1 /*
2 * PCG Random Number Generation for C++
3 *
4 * Copyright 2014 Melissa O'Neill <oneill@pcg-random.org>
5 *
6 * Licensed under the Apache License, Version 2.0 (the "License");
7 * you may not use this file except in compliance with the License.
8 * You may obtain a copy of the License at
9 *
10 * http://www.apache.org/licenses/LICENSE-2.0
11 *
12 * Unless required by applicable law or agreed to in writing, software
13 * distributed under the License is distributed on an "AS IS" BASIS,
14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 * See the License for the specific language governing permissions and
16 * limitations under the License.
17 *
18 * For additional information about the PCG random number generation scheme,
19 * including its license and other licensing options, visit
20 *
21 * http://www.pcg-random.org
22 */
23
24 /*
25 * This file provides support code that is useful for random-number generation
26 * but not specific to the PCG generation scheme, including:
27 * - 128-bit int support for platforms where it isn't available natively
28 * - bit twiddling operations
29 * - I/O of 128-bit and 8-bit integers
30 * - Handling the evilness of SeedSeq
31 * - Support for efficiently producing random numbers less than a given
32 * bound
33 */
34
35 #ifndef PCG_EXTRAS_HPP_INCLUDED
36 #define PCG_EXTRAS_HPP_INCLUDED 1
37
38 #include <cinttypes>
39 #include <cstddef>
40 #include <cstdlib>
41 #include <cstring>
42 #include <cassert>
43 #include <limits>
44 #include <iostream>
45 #include <type_traits>
46 #include <utility>
47 #include <locale>
48 #include <iterator>
49 #include <utility>
50
51 #ifdef __GNUC__
52 #include <cxxabi.h>
53 #endif
54
55 /*
56 * Abstractions for compiler-specific directives
57 */
58
59 #ifdef __GNUC__
60 #define PCG_NOINLINE __attribute__((noinline))
61 #else
62 #define PCG_NOINLINE
63 #endif
64
65 /*
66 * Some members of the PCG library use 128-bit math. When compiling on 64-bit
67 * platforms, both GCC and Clang provide 128-bit integer types that are ideal
68 * for the job.
69 *
70 * On 32-bit platforms (or with other compilers), we fall back to a C++
71 * class that provides 128-bit unsigned integers instead. It may seem
72 * like we're reinventing the wheel here, because libraries already exist
73 * that support large integers, but most existing libraries provide a very
74 * generic multiprecision code, but here we're operating at a fixed size.
75 * Also, most other libraries are fairly heavyweight. So we use a direct
76 * implementation. Sadly, it's much slower than hand-coded assembly or
77 * direct CPU support.
78 *
79 */
80 #if __SIZEOF_INT128__
81 namespace pcg_extras {
82 typedef __uint128_t pcg128_t;
83 }
84 #define PCG_128BIT_CONSTANT(high,low) \
85 ((pcg128_t(high) << 64) + low)
86 #else
87 #include "pcg_uint128.hpp"
88 namespace pcg_extras {
89 typedef pcg_extras::uint_x4<uint32_t,uint64_t> pcg128_t;
90 }
91 #define PCG_128BIT_CONSTANT(high,low) \
92 pcg128_t(high,low)
93 #define PCG_EMULATED_128BIT_MATH 1
94 #endif
95
96
97 namespace pcg_extras {
98
99 /*
100 * We often need to represent a "number of bits". When used normally, these
101 * numbers are never greater than 128, so an unsigned char is plenty.
102 * If you're using a nonstandard generator of a larger size, you can set
103 * PCG_BITCOUNT_T to have it define it as a larger size. (Some compilers
104 * might produce faster code if you set it to an unsigned int.)
105 */
106
107 #ifndef PCG_BITCOUNT_T
108 typedef uint8_t bitcount_t;
109 #else
110 typedef PCG_BITCOUNT_T bitcount_t;
111 #endif
112
113 /*
114 * C++ requires us to be able to serialize RNG state by printing or reading
115 * it from a stream. Because we use 128-bit ints, we also need to be able
116 * ot print them, so here is code to do so.
