1 /*
2 **
3 ** File: fmopl.c -- software implementation of FM sound generator
4 **
5 ** Copyright (C) 1999 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
6 **
7 ** Version 0.36f
8 **
9 */
10 
11 /*
12 	preliminary :
13 	Problem :
14 	note:
15 */
16 
17 #include <stdio.h>
18 #include <stdlib.h>
19 #include <string.h>
20 #include <stdarg.h>
21 #include <math.h>
22 #include "driver.h"		/* use M.A.M.E. */
23 #include "fmopl.h"
24 
25 #ifndef PI
26 #define PI 3.14159265358979323846
27 #endif
28 
29 /* -------------------- preliminary define section --------------------- */
30 /* attack/decay rate time rate */
31 #define OPL_ARRATE     141280  /* RATE 4 =  2826.24ms @ 3.6MHz */
32 #define OPL_DRRATE    1956000  /* RATE 4 = 39280.64ms @ 3.6MHz */
33 
34 #define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
35 
36 #define FREQ_BITS 24			/* frequency turn          */
37 
38 /* counter bits = 20 , octerve 7 */
39 #define FREQ_RATE   (1<<(FREQ_BITS-20))
40 #define TL_BITS    (FREQ_BITS+2)
41 
42 /* final output shift , limit minimum and maximum */
43 #define OPL_OUTSB   (TL_BITS+3-16)		/* OPL output final shift 16bit */
44 #define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
45 #define OPL_MINOUT (-0x8000<<OPL_OUTSB)
46 
47 /* -------------------- quality selection --------------------- */
48 
49 /* sinwave entries */
50 /* used static memory = SIN_ENT * 4 (byte) */
51 #define SIN_ENT 2048
52 
53 /* output level entries (envelope,sinwave) */
54 /* envelope counter lower bits */
55 #define ENV_BITS 16
56 /* envelope output entries */
57 #define EG_ENT   4096
58 /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
59 /* used static  memory = EG_ENT*4 (byte)                     */
60 
61 #define EG_OFF   ((2*EG_ENT)<<ENV_BITS)  /* OFF          */
62 #define EG_DED   EG_OFF
63 #define EG_DST   (EG_ENT<<ENV_BITS)      /* DECAY  START */
64 #define EG_AED   EG_DST
65 #define EG_AST   0                       /* ATTACK START */
66 
67 #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step  */
68 
69 /* LFO table entries */
70 #define VIB_ENT 512
71 #define VIB_SHIFT (32-9)
72 #define AMS_ENT 512
73 #define AMS_SHIFT (32-9)
74 
75 #define VIB_RATE 256
76 
77 /* -------------------- local defines , macros --------------------- */
78 
79 /* register number to channel number , slot offset */
80 #define SLOT1 0
81 #define SLOT2 1
82 
83 /* envelope phase */
84 #define ENV_MOD_RR  0x00
85 #define ENV_MOD_DR  0x01
86 #define ENV_MOD_AR  0x02
87 
88 /* -------------------- tables --------------------- */
89 static const int slot_array[32]=
90 {
91 	 0, 2, 4, 1, 3, 5,-1,-1,
92 	 6, 8,10, 7, 9,11,-1,-1,
93 	12,14,16,13,15,17,-1,-1,
94 	-1,-1,-1,-1,-1,-1,-1,-1
95 };
96 
97 /* key scale level */
98 #define ML (0.1875*2/EG_STEP)
99 static const UINT32 KSL_TABLE[8*16]=
100 {
101 	/* OCT 0 */
102 	 0.000*ML, 0.000*ML, 0.000*ML, 0.000*ML,
103 	 0.000*ML, 0.000*ML, 0.000*ML, 0.000*ML,
104 	 0.000*ML, 0.000*ML, 0.000*ML, 0.000*ML,
105 	 0.000*ML, 0.000*ML, 0.000*ML, 0.000*ML,
106 	/* OCT 1 */
107 	 0.000*ML, 0.000*ML, 0.000*ML, 0.000*ML,
108 	 0.000*ML, 0.000*ML, 0.000*ML, 0.000*ML,
109 	 0.000*ML, 0.750*ML, 1.125*ML, 1.500*ML,
110 	 1.875*ML, 2.250*ML, 2.625*ML, 3.000*ML,
111 	/* OCT 2 */
112 	 0.000*ML, 0.000*ML, 0.000*ML, 0.000*ML,
113 	 0.000*ML, 1.125*ML, 1.875*ML, 2.625*ML,
114 	 3.000*ML, 3.750*ML, 4.125*ML, 4.500*ML,
115 	 4.875*ML, 5.250*ML, 5.625*ML, 6.000*ML,
116 	/* OCT 3 */
117 	 0.000*ML, 0.000*ML, 0.000*ML, 1.875*ML,
118 	 3.000*ML, 4.125*ML, 4.875*ML, 5.625*ML,
119 	 6.000*ML, 6.750*ML, 7.125*ML, 7.500*ML,
120 	 7.875*ML, 8.250*ML, 8.625*ML, 9.000*ML,
121 	/* OCT 4 */
122 	 0.000*ML, 0.000*ML, 3.000*ML, 4.875*ML,
123 	 6.000*ML, 7.125*ML, 7.875*ML, 8.625*ML,
124 	 9.000*ML, 9.750*ML,10.125*ML,10.500*ML,
125 	10.875*ML,11.250*ML,11.625*ML,12.000*ML,
126 	/* OCT 5 */
127 	 0.000*ML, 3.000*ML, 6.000*ML, 7.875*ML,
128 	 9.000*ML,10.125*ML,10.875*ML,11.625*ML,
129 	12.000*ML,12.750*ML,13.125*ML,13.500*ML,
130 	13.875*ML,14.250*ML,14.625*ML,15.000*ML,
131 	/* OCT 6 */
132 	 0.000*ML, 6.000*ML, 9.000*ML,10.875*ML,
133 	12.000*ML,13.125*ML,13.875*ML,14.625*ML,
134 	15.000*ML,15.750*ML,16.125*ML,16.500*ML,
135 	16.875*ML,17.250*ML,17.625*ML,18.000*ML,
136 	/* OCT 7 */
137 	 0.000*ML, 9.000*ML,12.000*ML,13.875*ML,
138 	15.000*ML,16.125*ML,16.875*ML,17.625*ML,
139 	18.000*ML,18.750*ML,19.125*ML,19.500*ML,
140 	19.875*ML,20.250*ML,20.625*ML,21.000*ML
141 };
142 #undef ML
143 
144 /* sustain lebel table (3db per step) */
145 /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
146 #define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST
147 static const INT32 SL_TABLE[16]={
148  SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
149  SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
150 };
151 #undef SC
152 
153 #define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
154 /* TotalLevel : 48 24 12  6  3 1.5 0.75 (dB) */
155 /* TL_TABLE[ 0      to TL_MAX          ] : plus  section */
156 /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
157 static INT32 *TL_TABLE;
158 
159 /* pointers to TL_TABLE with sinwave output offset */
160 static INT32 **SIN_TABLE;
161 
162 /* LFO table */
163 static INT32 *AMS_TABLE;
