     if (!outpicref)
302         return AVERROR(ENOMEM);
303 	outlink->sample_aspect_ratio = (AVRational){1,1};
304 
305     /* init y references values (to draw LU lines) */
306     ebur128->y_line_ref = av_calloc(ebur128->graph.h + 1, sizeof(*ebur128->y_line_ref));
307     if (!ebur128->y_line_ref)
308         return AVERROR(ENOMEM);
309 
310     /* black background */
311     memset(outpicref->data[0], 0, ebur128->h * outpicref->linesize[0]);
312 
313     /* draw LU legends */
314     drawtext(outpicref, PAD, PAD+16, FONT8, font_colors+3, " LU");
315     for (i = ebur128->meter; i >= -ebur128->meter * 2; i--) {
316         y = lu_to_y(ebur128, i);
317         x = PAD + (i < 10 && i > -10) * 8;
318         ebur128->y_line_ref[y] = i;
319         y -= 4; // -4 to center vertically
320         drawtext(outpicref, x, y + ebur128->graph.y, FONT8, font_colors+3,
321                  "%c%d", i < 0 ? '-' : i > 0 ? '+' : ' ', FFABS(i));
322     }
323 
324     /* draw graph */
325     ebur128->y_zero_lu = lu_to_y(ebur128, 0);
326     p = outpicref->data[0] + ebur128->graph.y * outpicref->linesize[0]
327                            + ebur128->graph.x * 3;
328     for (y = 0; y < ebur128->graph.h; y++) {
329         const uint8_t *c = get_graph_color(ebur128, INT_MAX, y);
330 
331         for (x = 0; x < ebur128->graph.w; x++)
332             memcpy(p + x*3, c, 3);
333         p += outpicref->linesize[0];
334     }
335 
336     /* draw fancy rectangles around the graph and the gauge */
337 #define DRAW_RECT(r) do { \
338     drawline(outpicref, r.x,       r.y - 1,   r.w, 3); \
339     drawline(outpicref, r.x,       r.y + r.h, r.w, 3); \
340     drawline(outpicref, r.x - 1,   r.y,       r.h, outpicref->linesize[0]); \
341     drawline(outpicref, r.x + r.w, r.y,       r.h, outpicref->linesize[0]); \
342 } while (0)
343     DRAW_RECT(ebur128->graph);
344     DRAW_RECT(ebur128->gauge);
345 
346     outlink->flags |= FF_LINK_FLAG_REQUEST_LOOP;
347 
348     return 0;
349 }
350 
config_audio_input(AVFilterLink * inlink)351 static int config_audio_input(AVFilterLink *inlink)
352 {
353     AVFilterContext *ctx = inlink->dst;
354     EBUR128Context *ebur128 = ctx->priv;
355 
356     /* Force 100ms framing in case of metadata injection: the frames must have
357      * a granularity of the window overlap to be accurately exploited.