117 *
118 * This code provides enough functionality to print 128-bit ints in decimal
119 * and zero-padded in hex. It's not a full-featured implementation.
120 */
121
122 template <typename CharT, typename Traits>
123 std::basic_ostream<CharT,Traits>&
operator <<(std::basic_ostream<CharT,Traits> & out,pcg128_t value)124 operator<<(std::basic_ostream<CharT,Traits>& out, pcg128_t value)
125 {
126 auto desired_base = out.flags() & out.basefield;
127 bool want_hex = desired_base == out.hex;
128
129 if (want_hex) {
130 uint64_t highpart = uint64_t(value >> 64);
131 uint64_t lowpart = uint64_t(value);
132 auto desired_width = out.width();
133 if (desired_width > 16) {
134 out.width(desired_width - 16);
135 }
136 if (highpart != 0 || desired_width > 16)
137 out << highpart;
138 CharT oldfill;
139 if (highpart != 0) {
140 out.width(16);
141 oldfill = out.fill('0');
142 }
143 auto oldflags = out.setf(decltype(desired_base){}, out.showbase);
144 out << lowpart;
145 out.setf(oldflags);
146 if (highpart != 0) {
147 out.fill(oldfill);
148 }
149 return out;
150 }
151 constexpr size_t MAX_CHARS_128BIT = 40;
152
153 char buffer[MAX_CHARS_128BIT];
154 char* pos = buffer+sizeof(buffer);
155 *(--pos) = '\0';
156 constexpr auto BASE = pcg128_t(10ULL);
157 do {
158 auto div = value / BASE;
159 auto mod = uint32_t(value - (div * BASE));
160 *(--pos) = '0' + mod;
161 value = div;
162 } while(value != pcg128_t(0ULL));
163 return out << pos;
164 }
165
166 template <typename CharT, typename Traits>
167 std::basic_istream<CharT,Traits>&
operator >>(std::basic_istream<CharT,Traits> & in,pcg128_t & value)168 operator>>(std::basic_istream<CharT,Traits>& in, pcg128_t& value)
169 {
170 typename std::basic_istream<CharT,Traits>::sentry s(in);
171
172 if (!s)
173 return in;
174
175 constexpr auto BASE = pcg128_t(10ULL);
176 pcg128_t current(0ULL);
177 bool did_nothing = true;
178 bool overflow = false;
179 for(;;) {
180 CharT wide_ch = in.get();
181 if (!in.good())
182 break;
183 auto ch = in.narrow(wide_ch, '\0');
184 if (ch < '0' || ch > '9') {
185 in.unget();
186 break;
187 }
188 did_nothing = false;
189 pcg128_t digit(uint32_t(ch - '0'));
190 pcg128_t timesbase = current*BASE;
191 overflow = overflow || timesbase < current;
192 current = timesbase + digit;
193 overflow = overflow || current < digit;
194 }
195
196 if (did_nothing || overflow) {
197 in.setstate(std::ios::failbit);
198 if (overflow)
199 current = ~pcg128_t(0ULL);
200 }
201
202 value = current;
203
204 return in;
205 }
206
207 /*
208 * Likewise, if people use tiny rngs, we'll be serializing uint8_t.
209 * If we just used the provided IO operators, they'd read/write chars,
210 * not ints, so we need to define our own. We *can* redefine this operator
211 * here because we're in our own namespace.
212 */
213
214 template <typename CharT, typename Traits>
215 std::basic_ostream<CharT,Traits>&
operator <<(std::basic_ostream<CharT,Traits> & out,uint8_t value)216 operator<<(std::basic_ostream<CharT,Traits>&out, uint8_t value)
217 {
218 return out << uint32_t(value);
219 }
220
221 template <typename CharT, typename Traits>
222 std::basic_istream<CharT,Traits>&
operator >>(std::basic_istream<CharT,Traits> & in,uint8_t target)223 operator>>(std::basic_istream<CharT,Traits>& in, uint8_t target)
224 {
225 uint32_t value = 0xdecea5edU;
226 in >> value;
227 if (!in && value == 0xdecea5edU)
228 return in;
229 if (value > uint8_t(~0)) {
230 in.setstate(std::ios::failbit);
231 value = ~0U;
232 }
233 target = uint8_t(value);
234 return in;
235 }
236
237 /* Unfortunately, the above functions don't get found in preference to the
238 * built in ones, so we create some more specific overloads that will.
