1///////////////////////////////////////////////////////////////////////////////////////////////////
2// OpenGL Mathematics Copyright (c) 2005 - 2012 G-Truc Creation (www.g-truc.net)
3///////////////////////////////////////////////////////////////////////////////////////////////////
4// Based on the work of Stefan Gustavson and Ashima Arts on "webgl-noise":
5// https://github.com/ashima/webgl-noise
6// Following Stefan Gustavson's paper "Simplex noise demystified":
7// http://www.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
8///////////////////////////////////////////////////////////////////////////////////////////////////
9// Created : 2011-04-21
10// Updated : 2011-09-27
11// Licence : This source is under MIT License
12// File    : glm/gtc/noise.inl
13///////////////////////////////////////////////////////////////////////////////////////////////////
14// Dependency:
15// - GLM core
16///////////////////////////////////////////////////////////////////////////////////////////////////
17
18namespace glm
19{
20	template <typename T>
21	GLM_FUNC_QUALIFIER T mod289(T const & x)
22	{
23		return x - floor(x * T(1.0 / 289.0)) * T(289.0);
24	}
25
26	template <typename T>
27	GLM_FUNC_QUALIFIER T permute(T const & x)
28	{
29		return mod289(((x * T(34)) + T(1)) * x);
30	}
31
32	template <typename T, template<typename> class vecType>
33	GLM_FUNC_QUALIFIER vecType<T> permute(vecType<T> const & x)
34	{
35		return mod289(((x * T(34)) + T(1)) * x);
36	}
37
38	template <typename T>
39	GLM_FUNC_QUALIFIER T taylorInvSqrt(T const & r)
40	{
41		return T(1.79284291400159) - T(0.85373472095314) * r;
42	}
43
44	template <typename T, template<typename> class vecType>
45	GLM_FUNC_QUALIFIER vecType<T> taylorInvSqrt(vecType<T> const & r)
46	{
47		return T(1.79284291400159) - T(0.85373472095314) * r;
48	}
49
50	template <typename T, template <typename> class vecType>
51	GLM_FUNC_QUALIFIER vecType<T> fade(vecType<T> const & t)
52	{
53		return t * t * t * (t * (t * T(6) - T(15)) + T(10));
54	}
55
56	template <typename T>
57	GLM_FUNC_QUALIFIER detail::tvec4<T> grad4(T const & j, detail::tvec4<T> const & ip)
58	{
59		detail::tvec3<T> pXYZ = floor(fract(detail::tvec3<T>(j) * detail::tvec3<T>(ip)) * T(7)) * ip[2] - T(1);
60		T pW = T(1.5) - dot(abs(pXYZ), detail::tvec3<T>(1));
61		detail::tvec4<T> s = detail::tvec4<T>(lessThan(detail::tvec4<T>(pXYZ, pW), detail::tvec4<T>(0.0)));
62		pXYZ = pXYZ + (detail::tvec3<T>(s) * T(2) - T(1)) * s.w;
63		return detail::tvec4<T>(pXYZ, pW);
64	}
65
66	// Classic Perlin noise
67	template <typename T>
68	GLM_FUNC_QUALIFIER T perlin(detail::tvec2<T> const & P)
69	{
70		detail::tvec4<T> Pi = glm::floor(detail::tvec4<T>(P.x, P.y, P.x, P.y)) + detail::tvec4<T>(0.0, 0.0, 1.0, 1.0);
71		detail::tvec4<T> Pf = glm::fract(detail::tvec4<T>(P.x, P.y, P.x, P.y)) - detail::tvec4<T>(0.0, 0.0, 1.0, 1.0);
72		Pi = mod(Pi, T(289)); // To avoid truncation effects in permutation
73		detail::tvec4<T> ix(Pi.x, Pi.z, Pi.x, Pi.z);
74		detail::tvec4<T> iy(Pi.y, Pi.y, Pi.w, Pi.w);
75		detail::tvec4<T> fx(Pf.x, Pf.z, Pf.x, Pf.z);
76		detail::tvec4<T> fy(Pf.y, Pf.y, Pf.w, Pf.w);
77
78		detail::tvec4<T> i = glm::permute(glm::permute(ix) + iy);
79
80		detail::tvec4<T> gx = T(2) * glm::fract(i / T(41)) - T(1);
81		detail::tvec4<T> gy = glm::abs(gx) - T(0.5);
82		detail::tvec4<T> tx = glm::floor(gx + T(0.5));
83		gx = gx - tx;
84
85		detail::tvec2<T> g00(gx.x, gy.x);
86		detail::tvec2<T> g10(gx.y, gy.y);
87		detail::tvec2<T> g01(gx.z, gy.z);
88		detail::tvec2<T> g11(gx.w, gy.w);
89
90		detail::tvec4<T> norm = taylorInvSqrt(detail::tvec4<T>(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11)));
91		g00 *= norm.x;
92		g01 *= norm.y;
93		g10 *= norm.z;
94		g11 *= norm.w;
95
96		T n00 = dot(g00, detail::tvec2<T>(fx.x, fy.x));
97		T n10 = dot(g10, detail::tvec2<T>(fx.y, fy.y));
98		T n01 = dot(g01, detail::tvec2<T>(fx.z, fy.z));
99		T n11 = dot(g11, detail::tvec2<T>(fx.w, fy.w));
100
101		detail::tvec2<T> fade_xy = fade(detail::tvec2<T>(Pf.x, Pf.y));
102		detail::tvec2<T> n_x = mix(detail::tvec2<T>(n00, n01), detail::tvec2<T>(n10, n11), fade_xy.x);
103		T n_xy = mix(n_x.x, n_x.y, fade_xy.y);
104		return T(2.3) * n_xy;
105	}
106
107	// Classic Perlin noise
108	template <typename T>
109	GLM_FUNC_QUALIFIER T perlin(detail::tvec3<T> const & P)
110	{
111		detail::tvec3<T> Pi0 = floor(P); // Integer part for indexing
112		detail::tvec3<T> Pi1 = Pi0 + T(1); // Integer part + 1
113		Pi0 = mod289(Pi0);
114		Pi1 = mod289(Pi1);
115		detail::tvec3<T> Pf0 = fract(P); // Fractional part for interpolation
116		detail::tvec3<T> Pf1 = Pf0 - T(1); // Fractional part - 1.0
117		detail::tvec4<T> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