358      * As for the true peaks mode, it just simplifies the resampling buffer
359      * allocation and the lookup in it (since sample buffers differ in size, it
360      * can be more complex to integrate in the one-sample loop of
361      * filter_frame()). */
362     if (ebur128->metadata || (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS))
363         inlink->min_samples =
364         inlink->max_samples =
365         inlink->partial_buf_size = inlink->sample_rate / 10;
366     return 0;
367 }
368 
config_audio_output(AVFilterLink * outlink)369 static int config_audio_output(AVFilterLink *outlink)
370 {
371     int i;
372     AVFilterContext *ctx = outlink->src;
373     EBUR128Context *ebur128 = ctx->priv;
374     const int nb_channels = av_get_channel_layout_nb_channels(outlink->channel_layout);
375 
376 #define BACK_MASK (AV_CH_BACK_LEFT    |AV_CH_BACK_CENTER    |AV_CH_BACK_RIGHT| \
377                    AV_CH_TOP_BACK_LEFT|AV_CH_TOP_BACK_CENTER|AV_CH_TOP_BACK_RIGHT| \
378                    AV_CH_SIDE_LEFT                          |AV_CH_SIDE_RIGHT| \
379                    AV_CH_SURROUND_DIRECT_LEFT               |AV_CH_SURROUND_DIRECT_RIGHT)
380 
381     ebur128->nb_channels  = nb_channels;
382     ebur128->ch_weighting = av_calloc(nb_channels, sizeof(*ebur128->ch_weighting));
383     if (!ebur128->ch_weighting)
384         return AVERROR(ENOMEM);
385 
386     for (i = 0; i < nb_channels; i++) {
387         /* channel weighting */
388         const uint16_t chl = av_channel_layout_extract_channel(outlink->channel_layout, i);
389         if (chl & (AV_CH_LOW_FREQUENCY|AV_CH_LOW_FREQUENCY_2)) {
390             ebur128->ch_weighting[i] = 0;
391         } else if (chl & BACK_MASK) {
392             ebur128->ch_weighting[i] = 1.41;
393         } else {
394             ebur128->ch_weighting[i] = 1.0;
395         }
396 
397         if (!ebur128->ch_weighting[i])
398             continue;
399 
400         /* bins buffer for the two integration window (400ms and 3s) */
401         ebur128->i400.cache[i]  = av_calloc(I400_BINS,  sizeof(*ebur128->i400.cache[0]));
402         ebur128->i3000.cache[i] = av_calloc(I3000_BINS, sizeof(*ebur128->i3000.cache[0]));
403         if (!ebur128->i400.cache[i] || !ebur128->i3000.cache[i])
404             return AVERROR(ENOMEM);
405     }
406 
407     outlink->flags |= FF_LINK_FLAG_REQUEST_LOOP;
408 
409 #if CONFIG_SWRESAMPLE
410     if (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS) {
411         int ret;
412 
413         ebur128->swr_buf.t_double = av_malloc_array(nb_channels, 19200 * sizeof(double));
414         ebur128->true_peaks = av_calloc(nb_channels, sizeof(*ebur128->true_peaks));
415         ebur128->true_peaks_per_frame = av_calloc(nb_channels, sizeof(*ebur128->true_peaks_per_frame));
416         ebur128->swr_ctx    = swr_alloc();
417         if (!ebur128->swr_buf.t_double || !ebur128->true_peaks ||
418             !ebur128->true_peaks_per_frame || !ebur128->swr_ctx)
419             return AVERROR(ENOMEM);
420 
421         av_opt_set_int(ebur128->swr_ctx, "in_channel_layout",    outlink->channel_layout, 0);
422         av_opt_set_int(ebur128->swr_ctx, "in_sample_rate",       outlink->sample_rate, 0);
423         av_opt_set_sample_fmt(ebur128->swr_ctx, "in_sample_fmt", outlink->format, 0);
424 
425         av_opt_set_int(ebur128->swr_ctx, "out_channel_layout",    outlink->channel_layout, 0);
426         av_opt_set_int(ebur128->swr_ctx, "out_sample_rate",       192000, 0);
427         av_opt_set_sample_fmt(ebur128->swr_ctx, "out_sample_fmt", outlink->format, 0);
428 
429         ret = swr_init(ebur128->swr_ctx);
430         if (ret < 0)
431             return ret;
432     }
433 #endif
434 
435     if (ebur128->peak_mode & PEAK_MODE_SAMPLES_PEAKS) {
436         ebur128->sample_peaks = av_calloc(nb_channels, sizeof(*ebur128->sample_peaks));
437         if (!ebur128->sample_peaks)
438             return AVERROR(ENOMEM);
439     }
440 
441     return 0;
442 }
443 
444 #define ENERGY(loudness) (pow(10, ((loudness) + 0.691) / 10.))