164 static INT32 *VIB_TABLE;
165 
166 /* envelope output curve table */
167 /* attack + decay + OFF */
168 static INT32 ENV_CURVE[2*EG_ENT+1];
169 
170 /* multiple table */
171 #define ML 2
172 static const UINT32 MUL_TABLE[16]= {
173 /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
174    0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML,
175    8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML
176 };
177 #undef ML
178 
179 /* dummy attack / decay rate ( when rate == 0 ) */
180 static INT32 RATE_0[16]=
181 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
182 
183 /* -------------------- static state --------------------- */
184 
185 /* lock level of common table */
186 static int num_lock = 0;
187 
188 /* work table */
189 static void *cur_chip = NULL;	/* current chip point */
190 /* currenct chip state */
191 /* static FMSAMPLE  *bufL,*bufR; */
192 static OPL_CH *S_CH;
193 static OPL_CH *E_CH;
194 OPL_SLOT *SLOT7_1,*SLOT7_2,*SLOT8_1,*SLOT8_2;
195 
196 static INT32 outd[1];
197 static INT32 ams;
198 static INT32 vib;
199 INT32  *ams_table;
200 INT32  *vib_table;
201 static INT32 amsIncr;
202 static INT32 vibIncr;
203 static INT32 feedback2;		/* connect for SLOT 2 */
204 
205 /* log output level */
206 #define LOG_ERR  3      /* ERROR       */
207 #define LOG_WAR  2      /* WARNING     */
208 #define LOG_INF  1      /* INFORMATION */
209 
210 #define LOG_LEVEL LOG_INF
211 
212 //#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
213 #define LOG(n,x)
214 
215 /* --------------------- subroutines  --------------------- */
216 
Limit(int val,int max,int min)217 static INLINE int Limit( int val, int max, int min ) {
218 	if ( val > max )
219 		val = max;
220 	else if ( val < min )
221 		val = min;
222 
223 	return val;
224 }
225 
226 /* status set and IRQ handling */
OPL_STATUS_SET(FM_OPL * OPL,int flag)227 static INLINE void OPL_STATUS_SET(FM_OPL *OPL,int flag)
228 {
229 	/* set status flag */
230 	OPL->status |= flag;
231 	if(!(OPL->status & 0x80))
232 	{
233 		if(OPL->status & OPL->statusmask)
234 		{	/* IRQ on */
235 			OPL->status |= 0x80;
236 			/* callback user interrupt handler (IRQ is OFF to ON) */
237 			if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1);
238 		}
239 	}
240 }
241 
242 /* status reset and IRQ handling */
OPL_STATUS_RESET(FM_OPL * OPL,int flag)243 static INLINE void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
244 {
245 	/* reset status flag */
246 	OPL->status &=~flag;
247 	if((OPL->status & 0x80))
248 	{
249 		if (!(OPL->status & OPL->statusmask) )
250 		{
251 			OPL->status &= 0x7f;
252 			/* callback user interrupt handler (IRQ is ON to OFF) */
253 			if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0);
254 		}
255 	}
256 }
257 
258 /* IRQ mask set */
OPL_STATUSMASK_SET(FM_OPL * OPL,int flag)259 static INLINE void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
260 {
261 	OPL->statusmask = flag;
262 	/* IRQ handling check */
263 	OPL_STATUS_SET(OPL,0);
264 	OPL_STATUS_RESET(OPL,0);
265 }
266 
267 /* ----- key on  ----- */
OPL_KEYON(OPL_SLOT * SLOT)268 static INLINE void OPL_KEYON(OPL_SLOT *SLOT)
269 {
270 	/* sin wave restart */
271 	SLOT->Cnt = 0;
272 	/* set attack */
273 	SLOT->evm = ENV_MOD_AR;
274 	SLOT->evs = SLOT->evsa;
275 	SLOT->evc = EG_AST;
276 	SLOT->eve = EG_AED;
277 }
278 /* ----- key off ----- */
OPL_KEYOFF(OPL_SLOT * SLOT)279 static INLINE void OPL_KEYOFF(OPL_SLOT *SLOT)
280 {
281 	if( SLOT->evm > ENV_MOD_RR)
282 	{
283 		/* set envelope counter from envleope output */
284 		SLOT->evm = ENV_MOD_RR;
285 		if( !(SLOT->evc&EG_DST) )
286 			//SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
287 			SLOT->evc = EG_DST;
288 		SLOT->eve = EG_DED;
289 		SLOT->evs = SLOT->evsr;
290 	}
291 }
292 
293 /* ---------- calcrate Envelope Generator & Phase Generator ---------- */
294 /* return : envelope output */
OPL_CALC_SLOT(OPL_SLOT * SLOT)295 static INLINE UINT32 OPL_CALC_SLOT( OPL_SLOT *SLOT )
296 {
297 	/* calcrate envelope generator */
298 	if( (SLOT->evc+=SLOT->evs) >= SLOT->eve )
299 	{
300 		switch( SLOT->evm ){
301 		case ENV_MOD_AR: /* ATTACK -> DECAY1 */
302 			/* next DR */
303 			SLOT->evm = ENV_MOD_DR;
304 			SLOT->evc = EG_DST;
305 			SLOT->eve = SLOT->SL;
306 			SLOT->evs = SLOT->evsd;
307 			break;
308 		case ENV_MOD_DR: /* DECAY -> SL or RR */
309 			SLOT->evc = SLOT->SL;
310 			SLOT->eve = EG_DED;
311 			if(SLOT->eg_typ)
312 			{
313 				SLOT->evs = 0;
314 			}
315 			else
316 			{
317 				SLOT->evm = ENV_MOD_RR;
318 				SLOT->evs = SLOT->evsr;
319 			}
320 			break;
321 		case ENV_MOD_RR: /* RR -> OFF */
322 			SLOT->evc = EG_OFF;
323 			SLOT->eve = EG_OFF+1;
324 			SLOT->evs = 0;
325 			break;
326 		}
327 	}
328 	/* calcrate envelope */
329 	return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0);
330 }
331 
332 /* set algorythm connection */
set_algorythm(OPL_CH * CH)333 static void set_algorythm( OPL_CH *CH)
334 {
335 	INT32 *carrier = &outd[0];
336 	CH->connect1 = CH->CON ? carrier : &feedback2;
337 	CH->connect2 = carrier;
338 }
339 
340 /* ---------- frequency counter for operater update ---------- */
CALC_FCSLOT(OPL_CH * CH,OPL_SLOT * SLOT)341 static INLINE void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
