1 /*
2 collision.cpp
3 Copyright (C) 2013 celeron55, Perttu Ahola <celeron55@gmail.com>
4 */
5 
6 /*
7 This file is part of Freeminer.
8 
9 Freeminer is free software: you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation, either version 3 of the License, or
12 (at your option) any later version.
13 
14 Freeminer  is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17 GNU General Public License for more details.
18 
19 You should have received a copy of the GNU General Public License
20 along with Freeminer.  If not, see <http://www.gnu.org/licenses/>.
21 */
22 
23 #include "collision.h"
24 #include "mapblock.h"
25 #include "map.h"
26 #include "nodedef.h"
27 #include "gamedef.h"
28 #include "log.h"
29 #include "environment.h"
30 #include "serverobject.h"
31 #include <vector>
32 #include <set>
33 #include "util/timetaker.h"
34 #include "main.h" // g_profiler
35 #include "profiler.h"
36 
37 // float error is 10 - 9.96875 = 0.03125 // default with bug = 0
38 #define COLL_ZERO 0.032 // broken unit tests
39 #define COLL_ZEROY 0.032 //0.032 // Y only
40 
41 // Helper function:
42 // Checks for collision of a moving aabbox with a static aabbox
43 // Returns -1 if no collision, 0 if X collision, 1 if Y collision, 2 if Z collision
44 // The time after which the collision occurs is stored in dtime.
axisAlignedCollision(const aabb3f & staticbox,const aabb3f & movingbox,const v3f & speed,f32 d,f32 & dtime)45 int axisAlignedCollision(
46 		const aabb3f &staticbox, const aabb3f &movingbox,
47 		const v3f &speed, f32 d, f32 &dtime)
48 {
49 	//TimeTaker tt("axisAlignedCollision");
50 
51 	f32 xsize = (staticbox.MaxEdge.X - staticbox.MinEdge.X); // - COLL_ZEROY;     // reduce box size for solve collision stuck (flying sand)
52 	f32 ysize = (staticbox.MaxEdge.Y - staticbox.MinEdge.Y); // - COLL_ZERO; // Y - no sense for falling, but maybe try later
53 	f32 zsize = (staticbox.MaxEdge.Z - staticbox.MinEdge.Z); // - COLL_ZEROY;
54 
55 	aabb3f relbox(
56 			movingbox.MinEdge.X - staticbox.MinEdge.X,
57 			movingbox.MinEdge.Y - staticbox.MinEdge.Y,
58 			movingbox.MinEdge.Z - staticbox.MinEdge.Z,
59 			movingbox.MaxEdge.X - staticbox.MinEdge.X,
60 			movingbox.MaxEdge.Y - staticbox.MinEdge.Y,
61 			movingbox.MaxEdge.Z - staticbox.MinEdge.Z
62 	);
63 
64 	// These cases can (and should) be rejected immediately
65 	if( (speed.X >= 0 && relbox.MinEdge.X > xsize) ||
66 	    (speed.X <= 0 && relbox.MaxEdge.X < 0) ||
67 	    (speed.Y >= 0 && relbox.MinEdge.Y > ysize) ||
68 	    (speed.Y <= 0 && relbox.MaxEdge.Y < 0) ||
69 	    (speed.Z >= 0 && relbox.MinEdge.Z > zsize) ||
70 	    (speed.Z <= 0 && relbox.MaxEdge.Z < 0))
71 	    	return -1;
72 
73 	if(speed.X > 0) // Check for collision with X- plane
74 	{
75 		if(relbox.MaxEdge.X <= d)
76 		{
77 			dtime = - relbox.MaxEdge.X / speed.X;
78 			if((relbox.MinEdge.Y + speed.Y * dtime < ysize) &&
79 					(relbox.MaxEdge.Y + speed.Y * dtime > COLL_ZERO) &&
80 					(relbox.MinEdge.Z + speed.Z * dtime < zsize) &&
81 					(relbox.MaxEdge.Z + speed.Z * dtime > COLL_ZERO))
82 				return 0;
83 		}
84 	}
85 	else if(speed.X < 0) // Check for collision with X+ plane
86 	{
87 		if(relbox.MinEdge.X >= xsize - d)
88 		{
89 			dtime = (xsize - relbox.MinEdge.X) / speed.X;
90 			if((relbox.MinEdge.Y + speed.Y * dtime < ysize) &&
91 					(relbox.MaxEdge.Y + speed.Y * dtime > COLL_ZERO) &&