118		detail::tvec4<T> iy = detail::tvec4<T>(detail::tvec2<T>(Pi0.y), detail::tvec2<T>(Pi1.y));
119		detail::tvec4<T> iz0(Pi0.z);
120		detail::tvec4<T> iz1(Pi1.z);
121
122		detail::tvec4<T> ixy = permute(permute(ix) + iy);
123		detail::tvec4<T> ixy0 = permute(ixy + iz0);
124		detail::tvec4<T> ixy1 = permute(ixy + iz1);
125
126		detail::tvec4<T> gx0 = ixy0 * T(1.0 / 7.0);
127		detail::tvec4<T> gy0 = fract(floor(gx0) * T(1.0 / 7.0)) - T(0.5);
128		gx0 = fract(gx0);
129		detail::tvec4<T> gz0 = detail::tvec4<T>(0.5) - abs(gx0) - abs(gy0);
130		detail::tvec4<T> sz0 = step(gz0, detail::tvec4<T>(0.0));
131		gx0 -= sz0 * (step(T(0), gx0) - T(0.5));
132		gy0 -= sz0 * (step(T(0), gy0) - T(0.5));
133
134		detail::tvec4<T> gx1 = ixy1 * T(1.0 / 7.0);
135		detail::tvec4<T> gy1 = fract(floor(gx1) * T(1.0 / 7.0)) - T(0.5);
136		gx1 = fract(gx1);
137		detail::tvec4<T> gz1 = detail::tvec4<T>(0.5) - abs(gx1) - abs(gy1);
138		detail::tvec4<T> sz1 = step(gz1, detail::tvec4<T>(0.0));
139		gx1 -= sz1 * (step(T(0), gx1) - T(0.5));
140		gy1 -= sz1 * (step(T(0), gy1) - T(0.5));
141
142		detail::tvec3<T> g000(gx0.x, gy0.x, gz0.x);
143		detail::tvec3<T> g100(gx0.y, gy0.y, gz0.y);
144		detail::tvec3<T> g010(gx0.z, gy0.z, gz0.z);
145		detail::tvec3<T> g110(gx0.w, gy0.w, gz0.w);
146		detail::tvec3<T> g001(gx1.x, gy1.x, gz1.x);
147		detail::tvec3<T> g101(gx1.y, gy1.y, gz1.y);
148		detail::tvec3<T> g011(gx1.z, gy1.z, gz1.z);
149		detail::tvec3<T> g111(gx1.w, gy1.w, gz1.w);
150
151		detail::tvec4<T> norm0 = taylorInvSqrt(detail::tvec4<T>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
152		g000 *= norm0.x;
153		g010 *= norm0.y;
154		g100 *= norm0.z;
155		g110 *= norm0.w;
156		detail::tvec4<T> norm1 = taylorInvSqrt(detail::tvec4<T>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
157		g001 *= norm1.x;
158		g011 *= norm1.y;
159		g101 *= norm1.z;
160		g111 *= norm1.w;
161
162		T n000 = dot(g000, Pf0);
163		T n100 = dot(g100, detail::tvec3<T>(Pf1.x, Pf0.y, Pf0.z));
164		T n010 = dot(g010, detail::tvec3<T>(Pf0.x, Pf1.y, Pf0.z));
165		T n110 = dot(g110, detail::tvec3<T>(Pf1.x, Pf1.y, Pf0.z));
166		T n001 = dot(g001, detail::tvec3<T>(Pf0.x, Pf0.y, Pf1.z));
167		T n101 = dot(g101, detail::tvec3<T>(Pf1.x, Pf0.y, Pf1.z));
168		T n011 = dot(g011, detail::tvec3<T>(Pf0.x, Pf1.y, Pf1.z));
169		T n111 = dot(g111, Pf1);
170
171		detail::tvec3<T> fade_xyz = fade(Pf0);
172		detail::tvec4<T> n_z = mix(detail::tvec4<T>(n000, n100, n010, n110), detail::tvec4<T>(n001, n101, n011, n111), fade_xyz.z);
173		detail::tvec2<T> n_yz = mix(detail::tvec2<T>(n_z.x, n_z.y), detail::tvec2<T>(n_z.z, n_z.w), fade_xyz.y);
174		T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
175		return T(2.2) * n_xyz;
176	}
177	/*
178	// Classic Perlin noise
179	template <typename T>
180	GLM_FUNC_QUALIFIER T perlin(detail::tvec3<T> const & P)
181	{
182		detail::tvec3<T> Pi0 = floor(P); // Integer part for indexing
183		detail::tvec3<T> Pi1 = Pi0 + T(1); // Integer part + 1
184		Pi0 = mod(Pi0, T(289));
185		Pi1 = mod(Pi1, T(289));
186		detail::tvec3<T> Pf0 = fract(P); // Fractional part for interpolation
187		detail::tvec3<T> Pf1 = Pf0 - T(1); // Fractional part - 1.0
188		detail::tvec4<T> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
189		detail::tvec4<T> iy(Pi0.y, Pi0.y, Pi1.y, Pi1.y);
190		detail::tvec4<T> iz0(Pi0.z);
191		detail::tvec4<T> iz1(Pi1.z);
192
193		detail::tvec4<T> ixy = permute(permute(ix) + iy);
194		detail::tvec4<T> ixy0 = permute(ixy + iz0);
195		detail::tvec4<T> ixy1 = permute(ixy + iz1);
196
197		detail::tvec4<T> gx0 = ixy0 / T(7);
198		detail::tvec4<T> gy0 = fract(floor(gx0) / T(7)) - T(0.5);
199		gx0 = fract(gx0);
200		detail::tvec4<T> gz0 = detail::tvec4<T>(0.5) - abs(gx0) - abs(gy0);
201		detail::tvec4<T> sz0 = step(gz0, detail::tvec4<T>(0.0));
202		gx0 -= sz0 * (step(0.0, gx0) - T(0.5));
203		gy0 -= sz0 * (step(0.0, gy0) - T(0.5));
204
205		detail::tvec4<T> gx1 = ixy1 / T(7);
206		detail::tvec4<T> gy1 = fract(floor(gx1) / T(7)) - T(0.5);
207		gx1 = fract(gx1);
208		detail::tvec4<T> gz1 = detail::tvec4<T>(0.5) - abs(gx1) - abs(gy1);
209		detail::tvec4<T> sz1 = step(gz1, detail::tvec4<T>(0.0));
210		gx1 -= sz1 * (step(T(0), gx1) - T(0.5));
211		gy1 -= sz1 * (step(T(0), gy1) - T(0.5));
212
213		detail::tvec3<T> g000(gx0.x, gy0.x, gz0.x);
214		detail::tvec3<T> g100(gx0.y, gy0.y, gz0.y);
215		detail::tvec3<T> g010(gx0.z, gy0.z, gz0.z);
216		detail::tvec3<T> g110(gx0.w, gy0.w, gz0.w);
217		detail::tvec3<T> g001(gx1.x, gy1.x, gz1.x);
218		detail::tvec3<T> g101(gx1.y, gy1.y, gz1.y);
219		detail::tvec3<T> g011(gx1.z, gy1.z, gz1.z);
220		detail::tvec3<T> g111(gx1.w, gy1.w, gz1.w);
221
222		detail::tvec4<T> norm0 = taylorInvSqrt(detail::tvec4<T>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
