1 /*
2  * PCG Random Number Generation for C++
3  *
4  * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
5  *
6  * Licensed under the Apache License, Version 2.0 (the "License");
7  * you may not use this file except in compliance with the License.
8  * You may obtain a copy of the License at
9  *
10  *     http://www.apache.org/licenses/LICENSE-2.0
11  *
12  * Unless required by applicable law or agreed to in writing, software
13  * distributed under the License is distributed on an "AS IS" BASIS,
14  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15  * See the License for the specific language governing permissions and
16  * limitations under the License.
17  *
18  * For additional information about the PCG random number generation scheme,
19  * including its license and other licensing options, visit
20  *
21  *     http://www.pcg-random.org
22  */
23 
24 /*
25  * Modified by The OpenClonk.org Project to improve compatibility with
26  * Microsoft Visual C++.
27  */
28 
29 /*
30  * This code provides the reference implementation of the PCG family of
31  * random number generators.  The code is complex because it implements
32  *
33  *      - several members of the PCG family, specifically members corresponding
34  *        to the output functions:
35  *             - XSH RR         (good for 64-bit state, 32-bit output)
36  *             - XSH RS         (good for 64-bit state, 32-bit output)
37  *             - XSL RR         (good for 128-bit state, 64-bit output)
38  *             - RXS M XS       (statistically most powerful generator)
39  *             - XSL RR RR      (good for 128-bit state, 128-bit output)
40  *             - and RXS, RXS M, XSH, XSL       (mostly for testing)
41  *      - at potentially *arbitrary* bit sizes
42  *      - with four different techniques for random streams (MCG, one-stream
43  *        LCG, settable-stream LCG, unique-stream LCG)
44  *      - and the extended generation schemes allowing arbitrary periods
45  *      - with all features of C++11 random number generation (and more),
46  *        some of which are somewhat painful, including
47  *            - initializing with a SeedSequence which writes 32-bit values
48  *              to memory, even though the state of the generator may not
49  *              use 32-bit values (it might use smaller or larger integers)
50  *            - I/O for RNGs and a prescribed format, which needs to handle
51  *              the issue that 8-bit and 128-bit integers don't have working
52  *              I/O routines (e.g., normally 8-bit = char, not integer)
53  *            - equality and inequality for RNGs
54  *      - and a number of convenience typedefs to mask all the complexity
55  *
56  * The code employes a fairly heavy level of abstraction, and has to deal
57  * with various C++ minutia.  If you're looking to learn about how the PCG
58  * scheme works, you're probably best of starting with one of the other
59  * codebases (see www.pcg-random.org).  But if you're curious about the
60  * constants for the various output functions used in those other, simpler,
61  * codebases, this code shows how they are calculated.
62  *
63  * On the positive side, at least there are convenience typedefs so that you
64  * can say
65  *
66  *      pcg32 myRNG;
67  *
68  * rather than:
69  *
70  *      pcg_detail::engine<
71  *          uint32_t,                                           // Output Type
72  *          uint64_t,                                           // State Type
73  *          pcg_detail::xsh_rr_mixin<uint32_t, uint64_t>, true, // Output Func
74  *          pcg_detail::specific_stream<uint64_t>,              // Stream Kind
75  *          pcg_detail::default_multiplier<uint64_t>            // LCG Mult
76  *      > myRNG;
77  *
78  */
79 
80 #ifndef PCG_RAND_HPP_INCLUDED
81 #define PCG_RAND_HPP_INCLUDED 1
82 
83 #include <cinttypes>
84 #include <cstddef>
85 #include <cstdlib>
86 #include <cstring>
87 #include <cassert>
88 #include <limits>
89 #include <iostream>
90 #include <type_traits>
91 #include <utility>
92 #include <locale>
93 #include <new>
94 #include <stdexcept>
95 
96 /*
97  * The pcg_extras namespace contains some support code that is likley to
98  * be useful for a variety of RNGs, including:
99  *      - 128-bit int support for platforms where it isn't available natively
100  *      - bit twiddling operations
101  *      - I/O of 128-bit and 8-bit integers
102  *      - Handling the evilness of SeedSeq
103  *      - Support for efficiently producing random numbers less than a given
104  *        bound
105  */
106 
107 #include "pcg_extras.hpp"
108 
109 namespace pcg_detail {
110 
111 using namespace pcg_extras;
112 
113 /*
114  * The LCG generators need some constants to function.  This code lets you
115  * look up the constant by *type*.  For example
116  *
117  *      default_multiplier<uint32_t>::multiplier()
118  *
119  * gives you the default multipler for 32-bit integers.  We use the name
120  * of the constant and not a generic word like value to allow these classes
121  * to be used as mixins.
122  */
123 
124 template <typename T>
125 struct default_multiplier {
126     // Not defined for an arbitrary type
127 };
128 
129 template <typename T>
130 struct default_increment {
131     // Not defined for an arbitrary type
132 };
133 
134 #define PCG_DEFINE_CONSTANT(type, what, kind, constant) \
135         template <>                                     \
136         struct what ## _ ## kind<type> {                \
137             static constexpr type kind() {              \
138                 return constant;                        \
139             }                                           \
140         };
141 
142 PCG_DEFINE_CONSTANT(uint8_t,  default, multiplier, 141U)
143 PCG_DEFINE_CONSTANT(uint8_t,  default, increment,  77U)
144 
145 PCG_DEFINE_CONSTANT(uint16_t, default, multiplier, 12829U)
146 PCG_DEFINE_CONSTANT(uint16_t, default, increment,  47989U)
147 
148 PCG_DEFINE_CONSTANT(uint32_t, default, multiplier, 747796405U)
149 PCG_DEFINE_CONSTANT(uint32_t, default, increment,  2891336453U)
150 
151 PCG_DEFINE_CONSTANT(uint64_t, default, multiplier, 6364136223846793005ULL)
152 PCG_DEFINE_CONSTANT(uint64_t, default, increment,  1442695040888963407ULL)
153 
154 PCG_DEFINE_CONSTANT(pcg128_t, default, multiplier,
155         PCG_128BIT_CONSTANT(2549297995355413924ULL,4865540595714422341ULL))
156 PCG_DEFINE_CONSTANT(pcg128_t, default, increment,
157         PCG_128BIT_CONSTANT(6364136223846793005ULL,1442695040888963407ULL))
158 
159 
160 /*
161  * Each PCG generator is available in four variants, based on how it applies
162  * the additive constant for its underlying LCG; the variations are:
163  *
164  *     single stream   - all instances use the same fixed constant, thus
165  *                       the RNG always somewhere in same sequence
166  *     mcg             - adds zero, resulting in a single stream and reduced
167  *                       period
168  *     specific stream - the constant can be changed at any time, selecting
169  *                       a different random sequence
170  *     unique stream   - the constant is based on the memory addresss of the
171  *                       object, thus every RNG has its own unique sequence
172  *
173  * This variation is provided though mixin classes which define a function
174  * value called increment() that returns the nesessary additive constant.
175  */
176 
177 
178 
179 /*
180  * unique stream
181  */
182 
183 
184 template <typename itype>
185 class unique_stream {
186 protected:
187     static constexpr bool is_mcg = false;
188 
189     // Is never called, but is provided for symmetry with specific_stream
set_stream(...)190     void set_stream(...)
191     {
192         abort();
193     }
194 
195 public:
196     typedef itype state_type;
197 
increment() const198     constexpr itype increment() const {
199         return itype(reinterpret_cast<unsigned long>(this) | 1);
200     }
201 
stream() const202     constexpr itype stream() const
203     {
204          return increment() >> 1;
205     }
206 
207     static constexpr bool can_specify_stream = false;
208 
streams_pow2()209     static constexpr size_t streams_pow2()
210     {
211         return (sizeof(itype) < sizeof(size_t) ? sizeof(itype)
212                                                : sizeof(size_t))*8 - 1u;
213     }
214 
215 protected:
216     constexpr unique_stream() = default;
217 };
218 
219 
220 /*
221  * no stream (mcg)
222  */
223 
224 template <typename itype>
225 class no_stream {
226 protected:
227     static constexpr bool is_mcg = true;
228 
229     // Is never called, but is provided for symmetry with specific_stream
set_stream(...)230     void set_stream(...)
231     {
232         abort();
233     }
234 
235 public:
236     typedef itype state_type;
237 
increment()238     static constexpr itype increment() {
239         return 0;
240     }
241 
242     static constexpr bool can_specify_stream = false;
243 
streams_pow2()244     static constexpr size_t streams_pow2()
245     {
246         return 0u;
247     }
248 
249 protected:
250     constexpr no_stream() = default;
251 };
252 
253 
254 /*
255  * single stream/sequence (oneseq)
256  */
257 
258 template <typename itype>
259 class oneseq_stream : public default_increment<itype> {
260 protected:
261     static constexpr bool is_mcg = false;
262 
263     // Is never called, but is provided for symmetry with specific_stream
set_stream(...)264     void set_stream(...)
265     {
266         abort();
267     }
268 
269 public:
270     typedef itype state_type;
271 
stream()272     static constexpr itype stream()
273     {
274          return default_increment<itype>::increment() >> 1;
275     }
276 
277     static constexpr bool can_specify_stream = false;
278 
streams_pow2()279     static constexpr size_t streams_pow2()
280     {
281         return 0u;
282     }
283 
284 protected:
285     constexpr oneseq_stream() = default;
286 };
287 
288 
289 /*
290  * specific stream
291  */
292 
293 template <typename itype>
294 class specific_stream {
295 protected:
296     static constexpr bool is_mcg = false;
297 
298     itype inc_ = default_increment<itype>::increment();
299 
300 public:
301     typedef itype state_type;
302     typedef itype stream_state;
303 
increment() const304     constexpr itype increment() const {
305         return inc_;
306     }
307 
stream()308     itype stream()
309     {
310          return inc_ >> 1;
311     }
312 
set_stream(itype specific_seq)313     void set_stream(itype specific_seq)
314     {
315          inc_ = (specific_seq << 1) | 1;
316     }
317 
318     static constexpr bool can_specify_stream = true;
319 
streams_pow2()320     static constexpr size_t streams_pow2()
321     {
322         return (sizeof(itype)*8) - 1u;
323     }
324 
325 protected:
326     specific_stream() = default;
327 
specific_stream(itype specific_seq)328     specific_stream(itype specific_seq)
329         : inc_((specific_seq << 1) | itype(1U))
330     {
331         // Nothing (else) to do.
