1 /* license:BSD-3-Clause
2  * copyright-holders:Aaron Giles
3 ****************************************************************************
4 
5     huffman.c
6 
7     Static Huffman compression and decompression helpers.
8 
9 ****************************************************************************
10 
11     Maximum codelength is officially (alphabetsize - 1). This would be 255 bits
12     (since we use 1 byte values). However, it is also dependent upon the number
13     of samples used, as follows:
14 
15          2 bits -> 3..4 samples
16          3 bits -> 5..7 samples
17          4 bits -> 8..12 samples
18          5 bits -> 13..20 samples
19          6 bits -> 21..33 samples
20          7 bits -> 34..54 samples
21          8 bits -> 55..88 samples
22          9 bits -> 89..143 samples
23         10 bits -> 144..232 samples
24         11 bits -> 233..376 samples
25         12 bits -> 377..609 samples
26         13 bits -> 610..986 samples
27         14 bits -> 987..1596 samples
28         15 bits -> 1597..2583 samples
29         16 bits -> 2584..4180 samples   -> note that a 4k data size guarantees codelength <= 16 bits
30         17 bits -> 4181..6764 samples
31         18 bits -> 6765..10945 samples
32         19 bits -> 10946..17710 samples
33         20 bits -> 17711..28656 samples
34         21 bits -> 28657..46367 samples
35         22 bits -> 46368..75024 samples
36         23 bits -> 75025..121392 samples
37         24 bits -> 121393..196417 samples
38         25 bits -> 196418..317810 samples
39         26 bits -> 317811..514228 samples
40         27 bits -> 514229..832039 samples
41         28 bits -> 832040..1346268 samples
42         29 bits -> 1346269..2178308 samples
43         30 bits -> 2178309..3524577 samples
44         31 bits -> 3524578..5702886 samples
45         32 bits -> 5702887..9227464 samples
46 
47     Looking at it differently, here is where powers of 2 fall into these buckets:
48 
49           256 samples -> 11 bits max
50           512 samples -> 12 bits max
51            1k samples -> 14 bits max
52            2k samples -> 15 bits max
53            4k samples -> 16 bits max
54            8k samples -> 18 bits max
55           16k samples -> 19 bits max
56           32k samples -> 21 bits max
57           64k samples -> 22 bits max
58          128k samples -> 24 bits max
59          256k samples -> 25 bits max
60          512k samples -> 27 bits max
61            1M samples -> 28 bits max
62            2M samples -> 29 bits max
63            4M samples -> 31 bits max
64            8M samples -> 32 bits max
65 
66 ****************************************************************************
67 
68     Delta-RLE encoding works as follows:
69 
70     Starting value is assumed to be 0. All data is encoded as a delta
71     from the previous value, such that final[i] = final[i - 1] + delta.
72     Long runs of 0s are RLE-encoded as follows:
73 
74         0x100 = repeat count of 8
75         0x101 = repeat count of 9
76         0x102 = repeat count of 10
77         0x103 = repeat count of 11
78         0x104 = repeat count of 12
79         0x105 = repeat count of 13
80         0x106 = repeat count of 14
81         0x107 = repeat count of 15
82         0x108 = repeat count of 16
83         0x109 = repeat count of 32
84         0x10a = repeat count of 64
85         0x10b = repeat count of 128
86         0x10c = repeat count of 256
87         0x10d = repeat count of 512
88         0x10e = repeat count of 1024
89         0x10f = repeat count of 2048
90 
91     Note that repeat counts are reset at the end of a row, so if a 0 run
92     extends to the end of a row, a large repeat count may be used.
93 
94     The reason for starting the run counts at 8 is that 0 is expected to
95     be the most common symbol, and is typically encoded in 1 or 2 bits.