92 					(relbox.MinEdge.Z + speed.Z * dtime < zsize) &&
93 					(relbox.MaxEdge.Z + speed.Z * dtime > COLL_ZERO))
94 				return 0;
95 		}
96 	}
97 
98 	// NO else if here
99 
100 	if(speed.Y > 0) // Check for collision with Y- plane
101 	{
102 		if(relbox.MaxEdge.Y <= d)
103 		{
104 			dtime = - relbox.MaxEdge.Y / speed.Y;
105 			if((relbox.MinEdge.X + speed.X * dtime < xsize) &&
106 					(relbox.MaxEdge.X + speed.X * dtime > COLL_ZERO) &&
107 					(relbox.MinEdge.Z + speed.Z * dtime < zsize) &&
108 					(relbox.MaxEdge.Z + speed.Z * dtime > COLL_ZERO))
109 				return 1;
110 		}
111 	}
112 	else if(speed.Y < 0) // Check for collision with Y+ plane
113 	{
114 		if(relbox.MinEdge.Y >= ysize - d)
115 		{
116 			dtime = (ysize - relbox.MinEdge.Y) / speed.Y;
117 			if((relbox.MinEdge.X + speed.X * dtime < xsize) &&
118 					(relbox.MaxEdge.X + speed.X * dtime > COLL_ZEROY) &&
119 					(relbox.MinEdge.Z + speed.Z * dtime < zsize) &&
120 					(relbox.MaxEdge.Z + speed.Z * dtime > COLL_ZEROY))
121 				return 1;
122 		}
123 	}
124 
125 	// NO else if here
126 
127 	if(speed.Z > 0) // Check for collision with Z- plane
128 	{
129 		if(relbox.MaxEdge.Z <= d)
130 		{
131 			dtime = - relbox.MaxEdge.Z / speed.Z;
132 			if((relbox.MinEdge.X + speed.X * dtime < xsize) &&
133 					(relbox.MaxEdge.X + speed.X * dtime > COLL_ZERO) &&
134 					(relbox.MinEdge.Y + speed.Y * dtime < ysize) &&
135 					(relbox.MaxEdge.Y + speed.Y * dtime > COLL_ZERO))
136 				return 2;
137 		}
138 	}
139 	else if(speed.Z < 0) // Check for collision with Z+ plane
140 	{
141 		if(relbox.MinEdge.Z >= zsize - d)
142 		{
143 			dtime = (zsize - relbox.MinEdge.Z) / speed.Z;
144 			if((relbox.MinEdge.X + speed.X * dtime < xsize) &&
145 					(relbox.MaxEdge.X + speed.X * dtime > COLL_ZERO) &&
146 					(relbox.MinEdge.Y + speed.Y * dtime < ysize) &&
147 					(relbox.MaxEdge.Y + speed.Y * dtime > COLL_ZERO))
148 				return 2;
149 		}
150 	}
151 
152 	return -1;
153 }
154 
155 // Helper function:
156 // Checks if moving the movingbox up by the given distance would hit a ceiling.
wouldCollideWithCeiling(const std::vector<aabb3f> & staticboxes,const aabb3f & movingbox,f32 y_increase,f32 d)157 bool wouldCollideWithCeiling(
158 		const std::vector<aabb3f> &staticboxes,
159 		const aabb3f &movingbox,
160 		f32 y_increase, f32 d)
161 {
162 	//TimeTaker tt("wouldCollideWithCeiling");
163 
164 	assert(y_increase >= 0);
165 
166 	for(std::vector<aabb3f>::const_iterator
167 			i = staticboxes.begin();
168 			i != staticboxes.end(); i++)
169 	{
170 		const aabb3f& staticbox = *i;
171 		if((movingbox.MaxEdge.Y - d <= staticbox.MinEdge.Y) &&
172 				(movingbox.MaxEdge.Y + y_increase > staticbox.MinEdge.Y) &&
173 				(movingbox.MinEdge.X < staticbox.MaxEdge.X) &&
174 				(movingbox.MaxEdge.X > staticbox.MinEdge.X) &&
175 				(movingbox.MinEdge.Z < staticbox.MaxEdge.Z) &&
176 				(movingbox.MaxEdge.Z > staticbox.MinEdge.Z))
177 			return true;
178 	}
179 
180 	return false;
181 }
182 
183 
collisionMoveSimple(Environment * env,IGameDef * gamedef,f32 pos_max_d,const aabb3f & box_0,f32 stepheight,f32 dtime,v3f & pos_f,v3f & speed_f,v3f & accel_f,ActiveObject * self,bool collideWithObjects)184 collisionMoveResult collisionMoveSimple(Environment *env, IGameDef *gamedef,
185 		f32 pos_max_d, const aabb3f &box_0,
186 		f32 stepheight, f32 dtime,
187 		v3f &pos_f, v3f &speed_f,