445 #define LOUDNESS(energy) (-0.691 + 10 * log10(energy))
446 #define DBFS(energy) (20 * log10(energy))
447 
get_histogram(void)448 static struct hist_entry *get_histogram(void)
449 {
450     int i;
451     struct hist_entry *h = av_calloc(HIST_SIZE, sizeof(*h));
452 
453     if (!h)
454         return NULL;
455     for (i = 0; i < HIST_SIZE; i++) {
456         h[i].loudness = i / (double)HIST_GRAIN + ABS_THRES;
457         h[i].energy   = ENERGY(h[i].loudness);
458     }
459     return h;
460 }
461 
init(AVFilterContext * ctx)462 static av_cold int init(AVFilterContext *ctx)
463 {
464     EBUR128Context *ebur128 = ctx->priv;
465     AVFilterPad pad;
466 
467     if (ebur128->loglevel != AV_LOG_INFO &&
468         ebur128->loglevel != AV_LOG_VERBOSE) {
469         if (ebur128->do_video || ebur128->metadata)
470             ebur128->loglevel = AV_LOG_VERBOSE;
471         else
472             ebur128->loglevel = AV_LOG_INFO;
473     }
474 
475     if (!CONFIG_SWRESAMPLE && (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS)) {
476         av_log(ctx, AV_LOG_ERROR,
477                "True-peak mode requires libswresample to be performed\n");
478         return AVERROR(EINVAL);
479     }
480 
481     // if meter is  +9 scale, scale range is from -18 LU to  +9 LU (or 3*9)
482     // if meter is +18 scale, scale range is from -36 LU to +18 LU (or 3*18)
483     ebur128->scale_range = 3 * ebur128->meter;
484 
485     ebur128->i400.histogram  = get_histogram();
486     ebur128->i3000.histogram = get_histogram();
487     if (!ebur128->i400.histogram || !ebur128->i3000.histogram)
488         return AVERROR(ENOMEM);
489 
490     ebur128->integrated_loudness = ABS_THRES;
491     ebur128->loudness_range = 0;
492 
493     /* insert output pads */
494     if (ebur128->do_video) {
495 		pad = (AVFilterPad){
496             .name         = av_strdup("out0"),
497             .type         = AVMEDIA_TYPE_VIDEO,
498             .config_props = config_video_output,
499         };
500 		if (!pad.name)
501             return AVERROR(ENOMEM);
502         ff_insert_outpad(ctx, 0, &pad);
503     }
504 	pad = (AVFilterPad){
505         .name         = av_asprintf("out%d", ebur128->do_video),
506         .type         = AVMEDIA_TYPE_AUDIO,
507         .config_props = config_audio_output,
508     };
509 	if (!pad.name)
510         return AVERROR(ENOMEM);
511     ff_insert_outpad(ctx, ebur128->do_video, &pad);
512 
513     /* summary */
514     av_log(ctx, AV_LOG_VERBOSE, "EBU +%d scale\n", ebur128->meter);
515 
516     return 0;
517 }
518 
519 #define HIST_POS(power) (int)(((power) - ABS_THRES) * HIST_GRAIN)
520 
521 /* loudness and power should be set such as loudness = -0.691 +
522  * 10*log10(power), we just avoid doing that calculus two times */
gate_update(struct integrator * integ,double power,double loudness,int gate_thres)523 static int gate_update(struct integrator *integ, double power,
524                        double loudness, int gate_thres)
525 {
526     int ipower;
527     double relative_threshold;
528     int gate_hist_pos;
529 
530     /* update powers histograms by incrementing current power count */
531     ipower = av_clip(HIST_POS(loudness), 0, HIST_SIZE - 1);
532     integ->histogram[ipower].count++;
533 
534     /* compute relative threshold and get its position in the histogram */
535     integ->sum_kept_powers += power;
536     integ->nb_kept_powers++;
537     relative_threshold = integ->sum_kept_powers / integ->nb_kept_powers;
538     if (!relative_threshold)
539         relative_threshold = 1e-12;