223		g000 *= norm0.x;
224		g010 *= norm0.y;
225		g100 *= norm0.z;
226		g110 *= norm0.w;
227		detail::tvec4<T> norm1 = taylorInvSqrt(detail::tvec4<T>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
228		g001 *= norm1.x;
229		g011 *= norm1.y;
230		g101 *= norm1.z;
231		g111 *= norm1.w;
232
233		T n000 = dot(g000, Pf0);
234		T n100 = dot(g100, detail::tvec3<T>(Pf1.x, Pf0.y, Pf0.z));
235		T n010 = dot(g010, detail::tvec3<T>(Pf0.x, Pf1.y, Pf0.z));
236		T n110 = dot(g110, detail::tvec3<T>(Pf1.x, Pf1.y, Pf0.z));
237		T n001 = dot(g001, detail::tvec3<T>(Pf0.x, Pf0.y, Pf1.z));
238		T n101 = dot(g101, detail::tvec3<T>(Pf1.x, Pf0.y, Pf1.z));
239		T n011 = dot(g011, detail::tvec3<T>(Pf0.x, Pf1.y, Pf1.z));
240		T n111 = dot(g111, Pf1);
241
242		detail::tvec3<T> fade_xyz = fade(Pf0);
243		detail::tvec4<T> n_z = mix(detail::tvec4<T>(n000, n100, n010, n110), detail::tvec4<T>(n001, n101, n011, n111), fade_xyz.z);
244		detail::tvec2<T> n_yz = mix(
245			detail::tvec2<T>(n_z.x, n_z.y),
246			detail::tvec2<T>(n_z.z, n_z.w), fade_xyz.y);
247		T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
248		return T(2.2) * n_xyz;
249	}
250	*/
251	// Classic Perlin noise
252	template <typename T>
253	GLM_FUNC_QUALIFIER T perlin(detail::tvec4<T> const & P)
254	{
255		detail::tvec4<T> Pi0 = floor(P); // Integer part for indexing
256		detail::tvec4<T> Pi1 = Pi0 + T(1); // Integer part + 1
257		Pi0 = mod(Pi0, T(289));
258		Pi1 = mod(Pi1, T(289));
259		detail::tvec4<T> Pf0 = fract(P); // Fractional part for interpolation
260		detail::tvec4<T> Pf1 = Pf0 - T(1); // Fractional part - 1.0
261		detail::tvec4<T> ix(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
262		detail::tvec4<T> iy(Pi0.y, Pi0.y, Pi1.y, Pi1.y);
263		detail::tvec4<T> iz0(Pi0.z);
264		detail::tvec4<T> iz1(Pi1.z);
265		detail::tvec4<T> iw0(Pi0.w);
266		detail::tvec4<T> iw1(Pi1.w);
267
268		detail::tvec4<T> ixy = permute(permute(ix) + iy);
269		detail::tvec4<T> ixy0 = permute(ixy + iz0);
270		detail::tvec4<T> ixy1 = permute(ixy + iz1);
271		detail::tvec4<T> ixy00 = permute(ixy0 + iw0);
272		detail::tvec4<T> ixy01 = permute(ixy0 + iw1);
273		detail::tvec4<T> ixy10 = permute(ixy1 + iw0);
274		detail::tvec4<T> ixy11 = permute(ixy1 + iw1);
275
276		detail::tvec4<T> gx00 = ixy00 / T(7);
277		detail::tvec4<T> gy00 = floor(gx00) / T(7);
278		detail::tvec4<T> gz00 = floor(gy00) / T(6);
279		gx00 = fract(gx00) - T(0.5);
280		gy00 = fract(gy00) - T(0.5);
281		gz00 = fract(gz00) - T(0.5);
282		detail::tvec4<T> gw00 = detail::tvec4<T>(0.75) - abs(gx00) - abs(gy00) - abs(gz00);
283		detail::tvec4<T> sw00 = step(gw00, detail::tvec4<T>(0.0));
284		gx00 -= sw00 * (step(T(0), gx00) - T(0.5));
285		gy00 -= sw00 * (step(T(0), gy00) - T(0.5));
286
287		detail::tvec4<T> gx01 = ixy01 / T(7);
288		detail::tvec4<T> gy01 = floor(gx01) / T(7);
289		detail::tvec4<T> gz01 = floor(gy01) / T(6);
290		gx01 = fract(gx01) - T(0.5);
291		gy01 = fract(gy01) - T(0.5);
292		gz01 = fract(gz01) - T(0.5);
293		detail::tvec4<T> gw01 = detail::tvec4<T>(0.75) - abs(gx01) - abs(gy01) - abs(gz01);
294		detail::tvec4<T> sw01 = step(gw01, detail::tvec4<T>(0.0));
295		gx01 -= sw01 * (step(T(0), gx01) - T(0.5));
296		gy01 -= sw01 * (step(T(0), gy01) - T(0.5));
297
298		detail::tvec4<T> gx10 = ixy10 / T(7);
299		detail::tvec4<T> gy10 = floor(gx10) / T(7);
300		detail::tvec4<T> gz10 = floor(gy10) / T(6);
301		gx10 = fract(gx10) - T(0.5);
302		gy10 = fract(gy10) - T(0.5);
303		gz10 = fract(gz10) - T(0.5);
304		detail::tvec4<T> gw10 = detail::tvec4<T>(0.75) - abs(gx10) - abs(gy10) - abs(gz10);
305		detail::tvec4<T> sw10 = step(gw10, detail::tvec4<T>(0));
306		gx10 -= sw10 * (step(T(0), gx10) - T(0.5));
307		gy10 -= sw10 * (step(T(0), gy10) - T(0.5));
308
309		detail::tvec4<T> gx11 = ixy11 / T(7);
310		detail::tvec4<T> gy11 = floor(gx11) / T(7);
311		detail::tvec4<T> gz11 = floor(gy11) / T(6);
312		gx11 = fract(gx11) - T(0.5);
313		gy11 = fract(gy11) - T(0.5);
314		gz11 = fract(gz11) - T(0.5);
315		detail::tvec4<T> gw11 = detail::tvec4<T>(0.75) - abs(gx11) - abs(gy11) - abs(gz11);
316		detail::tvec4<T> sw11 = step(gw11, detail::tvec4<T>(0.0));
317		gx11 -= sw11 * (step(T(0), gx11) - T(0.5));
318		gy11 -= sw11 * (step(T(0), gy11) - T(0.5));
319
320		detail::tvec4<T> g0000(gx00.x, gy00.x, gz00.x, gw00.x);
321		detail::tvec4<T> g1000(gx00.y, gy00.y, gz00.y, gw00.y);
322		detail::tvec4<T> g0100(gx00.z, gy00.z, gz00.z, gw00.z);
323		detail::tvec4<T> g1100(gx00.w, gy00.w, gz00.w, gw00.w);
324		detail::tvec4<T> g0010(gx10.x, gy10.x, gz10.x, gw10.x);
325		detail::tvec4<T> g1010(gx10.y, gy10.y, gz10.y, gw10.y);
326		detail::tvec4<T> g0110(gx10.z, gy10.z, gz10.z, gw10.z);