332     }
333 };
334 
335 
336 /*
337  * This is where it all comes together.  This function joins together three
338  * mixin classes which define
339  *    - the LCG additive constant (the stream)
340  *    - the LCG multiplier
341  *    - the output function
342  * in addition, we specify the type of the LCG state, and the result type,
343  * and whether to use the pre-advance version of the state for the output
344  * (increasing instruction-level parallelism) or the post-advance version
345  * (reducing register pressure).
346  *
347  * Given the high level of parameterization, the code has to use some
348  * template-metaprogramming tricks to handle some of the suble variations
349  * involved.
350  */
351 
352 template <typename xtype, typename itype,
353           typename output_mixin,
354           bool output_previous = true,
355           typename stream_mixin = oneseq_stream<itype>,
356           typename multiplier_mixin = default_multiplier<itype> >
357 class engine : protected output_mixin,
358                public stream_mixin,
359                protected multiplier_mixin {
360 protected:
361     itype state_;
362 
363     struct can_specify_stream_tag {};
364     struct no_specifiable_stream_tag {};
365 
366     using stream_mixin::increment;
367     using multiplier_mixin::multiplier;
368 
369 public:
370     typedef xtype result_type;
371     typedef itype state_type;
372 
period_pow2()373     static constexpr size_t period_pow2()
374     {
375         return sizeof(state_type)*8 - 2*stream_mixin::is_mcg;
376     }
377 
378     // It would be nice to use std::numeric_limits for these, but
379     // we can't be sure that it'd be defined for the 128-bit types.
380 
min()381     static constexpr result_type min()
382     {
383         return result_type(0UL);
384     }
385 
max()386     static constexpr result_type max()
387     {
388         return ~result_type(0UL);
389     }
390 
391 protected:
bump(itype state)392     itype bump(itype state)
393     {
394         return state * multiplier() + increment();
395     }
396 
base_generate()397     itype base_generate()
398     {
399         return state_ = bump(state_);
400     }
401 
base_generate0()402     itype base_generate0()
403     {
404         itype old_state = state_;
405         state_ = bump(state_);
406         return old_state;
407     }
408 
409 public:
operator ()()410     result_type operator()()
411     {
412         if (output_previous)
413             return this->output(base_generate0());
414         else
415             return this->output(base_generate());
416     }
417 
operator ()(result_type upper_bound)418     result_type operator()(result_type upper_bound)
419     {
420         return bounded_rand(*this, upper_bound);
421     }
422 
423 protected:
424     static itype advance(itype state, itype delta,
425                          itype cur_mult, itype cur_plus);
426 
427     static itype distance(itype cur_state, itype newstate, itype cur_mult,
428                           itype cur_plus, itype mask = ~itype(0U));
429 
distance(itype newstate,itype mask=~itype (0U)) const430     itype distance(itype newstate, itype mask = ~itype(0U)) const
431     {
432         return distance(state_, newstate, multiplier(), increment(), mask);
433     }
434 
435 public:
advance(itype delta)436     void advance(itype delta)
437     {
438         state_ = advance(state_, delta, this->multiplier(), this->increment());
439     }
440 
backstep(itype delta)441     void backstep(itype delta)
442     {
443         advance(-delta);
444     }
445 
discard(itype delta)446     void discard(itype delta)
447     {
448         advance(delta);
449     }
450 
wrapped()451     bool wrapped()
452     {
453         if (stream_mixin::is_mcg) {
454             // For MCGs, the low order two bits never change. In this
455             // implementation, we keep them fixed at 3 to make this test
456             // easier.
457             return state_ == 3;
458         } else {
459             return state_ == 0;
460         }
461     }
462 
engine(itype state=itype (0xcafef00dd15ea5e5ULL))463     engine(itype state = itype(0xcafef00dd15ea5e5ULL))
464         : state_(this->is_mcg ? state|state_type(3U)
465                               : bump(state + this->increment()))
466     {
467         // Nothing else to do.
468     }
469 
470     // This function may or may not exist.  It thus has to be a template
471     // to use SFINAE; users don't have to worry about its template-ness.
472 
473     template <typename sm = stream_mixin>
engine(itype state,typename sm::stream_state stream_seed)474     engine(itype state, typename sm::stream_state stream_seed)
475         : stream_mixin(stream_seed),
476           state_(this->is_mcg ? state|state_type(3U)
477                               : bump(state + this->increment()))
478     {
479         // Nothing else to do.
480     }
481 
482     template<typename SeedSeq>
engine(SeedSeq && seedSeq,typename std::enable_if<!stream_mixin::can_specify_stream &&!std::is_convertible<SeedSeq,itype>::value &&!std::is_convertible<SeedSeq,engine>::value,no_specifiable_stream_tag>::type={})483     engine(SeedSeq&& seedSeq, typename std::enable_if<
484                   !stream_mixin::can_specify_stream
485                && !std::is_convertible<SeedSeq, itype>::value
486                && !std::is_convertible<SeedSeq, engine>::value,
487                no_specifiable_stream_tag>::type = {})
488         : engine(generate_one<itype>(std::forward<SeedSeq>(seedSeq)))
489     {
490         // Nothing else to do.
491     }
492 
493     template<typename SeedSeq>
engine(SeedSeq && seedSeq,typename std::enable_if<stream_mixin::can_specify_stream &&!std::is_convertible<SeedSeq,itype>::value &&!std::is_convertible<SeedSeq,engine>::value,can_specify_stream_tag>::type={})494     engine(SeedSeq&& seedSeq, typename std::enable_if<
495                    stream_mixin::can_specify_stream
496                && !std::is_convertible<SeedSeq, itype>::value
497                && !std::is_convertible<SeedSeq, engine>::value,
498         can_specify_stream_tag>::type = {})
499         : engine(generate_one<itype,1,2>(seedSeq),
500                  generate_one<itype,0,2>(seedSeq))
501     {
502         // Nothing else to do.
503     }
504 
505 
506     template<typename... Args>
seed(Args &&...args)507     void seed(Args&&... args)
508     {
509         new (this) engine(std::forward<Args>(args)...);
510     }
511 
512     template <typename xtype1, typename itype1,
513               typename output_mixin1, bool output_previous1,
514               typename stream_mixin_lhs, typename multiplier_mixin_lhs,
515               typename stream_mixin_rhs, typename multiplier_mixin_rhs>
516     friend bool operator==(const engine<xtype1,itype1,
517                                      output_mixin1,output_previous1,
518                                      stream_mixin_lhs, multiplier_mixin_lhs>&,
519                            const engine<xtype1,itype1,
520                                      output_mixin1,output_previous1,
521                                      stream_mixin_rhs, multiplier_mixin_rhs>&);
522 
523     template <typename xtype1, typename itype1,
524               typename output_mixin1, bool output_previous1,
525               typename stream_mixin_lhs, typename multiplier_mixin_lhs,
526               typename stream_mixin_rhs, typename multiplier_mixin_rhs>
527     friend itype1 operator-(const engine<xtype1,itype1,
528                                      output_mixin1,output_previous1,
529                                      stream_mixin_lhs, multiplier_mixin_lhs>&,
530                             const engine<xtype1,itype1,
531                                      output_mixin1,output_previous1,
532                                      stream_mixin_rhs, multiplier_mixin_rhs>&);
533 
534     template <typename CharT, typename Traits,
535               typename xtype1, typename itype1,
536               typename output_mixin1, bool output_previous1,
537               typename stream_mixin1, typename multiplier_mixin1>
538     friend std::basic_ostream<CharT,Traits>&
539     operator<<(std::basic_ostream<CharT,Traits>& out,
540                const engine<xtype1,itype1,
541                               output_mixin1,output_previous1,
542                               stream_mixin1, multiplier_mixin1>&);
543 
544     template <typename CharT, typename Traits,
545               typename xtype1, typename itype1,
546               typename output_mixin1, bool output_previous1,
547               typename stream_mixin1, typename multiplier_mixin1>
548     friend std::basic_istream<CharT,Traits>&
549     operator>>(std::basic_istream<CharT,Traits>& in,
550                engine<xtype1, itype1,
551                         output_mixin1, output_previous1,
552                         stream_mixin1, multiplier_mixin1>& rng);
553 };
554 
555 template <typename CharT, typename Traits,
556           typename xtype, typename itype,
557           typename output_mixin, bool output_previous,
558           typename stream_mixin, typename multiplier_mixin>
559 std::basic_ostream<CharT,Traits>&
operator <<(std::basic_ostream<CharT,Traits> & out,const engine<xtype,itype,output_mixin,output_previous,stream_mixin,multiplier_mixin> & rng)560 operator<<(std::basic_ostream<CharT,Traits>& out,
561            const engine<xtype,itype,
562                           output_mixin,output_previous,
563                           stream_mixin, multiplier_mixin>& rng)
564 {
565     auto orig_flags = out.flags(std::ios_base::dec | std::ios_base::left);
566     auto space = out.widen(' ');
567     auto orig_fill = out.fill();
568 
569     out << rng.multiplier() << space
570         << rng.increment() << space
571         << rng.state_;
572 
573     out.flags(orig_flags);
574     out.fill(orig_fill);
575     return out;
576 }
577 
578 
579 template <typename CharT, typename Traits,
580           typename xtype, typename itype,
581           typename output_mixin, bool output_previous,
582           typename stream_mixin, typename multiplier_mixin>
583 std::basic_istream<CharT,Traits>&
operator >>(std::basic_istream<CharT,Traits> & in,engine<xtype,itype,output_mixin,output_previous,stream_mixin,multiplier_mixin> & rng)584 operator>>(std::basic_istream<CharT,Traits>& in,
585            engine<xtype,itype,
586                     output_mixin,output_previous,
587                     stream_mixin, multiplier_mixin>& rng)
588 {
589     auto orig_flags = in.flags(std::ios_base::dec | std::ios_base::skipws);
590 
591     itype multiplier, increment, state;
592     in >> multiplier >> increment >> state;
593 
594     if (!in.fail()) {
595         bool good = true;
596         if (multiplier != rng.multiplier()) {
597            good = false;
598         } else if (rng.can_specify_stream) {
599            rng.set_stream(increment >> 1);
600         } else if (increment != rng.increment()) {
601            good = false;
602         }
603         if (good) {
604             rng.state_ = state;
605         } else {
606             in.clear(std::ios::failbit);
607         }
608     }
609 
610     in.flags(orig_flags);
611     return in;
612 }
613 
614 
615 template <typename xtype, typename itype,
616           typename output_mixin, bool output_previous,
617           typename stream_mixin, typename multiplier_mixin>
618 itype engine<xtype,itype,output_mixin,output_previous,stream_mixin,
619              multiplier_mixin>::advance(
620     itype state, itype delta, itype cur_mult, itype cur_plus)
621 {
622     // The method used here is based on Brown, "Random Number Generation
623     // with Arbitrary Stride,", Transactions of the American Nuclear
624     // Society (Nov. 1994).  The algorithm is very similar to fast
625     // exponentiation.