188 		v3f &accel_f,ActiveObject* self,
189 		bool collideWithObjects)
190 {
191 	Map *map = &env->getMap();
192 	//TimeTaker tt("collisionMoveSimple");
193     //ScopeProfiler sp(g_profiler, "collisionMoveSimple avg", SPT_AVG);
194 
195 	collisionMoveResult result;
196 
197 	/*
198 		Calculate new velocity
199 	*/
200 	if( dtime > 1 ) {
201 /*
202 		infostream<<"collisionMoveSimple: WARNING: maximum step interval exceeded, lost movement details!"<<std::endl;
203 */
204 		dtime = 1;
205 	}
206 	speed_f += accel_f * dtime;
207 
208 	// If there is no speed, there are no collisions
209 	if(speed_f.getLength() == 0)
210 		return result;
211 
212 	// Limit speed for avoiding hangs
213 	speed_f.Y=rangelim(speed_f.Y,-1000,1000);
214 	speed_f.X=rangelim(speed_f.X,-1000,1000);
215 	speed_f.Z=rangelim(speed_f.Z,-1000,1000);
216 
217 	/*
218 		Collect node boxes in movement range
219 	*/
220 	std::vector<aabb3f> cboxes;
221 	std::vector<bool> is_unloaded;
222 	std::vector<bool> is_step_up;
223 	std::vector<bool> is_object;
224 	std::vector<int> bouncy_values;
225 	std::vector<v3s16> node_positions;
226 	{
227 	//TimeTaker tt2("collisionMoveSimple collect boxes");
228     //ScopeProfiler sp(g_profiler, "collisionMoveSimple collect boxes avg", SPT_AVG);
229 
230 	v3s16 oldpos_i = floatToInt(pos_f, BS);
231 	v3s16 newpos_i = floatToInt(pos_f + speed_f * dtime, BS);
232 	s16 min_x = MYMIN(oldpos_i.X, newpos_i.X) + (box_0.MinEdge.X / BS) - 1;
233 	s16 min_y = MYMIN(oldpos_i.Y, newpos_i.Y) + (box_0.MinEdge.Y / BS) - 1;
234 	s16 min_z = MYMIN(oldpos_i.Z, newpos_i.Z) + (box_0.MinEdge.Z / BS) - 1;
235 	s16 max_x = MYMAX(oldpos_i.X, newpos_i.X) + (box_0.MaxEdge.X / BS) + 1;
236 	s16 max_y = MYMAX(oldpos_i.Y, newpos_i.Y) + (box_0.MaxEdge.Y / BS) + 1;
237 	s16 max_z = MYMAX(oldpos_i.Z, newpos_i.Z) + (box_0.MaxEdge.Z / BS) + 1;
238 
239 	for(s16 x = min_x; x <= max_x; x++)
240 	for(s16 y = min_y; y <= max_y; y++)
241 	for(s16 z = min_z; z <= max_z; z++)
242 	{
243 		v3s16 p(x,y,z);
244 
245 		bool is_position_valid;
246 		MapNode n = map->getNodeNoEx(p, &is_position_valid);
247 
248 		if (is_position_valid) {
249 			// Object collides into walkable nodes
250 
251 			const ContentFeatures &f = gamedef->getNodeDefManager()->get(n);
252 			if(f.walkable == false)
253 				continue;
254 			int n_bouncy_value = itemgroup_get(f.groups, "bouncy");
255 
256 			std::vector<aabb3f> nodeboxes = n.getCollisionBoxes(gamedef->ndef());
257 			for(std::vector<aabb3f>::iterator
258 					i = nodeboxes.begin();
259 					i != nodeboxes.end(); i++)
260 			{
261 				aabb3f box = *i;
262 				box.MinEdge += v3f(x, y, z)*BS;
263 				box.MaxEdge += v3f(x, y, z)*BS;
264 				cboxes.push_back(box);
265 				is_unloaded.push_back(false);
266 				is_step_up.push_back(false);
267 				bouncy_values.push_back(n_bouncy_value);
268 				node_positions.push_back(p);
269 				is_object.push_back(false);
270 			}
271 		}
272 		else {
273 			// Collide with unloaded nodes
274 			aabb3f box = getNodeBox(p, BS);
275 			cboxes.push_back(box);
276 			is_unloaded.push_back(true);
277 			is_step_up.push_back(false);
278 			bouncy_values.push_back(0);
279 			node_positions.push_back(p);
280 			is_object.push_back(false);
281 		}
282 	}
283 	} // tt2
284 
285 	if(collideWithObjects)
286 	{
287 		//ScopeProfiler sp(g_profiler, "collisionMoveSimple objects avg", SPT_AVG);