327		detail::tvec4<T> g1110(gx10.w, gy10.w, gz10.w, gw10.w);
328		detail::tvec4<T> g0001(gx01.x, gy01.x, gz01.x, gw01.x);
329		detail::tvec4<T> g1001(gx01.y, gy01.y, gz01.y, gw01.y);
330		detail::tvec4<T> g0101(gx01.z, gy01.z, gz01.z, gw01.z);
331		detail::tvec4<T> g1101(gx01.w, gy01.w, gz01.w, gw01.w);
332		detail::tvec4<T> g0011(gx11.x, gy11.x, gz11.x, gw11.x);
333		detail::tvec4<T> g1011(gx11.y, gy11.y, gz11.y, gw11.y);
334		detail::tvec4<T> g0111(gx11.z, gy11.z, gz11.z, gw11.z);
335		detail::tvec4<T> g1111(gx11.w, gy11.w, gz11.w, gw11.w);
336
337		detail::tvec4<T> norm00 = taylorInvSqrt(detail::tvec4<T>(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100)));
338		g0000 *= norm00.x;
339		g0100 *= norm00.y;
340		g1000 *= norm00.z;
341		g1100 *= norm00.w;
342
343		detail::tvec4<T> norm01 = taylorInvSqrt(detail::tvec4<T>(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101)));
344		g0001 *= norm01.x;
345		g0101 *= norm01.y;
346		g1001 *= norm01.z;
347		g1101 *= norm01.w;
348
349		detail::tvec4<T> norm10 = taylorInvSqrt(detail::tvec4<T>(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110)));
350		g0010 *= norm10.x;
351		g0110 *= norm10.y;
352		g1010 *= norm10.z;
353		g1110 *= norm10.w;
354
355		detail::tvec4<T> norm11 = taylorInvSqrt(detail::tvec4<T>(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111)));
356		g0011 *= norm11.x;
357		g0111 *= norm11.y;
358		g1011 *= norm11.z;
359		g1111 *= norm11.w;
360
361		T n0000 = dot(g0000, Pf0);
362		T n1000 = dot(g1000, detail::tvec4<T>(Pf1.x, Pf0.y, Pf0.z, Pf0.w));
363		T n0100 = dot(g0100, detail::tvec4<T>(Pf0.x, Pf1.y, Pf0.z, Pf0.w));
364		T n1100 = dot(g1100, detail::tvec4<T>(Pf1.x, Pf1.y, Pf0.z, Pf0.w));
365		T n0010 = dot(g0010, detail::tvec4<T>(Pf0.x, Pf0.y, Pf1.z, Pf0.w));
366		T n1010 = dot(g1010, detail::tvec4<T>(Pf1.x, Pf0.y, Pf1.z, Pf0.w));
367		T n0110 = dot(g0110, detail::tvec4<T>(Pf0.x, Pf1.y, Pf1.z, Pf0.w));
368		T n1110 = dot(g1110, detail::tvec4<T>(Pf1.x, Pf1.y, Pf1.z, Pf0.w));
369		T n0001 = dot(g0001, detail::tvec4<T>(Pf0.x, Pf0.y, Pf0.z, Pf1.w));
370		T n1001 = dot(g1001, detail::tvec4<T>(Pf1.x, Pf0.y, Pf0.z, Pf1.w));
371		T n0101 = dot(g0101, detail::tvec4<T>(Pf0.x, Pf1.y, Pf0.z, Pf1.w));
372		T n1101 = dot(g1101, detail::tvec4<T>(Pf1.x, Pf1.y, Pf0.z, Pf1.w));
373		T n0011 = dot(g0011, detail::tvec4<T>(Pf0.x, Pf0.y, Pf1.z, Pf1.w));
374		T n1011 = dot(g1011, detail::tvec4<T>(Pf1.x, Pf0.y, Pf1.z, Pf1.w));
375		T n0111 = dot(g0111, detail::tvec4<T>(Pf0.x, Pf1.y, Pf1.z, Pf1.w));
376		T n1111 = dot(g1111, Pf1);
377
378		detail::tvec4<T> fade_xyzw = fade(Pf0);
379		detail::tvec4<T> n_0w = mix(detail::tvec4<T>(n0000, n1000, n0100, n1100), detail::tvec4<T>(n0001, n1001, n0101, n1101), fade_xyzw.w);
380		detail::tvec4<T> n_1w = mix(detail::tvec4<T>(n0010, n1010, n0110, n1110), detail::tvec4<T>(n0011, n1011, n0111, n1111), fade_xyzw.w);
381		detail::tvec4<T> n_zw = mix(n_0w, n_1w, fade_xyzw.z);
382		detail::tvec2<T> n_yzw = mix(detail::tvec2<T>(n_zw.x, n_zw.y), detail::tvec2<T>(n_zw.z, n_zw.w), fade_xyzw.y);
383		T n_xyzw = mix(n_yzw.x, n_yzw.y, fade_xyzw.x);
384		return T(2.2) * n_xyzw;
385	}
386
387	// Classic Perlin noise, periodic variant
388	template <typename T>
389	GLM_FUNC_QUALIFIER T perlin(detail::tvec2<T> const & P, detail::tvec2<T> const & rep)
390	{
391		detail::tvec4<T> Pi = floor(detail::tvec4<T>(P.x, P.y, P.x, P.y)) + detail::tvec4<T>(0.0, 0.0, 1.0, 1.0);
392		detail::tvec4<T> Pf = fract(detail::tvec4<T>(P.x, P.y, P.x, P.y)) - detail::tvec4<T>(0.0, 0.0, 1.0, 1.0);
393		Pi = mod(Pi, detail::tvec4<T>(rep.x, rep.y, rep.x, rep.y)); // To create noise with explicit period
394		Pi = mod(Pi, T(289)); // To avoid truncation effects in permutation
395		detail::tvec4<T> ix(Pi.x, Pi.z, Pi.x, Pi.z);
396		detail::tvec4<T> iy(Pi.y, Pi.y, Pi.w, Pi.w);
397		detail::tvec4<T> fx(Pf.x, Pf.z, Pf.x, Pf.z);
398		detail::tvec4<T> fy(Pf.y, Pf.y, Pf.w, Pf.w);
399
400		detail::tvec4<T> i = permute(permute(ix) + iy);
401
402		detail::tvec4<T> gx = T(2) * fract(i / T(41)) - T(1);
403		detail::tvec4<T> gy = abs(gx) - T(0.5);
404		detail::tvec4<T> tx = floor(gx + T(0.5));
405		gx = gx - tx;
406
407		detail::tvec2<T> g00(gx.x, gy.x);
408		detail::tvec2<T> g10(gx.y, gy.y);
409		detail::tvec2<T> g01(gx.z, gy.z);
410		detail::tvec2<T> g11(gx.w, gy.w);
411
412		detail::tvec4<T> norm = taylorInvSqrt(detail::tvec4<T>(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11)));
413		g00 *= norm.x;
414		g01 *= norm.y;
415		g10 *= norm.z;
416		g11 *= norm.w;
417
418		T n00 = dot(g00, detail::tvec2<T>(fx.x, fy.x));
419		T n10 = dot(g10, detail::tvec2<T>(fx.y, fy.y));
420		T n01 = dot(g01, detail::tvec2<T>(fx.z, fy.z));
421		T n11 = dot(g11, detail::tvec2<T>(fx.w, fy.w));