239 * Ugh.
240 */
241
operator <<(std::ostream & out,uint8_t value)242 inline std::ostream& operator<<(std::ostream& out, uint8_t value)
243 {
244 return pcg_extras::operator<< <char>(out, value);
245 }
246
operator >>(std::istream & in,uint8_t & value)247 inline std::istream& operator>>(std::istream& in, uint8_t& value)
248 {
249 return pcg_extras::operator>> <char>(in, value);
250 }
251
252
253
254 /*
255 * Useful bitwise operations.
256 */
257
258 /*
259 * XorShifts are invertable, but they are someting of a pain to invert.
260 * This function backs them out. It's used by the whacky "inside out"
261 * generator defined later.
262 */
263
264 template <typename itype>
unxorshift(itype x,bitcount_t bits,bitcount_t shift)265 inline itype unxorshift(itype x, bitcount_t bits, bitcount_t shift)
266 {
267 if (2*shift >= bits) {
268 return x ^ (x >> shift);
269 }
270 itype lowmask1 = (itype(1U) << (bits - shift*2)) - 1;
271 itype highmask1 = ~lowmask1;
272 itype top1 = x;
273 itype bottom1 = x & lowmask1;
274 top1 ^= top1 >> shift;
275 top1 &= highmask1;
276 x = top1 | bottom1;
277 itype lowmask2 = (itype(1U) << (bits - shift)) - 1;
278 itype bottom2 = x & lowmask2;
279 bottom2 = unxorshift(bottom2, bits - shift, shift);
280 bottom2 &= lowmask1;
281 return top1 | bottom2;
282 }
283
284 /*
285 * Rotate left and right.
286 *
287 * In ideal world, compilers would spot idiomatic rotate code and convert it
288 * to a rotate instruction. Of course, opinions vary on what the correct
289 * idiom is and how to spot it. For clang, sometimes it generates better
290 * (but still crappy) code if you define PCG_USE_ZEROCHECK_ROTATE_IDIOM.
291 */
292
293 template <typename itype>
rotl(itype value,bitcount_t rot)294 inline itype rotl(itype value, bitcount_t rot)
295 {
296 constexpr bitcount_t bits = sizeof(itype) * 8;
297 constexpr bitcount_t mask = bits - 1;
298 #if PCG_USE_ZEROCHECK_ROTATE_IDIOM
299 return rot ? (value << rot) | (value >> (bits - rot)) : value;
300 #else
301 return (value << rot) | (value >> ((- rot) & mask));
302 #endif
303 }
304
305 template <typename itype>
rotr(itype value,bitcount_t rot)306 inline itype rotr(itype value, bitcount_t rot)
307 {
308 constexpr bitcount_t bits = sizeof(itype) * 8;
309 constexpr bitcount_t mask = bits - 1;
310 #if PCG_USE_ZEROCHECK_ROTATE_IDIOM
311 return rot ? (value >> rot) | (value << (bits - rot)) : value;
312 #else
313 return (value >> rot) | (value << ((- rot) & mask));
314 #endif
315 }
316
317 /* Unfortunately, both Clang and GCC sometimes perform poorly when it comes
318 * to properly recognizing idiomatic rotate code, so for we also provide
319 * assembler directives (enabled with PCG_USE_INLINE_ASM). Boo, hiss.
320 * (I hope that these compilers get better so that this code can die.)
321 *
322 * These overloads will be preferred over the general template code above.