342 {
343 	int ksr;
344 
345 	/* frequency step counter */
346 	SLOT->Incr = CH->fc * SLOT->mul;
347 	ksr = CH->kcode >> SLOT->KSR;
348 
349 	if( SLOT->ksr != ksr )
350 	{
351 		SLOT->ksr = ksr;
352 		/* attack , decay rate recalcration */
353 		SLOT->evsa = SLOT->AR[ksr];
354 		SLOT->evsd = SLOT->DR[ksr];
355 		SLOT->evsr = SLOT->RR[ksr];
356 	}
357 	SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
358 }
359 
360 /* set multi,am,vib,EG-TYP,KSR,mul */
set_mul(FM_OPL * OPL,int slot,int v)361 static INLINE void set_mul(FM_OPL *OPL,int slot,int v)
362 {
363 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
364 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
365 
366 	SLOT->mul    = MUL_TABLE[v&0x0f];
367 	SLOT->KSR    = (v&0x10) ? 0 : 2;
368 	SLOT->eg_typ = (v&0x20)>>5;
369 	SLOT->vib    = (v&0x40);
370 	SLOT->ams    = (v&0x80);
371 	CALC_FCSLOT(CH,SLOT);
372 }
373 
374 /* set ksl & tl */
set_ksl_tl(FM_OPL * OPL,int slot,int v)375 static INLINE void set_ksl_tl(FM_OPL *OPL,int slot,int v)
376 {
377 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
378 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
379 	int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
380 
381 	SLOT->ksl = ksl ? 3-ksl : 31;
382 	SLOT->TL  = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */
383 
384 	if( !(OPL->mode&0x80) )
385 	{	/* not CSM latch total level */
386 		SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
387 	}
388 }
389 
390 /* set attack rate & decay rate  */
set_ar_dr(FM_OPL * OPL,int slot,int v)391 static INLINE void set_ar_dr(FM_OPL *OPL,int slot,int v)
392 {
393 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
394 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
395 	int ar = v>>4;
396 	int dr = v&0x0f;
397 
398 	SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0;
399 	SLOT->evsa = SLOT->AR[SLOT->ksr];
400 	if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa;
401 
402 	SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
403 	SLOT->evsd = SLOT->DR[SLOT->ksr];
404 	if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd;
405 }
406 
407 /* set sustain level & release rate */
set_sl_rr(FM_OPL * OPL,int slot,int v)408 static INLINE void set_sl_rr(FM_OPL *OPL,int slot,int v)
409 {
410 	OPL_CH   *CH   = &OPL->P_CH[slot/2];
411 	OPL_SLOT *SLOT = &CH->SLOT[slot&1];
412 	int sl = v>>4;
413 	int rr = v & 0x0f;
414 
415 	SLOT->SL = SL_TABLE[sl];
416 	if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL;
417 	SLOT->RR = &OPL->DR_TABLE[rr<<2];
418 	SLOT->evsr = SLOT->RR[SLOT->ksr];
419 	if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr;
420 }
421 
422 /* operator output calcrator */
423 #define OP_OUT(slot,env,con)   slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
424 /* ---------- calcrate one of channel ---------- */
OPL_CALC_CH(OPL_CH * CH)425 static INLINE void OPL_CALC_CH( OPL_CH *CH )
426 {
427 	UINT32 env_out;
428 	OPL_SLOT *SLOT;
429 
430 	feedback2 = 0;
431 	/* SLOT 1 */
432 	SLOT = &CH->SLOT[SLOT1];
433 	env_out=OPL_CALC_SLOT(SLOT);
434 	if( env_out < EG_ENT-1 )
435 	{
436 		/* PG */
437 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
438 		else          SLOT->Cnt += SLOT->Incr;
439 		/* connectoion */
440 		if(CH->FB)
441 		{
442 			int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB;
443 			CH->op1_out[1] = CH->op1_out[0];
444 			*CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
445 		}
446 		else
447 		{
448 			*CH->connect1 += OP_OUT(SLOT,env_out,0);
449 		}
450 	}else
451 	{
452 		CH->op1_out[1] = CH->op1_out[0];
453 		CH->op1_out[0] = 0;
454 	}
455 	/* SLOT 2 */
456 	SLOT = &CH->SLOT[SLOT2];
457 	env_out=OPL_CALC_SLOT(SLOT);
458 	if( env_out < EG_ENT-1 )
459 	{
460 		/* PG */
461 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
462 		else          SLOT->Cnt += SLOT->Incr;
463 		/* connectoion */
464 		outd[0] += OP_OUT(SLOT,env_out, feedback2);
465 	}
466 }
467 
468 /* ---------- calcrate rythm block ---------- */
469 #define WHITE_NOISE_db 6.0
OPL_CALC_RH(OPL_CH * CH)470 static INLINE void OPL_CALC_RH( OPL_CH *CH )
471 {
472 	UINT32 env_tam,env_sd,env_top,env_hh;
473 	int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP);
474 	INT32 tone8;
475 
476 	OPL_SLOT *SLOT;
477 	int env_out;
478 
479 	/* BD : same as FM serial mode and output level is large */
480 	feedback2 = 0;
481 	/* SLOT 1 */
482 	SLOT = &CH[6].SLOT[SLOT1];
483 	env_out=OPL_CALC_SLOT(SLOT);
484 	if( env_out < EG_ENT-1 )
485 	{
486 		/* PG */
487 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
488 		else          SLOT->Cnt += SLOT->Incr;
489 		/* connectoion */
490 		if(CH[6].FB)
491 		{
492 			int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB;
493 			CH[6].op1_out[1] = CH[6].op1_out[0];
494 			feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
495 		}
496 		else
497 		{
498 			feedback2 = OP_OUT(SLOT,env_out,0);
499 		}
500 	}else
501 	{
502 		feedback2 = 0;
503 		CH[6].op1_out[1] = CH[6].op1_out[0];
504 		CH[6].op1_out[0] = 0;
505 	}
506 	/* SLOT 2 */
507 	SLOT = &CH[6].SLOT[SLOT2];
508 	env_out=OPL_CALC_SLOT(SLOT);
509 	if( env_out < EG_ENT-1 )
510 	{
511 		/* PG */
512 		if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