288 		//TimeTaker tt3("collisionMoveSimple collect object boxes");
289 
290 		/* add object boxes to cboxes */
291 
292 
293 		std::list<ActiveObject*> objects;
294 #ifndef SERVER
295 		ClientEnvironment *c_env = dynamic_cast<ClientEnvironment*>(env);
296 		if (c_env != 0)
297 		{
298 			f32 distance = speed_f.getLength();
299 			std::vector<DistanceSortedActiveObject> clientobjects;
300 			c_env->getActiveObjects(pos_f,distance * 1.5,clientobjects);
301 			for (size_t i=0; i < clientobjects.size(); i++)
302 			{
303 				if ((self == 0) || (self != clientobjects[i].obj)) {
304 					objects.push_back((ActiveObject*)clientobjects[i].obj);
305 				}
306 			}
307 		}
308 		else
309 #endif
310 		{
311 			ServerEnvironment *s_env = dynamic_cast<ServerEnvironment*>(env);
312 			if (s_env != 0)
313 			{
314 				f32 distance = speed_f.getLength();
315 				std::set<u16> s_objects = s_env->getObjectsInsideRadius(pos_f,distance * 1.5);
316 				for (std::set<u16>::iterator iter = s_objects.begin(); iter != s_objects.end(); iter++)
317 				{
318 					ServerActiveObject *current = s_env->getActiveObject(*iter);
319 					if ((self == 0) || (self != current)) {
320 						objects.push_back((ActiveObject*)current);
321 					}
322 				}
323 			}
324 		}
325 
326 		for (std::list<ActiveObject*>::const_iterator iter = objects.begin();iter != objects.end(); ++iter)
327 		{
328 			ActiveObject *object = *iter;
329 
330 			if (object != NULL)
331 			{
332 				aabb3f object_collisionbox;
333 				if (object->getCollisionBox(&object_collisionbox) &&
334 						object->collideWithObjects())
335 				{
336 					cboxes.push_back(object_collisionbox);
337 					is_unloaded.push_back(false);
338 					is_step_up.push_back(false);
339 					bouncy_values.push_back(0);
340 					node_positions.push_back(v3s16(0,0,0));
341 					is_object.push_back(true);
342 				}
343 			}
344 		}
345 	} //tt3
346 
347 	assert(cboxes.size() == is_unloaded.size());
348 	assert(cboxes.size() == is_step_up.size());
349 	assert(cboxes.size() == bouncy_values.size());
350 	assert(cboxes.size() == node_positions.size());
351 	assert(cboxes.size() == is_object.size());
352 
353 	/*
354 		Collision detection
355 	*/
356 
357 	/*
358 		Collision uncertainty radius
359 		Make it a bit larger than the maximum distance of movement
360 	*/
361 	f32 d = pos_max_d * 1.1;
362 	// A fairly large value in here makes moving smoother
363 	//f32 d = 0.15*BS;
364 
365 	// This should always apply, otherwise there are glitches
366 	assert(d > pos_max_d);
367 
368 	int loopcount = 0;
369 
370 	while(dtime > BS*1e-10)
371 	{
372 		//TimeTaker tt3("collisionMoveSimple dtime loop");
373         //ScopeProfiler sp(g_profiler, "collisionMoveSimple dtime loop avg", SPT_AVG);
374 
375 		// Avoid infinite loop
376 		loopcount++;
377 		if(loopcount >= 100)
378 		{
379 			infostream<<"collisionMoveSimple: WARNING: Loop count exceeded, aborting to avoid infiniite loop"<<std::endl;
380 			dtime = 0;
381 			break;
382 		}
383 
384 		aabb3f movingbox = box_0;
385 		movingbox.MinEdge += pos_f;
386 		movingbox.MaxEdge += pos_f;
387 
388 		int nearest_collided = -1;
389 		f32 nearest_dtime = dtime;
390 		u32 nearest_boxindex = -1;
391 
392 		/*
393 			Go through every nodebox, find nearest collision
394 		*/
395 		for(u32 boxindex = 0; boxindex < cboxes.size(); boxindex++)
396 		{
397 			// Ignore if already stepped up this nodebox.