626     //
627     // Even though delta is an unsigned integer, we can pass a
628     // signed integer to go backwards, it just goes "the long way round".
629 
630     constexpr itype ZERO = 0u;  // itype may be a non-trivial types, so
631     constexpr itype ONE  = 1u;  // we define some ugly constants.
632     itype acc_mult = 1;
633     itype acc_plus = 0;
634     while (delta > ZERO) {
635        if (delta & ONE) {
636           acc_mult *= cur_mult;
637           acc_plus = acc_plus*cur_mult + cur_plus;
638        }
639        cur_plus = (cur_mult+ONE)*cur_plus;
640        cur_mult *= cur_mult;
641        delta >>= 1;
642     }
643     return acc_mult * state + acc_plus;
644 }
645 
646 template <typename xtype, typename itype,
647           typename output_mixin, bool output_previous,
648           typename stream_mixin, typename multiplier_mixin>
649 itype engine<xtype,itype,output_mixin,output_previous,stream_mixin,
650                multiplier_mixin>::distance(
651     itype cur_state, itype newstate, itype cur_mult, itype cur_plus, itype mask)
652 {
653     constexpr itype ONE  = 1u;  // itype could be weird, so use constant
654     itype the_bit = stream_mixin::is_mcg ? itype(4u) : itype(1u);
655     itype distance = 0u;
656     while ((cur_state & mask) != (newstate & mask)) {
657        if ((cur_state & the_bit) != (newstate & the_bit)) {
658            cur_state = cur_state * cur_mult + cur_plus;
659            distance |= the_bit;
660        }
661        assert((cur_state & the_bit) == (newstate & the_bit));
662        the_bit <<= 1;
663        cur_plus = (cur_mult+ONE)*cur_plus;
664        cur_mult *= cur_mult;
665     }
666     return stream_mixin::is_mcg ? distance >> 2 : distance;
667 }
668 
669 template <typename xtype, typename itype,
670           typename output_mixin, bool output_previous,
671           typename stream_mixin_lhs, typename multiplier_mixin_lhs,
672           typename stream_mixin_rhs, typename multiplier_mixin_rhs>
673 itype operator-(const engine<xtype,itype,
674                                output_mixin,output_previous,
675                                stream_mixin_lhs, multiplier_mixin_lhs>& lhs,
676                const engine<xtype,itype,
677                                output_mixin,output_previous,
678                                stream_mixin_rhs, multiplier_mixin_rhs>& rhs)
679 {
680     if (lhs.multiplier() != rhs.multiplier()
681         || lhs.increment() != rhs.increment())
682         throw std::logic_error("incomparable generators");
683     return rhs.distance(lhs.state_);
684 }
685 
686 
687 template <typename xtype, typename itype,
688           typename output_mixin, bool output_previous,
689           typename stream_mixin_lhs, typename multiplier_mixin_lhs,
690           typename stream_mixin_rhs, typename multiplier_mixin_rhs>
operator ==(const engine<xtype,itype,output_mixin,output_previous,stream_mixin_lhs,multiplier_mixin_lhs> & lhs,const engine<xtype,itype,output_mixin,output_previous,stream_mixin_rhs,multiplier_mixin_rhs> & rhs)691 bool operator==(const engine<xtype,itype,
692                                output_mixin,output_previous,
693                                stream_mixin_lhs, multiplier_mixin_lhs>& lhs,
694                 const engine<xtype,itype,
695                                output_mixin,output_previous,
696                                stream_mixin_rhs, multiplier_mixin_rhs>& rhs)
697 {
698     return    (lhs.multiplier() == rhs.multiplier())
699            && (lhs.increment()  == rhs.increment())
700            && (lhs.state_       == rhs.state_);
701 }
702 
703 template <typename xtype, typename itype,
704           typename output_mixin, bool output_previous,
705           typename stream_mixin_lhs, typename multiplier_mixin_lhs,
706           typename stream_mixin_rhs, typename multiplier_mixin_rhs>
operator !=(const engine<xtype,itype,output_mixin,output_previous,stream_mixin_lhs,multiplier_mixin_lhs> & lhs,const engine<xtype,itype,output_mixin,output_previous,stream_mixin_rhs,multiplier_mixin_rhs> & rhs)707 inline bool operator!=(const engine<xtype,itype,
708                                output_mixin,output_previous,
709                                stream_mixin_lhs, multiplier_mixin_lhs>& lhs,
710                        const engine<xtype,itype,
711                                output_mixin,output_previous,
712                                stream_mixin_rhs, multiplier_mixin_rhs>& rhs)
713 {
714     return !operator==(lhs,rhs);
715 }
716 
717 
718 template <typename xtype, typename itype,
719          template<typename XT,typename IT> class output_mixin,
720          bool output_previous = (sizeof(itype) <= 8)>
721 using oneseq_base  = engine<xtype, itype,
722                         output_mixin<xtype, itype>, output_previous,
723                         oneseq_stream<itype> >;
724 
725 template <typename xtype, typename itype,
726          template<typename XT,typename IT> class output_mixin,
727          bool output_previous = (sizeof(itype) <= 8)>
728 using unique_base = engine<xtype, itype,
729                          output_mixin<xtype, itype>, output_previous,
730                          unique_stream<itype> >;
731 
732 template <typename xtype, typename itype,
733          template<typename XT,typename IT> class output_mixin,
734          bool output_previous = (sizeof(itype) <= 8)>
735 using setseq_base = engine<xtype, itype,
736                          output_mixin<xtype, itype>, output_previous,
737                          specific_stream<itype> >;
738 
739 template <typename xtype, typename itype,
740          template<typename XT,typename IT> class output_mixin,
741          bool output_previous = (sizeof(itype) <= 8)>
742 using mcg_base = engine<xtype, itype,
743                       output_mixin<xtype, itype>, output_previous,
744                       no_stream<itype> >;
745 
746 /*
747  * OUTPUT FUNCTIONS.
748  *
749  * These are the core of the PCG generation scheme.  They specify how to
750  * turn the base LCG's internal state into the output value of the final
751  * generator.
752  *
753  * They're implemented as mixin classes.
754  *
755  * All of the classes have code that is written to allow it to be applied
756  * at *arbitrary* bit sizes, although in practice they'll only be used at
757  * standard sizes supported by C++.
758  */
759 
760 /*
761  * XSH RS -- high xorshift, followed by a random shift
762  *
763  * Fast.  A good performer.
764  */
765 
766 template <typename xtype, typename itype>
767 struct xsh_rs_mixin {
outputpcg_detail::xsh_rs_mixin768     static xtype output(itype internal)
769     {
770         constexpr bitcount_t bits        = bitcount_t(sizeof(itype) * 8);
771         constexpr bitcount_t xtypebits   = bitcount_t(sizeof(xtype) * 8);
772         constexpr bitcount_t sparebits   = bits - xtypebits;
773         constexpr bitcount_t opbits =
774                               sparebits-5 >= 64 ? 5
775                             : sparebits-4 >= 32 ? 4
776                             : sparebits-3 >= 16 ? 3
777                             : sparebits-2 >= 4  ? 2
778                             : sparebits-1 >= 1  ? 1
779                             :                     0;
780         constexpr bitcount_t mask = (1 << opbits) - 1;
781         constexpr bitcount_t maxrandshift  = mask;
782         constexpr bitcount_t topspare     = opbits;
783         constexpr bitcount_t bottomspare = sparebits - topspare;
784         constexpr bitcount_t xshift     = topspare + (xtypebits+maxrandshift)/2;
785         bitcount_t rshift =
786             opbits ? bitcount_t(internal >> (bits - opbits)) & mask : 0;
787         internal ^= internal >> xshift;
788         xtype result = xtype(internal >> (bottomspare - maxrandshift + rshift));
789         return result;
790     }
791 };
792 
793 /*
794  * XSH RR -- high xorshift, followed by a random rotate
795  *
796  * Fast.  A good performer.  Slightly better statistically than XSH RS.