513 		else          SLOT->Cnt += SLOT->Incr;
514 		/* connectoion */
515 		outd[0] += OP_OUT(SLOT,env_out, feedback2)*2;
516 	}
517 
518 	// SD  (17) = mul14[fnum7] + white noise
519 	// TAM (15) = mul15[fnum8]
520 	// TOP (18) = fnum6(mul18[fnum8]+whitenoise)
521 	// HH  (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
522 	env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise;
523 	env_tam=OPL_CALC_SLOT(SLOT8_1);
524 	env_top=OPL_CALC_SLOT(SLOT8_2);
525 	env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise;
526 
527 	/* PG */
528 	if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE);
529 	else             SLOT7_1->Cnt += 2*SLOT7_1->Incr;
530 	if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE);
531 	else             SLOT7_2->Cnt += (CH[7].fc*8);
532 	if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE);
533 	else             SLOT8_1->Cnt += SLOT8_1->Incr;
534 	if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE);
535 	else             SLOT8_2->Cnt += (CH[8].fc*48);
536 
537 	tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
538 
539 	/* SD */
540 	if( env_sd < EG_ENT-1 )
541 		outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8;
542 	/* TAM */
543 	if( env_tam < EG_ENT-1 )
544 		outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2;
545 	/* TOP-CY */
546 	if( env_top < EG_ENT-1 )
547 		outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2;
548 	/* HH */
549 	if( env_hh  < EG_ENT-1 )
550 		outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2;
551 }
552 
553 /* ----------- initialize time tabls ----------- */
init_timetables(FM_OPL * OPL,int ARRATE,int DRRATE)554 static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE )
555 {
556 	int i;
557 	double rate;
558 
559 	/* make attack rate & decay rate tables */
560 	for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
561 	for (i = 4;i <= 60;i++){
562 		rate  = OPL->freqbase;						/* frequency rate */
563 		if( i < 60 ) rate *= 1.0+(i&3)*0.25;		/* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
564 		rate *= 1<<((i>>2)-1);						/* b2-5 : shift bit */
565 		rate *= (double)(EG_ENT<<ENV_BITS);
566 		OPL->AR_TABLE[i] = rate / ARRATE;
567 		OPL->DR_TABLE[i] = rate / DRRATE;
568 	}
569 	//for (i = 60;i < 76;i++)
570 	for (i = 60;i < 75;i++)
571 	{
572 		OPL->AR_TABLE[i] = EG_AED-1;
573 		OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
574 	}
575 #if 0
576 	for (i = 0;i < 64 ;i++){	/* make for overflow area */
577 		LOG(LOG_WAR,("rate %2d , ar %f ms , dr %f ms \n",i,
578 			((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate),
579 			((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) ));
580 	}
581 #endif
582 }
583 
584 /* ---------- generic table initialize ---------- */
OPLOpenTable(void)585 static int OPLOpenTable( void )
586 {
587 	int s,t;
588 	double rate;
589 	int i,j;
590 	double pom;
591 
592 	/* allocate dynamic tables */
593 	if( (TL_TABLE = (INT32*)malloc(TL_MAX*2*sizeof(INT32))) == NULL)
594 		return 0;
595 	if( (SIN_TABLE = (INT32**)malloc(SIN_ENT*4 *sizeof(INT32 *))) == NULL)
596 	{
597 		free(TL_TABLE);
598 		return 0;
599 	}
600 	if( (AMS_TABLE = (INT32*)malloc(AMS_ENT*2 *sizeof(INT32))) == NULL)
601 	{
602 		free(TL_TABLE);
603 		free(SIN_TABLE);
604 		return 0;
605 	}
606 	if( (VIB_TABLE = (INT32*)malloc(VIB_ENT*2 *sizeof(INT32))) == NULL)
607 	{
608 		free(TL_TABLE);
609 		free(SIN_TABLE);
610 		free(AMS_TABLE);
611 		return 0;
612 	}
613 	/* make total level table */
614 	for (t = 0;t < EG_ENT-1 ;t++){
615 		rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20);	/* dB -> voltage */
616 		TL_TABLE[       t] =  (int)rate;
617 		TL_TABLE[TL_MAX+t] = -TL_TABLE[t];
618 /*		LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
619 	}
620 	/* fill volume off area */
621 	for ( t = EG_ENT-1; t < TL_MAX ;t++){
622 		TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0;
623 	}
624 
625 	/* make sinwave table (total level offet) */
626 	/* degree 0 = degree 180                   = off */
627 	SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2]         = &TL_TABLE[EG_ENT-1];
628 	for (s = 1;s <= SIN_ENT/4;s++){
629 		pom = sin(2*PI*s/SIN_ENT); /* sin     */
630 		pom = 20*log10(1/pom);	   /* decibel */
631 		j = pom / EG_STEP;         /* TL_TABLE steps */
632 
633         /* degree 0   -  90    , degree 180 -  90 : plus section */
634 		SIN_TABLE[          s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j];
635         /* degree 180 - 270    , degree 360 - 270 : minus section */
636 		SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT  -s] = &TL_TABLE[TL_MAX+j];
637 /*		LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
638 	}
639 	for (s = 0;s < SIN_ENT;s++)
640 	{
641 		SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
642 		SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)];
643 		SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s];
644 	}
645 
646 	/* envelope counter -> envelope output table */
647 	for (i=0; i<EG_ENT; i++)
648 	{
649 		/* ATTACK curve */
650 		pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT;
651 		/* if( pom >= EG_ENT ) pom = EG_ENT-1; */
652 		ENV_CURVE[i] = (int)pom;