540     integ->rel_threshold = LOUDNESS(relative_threshold) + gate_thres;
541     gate_hist_pos = av_clip(HIST_POS(integ->rel_threshold), 0, HIST_SIZE - 1);
542 
543     return gate_hist_pos;
544 }
545 
filter_frame(AVFilterLink * inlink,AVFrame * insamples)546 static int filter_frame(AVFilterLink *inlink, AVFrame *insamples)
547 {
548     int i, ch, idx_insample;
549     AVFilterContext *ctx = inlink->dst;
550     EBUR128Context *ebur128 = ctx->priv;
551     const int nb_channels = ebur128->nb_channels;
552     const int nb_samples  = insamples->nb_samples;
553     const double *samples = (double *)insamples->data[0];
554     AVFrame *pic = ebur128->outpicref;
555 
556 #if CONFIG_SWRESAMPLE
557     if (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS) {
558         const double *swr_samples = ebur128->swr_buf.t_double;
559         int ret = swr_convert(ebur128->swr_ctx, (uint8_t**)&ebur128->swr_buf, 19200,
560                               (const uint8_t **)insamples->data, nb_samples);
561         if (ret < 0)
562             return ret;
563         for (ch = 0; ch < nb_channels; ch++)
564             ebur128->true_peaks_per_frame[ch] = 0.0;
565         for (idx_insample = 0; idx_insample < ret; idx_insample++) {
566             for (ch = 0; ch < nb_channels; ch++) {
567                 ebur128->true_peaks[ch] = FFMAX(ebur128->true_peaks[ch], FFABS(*swr_samples));
568                 ebur128->true_peaks_per_frame[ch] = FFMAX(ebur128->true_peaks_per_frame[ch],
569                                                           FFABS(*swr_samples));
570                 swr_samples++;
571             }
572         }
573     }
574 #endif
575 
576     for (idx_insample = 0; idx_insample < nb_samples; idx_insample++) {
577         const int bin_id_400  = ebur128->i400.cache_pos;
578         const int bin_id_3000 = ebur128->i3000.cache_pos;
579 
580 #define MOVE_TO_NEXT_CACHED_ENTRY(time) do {                \
581     ebur128->i##time.cache_pos++;                           \
582     if (ebur128->i##time.cache_pos == I##time##_BINS) {     \
583         ebur128->i##time.filled    = 1;                     \
584         ebur128->i##time.cache_pos = 0;                     \
585     }                                                       \
586 } while (0)
587 
588         MOVE_TO_NEXT_CACHED_ENTRY(400);
589         MOVE_TO_NEXT_CACHED_ENTRY(3000);
590 
591         for (ch = 0; ch < nb_channels; ch++) {
592             double bin;
593 
594             if (ebur128->peak_mode & PEAK_MODE_SAMPLES_PEAKS)
595                 ebur128->sample_peaks[ch] = FFMAX(ebur128->sample_peaks[ch], FFABS(*samples));
596 
597             ebur128->x[ch * 3] = *samples++; // set X[i]
598 
599             if (!ebur128->ch_weighting[ch])
600                 continue;
601 
602             /* Y[i] = X[i]*b0 + X[i-1]*b1 + X[i-2]*b2 - Y[i-1]*a1 - Y[i-2]*a2 */
603 #define FILTER(Y, X, name) do {                                                 \
604             double *dst = ebur128->Y + ch*3;                                    \
605             double *src = ebur128->X + ch*3;                                    \
606             dst[2] = dst[1];                                                    \
607             dst[1] = dst[0];                                                    \
608             dst[0] = src[0]*name##_B0 + src[1]*name##_B1 + src[2]*name##_B2     \
609                                       - dst[1]*name##_A1 - dst[2]*name##_A2;    \
610 } while (0)
611 
612             // TODO: merge both filters in one?