797  */
798 
799 template <typename xtype, typename itype>
800 struct xsh_rr_mixin {
outputpcg_detail::xsh_rr_mixin801     static xtype output(itype internal)
802     {
803         constexpr bitcount_t bits        = bitcount_t(sizeof(itype) * 8);
804         constexpr bitcount_t xtypebits   = bitcount_t(sizeof(xtype)*8);
805         constexpr bitcount_t sparebits   = bits - xtypebits;
806         constexpr bitcount_t wantedopbits =
807                               xtypebits >= 128 ? 7
808                             : xtypebits >=  64 ? 6
809                             : xtypebits >=  32 ? 5
810                             : xtypebits >=  16 ? 4
811                             :                    3;
812         constexpr bitcount_t opbits =
813                               sparebits >= wantedopbits ? wantedopbits
814                                                         : sparebits;
815         constexpr bitcount_t amplifier = wantedopbits - opbits;
816         constexpr bitcount_t mask = (1 << opbits) - 1;
817         constexpr bitcount_t topspare    = opbits;
818         constexpr bitcount_t bottomspare = sparebits - topspare;
819         constexpr bitcount_t xshift      = (topspare + xtypebits)/2;
820         bitcount_t rot = opbits ? bitcount_t(internal >> (bits - opbits)) & mask
821                                 : 0;
822         bitcount_t amprot = (rot << amplifier) & mask;
823         internal ^= internal >> xshift;
824         xtype result = xtype(internal >> bottomspare);
825         result = rotr(result, amprot);
826         return result;
827     }
828 };
829 
830 /*
831  * RXS -- random xorshift
832  */
833 
834 template <typename xtype, typename itype>
835 struct rxs_mixin {
output_rxspcg_detail::rxs_mixin836 static xtype output_rxs(itype internal)
837     {
838         constexpr bitcount_t bits        = bitcount_t(sizeof(itype) * 8);
839         constexpr bitcount_t xtypebits   = bitcount_t(sizeof(xtype)*8);
840         constexpr bitcount_t shift       = bits - xtypebits;
841         constexpr bitcount_t extrashift  = (xtypebits - shift)/2;
842         bitcount_t rshift = shift > 64+8 ? (internal >> (bits - 6)) & 63
843                        : shift > 32+4 ? (internal >> (bits - 5)) & 31
844                        : shift > 16+2 ? (internal >> (bits - 4)) & 15
845                        : shift >  8+1 ? (internal >> (bits - 3)) & 7
846                        : shift >  4+1 ? (internal >> (bits - 2)) & 3
847                        : shift >  2+1 ? (internal >> (bits - 1)) & 1
848                        :              0;
849         internal ^= internal >> (shift + extrashift - rshift);
850         xtype result = internal >> rshift;
851         return result;
852     }
853 };
854 
855 /*
856  * RXS M XS -- random xorshift, mcg multiply, fixed xorshift
857  *
858  * The most statistically powerful generator, but all those steps
859  * make it slower than some of the others.  We give it the rottenest jobs.
860  *
861  * Because it's usually used in contexts where the state type and the
862  * result type are the same, it is a permutation and is thus invertable.
863  * We thus provide a function to invert it.  This function is used to
864  * for the "inside out" generator used by the extended generator.
865  */
866 
867 /* Defined type-based concepts for the multiplication step.  They're actually
868  * all derived by truncating the 128-bit, which was computed to be a good
869  * "universal" constant.
870  */
871 
872 template <typename T>
873 struct mcg_multiplier {
874     // Not defined for an arbitrary type
875 };
876 
877 template <typename T>
878 struct mcg_unmultiplier {
879     // Not defined for an arbitrary type
880 };
881 
882 PCG_DEFINE_CONSTANT(uint8_t,  mcg, multiplier,   217U)
883 PCG_DEFINE_CONSTANT(uint8_t,  mcg, unmultiplier, 105U)
884 
885 PCG_DEFINE_CONSTANT(uint16_t, mcg, multiplier,   62169U)
886 PCG_DEFINE_CONSTANT(uint16_t, mcg, unmultiplier, 28009U)
887 
888 PCG_DEFINE_CONSTANT(uint32_t, mcg, multiplier,   277803737U)
889 PCG_DEFINE_CONSTANT(uint32_t, mcg, unmultiplier, 2897767785U)
890 
891 PCG_DEFINE_CONSTANT(uint64_t, mcg, multiplier,   12605985483714917081ULL)
892 PCG_DEFINE_CONSTANT(uint64_t, mcg, unmultiplier, 15009553638781119849ULL)
893 
894 PCG_DEFINE_CONSTANT(pcg128_t, mcg, multiplier,
895         PCG_128BIT_CONSTANT(17766728186571221404ULL, 12605985483714917081ULL))
896 PCG_DEFINE_CONSTANT(pcg128_t, mcg, unmultiplier,
897         PCG_128BIT_CONSTANT(14422606686972528997ULL, 15009553638781119849ULL))
898 
899 
900 template <typename xtype, typename itype>
901 struct rxs_m_xs_mixin {
outputpcg_detail::rxs_m_xs_mixin902     static xtype output(itype internal)
903     {
904         constexpr bitcount_t xtypebits = bitcount_t(sizeof(xtype) * 8);
905         constexpr bitcount_t bits = bitcount_t(sizeof(itype) * 8);
906         constexpr bitcount_t opbits = xtypebits >= 128 ? 6
907                                  : xtypebits >=  64 ? 5
908                                  : xtypebits >=  32 ? 4
909                                  : xtypebits >=  16 ? 3
910                                  :                    2;
911         constexpr bitcount_t shift = bits - xtypebits;
912         constexpr bitcount_t mask = (1 << opbits) - 1;
913         bitcount_t rshift =
914             opbits ? bitcount_t(internal >> (bits - opbits)) & mask : 0;
915         internal ^= internal >> (opbits + rshift);
916         internal *= mcg_multiplier<itype>::multiplier();
917         xtype result = internal >> shift;
918         result ^= result >> ((2U*xtypebits+2U)/3U);
919         return result;
920     }
921 
unoutputpcg_detail::rxs_m_xs_mixin922     static itype unoutput(itype internal)
923     {
924         constexpr bitcount_t bits = bitcount_t(sizeof(itype) * 8);
925         constexpr bitcount_t opbits = bits >= 128 ? 6
926                                  : bits >=  64 ? 5
927                                  : bits >=  32 ? 4
928                                  : bits >=  16 ? 3
929                                  :               2;
930         constexpr bitcount_t mask = (1 << opbits) - 1;
931 
932         internal = unxorshift(internal, bits, (2U*bits+2U)/3U);
933 
934         internal *= mcg_unmultiplier<itype>::unmultiplier();
935 
936         bitcount_t rshift = opbits ? (internal >> (bits - opbits)) & mask : 0;
937         internal = unxorshift(internal, bits, opbits + rshift);
938 
939         return internal;
940     }
941 };
942 
943 
944 /*
945  * RXS M -- random xorshift, mcg multiply
946  */
947 
948 template <typename xtype, typename itype>
949 struct rxs_m_mixin {
outputpcg_detail::rxs_m_mixin950     static xtype output(itype internal)
951     {
952         constexpr bitcount_t xtypebits = bitcount_t(sizeof(xtype) * 8);
953         constexpr bitcount_t bits = bitcount_t(sizeof(itype) * 8);
954         constexpr bitcount_t opbits = xtypebits >= 128 ? 6
955                                  : xtypebits >=  64 ? 5
956                                  : xtypebits >=  32 ? 4
957                                  : xtypebits >=  16 ? 3
958                                  :                    2;
959         constexpr bitcount_t shift = bits - xtypebits;
960         constexpr bitcount_t mask = (1 << opbits) - 1;
961         bitcount_t rshift = opbits ? (internal >> (bits - opbits)) & mask : 0;
962         internal ^= internal >> (opbits + rshift);
963         internal *= mcg_multiplier<itype>::multiplier();
964         xtype result = internal >> shift;
965         return result;
966     }
967 };
968 
969 /*
970  * XSL RR -- fixed xorshift (to low bits), random rotate
971  *
972  * Useful for 128-bit types that are split across two CPU registers.
973  */
974 
975 template <typename xtype, typename itype>
976 struct xsl_rr_mixin {
outputpcg_detail::xsl_rr_mixin977     static xtype output(itype internal)
978     {
979         constexpr bitcount_t xtypebits = bitcount_t(sizeof(xtype) * 8);
980         constexpr bitcount_t bits = bitcount_t(sizeof(itype) * 8);
981         constexpr bitcount_t sparebits = bits - xtypebits;
982         constexpr bitcount_t wantedopbits = xtypebits >= 128 ? 7
983                                        : xtypebits >=  64 ? 6
984                                        : xtypebits >=  32 ? 5
985                                        : xtypebits >=  16 ? 4
986                                        :                    3;
987         constexpr bitcount_t opbits = sparebits >= wantedopbits ? wantedopbits
988                                                              : sparebits;
989         constexpr bitcount_t amplifier = wantedopbits - opbits;
990         constexpr bitcount_t mask = (1 << opbits) - 1;
991         constexpr bitcount_t topspare = sparebits;
992         constexpr bitcount_t bottomspare = sparebits - topspare;
993         constexpr bitcount_t xshift = (topspare + xtypebits) / 2;
994 
995         bitcount_t rot =
996             opbits ? bitcount_t(internal >> (bits - opbits)) & mask : 0;
997         bitcount_t amprot = (rot << amplifier) & mask;
998         internal ^= internal >> xshift;
999         xtype result = xtype(internal >> bottomspare);
1000         result = rotr(result, amprot);
1001         return result;
1002     }
1003 };
1004 
1005 
1006 /*
1007  * XSL RR RR -- fixed xorshift (to low bits), random rotate (both parts)
1008  *
1009  * Useful for 128-bit types that are split across two CPU registers.
1010  * If you really want an invertable 128-bit RNG, I guess this is the one.