653 		/* DECAY ,RELEASE curve */
654 		ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i;
655 	}
656 	/* off */
657 	ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1;
658 	/* make LFO ams table */
659 	for (i=0; i<AMS_ENT; i++)
660 	{
661 		pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */
662 		AMS_TABLE[i]         = (1.0/EG_STEP)*pom; /* 1dB   */
663 		AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */
664 	}
665 	/* make LFO vibrate table */
666 	for (i=0; i<VIB_ENT; i++)
667 	{
668 		/* 100cent = 1seminote = 6% ?? */
669 		pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */
670 		VIB_TABLE[i]         = VIB_RATE + (pom*0.07); /* +- 7cent */
671 		VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */
672 		/* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
673 	}
674 	return 1;
675 }
676 
677 
OPLCloseTable(void)678 static void OPLCloseTable( void )
679 {
680 	free(TL_TABLE);
681 	free(SIN_TABLE);
682 	free(AMS_TABLE);
683 	free(VIB_TABLE);
684 }
685 
686 /* CSM Key Controll */
CSMKeyControll(OPL_CH * CH)687 static INLINE void CSMKeyControll(OPL_CH *CH)
688 {
689 	OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
690 	OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
691 	/* all key off */
692 	OPL_KEYOFF(slot1);
693 	OPL_KEYOFF(slot2);
694 	/* total level latch */
695 	slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
696 	slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
697 	/* key on */
698 	CH->op1_out[0] = CH->op1_out[1] = 0;
699 	OPL_KEYON(slot1);
700 	OPL_KEYON(slot2);
701 }
702 
703 /* ---------- opl initialize ---------- */
OPL_initalize(FM_OPL * OPL)704 static void OPL_initalize(FM_OPL *OPL)
705 {
706 	int fn;
707 
708 	/* frequency base */
709 	OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72  : 0;
710 	/* Timer base time */
711 	OPL->TimerBase = (float)TIME_ONE_SEC/((float)OPL->clock / 72.0 );
712 	/* make time tables */
713 	init_timetables( OPL , OPL_ARRATE , OPL_DRRATE );
714 	/* make fnumber -> increment counter table */
715 	for( fn=0 ; fn < 1024 ; fn++ )
716 	{
717 		OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2;
718 	}
719 	/* LFO freq.table */
720 	OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0;
721 	OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0;
722 }
723 
724 /* ---------- write a OPL registers ---------- */
OPLWriteReg(FM_OPL * OPL,int r,int v)725 static void OPLWriteReg(FM_OPL *OPL, int r, int v)
726 {
727 	OPL_CH *CH;
728 	int slot;
729 	int block_fnum;
730 
731 	switch(r&0xe0)
732 	{
733 	case 0x00: /* 00-1f:controll */
734 		switch(r&0x1f)
735 		{
736 		case 0x01:
737 			/* wave selector enable */
738 			if(OPL->type&OPL_TYPE_WAVESEL)
739 			{
740 				OPL->wavesel = v&0x20;
741 				if(!OPL->wavesel)
742 				{
743 					/* preset compatible mode */
744 					int c;
745 					for(c=0;c<OPL->max_ch;c++)
746 					{
747 						OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
748 						OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
749 					}
750 				}
751 			}
752 			return;
753 		case 0x02:	/* Timer 1 */
754 			OPL->T[0] = (256-v)*4;
755 			break;
756 		case 0x03:	/* Timer 2 */
757 			OPL->T[1] = (256-v)*16;
758 			return;
759 		case 0x04:	/* IRQ clear / mask and Timer enable */
760 			if(v&0x80)
761 			{	/* IRQ flag clear */
762 				OPL_STATUS_RESET(OPL,0x7f);
763 			}
764 			else
765 			{	/* set IRQ mask ,timer enable*/
766 				UINT8 st1 = v&1;
767 				UINT8 st2 = (v>>1)&1;
768 				/* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
769 				OPL_STATUS_RESET(OPL,v&0x78);
770 				OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01);
771 				/* timer 2 */
772 				if(OPL->st[1] != st2)
773 				{
774 					timer_tm interval = st2 ? (timer_tm)OPL->T[1]*OPL->TimerBase : 0;
775 					OPL->st[1] = st2;
776 					if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval);
777 				}
778 				/* timer 1 */
779 				if(OPL->st[0] != st1)
780 				{
781 					timer_tm interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0;
782 					OPL->st[0] = st1;
783 					if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval);
784 				}
785 			}
786 			return;
787 #if BUILD_Y8950
788 		case 0x06:		/* Key Board OUT */
789 			if(OPL->type&OPL_TYPE_KEYBOARD)
790 			{
791 				if(OPL->keyboardhandler_w)
792 					OPL->keyboardhandler_w(OPL->keyboard_param,v);
793 				else
794 					LOG(LOG_WAR,("OPL:write unmapped KEYBOARD port\n"));
795 			}
796 			return;
797 		case 0x07:	/* DELTA-T controll : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */
798 			if(OPL->type&OPL_TYPE_ADPCM)
799 				YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
800 			return;
801 		case 0x08:	/* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */
802 			OPL->mode = v;
803 			v&=0x1f;	/* for DELTA-T unit */
804 		case 0x09:		/* START ADD */
805 		case 0x0a:
806 		case 0x0b:		/* STOP ADD  */
807 		case 0x0c:
808 		case 0x0d:		/* PRESCALE   */
809 		case 0x0e:
810 		case 0x0f:		/* ADPCM data */
811 		case 0x10: 		/* DELTA-N    */
812 		case 0x11: 		/* DELTA-N    */
813 		case 0x12: 		/* EG-CTRL    */
814 			if(OPL->type&OPL_TYPE_ADPCM)
815 				YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
816 			return;