96 
97 ***************************************************************************/
98 
99 #include <stdlib.h>
100 #include <assert.h>
101 #include <stdio.h>
102 #include <string.h>
103 
104 #include "huffman.h"
105 
106 #define MAX(x,y) ((x) > (y) ? (x) : (y))
107 
108 /***************************************************************************
109  *  MACROS
110  ***************************************************************************
111  */
112 
113 #define MAKE_LOOKUP(code,bits)  (((code) << 5) | ((bits) & 0x1f))
114 
115 /***************************************************************************
116  *  IMPLEMENTATION
117  ***************************************************************************
118  */
119 
120 /*-------------------------------------------------
121  *  huffman_context_base - create an encoding/
122  *  decoding context
123  *-------------------------------------------------
124  */
125 
create_huffman_decoder(int numcodes,int maxbits)126 struct huffman_decoder* create_huffman_decoder(int numcodes, int maxbits)
127 {
128 	/* limit to 24 bits */
129 	if (maxbits > 24)
130 		return NULL;
131 
132 	struct huffman_decoder* decoder = (struct huffman_decoder*)malloc(sizeof(struct huffman_decoder));
133 	decoder->numcodes = numcodes;
134 	decoder->maxbits = maxbits;
135 	decoder->lookup = (lookup_value*)malloc(sizeof(lookup_value) * (1 << maxbits));
136 	decoder->huffnode = (struct node_t*)malloc(sizeof(struct node_t) * numcodes);
137 	decoder->datahisto = NULL;
138 	decoder->prevdata = 0;
139 	decoder->rleremaining = 0;
140 	return decoder;
141 }
142 
143 /*-------------------------------------------------
144  *  decode_one - decode a single code from the
145  *  huffman stream
146  *-------------------------------------------------
147  */
148 
huffman_decode_one(struct huffman_decoder * decoder,struct bitstream * bitbuf)149 uint32_t huffman_decode_one(struct huffman_decoder* decoder, struct bitstream* bitbuf)
150 {
151 	/* peek ahead to get maxbits worth of data */
152 	uint32_t bits = bitstream_peek(bitbuf, decoder->maxbits);
153 
154 	/* look it up, then remove the actual number of bits for this code */
155 	lookup_value lookup = decoder->lookup[bits];
156 	bitstream_remove(bitbuf, lookup & 0x1f);
157 
158 	/* return the value */
159 	return lookup >> 5;
160 }
161 
162 /*-------------------------------------------------
163  *  import_tree_rle - import an RLE-encoded
164  *  huffman tree from a source data stream
165  *-------------------------------------------------
166  */
167 
huffman_import_tree_rle(struct huffman_decoder * decoder,struct bitstream * bitbuf)168 enum huffman_error huffman_import_tree_rle(struct huffman_decoder* decoder, struct bitstream* bitbuf)
169 {
170 	/* bits per entry depends on the maxbits */
171 	int numbits;
172 	if (decoder->maxbits >= 16)
173 		numbits = 5;
174 	else if (decoder->maxbits >= 8)
175 		numbits = 4;
176 	else
177 		numbits = 3;
178 
179 	/* loop until we read all the nodes */
180 	int curnode;
181 	for (curnode = 0; curnode < decoder->numcodes; )
182 	{
183 		/* a non-one value is just raw */
184 		int nodebits = bitstream_read(bitbuf, numbits);
185 		if (nodebits != 1)
186 			decoder->huffnode[curnode++].numbits = nodebits;
187 
188 		/* a one value is an escape code */
189 		else
190 		{
191 			/* a double 1 is just a single 1 */
192 			nodebits = bitstream_read(bitbuf, numbits);
193 			if (nodebits == 1)
194 				decoder->huffnode[curnode++].numbits = nodebits;
195 
196 			/* otherwise, we need one for value for the repeat count */
197 			else
198 			{
199 				int repcount = bitstream_read(bitbuf, numbits) + 3;
200 				while (repcount--)
201 					decoder->huffnode[curnode++].numbits = nodebits;
202 			}
203 		}
204 	}
205 
206 	/* make sure we ended up with the right number */