1011  */
1012 
1013 template <typename T> struct halfsize_trait {};
1014 template <> struct halfsize_trait<pcg128_t>  { typedef uint64_t type; };
1015 template <> struct halfsize_trait<uint64_t>  { typedef uint32_t type; };
1016 template <> struct halfsize_trait<uint32_t>  { typedef uint16_t type; };
1017 template <> struct halfsize_trait<uint16_t>  { typedef uint8_t type;  };
1018 
1019 template <typename xtype, typename itype>
1020 struct xsl_rr_rr_mixin {
1021     typedef typename halfsize_trait<itype>::type htype;
1022 
outputpcg_detail::xsl_rr_rr_mixin1023     static itype output(itype internal)
1024     {
1025         constexpr bitcount_t htypebits = bitcount_t(sizeof(htype) * 8);
1026         constexpr bitcount_t bits      = bitcount_t(sizeof(itype) * 8);
1027         constexpr bitcount_t sparebits = bits - htypebits;
1028         constexpr bitcount_t wantedopbits = htypebits >= 128 ? 7
1029                                        : htypebits >=  64 ? 6
1030                                        : htypebits >=  32 ? 5
1031                                        : htypebits >=  16 ? 4
1032                                        :                    3;
1033         constexpr bitcount_t opbits = sparebits >= wantedopbits ? wantedopbits
1034                                                                 : sparebits;
1035         constexpr bitcount_t amplifier = wantedopbits - opbits;
1036         constexpr bitcount_t mask = (1 << opbits) - 1;
1037         constexpr bitcount_t topspare = sparebits;
1038         constexpr bitcount_t xshift = (topspare + htypebits) / 2;
1039 
1040         bitcount_t rot =
1041             opbits ? bitcount_t(internal >> (bits - opbits)) & mask : 0;
1042         bitcount_t amprot = (rot << amplifier) & mask;
1043         internal ^= internal >> xshift;
1044         htype lowbits = htype(internal);
1045         lowbits = rotr(lowbits, amprot);
1046         htype highbits = htype(internal >> topspare);
1047         bitcount_t rot2 = lowbits & mask;
1048         bitcount_t amprot2 = (rot2 << amplifier) & mask;
1049         highbits = rotr(highbits, amprot2);
1050         return (itype(highbits) << topspare) ^ itype(lowbits);
1051     }
1052 };
1053 
1054 
1055 /*
1056  * XSH -- fixed xorshift (to high bits)
1057  *
1058  * You shouldn't use this at 64-bits or less.
1059  */
1060 
1061 template <typename xtype, typename itype>
1062 struct xsh_mixin {
outputpcg_detail::xsh_mixin1063     static xtype output(itype internal)
1064     {
1065         constexpr bitcount_t xtypebits = bitcount_t(sizeof(xtype) * 8);
1066         constexpr bitcount_t bits = bitcount_t(sizeof(itype) * 8);
1067         constexpr bitcount_t sparebits = bits - xtypebits;
1068         constexpr bitcount_t topspare = 0;
1069         constexpr bitcount_t bottomspare = sparebits - topspare;
1070         constexpr bitcount_t xshift = (topspare + xtypebits) / 2;
1071 
1072         internal ^= internal >> xshift;
1073         xtype result = internal >> bottomspare;
1074         return result;
1075     }
1076 };
1077 
1078 /*
1079  * XSL -- fixed xorshift (to low bits)
1080  *
1081  * You shouldn't use this at 64-bits or less.
1082  */
1083 
1084 template <typename xtype, typename itype>
1085 struct xsl_mixin {
outputpcg_detail::xsl_mixin1086     inline xtype output(itype internal)
1087     {
1088         constexpr bitcount_t xtypebits = bitcount_t(sizeof(xtype) * 8);
1089         constexpr bitcount_t bits = bitcount_t(sizeof(itype) * 8);
1090         constexpr bitcount_t sparebits = bits - xtypebits;
1091         constexpr bitcount_t topspare = sparebits;
1092         constexpr bitcount_t bottomspare = sparebits - topspare;
1093         constexpr bitcount_t xshift = (topspare + xtypebits) / 2;
1094 
1095         internal ^= internal >> xshift;
1096         xtype result = internal >> bottomspare;
1097         return result;
1098     }
1099 };
1100 
1101 /* ---- End of Output Functions ---- */
1102 
1103 
1104 template <typename baseclass>
1105 struct inside_out : private baseclass {
1106     inside_out() = delete;
1107 
1108     typedef typename baseclass::result_type result_type;
1109     typedef typename baseclass::state_type  state_type;
1110     static_assert(sizeof(result_type) == sizeof(state_type),
1111                   "Require a RNG whose output function is a permutation");
1112 
external_steppcg_detail::inside_out1113     static bool external_step(result_type& randval, size_t i)
1114     {
1115         state_type state = baseclass::unoutput(randval);
1116         state = state * baseclass::multiplier() + baseclass::increment()
1117                 + state_type(i*2);
1118         result_type result = baseclass::output(state);
1119         randval = result;
1120         state_type zero =
1121             baseclass::is_mcg ? state & state_type(3U) : state_type(0U);
1122         return result == zero;
1123     }
1124 
external_advancepcg_detail::inside_out1125     static bool external_advance(result_type& randval, size_t i,
1126                                  result_type delta, bool forwards = true)
1127     {
1128         state_type state = baseclass::unoutput(randval);
1129         state_type mult  = baseclass::multiplier();
1130         state_type inc   = baseclass::increment() + state_type(i*2);
1131         state_type zero =
1132             baseclass::is_mcg ? state & state_type(3U) : state_type(0U);
1133         state_type dist_to_zero = baseclass::distance(state, zero, mult, inc);
1134         bool crosses_zero =
1135             forwards ? dist_to_zero <= delta
1136                      : (-dist_to_zero) <= delta;
1137         if (!forwards)
1138             delta = -delta;
1139         state = baseclass::advance(state, delta, mult, inc);
1140         randval = baseclass::output(state);
1141         return crosses_zero;
1142     }
1143 };
1144 
1145 
1146 template <bitcount_t table_pow2, bitcount_t advance_pow2, typename baseclass, typename extvalclass, bool kdd = true>
1147 class extended : public baseclass {
1148 public:
1149     typedef typename baseclass::state_type  state_type;
1150     typedef typename baseclass::result_type result_type;
1151     typedef inside_out<extvalclass> insideout;
1152 
1153 private:
1154     static constexpr bitcount_t rtypebits = sizeof(result_type)*8;
1155     static constexpr bitcount_t stypebits = sizeof(state_type)*8;
1156 
1157     static constexpr bitcount_t tick_limit_pow2 = 64U;
1158 
1159     static constexpr size_t table_size  = 1UL << table_pow2;
1160     static constexpr size_t table_shift = stypebits - table_pow2;
1161     static constexpr state_type table_mask =
1162         (state_type(1U) << table_pow2) - state_type(1U);
1163 
1164     static constexpr bool   may_tick  =
1165         (advance_pow2 < stypebits) && (advance_pow2 < tick_limit_pow2);
1166     static constexpr size_t tick_shift = stypebits - advance_pow2;
1167     static constexpr state_type tick_mask  =
1168         may_tick ? state_type(
1169                        (uint64_t(1) << (advance_pow2*may_tick)) - 1)
1170                                         // ^-- stupidity to appease GCC warnings
1171                  : ~state_type(0U);
1172 
1173     static constexpr bool may_tock = stypebits < tick_limit_pow2;
1174 
1175     result_type data_[table_size];
1176 
1177     PCG_NOINLINE void advance_table();
1178 
1179     PCG_NOINLINE void advance_table(state_type delta, bool isForwards = true);
1180 
get_extended_value()1181     result_type& get_extended_value()
1182     {
1183         state_type state = this->state_;
1184         if (kdd && baseclass::is_mcg) {
1185             // The low order bits of an MCG are constant, so drop them.
1186             state >>= 2;
1187         }
1188         size_t index       = kdd ? state &  table_mask
1189                                  : state >> table_shift;
1190 
1191         if (may_tick) {
1192             bool tick = kdd ? (state & tick_mask) == state_type(0u)
1193                             : (state >> tick_shift) == state_type(0u);
1194             if (tick)
1195                     advance_table();
1196         }
1197         if (may_tock) {
1198             bool tock = state == state_type(0u);
1199             if (tock)
1200                 advance_table();
1201         }
1202         return data_[index];
1203     }
1204 
1205 public:
period_pow2()1206     static constexpr size_t period_pow2()
1207     {
1208         return baseclass::period_pow2() + table_size*extvalclass::period_pow2();
1209     }
1210 
operator ()()1211     PCG_ALWAYS_INLINE result_type operator()()
1212     {
1213         result_type rhs = get_extended_value();
1214         result_type lhs = this->baseclass::operator()();
1215         return lhs ^ rhs;
1216     }
1217 
operator ()(result_type upper_bound)1218     result_type operator()(result_type upper_bound)
1219     {
1220         return bounded_rand(*this, upper_bound);
1221     }
1222 
set(result_type wanted)1223     void set(result_type wanted)
1224     {
1225         result_type& rhs = get_extended_value();
1226         result_type lhs = this->baseclass::operator()();
1227         rhs = lhs ^ wanted;
1228     }
1229 
1230     void advance(state_type distance, bool forwards = true);
1231 
backstep(state_type distance)1232     void backstep(state_type distance)
1233     {
1234         advance(distance, false);
1235     }
1236 
extended(const result_type * data)1237     extended(const result_type* data)
1238         : baseclass()
1239     {
1240         datainit(data);
1241     }
1242 
extended(const result_type * data,state_type seed)1243     extended(const result_type* data, state_type seed)
1244         : baseclass(seed)
1245     {
1246         datainit(data);
1247     }
1248 
1249     // This function may or may not exist.  It thus has to be a template
1250     // to use SFINAE; users don't have to worry about its template-ness.
1251 
1252     template <typename bc = baseclass>
extended(const result_type * data,state_type seed,typename bc::stream_state stream_seed)1253     extended(const result_type* data, state_type seed,
1254             typename bc::stream_state stream_seed)
1255         : baseclass(seed, stream_seed)
1256     {
1257         datainit(data);
1258     }
1259 
extended()1260     extended()
1261         : baseclass()
1262     {
1263         selfinit();
1264     }
1265 
extended(state_type seed)1266     extended(state_type seed)
1267         : baseclass(seed)
1268     {
1269         selfinit();
1270     }
1271 
1272     // This function may or may not exist.  It thus has to be a template
1273     // to use SFINAE; users don't have to worry about its template-ness.