613             FILTER(y, x, PRE);  // apply pre-filter
614             ebur128->x[ch * 3 + 2] = ebur128->x[ch * 3 + 1];
615             ebur128->x[ch * 3 + 1] = ebur128->x[ch * 3    ];
616             FILTER(z, y, RLB);  // apply RLB-filter
617 
618             bin = ebur128->z[ch * 3] * ebur128->z[ch * 3];
619 
620             /* add the new value, and limit the sum to the cache size (400ms or 3s)
621              * by removing the oldest one */
622             ebur128->i400.sum [ch] = ebur128->i400.sum [ch] + bin - ebur128->i400.cache [ch][bin_id_400];
623             ebur128->i3000.sum[ch] = ebur128->i3000.sum[ch] + bin - ebur128->i3000.cache[ch][bin_id_3000];
624 
625             /* override old cache entry with the new value */
626             ebur128->i400.cache [ch][bin_id_400 ] = bin;
627             ebur128->i3000.cache[ch][bin_id_3000] = bin;
628         }
629 
630         /* For integrated loudness, gating blocks are 400ms long with 75%
631          * overlap (see BS.1770-2 p5), so a re-computation is needed each 100ms
632          * (4800 samples at 48kHz). */
633         if (++ebur128->sample_count == 4800) {
634             double loudness_400, loudness_3000;
635             double power_400 = 1e-12, power_3000 = 1e-12;
636             AVFilterLink *outlink = ctx->outputs[0];
637 			const int64_t pts = insamples->pts +
638                 av_rescale_q(idx_insample, (AVRational){ 1, inlink->sample_rate },
639                              outlink->time_base);
640             ebur128->sample_count = 0;
641 
642 #define COMPUTE_LOUDNESS(m, time) do {                                              \
643     if (ebur128->i##time.filled) {                                                  \
644         /* weighting sum of the last <time> ms */                                   \
645         for (ch = 0; ch < nb_channels; ch++)                                        \
646             power_##time += ebur128->ch_weighting[ch] * ebur128->i##time.sum[ch];   \
647         power_##time /= I##time##_BINS;                                             \
648     }                                                                               \
649     loudness_##time = LOUDNESS(power_##time);                                       \
650 } while (0)
651 
652             COMPUTE_LOUDNESS(M,  400);
653             COMPUTE_LOUDNESS(S, 3000);
654 
655             /* Integrated loudness */
656 #define I_GATE_THRES -10  // initially defined to -8 LU in the first EBU standard
657 
658             if (loudness_400 >= ABS_THRES) {
659                 double integrated_sum = 0;
660                 int nb_integrated = 0;
661                 int gate_hist_pos = gate_update(&ebur128->i400, power_400,
662                                                 loudness_400, I_GATE_THRES);
663 
664                 /* compute integrated loudness by summing the histogram values
665                  * above the relative threshold */
666                 for (i = gate_hist_pos; i < HIST_SIZE; i++) {
667                     const int nb_v = ebur128->i400.histogram[i].count;
668                     nb_integrated  += nb_v;
669                     integrated_sum += nb_v * ebur128->i400.histogram[i].energy;
670                 }
671                 if (nb_integrated)
672                     ebur128->integrated_loudness = LOUDNESS(integrated_sum / nb_integrated);
673             }
674 
675             /* LRA */
676 #define LRA_GATE_THRES -20
677 #define LRA_LOWER_PRC   10
678 #define LRA_HIGHER_PRC  95
679 
680             /* XXX: example code in EBU 3342 is ">=" but formula in BS.1770
681              * specs is ">" */
682             if (loudness_3000 >= ABS_THRES) {
683                 int nb_powers = 0;
684                 int gate_hist_pos = gate_update(&ebur128->i3000, power_3000,
685                                                 loudness_3000, LRA_GATE_THRES);
686 
687                 for (i = gate_hist_pos; i < HIST_SIZE; i++)
688                     nb_powers += ebur128->i3000.histogram[i].count;
689                 if (nb_powers) {
690                     int n, nb_pow;
691 
692                     /* get lower loudness to consider */
693                     n = 0;
694                     nb_pow = LRA_LOWER_PRC  * nb_powers / 100. + 0.5;
695                     for (i = gate_hist_pos; i < HIST_SIZE; i++) {
696                         n += ebur128->i3000.histogram[i].count;
697                         if (n >= nb_pow) {
698                             ebur128->lra_low = ebur128->i3000.histogram[i].loudness;
699                             break;
700                         }
701                     }
702 
703                     /* get higher loudness to consider */
704                     n = nb_powers;
705                     nb_pow = LRA_HIGHER_PRC * nb_powers / 100. + 0.5;
706                     for (i = HIST_SIZE - 1; i >= 0; i--) {
707                         n -= ebur128->i3000.histogram[i].count;
708                         if (n < nb_pow) {
709                             ebur128->lra_high = ebur128->i3000.histogram[i].loudness;
710                             break;
711                         }
712                     }
713 
714                     // XXX: show low & high on the graph?