323 */
324 #if PCG_USE_INLINE_ASM && __GNUC__ && (__x86_64__ || __i386__)
325
rotr(uint8_t value,bitcount_t rot)326 inline uint8_t rotr(uint8_t value, bitcount_t rot)
327 {
328 asm ("rorb %%cl, %0" : "=r" (value) : "0" (value), "c" (rot));
329 return value;
330 }
331
rotr(uint16_t value,bitcount_t rot)332 inline uint16_t rotr(uint16_t value, bitcount_t rot)
333 {
334 asm ("rorw %%cl, %0" : "=r" (value) : "0" (value), "c" (rot));
335 return value;
336 }
337
rotr(uint32_t value,bitcount_t rot)338 inline uint32_t rotr(uint32_t value, bitcount_t rot)
339 {
340 asm ("rorl %%cl, %0" : "=r" (value) : "0" (value), "c" (rot));
341 return value;
342 }
343
344 #if __x86_64__
rotr(uint64_t value,bitcount_t rot)345 inline uint64_t rotr(uint64_t value, bitcount_t rot)
346 {
347 asm ("rorq %%cl, %0" : "=r" (value) : "0" (value), "c" (rot));
348 return value;
349 }
350 #endif // __x86_64__
351
352 #endif // PCG_USE_INLINE_ASM
353
354
355 /*
356 * The C++ SeedSeq concept (modelled by seed_seq) can fill an array of
357 * 32-bit integers with seed data, but sometimes we want to produce
358 * larger or smaller integers.
359 *
360 * The following code handles this annoyance.
361 *
362 * uneven_copy will copy an array of 32-bit ints to an array of larger or
363 * smaller ints (actually, the code is general it only needing forward
364 * iterators). The copy is identical to the one that would be performed if
365 * we just did memcpy on a standard little-endian machine, but works
366 * regardless of the endian of the machine (or the weirdness of the ints
367 * involved).
368 *
369 * generate_to initializes an array of integers using a SeedSeq
370 * object. It is given the size as a static constant at compile time and
371 * tries to avoid memory allocation. If we're filling in 32-bit constants
372 * we just do it directly. If we need a separate buffer and it's small,
373 * we allocate it on the stack. Otherwise, we fall back to heap allocation.
374 * Ugh.
375 *
376 * generate_one produces a single value of some integral type using a
377 * SeedSeq object.
378 */
379
380 /* uneven_copy helper, case where destination ints are less than 32 bit. */
381
382 template<class SrcIter, class DestIter>
383 SrcIter uneven_copy_impl(
384 SrcIter src_first, DestIter dest_first, DestIter dest_last,
385 std::true_type)
386 {
387 typedef typename std::iterator_traits<SrcIter>::value_type src_t;
388 typedef typename std::iterator_traits<DestIter>::value_type dest_t;
389
390 constexpr bitcount_t SRC_SIZE = sizeof(src_t);
391 constexpr bitcount_t DEST_SIZE = sizeof(dest_t);
392 constexpr bitcount_t DEST_BITS = DEST_SIZE * 8;
393 constexpr bitcount_t SCALE = SRC_SIZE / DEST_SIZE;
394
395 size_t count = 0;
396 src_t value;
397
398 while (dest_first != dest_last) {
399 if ((count++ % SCALE) == 0)
400 value = *src_first++; // Get more bits
401 else
402 value >>= DEST_BITS; // Move down bits
403
404 *dest_first++ = dest_t(value); // Truncates, ignores high bits.