1274 
1275     template <typename bc = baseclass>
extended(state_type seed,typename bc::stream_state stream_seed)1276     extended(state_type seed, typename bc::stream_state stream_seed)
1277         : baseclass(seed, stream_seed)
1278     {
1279         selfinit();
1280     }
1281 
1282 private:
1283     void selfinit();
1284     void datainit(const result_type* data);
1285 
1286 public:
1287 
1288     template<typename SeedSeq, typename = typename std::enable_if<
1289            !std::is_convertible<SeedSeq, result_type>::value
1290         && !std::is_convertible<SeedSeq, extended>::value>::type>
extended(SeedSeq && seedSeq)1291     extended(SeedSeq&& seedSeq)
1292         : baseclass(seedSeq)
1293     {
1294         generate_to<table_size>(seedSeq, data_);
1295     }
1296 
1297     template<typename... Args>
seed(Args &&...args)1298     void seed(Args&&... args)
1299     {
1300         new (this) extended(std::forward<Args>(args)...);
1301     }
1302 
1303     template <bitcount_t table_pow2_, bitcount_t advance_pow2_,
1304               typename baseclass_, typename extvalclass_, bool kdd_>
1305     friend bool operator==(const extended<table_pow2_, advance_pow2_,
1306                                               baseclass_, extvalclass_, kdd_>&,
1307                            const extended<table_pow2_, advance_pow2_,
1308                                               baseclass_, extvalclass_, kdd_>&);
1309 
1310     template <typename CharT, typename Traits,
1311               bitcount_t table_pow2_, bitcount_t advance_pow2_,
1312               typename baseclass_, typename extvalclass_, bool kdd_>
1313     friend std::basic_ostream<CharT,Traits>&
1314     operator<<(std::basic_ostream<CharT,Traits>& out,
1315                const extended<table_pow2_, advance_pow2_,
1316                               baseclass_, extvalclass_, kdd_>&);
1317 
1318     template <typename CharT, typename Traits,
1319               bitcount_t table_pow2_, bitcount_t advance_pow2_,
1320               typename baseclass_, typename extvalclass_, bool kdd_>
1321     friend std::basic_istream<CharT,Traits>&
1322     operator>>(std::basic_istream<CharT,Traits>& in,
1323                extended<table_pow2_, advance_pow2_,
1324                         baseclass_, extvalclass_, kdd_>&);
1325 
1326 };
1327 
1328 
1329 template <bitcount_t table_pow2, bitcount_t advance_pow2,
1330           typename baseclass, typename extvalclass, bool kdd>
datainit(const result_type * data)1331 void extended<table_pow2,advance_pow2,baseclass,extvalclass,kdd>::datainit(
1332          const result_type* data)
1333 {
1334     for (size_t i = 0; i < table_size; ++i)
1335         data_[i] = data[i];
1336 }
1337 
1338 template <bitcount_t table_pow2, bitcount_t advance_pow2,
1339           typename baseclass, typename extvalclass, bool kdd>
selfinit()1340 void extended<table_pow2,advance_pow2,baseclass,extvalclass,kdd>::selfinit()
1341 {
1342     // We need to fill the extended table with something, and we have
1343     // very little provided data, so we use the base generator to
1344     // produce values.  Although not ideal (use a seed sequence, folks!),
1345     // unexpected correlations are mitigated by
1346     //      - using XOR differences rather than the number directly
1347     //      - the way the table is accessed, its values *won't* be accessed
1348     //        in the same order the were written.
1349     //      - any strange correlations would only be apparent if we
1350     //        were to backstep the generator so that the base generator
1351     //        was generating the same values again
1352     result_type xdiff = baseclass::operator()() - baseclass::operator()();
1353     for (size_t i = 0; i < table_size; ++i) {
1354         data_[i] = baseclass::operator()() ^ xdiff;
1355     }
1356 }
1357 
1358 template <bitcount_t table_pow2, bitcount_t advance_pow2,
1359           typename baseclass, typename extvalclass, bool kdd>
operator ==(const extended<table_pow2,advance_pow2,baseclass,extvalclass,kdd> & lhs,const extended<table_pow2,advance_pow2,baseclass,extvalclass,kdd> & rhs)1360 bool operator==(const extended<table_pow2, advance_pow2,
1361                                baseclass, extvalclass, kdd>& lhs,
1362                 const extended<table_pow2, advance_pow2,
1363                                baseclass, extvalclass, kdd>& rhs)
1364 {
1365     auto& base_lhs = static_cast<const baseclass&>(lhs);
1366     auto& base_rhs = static_cast<const baseclass&>(rhs);
1367     return base_lhs == base_rhs
1368         && !memcmp((void*) lhs.data_, (void*) rhs.data_, sizeof(lhs.data_));
1369 }
1370 
1371 template <bitcount_t table_pow2, bitcount_t advance_pow2,
1372           typename baseclass, typename extvalclass, bool kdd>
operator !=(const extended<table_pow2,advance_pow2,baseclass,extvalclass,kdd> & lhs,const extended<table_pow2,advance_pow2,baseclass,extvalclass,kdd> & rhs)1373 inline bool operator!=(const extended<table_pow2, advance_pow2,
1374                                       baseclass, extvalclass, kdd>& lhs,
1375                        const extended<table_pow2, advance_pow2,
1376                                       baseclass, extvalclass, kdd>& rhs)
1377 {
1378     return lhs != rhs;
1379 }
1380 
1381 template <typename CharT, typename Traits,
1382           bitcount_t table_pow2, bitcount_t advance_pow2,
1383           typename baseclass, typename extvalclass, bool kdd>
1384 std::basic_ostream<CharT,Traits>&
operator <<(std::basic_ostream<CharT,Traits> & out,const extended<table_pow2,advance_pow2,baseclass,extvalclass,kdd> & rng)1385 operator<<(std::basic_ostream<CharT,Traits>& out,
1386            const extended<table_pow2, advance_pow2,
1387                           baseclass, extvalclass, kdd>& rng)
1388 {
1389     auto orig_flags = out.flags(std::ios_base::dec | std::ios_base::left);
1390     auto space = out.widen(' ');
1391     auto orig_fill = out.fill();
1392 
1393     out << rng.multiplier() << space
1394         << rng.increment() << space
1395         << rng.state_;
1396 
1397     for (const auto& datum : rng.data_)
1398         out << space << datum;
1399 
1400     out.flags(orig_flags);
1401     out.fill(orig_fill);
1402     return out;
1403 }
1404 
1405 template <typename CharT, typename Traits,
1406           bitcount_t table_pow2, bitcount_t advance_pow2,
1407           typename baseclass, typename extvalclass, bool kdd>
1408 std::basic_istream<CharT,Traits>&
operator >>(std::basic_istream<CharT,Traits> & in,extended<table_pow2,advance_pow2,baseclass,extvalclass,kdd> & rng)1409 operator>>(std::basic_istream<CharT,Traits>& in,
1410            extended<table_pow2, advance_pow2,
1411                     baseclass, extvalclass, kdd>& rng)
1412 {
1413     extended<table_pow2, advance_pow2, baseclass, extvalclass> new_rng;
1414     auto& base_rng = static_cast<baseclass&>(new_rng);
1415     in >> base_rng;
1416 
1417     if (in.fail())
1418         return in;
1419 
1420     auto orig_flags = in.flags(std::ios_base::dec | std::ios_base::skipws);
1421 
1422     for (auto& datum : new_rng.data_) {
1423         in >> datum;
1424         if (in.fail())
1425             goto bail;
1426     }
1427 
1428     rng = new_rng;
1429 
1430 bail:
1431     in.flags(orig_flags);
1432     return in;
1433 }
1434 
1435 
1436 
1437 template <bitcount_t table_pow2, bitcount_t advance_pow2,
1438           typename baseclass, typename extvalclass, bool kdd>
1439 void
advance_table()1440 extended<table_pow2,advance_pow2,baseclass,extvalclass,kdd>::advance_table()
1441 {
1442     bool carry = false;
1443     for (size_t i = 0; i < table_size; ++i) {
1444         if (carry) {
1445             carry = insideout::external_step(data_[i],i+1);
1446         }
1447         bool carry2 = insideout::external_step(data_[i],i+1);
1448         carry = carry || carry2;
1449     }
1450 }
1451 
1452 template <bitcount_t table_pow2, bitcount_t advance_pow2,
1453           typename baseclass, typename extvalclass, bool kdd>
1454 void
advance_table(state_type delta,bool isForwards)1455 extended<table_pow2,advance_pow2,baseclass,extvalclass,kdd>::advance_table(
1456         state_type delta, bool isForwards)
1457 {