817 #if 0
818 		case 0x15:		/* DAC data    */
819 		case 0x16:
820 		case 0x17:		/* SHIFT    */
821 			return;
822 		case 0x18:		/* I/O CTRL (Direction) */
823 			if(OPL->type&OPL_TYPE_IO)
824 				OPL->portDirection = v&0x0f;
825 			return;
826 		case 0x19:		/* I/O DATA */
827 			if(OPL->type&OPL_TYPE_IO)
828 			{
829 				OPL->portLatch = v;
830 				if(OPL->porthandler_w)
831 					OPL->porthandler_w(OPL->port_param,v&OPL->portDirection);
832 			}
833 			return;
834 		case 0x1a:		/* PCM data */
835 			return;
836 #endif
837 #endif
838 		}
839 		break;
840 	case 0x20:	/* am,vib,ksr,eg type,mul */
841 		slot = slot_array[r&0x1f];
842 		if(slot == -1) return;
843 		set_mul(OPL,slot,v);
844 		return;
845 	case 0x40:
846 		slot = slot_array[r&0x1f];
847 		if(slot == -1) return;
848 		set_ksl_tl(OPL,slot,v);
849 		return;
850 	case 0x60:
851 		slot = slot_array[r&0x1f];
852 		if(slot == -1) return;
853 		set_ar_dr(OPL,slot,v);
854 		return;
855 	case 0x80:
856 		slot = slot_array[r&0x1f];
857 		if(slot == -1) return;
858 		set_sl_rr(OPL,slot,v);
859 		return;
860 	case 0xa0:
861 		switch(r)
862 		{
863 		case 0xbd:
864 			/* amsep,vibdep,r,bd,sd,tom,tc,hh */
865 			{
866 			UINT8 rkey = OPL->rythm^v;
867 			OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0];
868 			OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0];
869 			OPL->rythm  = v&0x3f;
870 			if(OPL->rythm&0x20)
871 			{
872 #if 0
873 				usrintf_showmessage("OPL Rythm mode select");
874 #endif
875 				/* BD key on/off */
876 				if(rkey&0x10)
877 				{
878 					if(v&0x10)
879 					{
880 						OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
881 						OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
882 						OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
883 					}
884 					else
885 					{
886 						OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
887 						OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
888 					}
889 				}
890 				/* SD key on/off */
891 				if(rkey&0x08)
892 				{
893 					if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
894 					else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
895 				}/* TAM key on/off */
896 				if(rkey&0x04)
897 				{
898 					if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
899 					else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
900 				}
901 				/* TOP-CY key on/off */
902 				if(rkey&0x02)
903 				{
904 					if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
905 					else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
906 				}
907 				/* HH key on/off */
908 				if(rkey&0x01)
909 				{
910 					if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
911 					else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
912 				}
913 			}
914 			}
915 			return;
916 		}
917 		/* keyon,block,fnum */
918 		if( (r&0x0f) > 8) return;
919 		CH = &OPL->P_CH[r&0x0f];
920 		if(!(r&0x10))
921 		{	/* a0-a8 */
922 			block_fnum  = (CH->block_fnum&0x1f00) | v;
923 		}
924 		else
925 		{	/* b0-b8 */
926 			int keyon = (v>>5)&1;
927 			block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
928 			if(CH->keyon != keyon)
929 			{
930 				if( (CH->keyon=keyon) )
931 				{
932 					CH->op1_out[0] = CH->op1_out[1] = 0;
933 					OPL_KEYON(&CH->SLOT[SLOT1]);
934 					OPL_KEYON(&CH->SLOT[SLOT2]);
935 				}
936 				else
937 				{
938 					OPL_KEYOFF(&CH->SLOT[SLOT1]);
939 					OPL_KEYOFF(&CH->SLOT[SLOT2]);
940 				}
941 			}
942 		}
943 		/* update */
944 		if(CH->block_fnum != block_fnum)
945 		{
946 			int blockRv = 7-(block_fnum>>10);
947 			int fnum   = block_fnum&0x3ff;
948 			CH->block_fnum = block_fnum;
949 
950 			CH->ksl_base = KSL_TABLE[block_fnum>>6];
951 			CH->fc = OPL->FN_TABLE[fnum]>>blockRv;
952 			CH->kcode = CH->block_fnum>>9;
953 			if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1;
954 			CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
955 			CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
956 		}
957 		return;
958 	case 0xc0:
959 		/* FB,C */
960 		if( (r&0x0f) > 8) return;
961 		CH = &OPL->P_CH[r&0x0f];
962 		{
963 		int feedback = (v>>1)&7;
964 		CH->FB   = feedback ? (8+1) - feedback : 0;
965 		CH->CON = v&1;
966 		set_algorythm(CH);
967 		}
968 		return;
969 	case 0xe0: /* wave type */
970 		slot = slot_array[r&0x1f];
971 		if(slot == -1) return;
972 		CH = &OPL->P_CH[slot/2];
973 		if(OPL->wavesel)
974 		{
975 			/* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
976 			CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT];
977 		}
978 		return;
979 	}
980 }
981 
982 /* lock/unlock for common table */
OPL_LockTable(void)983 static int OPL_LockTable(void)
984 {
985 	num_lock++;
986 	if(num_lock>1) return 0;
987 	/* first time */
988 	cur_chip = NULL;
989 	/* allocate total level table (128kb space) */
990 	if( !OPLOpenTable() )
991 	{
992 		num_lock--;
993 		return -1;
994 	}
995 	return 0;
996 }
997 
OPL_UnLockTable(void)998 static void OPL_UnLockTable(void)
999 {
1000 	if(num_lock) num_lock--;
1001 	if(num_lock) return;
1002 	/* last time */
1003 	cur_chip = NULL;
1004 	OPLCloseTable();
1005 }
1006 
1007 #if (BUILD_YM3812 || BUILD_YM3526)
1008 /*******************************************************************************/