207 	if (curnode != decoder->numcodes)
208 		return HUFFERR_INVALID_DATA;
209 
210 	/* assign canonical codes for all nodes based on their code lengths */
211 	enum huffman_error error = huffman_assign_canonical_codes(decoder);
212 	if (error != HUFFERR_NONE)
213 		return error;
214 
215 	/* build the lookup table */
216 	huffman_build_lookup_table(decoder);
217 
218 	/* determine final input length and report errors */
219 	return bitstream_overflow(bitbuf) ? HUFFERR_INPUT_BUFFER_TOO_SMALL : HUFFERR_NONE;
220 }
221 
222 
223 /*-------------------------------------------------
224  *  import_tree_huffman - import a huffman-encoded
225  *  huffman tree from a source data stream
226  *-------------------------------------------------
227  */
228 
huffman_import_tree_huffman(struct huffman_decoder * decoder,struct bitstream * bitbuf)229 enum huffman_error huffman_import_tree_huffman(struct huffman_decoder* decoder, struct bitstream* bitbuf)
230 {
231 	/* start by parsing the lengths for the small tree */
232 	struct huffman_decoder* smallhuff = create_huffman_decoder(24, 6);
233 	smallhuff->huffnode[0].numbits = bitstream_read(bitbuf, 3);
234 	int start = bitstream_read(bitbuf, 3) + 1;
235 	int count = 0;
236 	for (int index = 1; index < 24; index++)
237 	{
238 		if (index < start || count == 7)
239 			smallhuff->huffnode[index].numbits = 0;
240 		else
241 		{
242 			count = bitstream_read(bitbuf, 3);
243 			smallhuff->huffnode[index].numbits = (count == 7) ? 0 : count;
244 		}
245 	}
246 
247 	/* then regenerate the tree */
248 	enum huffman_error error = huffman_assign_canonical_codes(smallhuff);
249 	if (error != HUFFERR_NONE)
250 		return error;
251 	huffman_build_lookup_table(smallhuff);
252 
253 	/* determine the maximum length of an RLE count */
254 	uint32_t temp = decoder->numcodes - 9;
255 	uint8_t rlefullbits = 0;
256 	while (temp != 0)
257 		temp >>= 1, rlefullbits++;
258 
259 	/* now process the rest of the data */
260 	int last = 0;
261 	int curcode;
262 	for (curcode = 0; curcode < decoder->numcodes; )
263 	{
264 		int value = huffman_decode_one(smallhuff, bitbuf);
265 		if (value != 0)
266 			decoder->huffnode[curcode++].numbits = last = value - 1;
267 		else
268 		{
269 			int count = bitstream_read(bitbuf, 3) + 2;
270 			if (count == 7+2)
271 				count += bitstream_read(bitbuf, rlefullbits);
272 			for ( ; count != 0 && curcode < decoder->numcodes; count--)
273 				decoder->huffnode[curcode++].numbits = last;
274 		}
275 	}
276 
277 	/* make sure we ended up with the right number */
278 	if (curcode != decoder->numcodes)
279 		return HUFFERR_INVALID_DATA;
280 
281 	/* assign canonical codes for all nodes based on their code lengths */
282 	error = huffman_assign_canonical_codes(decoder);
283 	if (error != HUFFERR_NONE)
284 		return error;
285 
286 	/* build the lookup table */
287 	huffman_build_lookup_table(decoder);
288 
289 	/* determine final input length and report errors */
290 	return bitstream_overflow(bitbuf) ? HUFFERR_INPUT_BUFFER_TOO_SMALL : HUFFERR_NONE;
291 }
292 
293 /*-------------------------------------------------
294  *  compute_tree_from_histo - common backend for
295  *  computing a tree based on the data histogram
296  *-------------------------------------------------
297  */
298 
huffman_compute_tree_from_histo(struct huffman_decoder * decoder)299 enum huffman_error huffman_compute_tree_from_histo(struct huffman_decoder* decoder)
300 {
301 	/* compute the number of data items in the histogram */
302 	uint32_t sdatacount = 0;
303 	for (int i = 0; i < decoder->numcodes; i++)
304 		sdatacount += decoder->datahisto[i];
305 
306 	/* binary search to achieve the optimum encoding */
307 	uint32_t lowerweight = 0;
308 	uint32_t upperweight = sdatacount * 2;
309 	while (1)
310 	{
311 		/* build a tree using the current weight */