1458     typedef typename baseclass::state_type   base_state_t;
1459     typedef typename extvalclass::state_type ext_state_t;
1460     constexpr bitcount_t basebits = sizeof(base_state_t)*8;
1461     constexpr bitcount_t extbits  = sizeof(ext_state_t)*8;
1462     static_assert(basebits <= extbits || advance_pow2 > 0,
1463                   "Current implementation might overflow its carry");
1464 
1465     base_state_t carry = 0;
1466     for (size_t i = 0; i < table_size; ++i) {
1467         base_state_t total_delta = carry + delta;
1468         ext_state_t  trunc_delta = ext_state_t(total_delta);
1469         if (basebits > extbits) {
1470             carry = total_delta >> extbits;
1471         } else {
1472             carry = 0;
1473         }
1474         carry +=
1475             insideout::external_advance(data_[i],i+1, trunc_delta, isForwards);
1476     }
1477 }
1478 
1479 template <bitcount_t table_pow2, bitcount_t advance_pow2,
1480           typename baseclass, typename extvalclass, bool kdd>
advance(state_type distance,bool forwards)1481 void extended<table_pow2,advance_pow2,baseclass,extvalclass,kdd>::advance(
1482     state_type distance, bool forwards)
1483 {
1484     static_assert(kdd,
1485         "Efficient advance is too hard for non-kdd extension. "
1486         "For a weak advance, cast to base class");
1487     state_type zero =
1488         baseclass::is_mcg ? this->state_ & state_type(3U) : state_type(0U);
1489     if (may_tick) {
1490         state_type ticks = distance >> (advance_pow2*may_tick);
1491                                         // ^-- stupidity to appease GCC
1492                                         // warnings
1493         state_type adv_mask =
1494             baseclass::is_mcg ? tick_mask << 2 : tick_mask;
1495         state_type next_advance_distance = this->distance(zero, adv_mask);
1496         if (!forwards)
1497             next_advance_distance = (-next_advance_distance) & tick_mask;
1498         if (next_advance_distance < (distance & tick_mask)) {
1499             ++ticks;
1500         }
1501         if (ticks)
1502             advance_table(ticks, forwards);
1503     }
1504     if (forwards) {
1505         if (may_tock && this->distance(zero) <= distance)
1506             advance_table();
1507         baseclass::advance(distance);
1508     } else {
1509         if (may_tock && -(this->distance(zero)) <= distance)
1510             advance_table(state_type(1U), false);
1511         baseclass::advance(-distance);
1512     }
1513 }
1514 
1515 } // namespace pcg_detail
1516 
1517 namespace pcg_engines {
1518 
1519 using namespace pcg_detail;
1520 
1521 /* Predefined types for XSH RS */
1522 
1523 typedef oneseq_base<uint8_t,  uint16_t, xsh_rs_mixin>  oneseq_xsh_rs_16_8;
1524 typedef oneseq_base<uint16_t, uint32_t, xsh_rs_mixin>  oneseq_xsh_rs_32_16;
1525 typedef oneseq_base<uint32_t, uint64_t, xsh_rs_mixin>  oneseq_xsh_rs_64_32;
1526 typedef oneseq_base<uint64_t, pcg128_t, xsh_rs_mixin>  oneseq_xsh_rs_128_64;
1527 
1528 typedef unique_base<uint8_t,  uint16_t, xsh_rs_mixin>  unique_xsh_rs_16_8;
1529 typedef unique_base<uint16_t, uint32_t, xsh_rs_mixin>  unique_xsh_rs_32_16;
1530 typedef unique_base<uint32_t, uint64_t, xsh_rs_mixin>  unique_xsh_rs_64_32;
1531 typedef unique_base<uint64_t, pcg128_t, xsh_rs_mixin>  unique_xsh_rs_128_64;
1532 
1533 typedef setseq_base<uint8_t,  uint16_t, xsh_rs_mixin>  setseq_xsh_rs_16_8;
1534 typedef setseq_base<uint16_t, uint32_t, xsh_rs_mixin>  setseq_xsh_rs_32_16;
1535 typedef setseq_base<uint32_t, uint64_t, xsh_rs_mixin>  setseq_xsh_rs_64_32;
1536 typedef setseq_base<uint64_t, pcg128_t, xsh_rs_mixin>  setseq_xsh_rs_128_64;
1537 
1538 typedef mcg_base<uint8_t,  uint16_t, xsh_rs_mixin>  mcg_xsh_rs_16_8;
1539 typedef mcg_base<uint16_t, uint32_t, xsh_rs_mixin>  mcg_xsh_rs_32_16;
1540 typedef mcg_base<uint32_t, uint64_t, xsh_rs_mixin>  mcg_xsh_rs_64_32;
1541 typedef mcg_base<uint64_t, pcg128_t, xsh_rs_mixin>  mcg_xsh_rs_128_64;
1542 
1543 /* Predefined types for XSH RR */
1544 
1545 typedef oneseq_base<uint8_t,  uint16_t, xsh_rr_mixin>  oneseq_xsh_rr_16_8;
1546 typedef oneseq_base<uint16_t, uint32_t, xsh_rr_mixin>  oneseq_xsh_rr_32_16;
1547 typedef oneseq_base<uint32_t, uint64_t, xsh_rr_mixin>  oneseq_xsh_rr_64_32;
1548 typedef oneseq_base<uint64_t, pcg128_t, xsh_rr_mixin>  oneseq_xsh_rr_128_64;
1549 
1550 typedef unique_base<uint8_t,  uint16_t, xsh_rr_mixin>  unique_xsh_rr_16_8;
1551 typedef unique_base<uint16_t, uint32_t, xsh_rr_mixin>  unique_xsh_rr_32_16;
1552 typedef unique_base<uint32_t, uint64_t, xsh_rr_mixin>  unique_xsh_rr_64_32;
1553 typedef unique_base<uint64_t, pcg128_t, xsh_rr_mixin>  unique_xsh_rr_128_64;
1554 
1555 typedef setseq_base<uint8_t,  uint16_t, xsh_rr_mixin>  setseq_xsh_rr_16_8;
1556 typedef setseq_base<uint16_t, uint32_t, xsh_rr_mixin>  setseq_xsh_rr_32_16;
1557 typedef setseq_base<uint32_t, uint64_t, xsh_rr_mixin>  setseq_xsh_rr_64_32;
1558 typedef setseq_base<uint64_t, pcg128_t, xsh_rr_mixin>  setseq_xsh_rr_128_64;
1559 
1560 typedef mcg_base<uint8_t,  uint16_t, xsh_rr_mixin>  mcg_xsh_rr_16_8;
1561 typedef mcg_base<uint16_t, uint32_t, xsh_rr_mixin>  mcg_xsh_rr_32_16;
1562 typedef mcg_base<uint32_t, uint64_t, xsh_rr_mixin>  mcg_xsh_rr_64_32;
1563 typedef mcg_base<uint64_t, pcg128_t, xsh_rr_mixin>  mcg_xsh_rr_128_64;
1564 
1565 
1566 /* Predefined types for RXS M XS */
1567 
1568 typedef oneseq_base<uint8_t,  uint8_t, rxs_m_xs_mixin>   oneseq_rxs_m_xs_8_8;
1569 typedef oneseq_base<uint16_t, uint16_t, rxs_m_xs_mixin>  oneseq_rxs_m_xs_16_16;
1570 typedef oneseq_base<uint32_t, uint32_t, rxs_m_xs_mixin>  oneseq_rxs_m_xs_32_32;
1571 typedef oneseq_base<uint64_t, uint64_t, rxs_m_xs_mixin>  oneseq_rxs_m_xs_64_64;
1572 typedef oneseq_base<pcg128_t, pcg128_t, rxs_m_xs_mixin>  oneseq_rxs_m_xs_128_128;
1573 
1574 typedef unique_base<uint8_t,  uint8_t, rxs_m_xs_mixin>  unique_rxs_m_xs_8_8;
1575 typedef unique_base<uint16_t, uint16_t, rxs_m_xs_mixin> unique_rxs_m_xs_16_16;
1576 typedef unique_base<uint32_t, uint32_t, rxs_m_xs_mixin> unique_rxs_m_xs_32_32;
1577 typedef unique_base<uint64_t, uint64_t, rxs_m_xs_mixin> unique_rxs_m_xs_64_64;
1578 typedef unique_base<pcg128_t, pcg128_t, rxs_m_xs_mixin> unique_rxs_m_xs_128_128;
1579 
1580 typedef setseq_base<uint8_t,  uint8_t, rxs_m_xs_mixin>  setseq_rxs_m_xs_8_8;
1581 typedef setseq_base<uint16_t, uint16_t, rxs_m_xs_mixin> setseq_rxs_m_xs_16_16;
1582 typedef setseq_base<uint32_t, uint32_t, rxs_m_xs_mixin> setseq_rxs_m_xs_32_32;
1583 typedef setseq_base<uint64_t, uint64_t, rxs_m_xs_mixin> setseq_rxs_m_xs_64_64;
1584 typedef setseq_base<pcg128_t, pcg128_t, rxs_m_xs_mixin> setseq_rxs_m_xs_128_128;
1585 
1586                 // MCG versions don't make sense here, so aren't defined.
1587 
1588 /* Predefined types for XSL RR (only defined for "large" types) */
1589 
1590 typedef oneseq_base<uint32_t, uint64_t, xsl_rr_mixin>  oneseq_xsl_rr_64_32;
1591 typedef oneseq_base<uint64_t, pcg128_t, xsl_rr_mixin>  oneseq_xsl_rr_128_64;
1592 
1593 typedef unique_base<uint32_t, uint64_t, xsl_rr_mixin>  unique_xsl_rr_64_32;
1594 typedef unique_base<uint64_t, pcg128_t, xsl_rr_mixin>  unique_xsl_rr_128_64;
1595 
1596 typedef setseq_base<uint32_t, uint64_t, xsl_rr_mixin>  setseq_xsl_rr_64_32;
1597 typedef setseq_base<uint64_t, pcg128_t, xsl_rr_mixin>  setseq_xsl_rr_128_64;
1598 
1599 typedef mcg_base<uint32_t, uint64_t, xsl_rr_mixin>  mcg_xsl_rr_64_32;
1600 typedef mcg_base<uint64_t, pcg128_t, xsl_rr_mixin>  mcg_xsl_rr_128_64;
1601 
1602 
1603 /* Predefined types for XSL RR RR (only defined for "large" types) */
1604 
1605 typedef oneseq_base<uint64_t, uint64_t, xsl_rr_rr_mixin>
1606     oneseq_xsl_rr_rr_64_64;
1607 typedef oneseq_base<pcg128_t, pcg128_t, xsl_rr_rr_mixin>
1608     oneseq_xsl_rr_rr_128_128;
1609 
1610 typedef unique_base<uint64_t, uint64_t, xsl_rr_rr_mixin>
1611     unique_xsl_rr_rr_64_64;
1612 typedef unique_base<pcg128_t, pcg128_t, xsl_rr_rr_mixin>
1613     unique_xsl_rr_rr_128_128;
1614 
1615 typedef setseq_base<uint64_t, uint64_t, xsl_rr_rr_mixin>
1616     setseq_xsl_rr_rr_64_64;
1617 typedef setseq_base<pcg128_t, pcg128_t, xsl_rr_rr_mixin>
1618     setseq_xsl_rr_rr_128_128;
1619 
1620                 // MCG versions don't make sense here, so aren't defined.