398 			if(is_step_up[boxindex])
399 				continue;
400 
401 			// Find nearest collision of the two boxes (raytracing-like)
402 			f32 dtime_tmp;
403 			int collided = axisAlignedCollision(
404 					cboxes[boxindex], movingbox, speed_f, d, dtime_tmp);
405 
406 			if(collided == -1 || dtime_tmp >= nearest_dtime)
407 				continue;
408 
409 			nearest_dtime = dtime_tmp;
410 			nearest_collided = collided;
411 			nearest_boxindex = boxindex;
412 		}
413 
414 		if(nearest_collided == -1)
415 		{
416 			// No collision with any collision box.
417 			pos_f += speed_f * dtime;
418 			dtime = 0;  // Set to 0 to avoid "infinite" loop due to small FP numbers
419 		}
420 		else
421 		{
422 			// Otherwise, a collision occurred.
423 
424 			const aabb3f& cbox = cboxes[nearest_boxindex];
425 
426 			// Check for stairs.
427 			bool step_up = (nearest_collided != 1) && // must not be Y direction
428 					(movingbox.MinEdge.Y < cbox.MaxEdge.Y) &&
429 					(movingbox.MinEdge.Y + stepheight > cbox.MaxEdge.Y) &&
430 					(!wouldCollideWithCeiling(cboxes, movingbox,
431 							cbox.MaxEdge.Y - movingbox.MinEdge.Y,
432 							d));
433 
434 			// Get bounce multiplier
435 			bool bouncy = (bouncy_values[nearest_boxindex] >= 1);
436 			float bounce = -(float)bouncy_values[nearest_boxindex] / 100.0;
437 
438 			// Move to the point of collision and reduce dtime by nearest_dtime
439 			if(nearest_dtime < 0)
440 			{
441 				// Handle negative nearest_dtime (can be caused by the d allowance)
442 				if(!step_up)
443 				{
444 					if(nearest_collided == 0)
445 						pos_f.X += speed_f.X * nearest_dtime;
446 					if(nearest_collided == 1)
447 						pos_f.Y += speed_f.Y * nearest_dtime;
448 					if(nearest_collided == 2)
449 						pos_f.Z += speed_f.Z * nearest_dtime;
450 				}
451 			}
452 			else
453 			{
454 				pos_f += speed_f * nearest_dtime;
455 				dtime -= nearest_dtime;
456 			}
457 
458 			bool is_collision = true;
459 			if(is_unloaded[nearest_boxindex])
460 				is_collision = false;
461 
462 			CollisionInfo info;
463 			if (is_object[nearest_boxindex]) {
464 				info.type = COLLISION_OBJECT;
465 			}
466 			else {
467 				info.type = COLLISION_NODE;
468 			}
469 			info.node_p = node_positions[nearest_boxindex];
470 			info.bouncy = bouncy;
471 			info.old_speed = speed_f;
472 
473 			// Set the speed component that caused the collision to zero
474 			if(step_up)
475 			{
476 				// Special case: Handle stairs
477 				is_step_up[nearest_boxindex] = true;
478 				is_collision = false;
479 			}
480 			else if(nearest_collided == 0) // X
481 			{
482 				if(fabs(speed_f.X) > BS*3)
483 					speed_f.X *= bounce;
484 				else
485 					speed_f.X = 0;
486 				result.collides = true;
487 				result.collides_xz = true;
488 			}
489 			else if(nearest_collided == 1) // Y
490 			{
491 				if(fabs(speed_f.Y) > BS*3)
492 					speed_f.Y *= bounce;
493 				else
494 					speed_f.Y = 0;
495 				result.collides = true;
496 			}
497 			else if(nearest_collided == 2) // Z
498 			{
499 				if(fabs(speed_f.Z) > BS*3)
500 					speed_f.Z *= bounce;
501 				else
502 					speed_f.Z = 0;
503 				result.collides = true;
504 				result.collides_xz = true;
505 			}
506 
507 			info.new_speed = speed_f;
508 			if(info.new_speed.getDistanceFrom(info.old_speed) < 0.1*BS)
509 				is_collision = false;
510 
511 			if(is_collision){
512 				result.collisions.push_back(info);