312 		uint32_t curweight = (upperweight + lowerweight) / 2;
313 		int curmaxbits = huffman_build_tree(decoder, sdatacount, curweight);
314 
315 		/* apply binary search here */
316 		if (curmaxbits <= decoder->maxbits)
317 		{
318 			lowerweight = curweight;
319 
320 			/* early out if it worked with the raw weights, or if we're done searching */
321 			if (curweight == sdatacount || (upperweight - lowerweight) <= 1)
322 				break;
323 		}
324 		else
325 			upperweight = curweight;
326 	}
327 
328 	/* assign canonical codes for all nodes based on their code lengths */
329 	return huffman_assign_canonical_codes(decoder);
330 }
331 
332 /***************************************************************************
333  *  INTERNAL FUNCTIONS
334  ***************************************************************************
335  */
336 
337 /*-------------------------------------------------
338  *  tree_node_compare - compare two tree nodes
339  *  by weight
340  *-------------------------------------------------
341  */
342 
huffman_tree_node_compare(const void * item1,const void * item2)343 static int huffman_tree_node_compare(const void *item1, const void *item2)
344 {
345 	const struct node_t *node1 = *(const struct node_t **)item1;
346 	const struct node_t *node2 = *(const struct node_t **)item2;
347 	if (node2->weight != node1->weight)
348 		return node2->weight - node1->weight;
349 	if (node2->bits - node1->bits == 0)
350 		fprintf(stderr, "identical node sort keys, should not happen!\n");
351 	return (int)node1->bits - (int)node2->bits;
352 }
353 
354 /*-------------------------------------------------
355  *  build_tree - build a huffman tree based on the
356  *  data distribution
357  *-------------------------------------------------
358  */
359 
huffman_build_tree(struct huffman_decoder * decoder,uint32_t totaldata,uint32_t totalweight)360 int huffman_build_tree(struct huffman_decoder* decoder, uint32_t totaldata, uint32_t totalweight)
361 {
362 	/* make a list of all non-zero nodes */
363 	struct node_t** list = (struct node_t**)malloc(sizeof(struct node_t*) * decoder->numcodes * 2);
364 	int listitems = 0;
365 	memset(decoder->huffnode, 0, decoder->numcodes * sizeof(decoder->huffnode[0]));
366 	for (int curcode = 0; curcode < decoder->numcodes; curcode++)
367 		if (decoder->datahisto[curcode] != 0)
368 		{
369 			list[listitems++] = &decoder->huffnode[curcode];
370 			decoder->huffnode[curcode].count = decoder->datahisto[curcode];
371 			decoder->huffnode[curcode].bits = curcode;
372 
373 			/* scale the weight by the current effective length, ensuring we don't go to 0 */
374 			decoder->huffnode[curcode].weight = ((uint64_t)decoder->datahisto[curcode]) * ((uint64_t)totalweight) / ((uint64_t)totaldata);
375 			if (decoder->huffnode[curcode].weight == 0)
376 				decoder->huffnode[curcode].weight = 1;
377 		}
378 
379 #if 0
380         fprintf(stderr, "Pre-sort:\n");
381         for (int i = 0; i < listitems; i++) {
382             fprintf(stderr, "weight: %d code: %d\n", list[i]->m_weight, list[i]->m_bits);
383         }
384 #endif
385 
386 	/* sort the list by weight, largest weight first */
387 	qsort(&list[0], listitems, sizeof(list[0]), huffman_tree_node_compare);
388 
389 #if 0
390         fprintf(stderr, "Post-sort:\n");
391         for (int i = 0; i < listitems; i++) {
392             fprintf(stderr, "weight: %d code: %d\n", list[i]->m_weight, list[i]->m_bits);
393         }
394         fprintf(stderr, "===================\n");
395 #endif
396 
397 	/* now build the tree */
398 	int nextalloc = decoder->numcodes;
399 	while (listitems > 1)
400 	{
401 		/* remove lowest two items */
402 		struct node_t* node1 = &(*list[--listitems]);
403 		struct node_t* node0 = &(*list[--listitems]);
404 
405 		/* create new node */