715                     ebur128->loudness_range = ebur128->lra_high - ebur128->lra_low;
716                 }
717             }
718 
719 #define LOG_FMT "M:%6.1f S:%6.1f     I:%6.1f LUFS     LRA:%6.1f LU"
720 
721             /* push one video frame */
722             if (ebur128->do_video) {
723                 int x, y, ret;
724                 uint8_t *p;
725 
726                 const int y_loudness_lu_graph = lu_to_y(ebur128, loudness_3000 + 23);
727                 const int y_loudness_lu_gauge = lu_to_y(ebur128, loudness_400  + 23);
728 
729                 /* draw the graph using the short-term loudness */
730                 p = pic->data[0] + ebur128->graph.y*pic->linesize[0] + ebur128->graph.x*3;
731                 for (y = 0; y < ebur128->graph.h; y++) {
732                     const uint8_t *c = get_graph_color(ebur128, y_loudness_lu_graph, y);
733 
734                     memmove(p, p + 3, (ebur128->graph.w - 1) * 3);
735                     memcpy(p + (ebur128->graph.w - 1) * 3, c, 3);
736                     p += pic->linesize[0];
737                 }
738 
739                 /* draw the gauge using the momentary loudness */
740                 p = pic->data[0] + ebur128->gauge.y*pic->linesize[0] + ebur128->gauge.x*3;
741                 for (y = 0; y < ebur128->gauge.h; y++) {
742                     const uint8_t *c = get_graph_color(ebur128, y_loudness_lu_gauge, y);
743 
744                     for (x = 0; x < ebur128->gauge.w; x++)
745                         memcpy(p + x*3, c, 3);
746                     p += pic->linesize[0];
747                 }
748 
749                 /* draw textual info */
750                 drawtext(pic, PAD, PAD - PAD/2, FONT16, font_colors,
751                          LOG_FMT "     ", // padding to erase trailing characters
752                          loudness_400, loudness_3000,
753                          ebur128->integrated_loudness, ebur128->loudness_range);
754 
755                 /* set pts and push frame */
756                 pic->pts = pts;
757                 ret = ff_filter_frame(outlink, av_frame_clone(pic));
758                 if (ret < 0)
759                     return ret;
760             }
761 
762             if (ebur128->metadata) { /* happens only once per filter_frame call */
763                 char metabuf[128];
764 #define META_PREFIX "lavfi.r128."