513 			}
514 		}
515 	}
516 
517 	/*
518 		Final touches: Check if standing on ground, step up stairs.
519 	*/
520 	aabb3f box = box_0;
521 	box.MinEdge += pos_f;
522 	box.MaxEdge += pos_f;
523 	for(u32 boxindex = 0; boxindex < cboxes.size(); boxindex++)
524 	{
525 		const aabb3f& cbox = cboxes[boxindex];
526 
527 		/*
528 			See if the object is touching ground.
529 
530 			Object touches ground if object's minimum Y is near node's
531 			maximum Y and object's X-Z-area overlaps with the node's
532 			X-Z-area.
533 
534 			Use 0.15*BS so that it is easier to get on a node.
535 		*/
536 		if(
537 				cbox.MaxEdge.X-d > box.MinEdge.X &&
538 				cbox.MinEdge.X+d < box.MaxEdge.X &&
539 				cbox.MaxEdge.Z-d > box.MinEdge.Z &&
540 				cbox.MinEdge.Z+d < box.MaxEdge.Z
541 		){
542 			if(is_step_up[boxindex])
543 			{
544 				pos_f.Y += (cbox.MaxEdge.Y - box.MinEdge.Y);
545 				box = box_0;
546 				box.MinEdge += pos_f;
547 				box.MaxEdge += pos_f;
548 			}
549 			if(fabs(cbox.MaxEdge.Y-box.MinEdge.Y) < 0.15*BS)
550 			{
551 				result.touching_ground = true;
552 				if(is_unloaded[boxindex])
553 					result.standing_on_unloaded = true;
554 			}
555 		}
556 	}
557 
558 	return result;
559 }
560 
561 #if 0
562 // This doesn't seem to work and isn't used
563 collisionMoveResult collisionMovePrecise(Map *map, IGameDef *gamedef,
564 		f32 pos_max_d, const aabb3f &box_0,
565 		f32 stepheight, f32 dtime,
566 		v3f &pos_f, v3f &speed_f, v3f &accel_f)
567 {
568 	//TimeTaker tt("collisionMovePrecise");
569     ScopeProfiler sp(g_profiler, "collisionMovePrecise avg", SPT_AVG);
570 
571 	collisionMoveResult final_result;
572 
573 	// If there is no speed, there are no collisions
574 	if(speed_f.getLength() == 0)
575 		return final_result;
576 
577 	// Don't allow overly huge dtime
578 	if(dtime > 2.0)
579 		dtime = 2.0;
580 
581 	f32 dtime_downcount = dtime;
582 
583 	u32 loopcount = 0;
584 	do
585 	{
586 		loopcount++;
587 
588 		// Maximum time increment (for collision detection etc)
589 		// time = distance / speed
590 		f32 dtime_max_increment = 1.0;
591 		if(speed_f.getLength() != 0)
592 			dtime_max_increment = pos_max_d / speed_f.getLength();
593 
594 		// Maximum time increment is 10ms or lower
595 		if(dtime_max_increment > 0.01)
596 			dtime_max_increment = 0.01;
597 
598 		f32 dtime_part;
599 		if(dtime_downcount > dtime_max_increment)
600 		{
601 			dtime_part = dtime_max_increment;
602 			dtime_downcount -= dtime_part;
603 		}
604 		else
605 		{
606 			dtime_part = dtime_downcount;
607 			/*
608 				Setting this to 0 (no -=dtime_part) disables an infinite loop
609 				when dtime_part is so small that dtime_downcount -= dtime_part
610 				does nothing
611 			*/
612 			dtime_downcount = 0;
613 		}
614 
615 		collisionMoveResult result = collisionMoveSimple(map, gamedef,
616 				pos_max_d, box_0, stepheight, dtime_part,
617 				pos_f, speed_f, accel_f);
618 
619 		if(result.touching_ground)
620 			final_result.touching_ground = true;
621 		if(result.collides)
622 			final_result.collides = true;
623 		if(result.collides_xz)
624 			final_result.collides_xz = true;
625 		if(result.standing_on_unloaded)
626 			final_result.standing_on_unloaded = true;
627 	}
628 	while(dtime_downcount > 0.001);
629 
630 	return final_result;
631 }
632 #endif
633