1621 
1622 /* Extended generators */
1623 
1624 template <bitcount_t table_pow2, bitcount_t advance_pow2,
1625           typename BaseRNG, bool kdd = true>
1626 using ext_std8 = extended<table_pow2, advance_pow2, BaseRNG,
1627                           oneseq_rxs_m_xs_8_8, kdd>;
1628 
1629 template <bitcount_t table_pow2, bitcount_t advance_pow2,
1630           typename BaseRNG, bool kdd = true>
1631 using ext_std16 = extended<table_pow2, advance_pow2, BaseRNG,
1632                            oneseq_rxs_m_xs_16_16, kdd>;
1633 
1634 template <bitcount_t table_pow2, bitcount_t advance_pow2,
1635           typename BaseRNG, bool kdd = true>
1636 using ext_std32 = extended<table_pow2, advance_pow2, BaseRNG,
1637                            oneseq_rxs_m_xs_32_32, kdd>;
1638 
1639 template <bitcount_t table_pow2, bitcount_t advance_pow2,
1640           typename BaseRNG, bool kdd = true>
1641 using ext_std64 = extended<table_pow2, advance_pow2, BaseRNG,
1642                            oneseq_rxs_m_xs_64_64, kdd>;
1643 
1644 
1645 template <bitcount_t table_pow2, bitcount_t advance_pow2, bool kdd = true>
1646 using ext_oneseq_rxs_m_xs_32_32 =
1647           ext_std32<table_pow2, advance_pow2, oneseq_rxs_m_xs_32_32, kdd>;
1648 
1649 template <bitcount_t table_pow2, bitcount_t advance_pow2, bool kdd = true>
1650 using ext_mcg_xsh_rs_64_32 =
1651           ext_std32<table_pow2, advance_pow2, mcg_xsh_rs_64_32, kdd>;
1652 
1653 template <bitcount_t table_pow2, bitcount_t advance_pow2, bool kdd = true>
1654 using ext_oneseq_xsh_rs_64_32 =
1655           ext_std32<table_pow2, advance_pow2, oneseq_xsh_rs_64_32, kdd>;
1656 
1657 template <bitcount_t table_pow2, bitcount_t advance_pow2, bool kdd = true>
1658 using ext_setseq_xsh_rr_64_32 =
1659           ext_std32<table_pow2, advance_pow2, setseq_xsh_rr_64_32, kdd>;
1660 
1661 template <bitcount_t table_pow2, bitcount_t advance_pow2, bool kdd = true>
1662 using ext_mcg_xsl_rr_128_64 =
1663           ext_std64<table_pow2, advance_pow2, mcg_xsl_rr_128_64, kdd>;
1664 
1665 template <bitcount_t table_pow2, bitcount_t advance_pow2, bool kdd = true>
1666 using ext_oneseq_xsl_rr_128_64 =
1667           ext_std64<table_pow2, advance_pow2, oneseq_xsl_rr_128_64, kdd>;
1668 
1669 template <bitcount_t table_pow2, bitcount_t advance_pow2, bool kdd = true>
1670 using ext_setseq_xsl_rr_128_64 =
1671           ext_std64<table_pow2, advance_pow2, setseq_xsl_rr_128_64, kdd>;
1672 
1673 } // namespace pcg_engines
1674 
1675 typedef pcg_engines::setseq_xsh_rr_64_32        pcg32;
1676 typedef pcg_engines::oneseq_xsh_rr_64_32        pcg32_oneseq;
1677 typedef pcg_engines::unique_xsh_rr_64_32        pcg32_unique;
1678 typedef pcg_engines::mcg_xsh_rs_64_32           pcg32_fast;
1679 
1680 typedef pcg_engines::setseq_xsl_rr_128_64       pcg64;
1681 typedef pcg_engines::oneseq_xsl_rr_128_64       pcg64_oneseq;
1682 typedef pcg_engines::unique_xsl_rr_128_64       pcg64_unique;
1683 typedef pcg_engines::mcg_xsl_rr_128_64          pcg64_fast;
1684 
1685 typedef pcg_engines::setseq_rxs_m_xs_8_8        pcg8_once_insecure;
1686 typedef pcg_engines::setseq_rxs_m_xs_16_16      pcg16_once_insecure;
1687 typedef pcg_engines::setseq_rxs_m_xs_32_32      pcg32_once_insecure;
1688 typedef pcg_engines::setseq_rxs_m_xs_64_64      pcg64_once_insecure;
1689 typedef pcg_engines::setseq_xsl_rr_rr_128_128   pcg128_once_insecure;
1690 
1691 typedef pcg_engines::oneseq_rxs_m_xs_8_8        pcg8_oneseq_once_insecure;
1692 typedef pcg_engines::oneseq_rxs_m_xs_16_16      pcg16_oneseq_once_insecure;
1693 typedef pcg_engines::oneseq_rxs_m_xs_32_32      pcg32_oneseq_once_insecure;
1694 typedef pcg_engines::oneseq_rxs_m_xs_64_64      pcg64_oneseq_once_insecure;
1695 typedef pcg_engines::oneseq_xsl_rr_rr_128_128   pcg128_oneseq_once_insecure;
1696 
1697 
1698 // These two extended RNGs provide two-dimensionally equidistributed
1699 // 32-bit generators.  pcg32_k2_fast occupies the same space as pcg64,
1700 // and can be called twice to generate 64 bits, but does not required
1701 // 128-bit math; on 32-bit systems, it's faster than pcg64 as well.
1702 
1703 typedef pcg_engines::ext_setseq_xsh_rr_64_32<6,16,true>     pcg32_k2;
1704 typedef pcg_engines::ext_oneseq_xsh_rs_64_32<6,32,true>     pcg32_k2_fast;
1705 
1706 // These eight extended RNGs have about as much state as arc4random
1707 //
1708 //  - the k variants are k-dimensionally equidistributed
1709 //  - the c variants offer better crypographic security
1710 //
1711 // (just how good the cryptographic security is is an open question)
1712 
1713 typedef pcg_engines::ext_setseq_xsh_rr_64_32<6,16,true>     pcg32_k64;
1714 typedef pcg_engines::ext_mcg_xsh_rs_64_32<6,32,true>        pcg32_k64_oneseq;
1715 typedef pcg_engines::ext_oneseq_xsh_rs_64_32<6,32,true>     pcg32_k64_fast;
1716 
1717 typedef pcg_engines::ext_setseq_xsh_rr_64_32<6,16,false>    pcg32_c64;
1718 typedef pcg_engines::ext_oneseq_xsh_rs_64_32<6,32,false>    pcg32_c64_oneseq;
1719 typedef pcg_engines::ext_mcg_xsh_rs_64_32<6,32,false>       pcg32_c64_fast;
1720 
1721 typedef pcg_engines::ext_setseq_xsl_rr_128_64<5,16,true>    pcg64_k32;
1722 typedef pcg_engines::ext_oneseq_xsl_rr_128_64<5,128,true>   pcg64_k32_oneseq;
1723 typedef pcg_engines::ext_mcg_xsl_rr_128_64<5,128,true>      pcg64_k32_fast;
1724 
1725 typedef pcg_engines::ext_setseq_xsl_rr_128_64<5,16,false>   pcg64_c32;
1726 typedef pcg_engines::ext_oneseq_xsl_rr_128_64<5,128,false>  pcg64_c32_oneseq;
1727 typedef pcg_engines::ext_mcg_xsl_rr_128_64<5,128,false>     pcg64_c32_fast;
1728 
1729 // These eight extended RNGs have more state than the Mersenne twister
1730 //
1731 //  - the k variants are k-dimensionally equidistributed
1732 //  - the c variants offer better crypographic security
1733 //
1734 // (just how good the cryptographic security is is an open question)
1735 
1736 typedef pcg_engines::ext_setseq_xsh_rr_64_32<10,16,true>    pcg32_k1024;
1737 typedef pcg_engines::ext_oneseq_xsh_rs_64_32<10,32,true>    pcg32_k1024_fast;
1738 
1739 typedef pcg_engines::ext_setseq_xsh_rr_64_32<10,16,false>   pcg32_c1024;
1740 typedef pcg_engines::ext_oneseq_xsh_rs_64_32<10,32,false>   pcg32_c1024_fast;
1741 
1742 typedef pcg_engines::ext_setseq_xsl_rr_128_64<10,16,true>   pcg64_k1024;
1743 typedef pcg_engines::ext_oneseq_xsl_rr_128_64<10,128,true>  pcg64_k1024_fast;
1744 
1745 typedef pcg_engines::ext_setseq_xsl_rr_128_64<10,16,false>  pcg64_c1024;
1746 typedef pcg_engines::ext_oneseq_xsl_rr_128_64<10,128,false> pcg64_c1024_fast;
1747 
1748 // These generators have an insanely huge period (2^524352), and is suitable
1749 // for silly party tricks, such as dumping out 64 KB ZIP files at an arbitrary
1750 // point in the future.   [Actually, over the full period of the generator, it
1751 // will produce every 64 KB ZIP file 2^64 times!]
1752 
1753 typedef pcg_engines::ext_setseq_xsh_rr_64_32<14,16,true>    pcg32_k16384;
1754 typedef pcg_engines::ext_oneseq_xsh_rs_64_32<14,32,true>    pcg32_k16384_fast;
1755 
1756 #endif // PCG_RAND_HPP_INCLUDED
1757