422
423		detail::tvec2<T> fade_xy = fade(detail::tvec2<T>(Pf.x, Pf.y));
424		detail::tvec2<T> n_x = mix(detail::tvec2<T>(n00, n01), detail::tvec2<T>(n10, n11), fade_xy.x);
425		T n_xy = mix(n_x.x, n_x.y, fade_xy.y);
426		return T(2.3) * n_xy;
427	}
428
429	// Classic Perlin noise, periodic variant
430	template <typename T>
431	GLM_FUNC_QUALIFIER T perlin(detail::tvec3<T> const & P, detail::tvec3<T> const & rep)
432	{
433		detail::tvec3<T> Pi0 = mod(floor(P), rep); // Integer part, modulo period
434		detail::tvec3<T> Pi1 = mod(Pi0 + detail::tvec3<T>(1.0), rep); // Integer part + 1, mod period
435		Pi0 = mod(Pi0, T(289));
436		Pi1 = mod(Pi1, T(289));
437		detail::tvec3<T> Pf0 = fract(P); // Fractional part for interpolation
438		detail::tvec3<T> Pf1 = Pf0 - detail::tvec3<T>(1.0); // Fractional part - 1.0
439		detail::tvec4<T> ix = detail::tvec4<T>(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
440		detail::tvec4<T> iy = detail::tvec4<T>(Pi0.y, Pi0.y, Pi1.y, Pi1.y);
441		detail::tvec4<T> iz0(Pi0.z);
442		detail::tvec4<T> iz1(Pi1.z);
443
444		detail::tvec4<T> ixy = permute(permute(ix) + iy);
445		detail::tvec4<T> ixy0 = permute(ixy + iz0);
446		detail::tvec4<T> ixy1 = permute(ixy + iz1);
447
448		detail::tvec4<T> gx0 = ixy0 / T(7);
449		detail::tvec4<T> gy0 = fract(floor(gx0) / T(7)) - T(0.5);
450		gx0 = fract(gx0);
451		detail::tvec4<T> gz0 = detail::tvec4<T>(0.5) - abs(gx0) - abs(gy0);
452		detail::tvec4<T> sz0 = step(gz0, detail::tvec4<T>(0));
453		gx0 -= sz0 * (step(0.0, gx0) - T(0.5));
454		gy0 -= sz0 * (step(0.0, gy0) - T(0.5));
455
456		detail::tvec4<T> gx1 = ixy1 / T(7);
457		detail::tvec4<T> gy1 = fract(floor(gx1) / T(7)) - T(0.5);
458		gx1 = fract(gx1);
459		detail::tvec4<T> gz1 = detail::tvec4<T>(0.5) - abs(gx1) - abs(gy1);
460		detail::tvec4<T> sz1 = step(gz1, detail::tvec4<T>(0.0));
461		gx1 -= sz1 * (step(0.0, gx1) - T(0.5));
462		gy1 -= sz1 * (step(0.0, gy1) - T(0.5));
463
464		detail::tvec3<T> g000 = detail::tvec3<T>(gx0.x, gy0.x, gz0.x);
465		detail::tvec3<T> g100 = detail::tvec3<T>(gx0.y, gy0.y, gz0.y);
466		detail::tvec3<T> g010 = detail::tvec3<T>(gx0.z, gy0.z, gz0.z);
467		detail::tvec3<T> g110 = detail::tvec3<T>(gx0.w, gy0.w, gz0.w);
468		detail::tvec3<T> g001 = detail::tvec3<T>(gx1.x, gy1.x, gz1.x);
469		detail::tvec3<T> g101 = detail::tvec3<T>(gx1.y, gy1.y, gz1.y);
470		detail::tvec3<T> g011 = detail::tvec3<T>(gx1.z, gy1.z, gz1.z);
471		detail::tvec3<T> g111 = detail::tvec3<T>(gx1.w, gy1.w, gz1.w);
472
473		detail::tvec4<T> norm0 = taylorInvSqrt(detail::tvec4<T>(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
474		g000 *= norm0.x;
475		g010 *= norm0.y;
476		g100 *= norm0.z;
477		g110 *= norm0.w;
478		detail::tvec4<T> norm1 = taylorInvSqrt(detail::tvec4<T>(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
479		g001 *= norm1.x;
480		g011 *= norm1.y;
481		g101 *= norm1.z;
482		g111 *= norm1.w;
483
484		T n000 = dot(g000, Pf0);
485		T n100 = dot(g100, detail::tvec3<T>(Pf1.x, Pf0.y, Pf0.z));
486		T n010 = dot(g010, detail::tvec3<T>(Pf0.x, Pf1.y, Pf0.z));
487		T n110 = dot(g110, detail::tvec3<T>(Pf1.x, Pf1.y, Pf0.z));
488		T n001 = dot(g001, detail::tvec3<T>(Pf0.x, Pf0.y, Pf1.z));
489		T n101 = dot(g101, detail::tvec3<T>(Pf1.x, Pf0.y, Pf1.z));
490		T n011 = dot(g011, detail::tvec3<T>(Pf0.x, Pf1.y, Pf1.z));
491		T n111 = dot(g111, Pf1);
492
493		detail::tvec3<T> fade_xyz = fade(Pf0);
494		detail::tvec4<T> n_z = mix(detail::tvec4<T>(n000, n100, n010, n110), detail::tvec4<T>(n001, n101, n011, n111), fade_xyz.z);
495		detail::tvec2<T> n_yz = mix(detail::tvec2<T>(n_z.x, n_z.y), detail::tvec2<T>(n_z.z, n_z.w), fade_xyz.y);
496		T n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
497		return T(2.2) * n_xyz;
498	}
499
500	// Classic Perlin noise, periodic version
501	template <typename T>
502	GLM_FUNC_QUALIFIER T perlin(detail::tvec4<T> const & P, detail::tvec4<T> const & rep)
503	{
504		detail::tvec4<T> Pi0 = mod(floor(P), rep); // Integer part modulo rep
505		detail::tvec4<T> Pi1 = mod(Pi0 + T(1), rep); // Integer part + 1 mod rep
506		detail::tvec4<T> Pf0 = fract(P); // Fractional part for interpolation
507		detail::tvec4<T> Pf1 = Pf0 - T(1); // Fractional part - 1.0
508		detail::tvec4<T> ix = detail::tvec4<T>(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
509		detail::tvec4<T> iy = detail::tvec4<T>(Pi0.y, Pi0.y, Pi1.y, Pi1.y);
510		detail::tvec4<T> iz0(Pi0.z);
511		detail::tvec4<T> iz1(Pi1.z);
512		detail::tvec4<T> iw0(Pi0.w);
513		detail::tvec4<T> iw1(Pi1.w);
514
515		detail::tvec4<T> ixy = permute(permute(ix) + iy);
516		detail::tvec4<T> ixy0 = permute(ixy + iz0);
517		detail::tvec4<T> ixy1 = permute(ixy + iz1);
518		detail::tvec4<T> ixy00 = permute(ixy0 + iw0);
