1 #include "simulation/ElementCommon.h"
2 #include "simulation/Air.h"
3 
4 static int update(UPDATE_FUNC_ARGS);
5 static int graphics(GRAPHICS_FUNC_ARGS);
6 
Element_TUNG()7 void Element::Element_TUNG()
8 {
9 	Identifier = "DEFAULT_PT_TUNG";
10 	Name = "TUNG";
11 	Colour = PIXPACK(0x505050);
12 	MenuVisible = 1;
13 	MenuSection = SC_ELEC;
14 	Enabled = 1;
15 
16 	Advection = 0.0f;
17 	AirDrag = 0.00f * CFDS;
18 	AirLoss = 0.90f;
19 	Loss = 0.00f;
20 	Collision = 0.0f;
21 	Gravity = 0.0f;
22 	Diffusion = 0.00f;
23 	HotAir = 0.000f	* CFDS;
24 	Falldown = 0;
25 
26 	Flammable = 0;
27 	Explosive = 0;
28 	Meltable = 1;
29 	Hardness = 1;
30 
31 	Weight = 100;
32 
33 	HeatConduct = 251;
34 	Description = "Tungsten. Brittle metal with a very high melting point.";
35 
36 	Properties = TYPE_SOLID|PROP_CONDUCTS|PROP_LIFE_DEC;
37 
38 	LowPressure = IPL;
39 	LowPressureTransition = NT;
40 	HighPressure = IPH;
41 	HighPressureTransition = NT;
42 	LowTemperature = ITL;
43 	LowTemperatureTransition = NT;
44 	HighTemperature = 3695.0f;// TUNG melts in its update function instead of in the normal way, but store the threshold here so that it can be changed from Lua
45 	HighTemperatureTransition = NT;
46 
47 	Update = &update;
48 	Graphics = &graphics;
49 }
50 
update(UPDATE_FUNC_ARGS)51 static int update(UPDATE_FUNC_ARGS)
52 {
53 	bool splode = false;
54 	const float MELTING_POINT = sim->elements[PT_TUNG].HighTemperature;
55 
56 	if(parts[i].temp > 2400.0)
57 	{
58 		int r, rx, ry;
59 		for (rx=-1; rx<2; rx++)
60 			for (ry=-1; ry<2; ry++)
61 				if (BOUNDS_CHECK && (rx || ry))
62 				{
63 					r = pmap[y+ry][x+rx];
64 					if(TYP(r) == PT_O2)
65 					{
66 						splode = true;
67 					}
68 				}
69 	}
70 	if((parts[i].temp > MELTING_POINT && RNG::Ref().chance(1, 20)) || splode)
71 	{
72 		if (RNG::Ref().chance(1, 50))
73 		{
74 			sim->pv[y/CELL][x/CELL] += 50.0f;
75 		}
76 		else if (RNG::Ref().chance(1, 100))
77 		{
78 			sim->part_change_type(i, x, y, PT_FIRE);
79 			parts[i].life = RNG::Ref().between(0, 499);
80 			return 1;
81 		}
82 		else
83 		{
84 			sim->part_change_type(i, x, y, PT_LAVA);
85 			parts[i].ctype = PT_TUNG;
86 			return 1;
87 		}
88 		if(splode)
89 		{
90 			parts[i].temp = restrict_flt(MELTING_POINT + RNG::Ref().between(200, 799), MIN_TEMP, MAX_TEMP);
91 		}
92 		parts[i].vx += RNG::Ref().between(-50, 50);
93 		parts[i].vy += RNG::Ref().between(-50, 50);
94 		return 1;
95 	}
96 	parts[i].pavg[0] = parts[i].pavg[1];
97 	parts[i].pavg[1] = sim->pv[y/CELL][x/CELL];
98 	float diff = parts[i].pavg[1] - parts[i].pavg[0];
99 	if (diff > 0.50f || diff < -0.50f)
100 	{
101 		sim->part_change_type(i,x,y,PT_BRMT);
102 		parts[i].ctype = PT_TUNG;
103 		return 1;
104 	}
105 	return 0;
106 }
107 
graphics(GRAPHICS_FUNC_ARGS)108 static int graphics(GRAPHICS_FUNC_ARGS)
109 {
110 	const float MELTING_POINT = ren->sim->elements[PT_TUNG].HighTemperature;
111 	double startTemp = (MELTING_POINT - 1500.0);
112 	double tempOver = (((cpart->temp - startTemp)/1500.0)*M_PI) - (M_PI/2.0);
113 	if(tempOver > -(M_PI/2.0))
114 	{
115 		if(tempOver > (M_PI/2.0))
116 			tempOver = (M_PI/2.0);
117 		double gradv = sin(tempOver) + 1.0;
118 		*firer = (int)(gradv * 258.0);
119 		*fireg = (int)(gradv * 156.0);
120 		*fireb = (int)(gradv * 112.0);
121 		*firea = 30;
122 
123 		*colr += *firer;
124 		*colg += *fireg;
125 		*colb += *fireb;
126 		*pixel_mode |= FIRE_ADD;
127 	}
128 	return 0;
129 }
130