405 }
406 return src_first;
407 }
408
409 /* uneven_copy helper, case where destination ints are more than 32 bit. */
410
411 template<class SrcIter, class DestIter>
412 SrcIter uneven_copy_impl(
413 SrcIter src_first, DestIter dest_first, DestIter dest_last,
414 std::false_type)
415 {
416 typedef typename std::iterator_traits<SrcIter>::value_type src_t;
417 typedef typename std::iterator_traits<DestIter>::value_type dest_t;
418
419 constexpr auto SRC_SIZE = sizeof(src_t);
420 constexpr auto SRC_BITS = SRC_SIZE * 8;
421 constexpr auto DEST_SIZE = sizeof(dest_t);
422 constexpr auto SCALE = (DEST_SIZE+SRC_SIZE-1) / SRC_SIZE;
423
424 while (dest_first != dest_last) {
425 dest_t value(0UL);
426 unsigned int shift = 0;
427
428 for (size_t i = 0; i < SCALE; ++i) {
429 value |= dest_t(*src_first++) << shift;
430 shift += SRC_BITS;
431 }
432
433 *dest_first++ = value;
434 }
435 return src_first;
436 }
437
438 /* uneven_copy, call the right code for larger vs. smaller */
439
440 template<class SrcIter, class DestIter>
uneven_copy(SrcIter src_first,DestIter dest_first,DestIter dest_last)441 inline SrcIter uneven_copy(SrcIter src_first,
442 DestIter dest_first, DestIter dest_last)
443 {
444 typedef typename std::iterator_traits<SrcIter>::value_type src_t;
445 typedef typename std::iterator_traits<DestIter>::value_type dest_t;
446
447 constexpr bool DEST_IS_SMALLER = sizeof(dest_t) < sizeof(src_t);
448
449 return uneven_copy_impl(src_first, dest_first, dest_last,
450 std::integral_constant<bool, DEST_IS_SMALLER>{});
451 }
452
453 /* generate_to, fill in a fixed-size array of integral type using a SeedSeq
454 * (actually works for any random-access iterator)
455 */
456
457 template <size_t size, typename SeedSeq, typename DestIter>
generate_to_impl(SeedSeq && generator,DestIter dest,std::true_type)458 inline void generate_to_impl(SeedSeq&& generator, DestIter dest,
459 std::true_type)
460 {
461 generator.generate(dest, dest+size);
462 }
463
464 template <size_t size, typename SeedSeq, typename DestIter>
generate_to_impl(SeedSeq && generator,DestIter dest,std::false_type)465 void generate_to_impl(SeedSeq&& generator, DestIter dest,
466 std::false_type)
467 {
468 typedef typename std::iterator_traits<DestIter>::value_type dest_t;
469 constexpr auto DEST_SIZE = sizeof(dest_t);
470 constexpr auto GEN_SIZE = sizeof(uint32_t);
471
472 constexpr bool GEN_IS_SMALLER = GEN_SIZE < DEST_SIZE;
473 constexpr size_t FROM_ELEMS =
474 GEN_IS_SMALLER
475 ? size * ((DEST_SIZE+GEN_SIZE-1) / GEN_SIZE)
476 : (size + (GEN_SIZE / DEST_SIZE) - 1)
477 / ((GEN_SIZE / DEST_SIZE) + GEN_IS_SMALLER);
478 // this odd code ^^^^^^^^^^^^^^^^^ is work-around for
479 // a bug: http://llvm.org/bugs/show_bug.cgi?id=21287
480
481 if (FROM_ELEMS <= 1024) {
482 uint32_t buffer[FROM_ELEMS];
483 generator.generate(buffer, buffer+FROM_ELEMS);
484 uneven_copy(buffer, dest, dest+size);
485 } else {
486 uint32_t* buffer = (uint32_t*) malloc(GEN_SIZE * FROM_ELEMS);
487 generator.generate(buffer, buffer+FROM_ELEMS);
488 uneven_copy(buffer, dest, dest+size);
489 free(buffer);
490 }
491 }
492
493 template <size_t size, typename SeedSeq, typename DestIter>
generate_to(SeedSeq && generator,DestIter dest)494 inline void generate_to(SeedSeq&& generator, DestIter dest)
495 {
496 typedef typename std::iterator_traits<DestIter>::value_type dest_t;
497 constexpr bool IS_32BIT = sizeof(dest_t) == sizeof(uint32_t);
498
499 generate_to_impl<size>(std::forward<SeedSeq>(generator), dest,
500 std::integral_constant<bool, IS_32BIT>{});
501 }
502
503 /* generate_one, produce a value of integral type using a SeedSeq
504 * (optionally, we can have it produce more than one and pick which one