765 
766 #define SET_META(name, var) do {                                            \
767     snprintf(metabuf, sizeof(metabuf), "%.3f", var);                        \
768     av_dict_set(&insamples->metadata, name, metabuf, 0);                    \
769 } while (0)
770 
771 #define SET_META_PEAK(name, ptype) do {                                     \
772     if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) {               \
773         char key[64];                                                       \
774         for (ch = 0; ch < nb_channels; ch++) {                              \
775             snprintf(key, sizeof(key),                                      \
776                      META_PREFIX AV_STRINGIFY(name) "_peaks_ch%d", ch);     \
777             SET_META(key, ebur128->name##_peaks[ch]);                       \
778         }                                                                   \
779     }                                                                       \
780 } while (0)
781 
782                 SET_META(META_PREFIX "M",        loudness_400);
783                 SET_META(META_PREFIX "S",        loudness_3000);
784                 SET_META(META_PREFIX "I",        ebur128->integrated_loudness);
785                 SET_META(META_PREFIX "LRA",      ebur128->loudness_range);
786                 SET_META(META_PREFIX "LRA.low",  ebur128->lra_low);
787                 SET_META(META_PREFIX "LRA.high", ebur128->lra_high);
788 
789                 SET_META_PEAK(sample, SAMPLES);
790                 SET_META_PEAK(true,   TRUE);
791             }
792 
793 			av_log(ctx, ebur128->loglevel, "t: %-10s " LOG_FMT,
794                    av_ts2timestr(pts, &outlink->time_base),
795                    loudness_400, loudness_3000,
796                    ebur128->integrated_loudness, ebur128->loudness_range);
797 
798 #define PRINT_PEAKS(str, sp, ptype) do {                            \
799     if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) {       \
800         av_log(ctx, ebur128->loglevel, "  " str ":");               \
801         for (ch = 0; ch < nb_channels; ch++)                        \
802             av_log(ctx, ebur128->loglevel, " %5.1f", DBFS(sp[ch])); \
803         av_log(ctx, ebur128->loglevel, " dBFS");                    \
804     }                                                               \
805 } while (0)
806 
807             PRINT_PEAKS("SPK", ebur128->sample_peaks, SAMPLES);
808             PRINT_PEAKS("FTPK", ebur128->true_peaks_per_frame, TRUE);
809             PRINT_PEAKS("TPK", ebur128->true_peaks,   TRUE);
810             av_log(ctx, ebur128->loglevel, "\n");
811         }
812     }
813 
814     return ff_filter_frame(ctx->outputs[ebur128->do_video], insamples);
815 }
816 
query_formats(AVFilterContext * ctx)817 static int query_formats(AVFilterContext *ctx)
818 {
819     EBUR128Context *ebur128 = ctx->priv;
820     AVFilterFormats *formats;
821     AVFilterChannelLayouts *layouts;
822     AVFilterLink *inlink = ctx->inputs[0];
823     AVFilterLink *outlink = ctx->outputs[0];
824 
825     static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_NONE };
826     static const int input_srate[] = {48000, -1}; // ITU-R BS.1770 provides coeff only for 48kHz
827     static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_RGB24, AV_PIX_FMT_NONE };
828 
829     /* set optional output video format */
830     if (ebur128->do_video) {
831         formats = ff_make_format_list(pix_fmts);
832         if (!formats)
833             return AVERROR(ENOMEM);
834         ff_formats_ref(formats, &outlink->in_formats);
835         outlink = ctx->outputs[1];
836     }
837 
838     /* set input and output audio formats
839      * Note: ff_set_common_* functions are not used because they affect all the
840      * links, and thus break the video format negotiation */