519		detail::tvec4<T> ixy01 = permute(ixy0 + iw1);
520		detail::tvec4<T> ixy10 = permute(ixy1 + iw0);
521		detail::tvec4<T> ixy11 = permute(ixy1 + iw1);
522
523		detail::tvec4<T> gx00 = ixy00 / T(7);
524		detail::tvec4<T> gy00 = floor(gx00) / T(7);
525		detail::tvec4<T> gz00 = floor(gy00) / T(6);
526		gx00 = fract(gx00) - T(0.5);
527		gy00 = fract(gy00) - T(0.5);
528		gz00 = fract(gz00) - T(0.5);
529		detail::tvec4<T> gw00 = detail::tvec4<T>(0.75) - abs(gx00) - abs(gy00) - abs(gz00);
530		detail::tvec4<T> sw00 = step(gw00, detail::tvec4<T>(0));
531		gx00 -= sw00 * (step(0.0, gx00) - T(0.5));
532		gy00 -= sw00 * (step(0.0, gy00) - T(0.5));
533
534		detail::tvec4<T> gx01 = ixy01 / T(7);
535		detail::tvec4<T> gy01 = floor(gx01) / T(7);
536		detail::tvec4<T> gz01 = floor(gy01) / T(6);
537		gx01 = fract(gx01) - T(0.5);
538		gy01 = fract(gy01) - T(0.5);
539		gz01 = fract(gz01) - T(0.5);
540		detail::tvec4<T> gw01 = detail::tvec4<T>(0.75) - abs(gx01) - abs(gy01) - abs(gz01);
541		detail::tvec4<T> sw01 = step(gw01, detail::tvec4<T>(0.0));
542		gx01 -= sw01 * (step(0.0, gx01) - T(0.5));
543		gy01 -= sw01 * (step(0.0, gy01) - T(0.5));
544
545		detail::tvec4<T> gx10 = ixy10 / T(7);
546		detail::tvec4<T> gy10 = floor(gx10) / T(7);
547		detail::tvec4<T> gz10 = floor(gy10) / T(6);
548		gx10 = fract(gx10) - T(0.5);
549		gy10 = fract(gy10) - T(0.5);
550		gz10 = fract(gz10) - T(0.5);
551		detail::tvec4<T> gw10 = detail::tvec4<T>(0.75) - abs(gx10) - abs(gy10) - abs(gz10);
552		detail::tvec4<T> sw10 = step(gw10, detail::tvec4<T>(0.0));
553		gx10 -= sw10 * (step(0.0, gx10) - T(0.5));
554		gy10 -= sw10 * (step(0.0, gy10) - T(0.5));
555
556		detail::tvec4<T> gx11 = ixy11 / T(7);
557		detail::tvec4<T> gy11 = floor(gx11) / T(7);
558		detail::tvec4<T> gz11 = floor(gy11) / T(6);
559		gx11 = fract(gx11) - T(0.5);
560		gy11 = fract(gy11) - T(0.5);
561		gz11 = fract(gz11) - T(0.5);
562		detail::tvec4<T> gw11 = detail::tvec4<T>(0.75) - abs(gx11) - abs(gy11) - abs(gz11);
563		detail::tvec4<T> sw11 = step(gw11, detail::tvec4<T>(0.0));
564		gx11 -= sw11 * (step(0.0, gx11) - T(0.5));
565		gy11 -= sw11 * (step(0.0, gy11) - T(0.5));
566
567		detail::tvec4<T> g0000(gx00.x, gy00.x, gz00.x, gw00.x);
568		detail::tvec4<T> g1000(gx00.y, gy00.y, gz00.y, gw00.y);
569		detail::tvec4<T> g0100(gx00.z, gy00.z, gz00.z, gw00.z);
570		detail::tvec4<T> g1100(gx00.w, gy00.w, gz00.w, gw00.w);
571		detail::tvec4<T> g0010(gx10.x, gy10.x, gz10.x, gw10.x);
572		detail::tvec4<T> g1010(gx10.y, gy10.y, gz10.y, gw10.y);
573		detail::tvec4<T> g0110(gx10.z, gy10.z, gz10.z, gw10.z);
574		detail::tvec4<T> g1110(gx10.w, gy10.w, gz10.w, gw10.w);
575		detail::tvec4<T> g0001(gx01.x, gy01.x, gz01.x, gw01.x);
576		detail::tvec4<T> g1001(gx01.y, gy01.y, gz01.y, gw01.y);
577		detail::tvec4<T> g0101(gx01.z, gy01.z, gz01.z, gw01.z);
578		detail::tvec4<T> g1101(gx01.w, gy01.w, gz01.w, gw01.w);
579		detail::tvec4<T> g0011(gx11.x, gy11.x, gz11.x, gw11.x);
580		detail::tvec4<T> g1011(gx11.y, gy11.y, gz11.y, gw11.y);
581		detail::tvec4<T> g0111(gx11.z, gy11.z, gz11.z, gw11.z);
582		detail::tvec4<T> g1111(gx11.w, gy11.w, gz11.w, gw11.w);
583
584		detail::tvec4<T> norm00 = taylorInvSqrt(detail::tvec4<T>(dot(g0000, g0000), dot(g0100, g0100), dot(g1000, g1000), dot(g1100, g1100)));
585		g0000 *= norm00.x;
586		g0100 *= norm00.y;
587		g1000 *= norm00.z;
588		g1100 *= norm00.w;
589
590		detail::tvec4<T> norm01 = taylorInvSqrt(detail::tvec4<T>(dot(g0001, g0001), dot(g0101, g0101), dot(g1001, g1001), dot(g1101, g1101)));
591		g0001 *= norm01.x;
592		g0101 *= norm01.y;
593		g1001 *= norm01.z;
594		g1101 *= norm01.w;
595
596		detail::tvec4<T> norm10 = taylorInvSqrt(detail::tvec4<T>(dot(g0010, g0010), dot(g0110, g0110), dot(g1010, g1010), dot(g1110, g1110)));
597		g0010 *= norm10.x;
598		g0110 *= norm10.y;
599		g1010 *= norm10.z;
600		g1110 *= norm10.w;
601
602		detail::tvec4<T> norm11 = taylorInvSqrt(detail::tvec4<T>(dot(g0011, g0011), dot(g0111, g0111), dot(g1011, g1011), dot(g1111, g1111)));
603		g0011 *= norm11.x;
604		g0111 *= norm11.y;
605		g1011 *= norm11.z;
606		g1111 *= norm11.w;
607
608		T n0000 = dot(g0000, Pf0);
609		T n1000 = dot(g1000, detail::tvec4<T>(Pf1.x, Pf0.y, Pf0.z, Pf0.w));
610		T n0100 = dot(g0100, detail::tvec4<T>(Pf0.x, Pf1.y, Pf0.z, Pf0.w));
611		T n1100 = dot(g1100, detail::tvec4<T>(Pf1.x, Pf1.y, Pf0.z, Pf0.w));
612		T n0010 = dot(g0010, detail::tvec4<T>(Pf0.x, Pf0.y, Pf1.z, Pf0.w));
613		T n1010 = dot(g1010, detail::tvec4<T>(Pf1.x, Pf0.y, Pf1.z, Pf0.w));
614		T n0110 = dot(g0110, detail::tvec4<T>(Pf0.x, Pf1.y, Pf1.z, Pf0.w));
615		T n1110 = dot(g1110, detail::tvec4<T>(Pf1.x, Pf1.y, Pf1.z, Pf0.w));
616		T n0001 = dot(g0001, detail::tvec4<T>(Pf0.x, Pf0.y, Pf0.z, Pf1.w));