505 * we want)
506 */
507
508 template <typename UInt, size_t i = 0UL, size_t N = i+1UL, typename SeedSeq>
generate_one(SeedSeq && generator)509 inline UInt generate_one(SeedSeq&& generator)
510 {
511 UInt result[N];
512 generate_to<N>(std::forward<SeedSeq>(generator), result);
513 return result[i];
514 }
515
516 template <typename RngType>
bounded_rand(RngType & rng,typename RngType::result_type upper_bound)517 auto bounded_rand(RngType& rng, typename RngType::result_type upper_bound)
518 -> typename RngType::result_type
519 {
520 typedef typename RngType::result_type rtype;
521 rtype threshold = (RngType::max() - RngType::min() + rtype(1) - upper_bound)
522 % upper_bound;
523 for (;;) {
524 rtype r = rng() - RngType::min();
525 if (r >= threshold)
526 return r % upper_bound;
527 }
528 }
529
530 template <typename Iter, typename RandType>
shuffle(Iter from,Iter to,RandType && rng)531 void shuffle(Iter from, Iter to, RandType&& rng)
532 {
533 typedef typename std::iterator_traits<Iter>::difference_type delta_t;
534 auto count = to - from;
535 while (count > 1) {
536 delta_t chosen(bounded_rand(rng, count));
537 --count;
538 --to;
539 using std::swap;
540 swap(*(from+chosen), *to);
541 }
542 }
543
544 /*
545 * Although std::seed_seq is useful, it isn't everything. Often we want to
546 * initialize a random-number generator some other way, such as from a random
547 * device.
548 *
549 * Technically, it does not meet the requirements of a SeedSequence because
550 * it lacks some of the rarely-used member functions (some of which would
551 * be impossible to provide). However the C++ standard is quite specific
552 * that actual engines only called the generate method, so it ought not to be
553 * a problem in practice.
554 */
555
556 template <typename RngType>
557 class seed_seq_from {
558 private:
559 RngType rng_;
560
561 typedef uint_least32_t result_type;
562
563 public:
564 template<typename... Args>
seed_seq_from(Args &&...args)565 seed_seq_from(Args&&... args) :
566 rng_(std::forward<Args>(args)...)
567 {
568 // Nothing (else) to do...
569 }
570
571 template<typename Iter>
generate(Iter start,Iter finish)572 void generate(Iter start, Iter finish)
573 {
574 for (auto i = start; i != finish; ++i)
575 *i = result_type(rng_());
576 }
577
size() const578 constexpr size_t size() const
579 {
580 return (sizeof(typename RngType::result_type) > sizeof(result_type)
581 && RngType::max() > ~size_t(0UL))
582 ? ~size_t(0UL)
583 : size_t(RngType::max());
584 }
585 };
586
587 // note(jpab): static_arbitrary_seed used to be defined here.
588 // I've pulled it out into a separate header
589 // pcg_static_arbitrary_seed.hpp
590
591 // Sometimes, when debugging or testing, it's handy to be able print the name
592 // of a (in human-readable form). This code allows the idiom:
593 //
594 // cout << printable_typename<my_foo_type_t>()
595 //
596 // to print out my_foo_type_t (or its concrete type if it is a synonym)
597
598 template <typename T>
599 struct printable_typename {};
600
601 template <typename T>
operator <<(std::ostream & out,printable_typename<T>)602 std::ostream& operator<<(std::ostream& out, printable_typename<T>) {
603 const char *implementation_typename = typeid(T).name();
604 #ifdef __GNUC__
605 int status;
606 const char* pretty_name =
607 abi::__cxa_demangle(implementation_typename, NULL, NULL, &status);
608 if (status == 0)
609 out << pretty_name;
610 free((void*) pretty_name);
611 if (status == 0)
612 return out;
613 #endif
614 out << implementation_typename;
615 return out;
616 }
617
618 } // namespace pcg_extras
619
620 #endif // PCG_EXTRAS_HPP_INCLUDED
621