841     formats = ff_make_format_list(sample_fmts);
842     if (!formats)
843         return AVERROR(ENOMEM);
844     ff_formats_ref(formats, &inlink->out_formats);
845     ff_formats_ref(formats, &outlink->in_formats);
846 
847     layouts = ff_all_channel_layouts();
848     if (!layouts)
849         return AVERROR(ENOMEM);
850     ff_channel_layouts_ref(layouts, &inlink->out_channel_layouts);
851     ff_channel_layouts_ref(layouts, &outlink->in_channel_layouts);
852 
853     formats = ff_make_format_list(input_srate);
854     if (!formats)
855         return AVERROR(ENOMEM);
856     ff_formats_ref(formats, &inlink->out_samplerates);
857     ff_formats_ref(formats, &outlink->in_samplerates);
858 
859     return 0;
860 }
861 
uninit(AVFilterContext * ctx)862 static av_cold void uninit(AVFilterContext *ctx)
863 {
864     int i;
865     EBUR128Context *ebur128 = ctx->priv;
866 
867     av_log(ctx, AV_LOG_INFO, "Summary:\n\n"
868            "  Integrated loudness:\n"
869            "    I:         %5.1f LUFS\n"
870            "    Threshold: %5.1f LUFS\n\n"
871            "  Loudness range:\n"
872            "    LRA:       %5.1f LU\n"
873            "    Threshold: %5.1f LUFS\n"
874            "    LRA low:   %5.1f LUFS\n"
875            "    LRA high:  %5.1f LUFS",
876            ebur128->integrated_loudness, ebur128->i400.rel_threshold,
877            ebur128->loudness_range,      ebur128->i3000.rel_threshold,
878            ebur128->lra_low, ebur128->lra_high);
879 
880 #define PRINT_PEAK_SUMMARY(str, sp, ptype) do {                  \
881     int ch;                                                      \
882     double maxpeak;                                              \
883     maxpeak = 0.0;                                               \
884     if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) {    \
885         for (ch = 0; ch < ebur128->nb_channels; ch++)            \
886             maxpeak = FFMAX(maxpeak, sp[ch]);                    \
887         av_log(ctx, AV_LOG_INFO, "\n\n  " str " peak:\n"         \
888                "    Peak:      %5.1f dBFS",                      \
889                DBFS(maxpeak));                                   \
890     }                                                            \
891 } while (0)
892 
893     PRINT_PEAK_SUMMARY("Sample", ebur128->sample_peaks, SAMPLES);
894     PRINT_PEAK_SUMMARY("True",   ebur128->true_peaks,   TRUE);
895     av_log(ctx, AV_LOG_INFO, "\n");
896 
897     av_freep(&ebur128->y_line_ref);
898     av_freep(&ebur128->ch_weighting);
899     av_freep(&ebur128->true_peaks);
900     av_freep(&ebur128->sample_peaks);
901     av_freep(&ebur128->true_peaks_per_frame);
902     av_freep(&ebur128->i400.histogram);
903     av_freep(&ebur128->i3000.histogram);
904     for (i = 0; i < ebur128->nb_channels; i++) {
905         av_freep(&ebur128->i400.cache[i]);
906         av_freep(&ebur128->i3000.cache[i]);
907     }
908     for (i = 0; i < ctx->nb_outputs; i++)
909         av_freep(&ctx->output_pads[i].name);
910     av_frame_free(&ebur128->outpicref);
911 #if CONFIG_SWRESAMPLE
912     av_freep(&ebur128->swr_buf);
913     swr_free(&ebur128->swr_ctx);
914 #endif
915 }
916 
917 static const AVFilterPad ebur128_inputs[] = {
918     {
919 		.name         = "default",
920         .type         = AVMEDIA_TYPE_AUDIO,
921         .filter_frame = filter_frame,
922         .config_props = config_audio_input,
923 	},
924     { NULL }
925 };
926 
927 AVFilter ff_af_ebur128 = {
928 	.name          = "ebur128",
929     .description   = NULL_IF_CONFIG_SMALL("EBU R128 scanner."),
930     .priv_size     = sizeof(EBUR128Context),
931     .init          = init,
932     .uninit        = uninit,
933     .query_formats = query_formats,
934     .inputs        = ebur128_inputs,
935     .outputs       = NULL,
936     .priv_class    = &ebur128_class,
937     .flags         = AVFILTER_FLAG_DYNAMIC_OUTPUTS,
938 };
939