1009 /*		YM3812 local section                                                   */
1010 /*******************************************************************************/
1011 
1012 /* ---------- update one of chip ----------- */
YM3812UpdateOne(FM_OPL * OPL,INT16 * buffer,int length)1013 void YM3812UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
1014 {
1015     int i;
1016 	int data;
1017 	FMSAMPLE *buf = buffer;
1018 	UINT32 amsCnt  = OPL->amsCnt;
1019 	UINT32 vibCnt  = OPL->vibCnt;
1020 	UINT8 rythm = OPL->rythm&0x20;
1021 	OPL_CH *CH,*R_CH;
1022 
1023 	if( (void *)OPL != cur_chip ){
1024 		cur_chip = (void *)OPL;
1025 		/* channel pointers */
1026 		S_CH = OPL->P_CH;
1027 		E_CH = &S_CH[9];
1028 		/* rythm slot */
1029 		SLOT7_1 = &S_CH[7].SLOT[SLOT1];
1030 		SLOT7_2 = &S_CH[7].SLOT[SLOT2];
1031 		SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1032 		SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1033 		/* LFO state */
1034 		amsIncr = OPL->amsIncr;
1035 		vibIncr = OPL->vibIncr;
1036 		ams_table = OPL->ams_table;
1037 		vib_table = OPL->vib_table;
1038 	}
1039 	R_CH = rythm ? &S_CH[6] : E_CH;
1040     for( i=0; i < length ; i++ )
1041 	{
1042 		/*            channel A         channel B         channel C      */
1043 		/* LFO */
1044 		ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1045 		vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1046 		outd[0] = 0;
1047 		/* FM part */
1048 		for(CH=S_CH ; CH < R_CH ; CH++)
1049 			OPL_CALC_CH(CH);
1050 		/* Rythn part */
1051 		if(rythm)
1052 			OPL_CALC_RH(S_CH);
1053 		/* limit check */
1054 		data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1055 		/* store to sound buffer */
1056 		buf[i] = data >> OPL_OUTSB;
1057 	}
1058 
1059 	OPL->amsCnt = amsCnt;
1060 	OPL->vibCnt = vibCnt;
1061 }
1062 #endif /* (BUILD_YM3812 || BUILD_YM3526) */
1063 
1064 #if BUILD_Y8950
1065 
Y8950UpdateOne(FM_OPL * OPL,INT16 * buffer,int length)1066 void Y8950UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
1067 {
1068     int i;
1069 	int data;
1070 	FMSAMPLE *buf = buffer;
1071 	UINT32 amsCnt  = OPL->amsCnt;
1072 	UINT32 vibCnt  = OPL->vibCnt;
1073 	UINT8 rythm = OPL->rythm&0x20;
1074 	OPL_CH *CH,*R_CH;
1075 	YM_DELTAT *DELTAT = OPL->deltat;
1076 
1077 	/* setup DELTA-T unit */
1078 	YM_DELTAT_DECODE_PRESET(DELTAT);
1079 
1080 	if( (void *)OPL != cur_chip ){
1081 		cur_chip = (void *)OPL;
1082 		/* channel pointers */
1083 		S_CH = OPL->P_CH;
1084 		E_CH = &S_CH[9];
1085 		/* rythm slot */
1086 		SLOT7_1 = &S_CH[7].SLOT[SLOT1];
1087 		SLOT7_2 = &S_CH[7].SLOT[SLOT2];
1088 		SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1089 		SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1090 		/* LFO state */
1091 		amsIncr = OPL->amsIncr;
1092 		vibIncr = OPL->vibIncr;
1093 		ams_table = OPL->ams_table;
1094 		vib_table = OPL->vib_table;
1095 	}
1096 	R_CH = rythm ? &S_CH[6] : E_CH;
1097     for( i=0; i < length ; i++ )
1098 	{
1099 		/*            channel A         channel B         channel C      */
1100 		/* LFO */
1101 		ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1102 		vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1103 		outd[0] = 0;
1104 		/* deltaT ADPCM */
1105 		if( DELTAT->flag )
1106 			YM_DELTAT_ADPCM_CALC(DELTAT);
1107 		/* FM part */
1108 		for(CH=S_CH ; CH < R_CH ; CH++)
1109 			OPL_CALC_CH(CH);
1110 		/* Rythn part */
1111 		if(rythm)
1112 			OPL_CALC_RH(S_CH);
1113 		/* limit check */
1114 		data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1115 		/* store to sound buffer */
1116 		buf[i] = data >> OPL_OUTSB;
1117 	}
1118 	OPL->amsCnt = amsCnt;
1119 	OPL->vibCnt = vibCnt;
1120 	/* deltaT START flag */
1121 	if( !DELTAT->flag )
1122 		OPL->status &= 0xfe;
1123 }
1124 #endif
1125 
1126 /* ---------- reset one of chip ---------- */
OPLResetChip(FM_OPL * OPL)1127 void OPLResetChip(FM_OPL *OPL)
1128 {
1129 	int c,s;
1130 	int i;
1131 
1132 	/* reset chip */
1133 	OPL->mode   = 0;	/* normal mode */
1134 	OPL_STATUS_RESET(OPL,0x7f);
1135 	/* reset with register write */
1136 	OPLWriteReg(OPL,0x01,0); /* wabesel disable */
1137 	OPLWriteReg(OPL,0x02,0); /* Timer1 */
1138 	OPLWriteReg(OPL,0x03,0); /* Timer2 */
1139 	OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */
1140 	for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
1141 	/* reset OPerator paramater */
1142 	for( c = 0 ; c < OPL->max_ch ; c++ )
1143 	{
1144 		OPL_CH *CH = &OPL->P_CH[c];
1145 		/* OPL->P_CH[c].PAN = OPN_CENTER; */
1146 		for(s = 0 ; s < 2 ; s++ )
1147 		{
1148 			/* wave table */
1149 			CH->SLOT[s].wavetable = &SIN_TABLE[0];
1150 			/* CH->SLOT[s].evm = ENV_MOD_RR; */
1151 			CH->SLOT[s].evc = EG_OFF;
1152 			CH->SLOT[s].eve = EG_OFF+1;
1153 			CH->SLOT[s].evs = 0;
1154 		}
1155 	}
1156 #if BUILD_Y8950
1157 	if(OPL->type&OPL_TYPE_ADPCM)
1158 	{
1159 		YM_DELTAT *DELTAT = OPL->deltat;
1160 
1161 		DELTAT->freqbase = OPL->freqbase;
1162 		DELTAT->output_pointer = outd;
1163 		DELTAT->portshift = 5;
1164 		DELTAT->output_range = DELTAT_MIXING_LEVEL<<TL_BITS;
1165 		YM_DELTAT_ADPCM_Reset(DELTAT,0);
1166 	}
1167 #endif
1168 }
1169 
1170 /* ----------  Create one of vietual YM3812 ----------       */