406 		struct node_t* newnode = &decoder->huffnode[nextalloc++];
407 		newnode->parent = NULL;
408 		node0->parent = node1->parent = newnode;
409 		newnode->weight = node0->weight + node1->weight;
410 
411 		/* insert into list at appropriate location */
412 		int curitem;
413 		for (curitem = 0; curitem < listitems; curitem++)
414 			if (newnode->weight > list[curitem]->weight)
415 			{
416 				memmove(&list[curitem+1], &list[curitem], (listitems - curitem) * sizeof(list[0]));
417 				break;
418 			}
419 		list[curitem] = newnode;
420 		listitems++;
421 	}
422 
423 	/* compute the number of bits in each code, and fill in another histogram */
424 	int maxbits = 0;
425 	for (int curcode = 0; curcode < decoder->numcodes; curcode++)
426 	{
427 		struct node_t* node = &decoder->huffnode[curcode];
428 		node->numbits = 0;
429 		node->bits = 0;
430 
431 		/* if we have a non-zero weight, compute the number of bits */
432 		if (node->weight > 0)
433 		{
434 			/* determine the number of bits for this node */
435 			for (struct node_t *curnode = node; curnode->parent != NULL; curnode = curnode->parent)
436 				node->numbits++;
437 			if (node->numbits == 0)
438 				node->numbits = 1;
439 
440 			/* keep track of the max */
441 			maxbits = MAX(maxbits, ((int)node->numbits));
442 		}
443 	}
444 	return maxbits;
445 }
446 
447 /*-------------------------------------------------
448  *  assign_canonical_codes - assign canonical codes
449  *  to all the nodes based on the number of bits
450  *  in each
451  *-------------------------------------------------
452  */
453 
huffman_assign_canonical_codes(struct huffman_decoder * decoder)454 enum huffman_error huffman_assign_canonical_codes(struct huffman_decoder* decoder)
455 {
456 	/* build up a histogram of bit lengths */
457 	uint32_t bithisto[33] = { 0 };
458 	for (int curcode = 0; curcode < decoder->numcodes; curcode++)
459 	{
460 		struct node_t* node = &decoder->huffnode[curcode];
461 		if (node->numbits > decoder->maxbits)
462 			return HUFFERR_INTERNAL_INCONSISTENCY;
463 		if (node->numbits <= 32)
464 			bithisto[node->numbits]++;
465 	}
466 
467 	/* for each code length, determine the starting code number */
468 	uint32_t curstart = 0;
469 	for (int codelen = 32; codelen > 0; codelen--)
470 	{
471 		uint32_t nextstart = (curstart + bithisto[codelen]) >> 1;
472 		if (codelen != 1 && nextstart * 2 != (curstart + bithisto[codelen]))
473 			return HUFFERR_INTERNAL_INCONSISTENCY;
474 		bithisto[codelen] = curstart;
475 		curstart = nextstart;
476 	}
477 
478 	/* now assign canonical codes */
479 	for (int curcode = 0; curcode < decoder->numcodes; curcode++)
480 	{
481 		struct node_t* node = &decoder->huffnode[curcode];
482 		if (node->numbits > 0)
483 			node->bits = bithisto[node->numbits]++;
484 	}
485 	return HUFFERR_NONE;
486 }
487 
488 /*-------------------------------------------------
489  *  build_lookup_table - build a lookup table for
490  *  fast decoding
491  *-------------------------------------------------
492  */
493 
huffman_build_lookup_table(struct huffman_decoder * decoder)494 void huffman_build_lookup_table(struct huffman_decoder* decoder)
495 {
496 	/* iterate over all codes */
497 	for (int curcode = 0; curcode < decoder->numcodes; curcode++)
498 	{
499 		/* process all nodes which have non-zero bits */
500 		struct node_t* node = &decoder->huffnode[curcode];
501 		if (node->numbits > 0)
502 		{
503 			/* set up the entry */
504 			lookup_value value = MAKE_LOOKUP(curcode, node->numbits);
505 
506 			/* fill all matching entries */
507 			int shift = decoder->maxbits - node->numbits;
508 			lookup_value *dest = &decoder->lookup[node->bits << shift];
509 			lookup_value *destend = &decoder->lookup[((node->bits + 1) << shift) - 1];
510 			while (dest <= destend)
511 				*dest++ = value;
512 		}
513 	}
514 }
515