617		T n1001 = dot(g1001, detail::tvec4<T>(Pf1.x, Pf0.y, Pf0.z, Pf1.w));
618		T n0101 = dot(g0101, detail::tvec4<T>(Pf0.x, Pf1.y, Pf0.z, Pf1.w));
619		T n1101 = dot(g1101, detail::tvec4<T>(Pf1.x, Pf1.y, Pf0.z, Pf1.w));
620		T n0011 = dot(g0011, detail::tvec4<T>(Pf0.x, Pf0.y, Pf1.z, Pf1.w));
621		T n1011 = dot(g1011, detail::tvec4<T>(Pf1.x, Pf0.y, Pf1.z, Pf1.w));
622		T n0111 = dot(g0111, detail::tvec4<T>(Pf0.x, Pf1.y, Pf1.z, Pf1.w));
623		T n1111 = dot(g1111, Pf1);
624
625		detail::tvec4<T> fade_xyzw = fade(Pf0);
626		detail::tvec4<T> n_0w = mix(detail::tvec4<T>(n0000, n1000, n0100, n1100), detail::tvec4<T>(n0001, n1001, n0101, n1101), fade_xyzw.w);
627		detail::tvec4<T> n_1w = mix(detail::tvec4<T>(n0010, n1010, n0110, n1110), detail::tvec4<T>(n0011, n1011, n0111, n1111), fade_xyzw.w);
628		detail::tvec4<T> n_zw = mix(n_0w, n_1w, fade_xyzw.z);
629		detail::tvec2<T> n_yzw = mix(detail::tvec2<T>(n_zw.x, n_zw.y), detail::tvec2<T>(n_zw.z, n_zw.w), fade_xyzw.y);
630		T n_xyzw = mix(n_yzw.x, n_yzw.y, fade_xyzw.x);
631		return T(2.2) * n_xyzw;
632	}
633
634	template <typename T>
635	GLM_FUNC_QUALIFIER T simplex(glm::detail::tvec2<T> const & v)
636	{
637		detail::tvec4<T> const C = detail::tvec4<T>(
638			T( 0.211324865405187),  // (3.0 -  sqrt(3.0)) / 6.0
639			T( 0.366025403784439),  //  0.5 * (sqrt(3.0)  - 1.0)
640			T(-0.577350269189626),	// -1.0 + 2.0 * C.x
641			T( 0.024390243902439)); //  1.0 / 41.0
642
643		// First corner
644		detail::tvec2<T> i  = floor(v + dot(v, detail::tvec2<T>(C[1])));
645		detail::tvec2<T> x0 = v -   i + dot(i, detail::tvec2<T>(C[0]));
646
647		// Other corners
648		//i1.x = step( x0.y, x0.x ); // x0.x > x0.y ? 1.0 : 0.0
649		//i1.y = 1.0 - i1.x;
650		detail::tvec2<T> i1 = (x0.x > x0.y) ? detail::tvec2<T>(1, 0) : detail::tvec2<T>(0, 1);
651		// x0 = x0 - 0.0 + 0.0 * C.xx ;
652		// x1 = x0 - i1 + 1.0 * C.xx ;
653		// x2 = x0 - 1.0 + 2.0 * C.xx ;
654		detail::tvec4<T> x12 = detail::tvec4<T>(x0.x, x0.y, x0.x, x0.y) + detail::tvec4<T>(C.x, C.x, C.z, C.z);
655		x12 = detail::tvec4<T>(detail::tvec2<T>(x12) - i1, x12.z, x12.w);
656
657		// Permutations
658		i = mod(i, T(289)); // Avoid truncation effects in permutation
659		detail::tvec3<T> p = permute(
660			permute(i.y + detail::tvec3<T>(T(0), i1.y, T(1)))
661			+ i.x + detail::tvec3<T>(T(0), i1.x, T(1)));
662
663		detail::tvec3<T> m = max(T(0.5) - detail::tvec3<T>(
664			dot(x0, x0),
665			dot(detail::tvec2<T>(x12.x, x12.y), detail::tvec2<T>(x12.x, x12.y)),
666			dot(detail::tvec2<T>(x12.z, x12.w), detail::tvec2<T>(x12.z, x12.w))), T(0));
667		m = m * m ;
668		m = m * m ;
669
670		// Gradients: 41 points uniformly over a line, mapped onto a diamond.
671		// The ring size 17*17 = 289 is close to a multiple of 41 (41*7 = 287)
672
673		detail::tvec3<T> x = T(2) * fract(p * C.w) - T(1);
674		detail::tvec3<T> h = abs(x) - T(0.5);
675		detail::tvec3<T> ox = floor(x + T(0.5));
676		detail::tvec3<T> a0 = x - ox;
677
678		// Normalise gradients implicitly by scaling m
679		// Inlined for speed: m *= taylorInvSqrt( a0*a0 + h*h );
680		m *= T(1.79284291400159) - T(0.85373472095314) * (a0 * a0 + h * h);
681
682		// Compute final noise value at P
683		detail::tvec3<T> g;
684		g.x  = a0.x  * x0.x  + h.x  * x0.y;
685		//g.yz = a0.yz * x12.xz + h.yz * x12.yw;
686		g.y = a0.y * x12.x + h.y * x12.y;
687		g.z = a0.z * x12.z + h.z * x12.w;
688		return T(130) * dot(m, g);
689	}
690
691	template <typename T>
692	GLM_FUNC_QUALIFIER T simplex(detail::tvec3<T> const & v)
693	{
694		detail::tvec2<T> const C(1.0 / 6.0, 1.0 / 3.0);
695		detail::tvec4<T> const D(0.0, 0.5, 1.0, 2.0);
696
697		// First corner
698		detail::tvec3<T> i(floor(v + dot(v, detail::tvec3<T>(C.y))));
699		detail::tvec3<T> x0(v - i + dot(i, detail::tvec3<T>(C.x)));
700
701		// Other corners
702		detail::tvec3<T> g(step(detail::tvec3<T>(x0.y, x0.z, x0.x), x0));
703		detail::tvec3<T> l(T(1) - g);
704		detail::tvec3<T> i1(min(g, detail::tvec3<T>(l.z, l.x, l.y)));
705		detail::tvec3<T> i2(max(g, detail::tvec3<T>(l.z, l.x, l.y)));
706
707		//   x0 = x0 - 0.0 + 0.0 * C.xxx;
708		//   x1 = x0 - i1  + 1.0 * C.xxx;
709		//   x2 = x0 - i2  + 2.0 * C.xxx;
710		//   x3 = x0 - 1.0 + 3.0 * C.xxx;
711		detail::tvec3<T> x1(x0 - i1 + C.x);
712		detail::tvec3<T> x2(x0 - i2 + C.y); // 2.0*C.x = 1/3 = C.y
713		detail::tvec3<T> x3(x0 - D.y);      // -1.0+3.0*C.x = -0.5 = -D.y
714
715		// Permutations
716		i = mod289(i);
717		detail::tvec4<T> p(permute(permute(permute(
718			i.z + detail::tvec4<T>(T(0), i1.z, i2.z, T(1))) +
719			i.y + detail::tvec4<T>(T(0), i1.y, i2.y, T(1))) +
720			i.x + detail::tvec4<T>(T(0), i1.x, i2.x, T(1))));
721
722		// Gradients: 7x7 points over a square, mapped onto an octahedron.