1171 /* 'rate'  is sampling rate and 'bufsiz' is the size of the  */
OPLCreate(int type,int clock,int rate)1172 FM_OPL *OPLCreate(int type, int clock, int rate)
1173 {
1174 	char *ptr;
1175 	FM_OPL *OPL;
1176 	int state_size;
1177 	int max_ch = 9; /* normaly 9 channels */
1178 
1179 	if( OPL_LockTable() ==-1) return NULL;
1180 	/* allocate OPL state space */
1181 	state_size  = sizeof(FM_OPL);
1182 	state_size += sizeof(OPL_CH)*max_ch;
1183 #if BUILD_Y8950
1184 	if(type&OPL_TYPE_ADPCM) state_size+= sizeof(YM_DELTAT);
1185 #endif
1186 	/* allocate memory block */
1187 	ptr = (char*)malloc(state_size);
1188 	if(ptr==NULL) return NULL;
1189 	/* clear */
1190 	memset(ptr,0,state_size);
1191 	OPL        = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL);
1192 	OPL->P_CH  = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch;
1193 #if BUILD_Y8950
1194 	if(type&OPL_TYPE_ADPCM) OPL->deltat = (YM_DELTAT *)ptr; ptr+=sizeof(YM_DELTAT);
1195 #endif
1196 	/* set channel state pointer */
1197 	OPL->type  = type;
1198 	OPL->clock = clock;
1199 	OPL->rate  = rate;
1200 	OPL->max_ch = max_ch;
1201 	/* init grobal tables */
1202 	OPL_initalize(OPL);
1203 	/* reset chip */
1204 	OPLResetChip(OPL);
1205 	return OPL;
1206 }
1207 
1208 /* ----------  Destroy one of vietual YM3812 ----------       */
OPLDestroy(FM_OPL * OPL)1209 void OPLDestroy(FM_OPL *OPL)
1210 {
1211 	OPL_UnLockTable();
1212 	free(OPL);
1213 }
1214 
1215 /* ----------  Option handlers ----------       */
1216 
OPLSetTimerHandler(FM_OPL * OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset)1217 void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset)
1218 {
1219 	OPL->TimerHandler   = TimerHandler;
1220 	OPL->TimerParam = channelOffset;
1221 }
OPLSetIRQHandler(FM_OPL * OPL,OPL_IRQHANDLER IRQHandler,int param)1222 void OPLSetIRQHandler(FM_OPL *OPL,OPL_IRQHANDLER IRQHandler,int param)
1223 {
1224 	OPL->IRQHandler     = IRQHandler;
1225 	OPL->IRQParam = param;
1226 }
OPLSetUpdateHandler(FM_OPL * OPL,OPL_UPDATEHANDLER UpdateHandler,int param)1227 void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,int param)
1228 {
1229 	OPL->UpdateHandler = UpdateHandler;
1230 	OPL->UpdateParam = param;
1231 }
1232 #if BUILD_Y8950
OPLSetPortHandler(FM_OPL * OPL,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,int param)1233 void OPLSetPortHandler(FM_OPL *OPL,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,int param)
1234 {
1235 	OPL->porthandler_w = PortHandler_w;
1236 	OPL->porthandler_r = PortHandler_r;
1237 	OPL->port_param = param;
1238 }
1239 
OPLSetKeyboardHandler(FM_OPL * OPL,OPL_PORTHANDLER_W KeyboardHandler_w,OPL_PORTHANDLER_R KeyboardHandler_r,int param)1240 void OPLSetKeyboardHandler(FM_OPL *OPL,OPL_PORTHANDLER_W KeyboardHandler_w,OPL_PORTHANDLER_R KeyboardHandler_r,int param)
1241 {
1242 	OPL->keyboardhandler_w = KeyboardHandler_w;
1243 	OPL->keyboardhandler_r = KeyboardHandler_r;
1244 	OPL->keyboard_param = param;
1245 }
1246 #endif
1247 /* ---------- YM3812 I/O interface ---------- */
OPLWrite(FM_OPL * OPL,int a,int v)1248 int OPLWrite(FM_OPL *OPL,int a,int v)
1249 {
1250 	if( !(a&1) )
1251 	{	/* address port */
1252 		OPL->address = v & 0xff;
1253 	}
1254 	else
1255 	{	/* data port */
1256 #ifndef MAME_FASTSOUND
1257 		if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1258 #else
1259         {
1260             extern int fast_sound;
1261             if ((!fast_sound) && (OPL->UpdateHandler)) OPL->UpdateHandler(OPL->UpdateParam,0);
1262         }
1263 #endif
1264 		OPLWriteReg(OPL,OPL->address,v);
1265 	}
1266 	return OPL->status>>7;
1267 }
1268 
OPLRead(FM_OPL * OPL,int a)1269 unsigned char OPLRead(FM_OPL *OPL,int a)
1270 {
1271 	if( !(a&1) )
1272 	{	/* status port */
1273 		return OPL->status & (OPL->statusmask|0x80);
1274 	}
1275 	/* data port */
1276 	switch(OPL->address)
1277 	{
1278 	case 0x05: /* KeyBoard IN */
1279 		if(OPL->type&OPL_TYPE_KEYBOARD)
1280 		{
1281 			if(OPL->keyboardhandler_r)
1282 				return OPL->keyboardhandler_r(OPL->keyboard_param);
1283 			else
1284 				LOG(LOG_WAR,("OPL:read unmapped KEYBOARD port\n"));
1285 		}
1286 		return 0;
1287 #if 0
1288 	case 0x0f: /* ADPCM-DATA  */
1289 		return 0;
1290 #endif
1291 	case 0x19: /* I/O DATA    */
1292 		if(OPL->type&OPL_TYPE_IO)
1293 		{
1294 			if(OPL->porthandler_r)
1295 				return OPL->porthandler_r(OPL->port_param);
1296 			else
1297 				LOG(LOG_WAR,("OPL:read unmapped I/O port\n"));
1298 		}
1299 		return 0;
1300 	case 0x1a: /* PCM-DATA    */
1301 		return 0;
1302 	}
1303 	return 0;
1304 }
1305 
OPLTimerOver(FM_OPL * OPL,int c)1306 int OPLTimerOver(FM_OPL *OPL,int c)
1307 {
1308 	if( c )
1309 	{	/* Timer B */
1310 		OPL_STATUS_SET(OPL,0x20);
1311 	}
1312 	else
1313 	{	/* Timer A */
1314 		OPL_STATUS_SET(OPL,0x40);
1315 		/* CSM mode key,TL controll */
1316 		if( OPL->mode & 0x80 )
1317 		{	/* CSM mode total level latch and auto key on */
1318 			int ch;
1319 			if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1320 			for(ch=0;ch<9;ch++)
1321 				CSMKeyControll( &OPL->P_CH[ch] );
1322 		}
1323 	}
1324 	/* reload timer */
1325 	if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(timer_tm)OPL->T[c]*OPL->TimerBase);
1326 	return OPL->status>>7;
1327 }
1328