723		// The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
724		T n_ = T(0.142857142857); // 1.0/7.0
725		detail::tvec3<T> ns(n_ * detail::tvec3<T>(D.w, D.y, D.z) - detail::tvec3<T>(D.x, D.z, D.x));
726
727		detail::tvec4<T> j(p - T(49) * floor(p * ns.z * ns.z));  //  mod(p,7*7)
728
729		detail::tvec4<T> x_(floor(j * ns.z));
730		detail::tvec4<T> y_(floor(j - T(7) * x_));    // mod(j,N)
731
732		detail::tvec4<T> x(x_ * ns.x + ns.y);
733		detail::tvec4<T> y(y_ * ns.x + ns.y);
734		detail::tvec4<T> h(T(1) - abs(x) - abs(y));
735
736		detail::tvec4<T> b0(x.x, x.y, y.x, y.y);
737		detail::tvec4<T> b1(x.z, x.w, y.z, y.w);
738
739		// vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0;
740		// vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0;
741		detail::tvec4<T> s0(floor(b0) * T(2) + T(1));
742		detail::tvec4<T> s1(floor(b1) * T(2) + T(1));
743		detail::tvec4<T> sh(-step(h, detail::tvec4<T>(0.0)));
744
745		detail::tvec4<T> a0 = detail::tvec4<T>(b0.x, b0.z, b0.y, b0.w) + detail::tvec4<T>(s0.x, s0.z, s0.y, s0.w) * detail::tvec4<T>(sh.x, sh.x, sh.y, sh.y);
746		detail::tvec4<T> a1 = detail::tvec4<T>(b1.x, b1.z, b1.y, b1.w) + detail::tvec4<T>(s1.x, s1.z, s1.y, s1.w) * detail::tvec4<T>(sh.z, sh.z, sh.w, sh.w);
747
748		detail::tvec3<T> p0(a0.x, a0.y, h.x);
749		detail::tvec3<T> p1(a0.z, a0.w, h.y);
750		detail::tvec3<T> p2(a1.x, a1.y, h.z);
751		detail::tvec3<T> p3(a1.z, a1.w, h.w);
752
753		// Normalise gradients
754		detail::tvec4<T> norm = taylorInvSqrt(detail::tvec4<T>(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3)));
755		p0 *= norm.x;
756		p1 *= norm.y;
757		p2 *= norm.z;
758		p3 *= norm.w;
759
760		// Mix final noise value
761		detail::tvec4<T> m = max(T(0.6) - detail::tvec4<T>(dot(x0, x0), dot(x1, x1), dot(x2, x2), dot(x3, x3)), T(0));
762		m = m * m;
763		return T(42) * dot(m * m, detail::tvec4<T>(dot(p0, x0), dot(p1, x1), dot(p2, x2), dot(p3, x3)));
764	}
765
766	template <typename T>
767	GLM_FUNC_QUALIFIER T simplex(detail::tvec4<T> const & v)
768	{
769		detail::tvec4<T> const C(
770			0.138196601125011,  // (5 - sqrt(5))/20  G4
771			0.276393202250021,  // 2 * G4
772			0.414589803375032,  // 3 * G4
773			-0.447213595499958); // -1 + 4 * G4
774
775		// (sqrt(5) - 1)/4 = F4, used once below
776		T const F4 = T(0.309016994374947451);
777
778		// First corner
779		detail::tvec4<T> i  = floor(v + dot(v, vec4(F4)));
780		detail::tvec4<T> x0 = v -   i + dot(i, vec4(C.x));
781
782		// Other corners
783
784		// Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI)
785		detail::tvec4<T> i0;
786		detail::tvec3<T> isX = step(detail::tvec3<T>(x0.y, x0.z, x0.w), detail::tvec3<T>(x0.x));
787		detail::tvec3<T> isYZ = step(detail::tvec3<T>(x0.z, x0.w, x0.w), detail::tvec3<T>(x0.y, x0.y, x0.z));
788		//  i0.x = dot(isX, vec3(1.0));
789		//i0.x = isX.x + isX.y + isX.z;
790		//i0.yzw = T(1) - isX;
791		i0 = detail::tvec4<T>(isX.x + isX.y + isX.z, T(1) - isX);
792		//  i0.y += dot(isYZ.xy, vec2(1.0));
793		i0.y += isYZ.x + isYZ.y;
794		//i0.zw += 1.0 - detail::tvec2<T>(isYZ.x, isYZ.y);
795		i0.z += T(1) - isYZ.x;
796		i0.w += T(1) - isYZ.y;
797		i0.z += isYZ.z;
798		i0.w += T(1) - isYZ.z;
799
800		// i0 now contains the unique values 0,1,2,3 in each channel
801		detail::tvec4<T> i3 = clamp(i0, 0.0, 1.0);
802		detail::tvec4<T> i2 = clamp(i0 - 1.0, 0.0, 1.0);
803		detail::tvec4<T> i1 = clamp(i0 - 2.0, 0.0, 1.0);
804
805		//  x0 = x0 - 0.0 + 0.0 * C.xxxx
806		//  x1 = x0 - i1  + 0.0 * C.xxxx
807		//  x2 = x0 - i2  + 0.0 * C.xxxx
808		//  x3 = x0 - i3  + 0.0 * C.xxxx
809		//  x4 = x0 - 1.0 + 4.0 * C.xxxx
810		detail::tvec4<T> x1 = x0 - i1 + C.x;
811		detail::tvec4<T> x2 = x0 - i2 + C.y;
812		detail::tvec4<T> x3 = x0 - i3 + C.z;
813		detail::tvec4<T> x4 = x0 + C.w;
814
815		// Permutations
816		i = mod(i, T(289));
817		T j0 = permute(permute(permute(permute(i.w) + i.z) + i.y) + i.x);
818		detail::tvec4<T> j1 = permute(permute(permute(permute(
819					i.w + detail::tvec4<T>(i1.w, i2.w, i3.w, T(1)))
820				+ i.z + detail::tvec4<T>(i1.z, i2.z, i3.z, T(1)))
821				+ i.y + detail::tvec4<T>(i1.y, i2.y, i3.y, T(1)))
822				+ i.x + detail::tvec4<T>(i1.x, i2.x, i3.x, T(1)));
823
824		// Gradients: 7x7x6 points over a cube, mapped onto a 4-cross polytope
825		// 7*7*6 = 294, which is close to the ring size 17*17 = 289.
826		detail::tvec4<T> ip = detail::tvec4<T>(T(1) / T(294), T(1) / T(49), T(1) / T(7), T(0));
827
828		detail::tvec4<T> p0 = grad4(j0,   ip);
829		detail::tvec4<T> p1 = grad4(j1.x, ip);
830		detail::tvec4<T> p2 = grad4(j1.y, ip);
831		detail::tvec4<T> p3 = grad4(j1.z, ip);
832		detail::tvec4<T> p4 = grad4(j1.w, ip);
833
834		// Normalise gradients
835		detail::tvec4<T> norm = taylorInvSqrt(detail::tvec4<T>(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3)));
836		p0 *= norm.x;
837		p1 *= norm.y;
838		p2 *= norm.z;
839		p3 *= norm.w;
840		p4 *= taylorInvSqrt(dot(p4, p4));
841
842		// Mix contributions from the five corners
843		detail::tvec3<T> m0 = max(T(0.6) - detail::tvec3<T>(dot(x0, x0), dot(x1, x1), dot(x2, x2)), T(0));
844		detail::tvec2<T> m1 = max(T(0.6) - detail::tvec2<T>(dot(x3, x3), dot(x4, x4)             ), T(0));
845		m0 = m0 * m0;
846		m1 = m1 * m1;
847		return T(49) *
848			(dot(m0 * m0, detail::tvec3<T>(dot(p0, x0), dot(p1, x1), dot(p2, x2))) +
849			dot(m1 * m1, detail::tvec2<T>(dot(p3, x3), dot(p4, x4))));
850	}
851}//namespace glm
852