1 /*
2 ** $Id: lcode.c $
3 ** Code generator for Lua
4 ** See Copyright Notice in lua.h
5 */
6 
7 #define lcode_c
8 #define LUA_CORE
9 
10 #include "lprefix.h"
11 
12 
13 #include <limits.h>
14 #include <math.h>
15 #include <stdlib.h>
16 
17 #include "lua.h"
18 
19 #include "lcode.h"
20 #include "ldebug.h"
21 #include "ldo.h"
22 #include "lgc.h"
23 #include "llex.h"
24 #include "lmem.h"
25 #include "lobject.h"
26 #include "lopcodes.h"
27 #include "lparser.h"
28 #include "lstring.h"
29 #include "ltable.h"
30 #include "lvm.h"
31 
32 
33 /* Maximum number of registers in a Lua function (must fit in 8 bits) */
34 #define MAXREGS		255
35 
36 
37 #define hasjumps(e)	((e)->t != (e)->f)
38 
39 
40 static int codesJ (FuncState *fs, OpCode o, int sj, int k);
41 
42 
43 
44 /* semantic error */
luaK_semerror(LexState * ls,const char * msg)45 l_noret luaK_semerror (LexState *ls, const char *msg) {
46   ls->t.token = 0;  /* remove "near <token>" from final message */
47   luaX_syntaxerror(ls, msg);
48 }
49 
50 
51 /*
52 ** If expression is a numeric constant, fills 'v' with its value
53 ** and returns 1. Otherwise, returns 0.
54 */
tonumeral(const expdesc * e,TValue * v)55 static int tonumeral (const expdesc *e, TValue *v) {
56   if (hasjumps(e))
57     return 0;  /* not a numeral */
58   switch (e->k) {
59     case VKINT:
60       if (v) setivalue(v, e->u.ival);
61       return 1;
62     case VKFLT:
63       if (v) setfltvalue(v, e->u.nval);
64       return 1;
65     default: return 0;
66   }
67 }
68 
69 
70 /*
71 ** Get the constant value from a constant expression
72 */
const2val(FuncState * fs,const expdesc * e)73 static TValue *const2val (FuncState *fs, const expdesc *e) {
74   lua_assert(e->k == VCONST);
75   return &fs->ls->dyd->actvar.arr[e->u.info].k;
76 }
77 
78 
79 /*
80 ** If expression is a constant, fills 'v' with its value
81 ** and returns 1. Otherwise, returns 0.
82 */
luaK_exp2const(FuncState * fs,const expdesc * e,TValue * v)83 int luaK_exp2const (FuncState *fs, const expdesc *e, TValue *v) {
84   if (hasjumps(e))
85     return 0;  /* not a constant */
86   switch (e->k) {
87     case VFALSE:
88       setbfvalue(v);
89       return 1;
90     case VTRUE:
91       setbtvalue(v);
92       return 1;
93     case VNIL:
94       setnilvalue(v);
95       return 1;
96     case VKSTR: {
97       setsvalue(fs->ls->L, v, e->u.strval);
98       return 1;
99     }
100     case VCONST: {
101       setobj(fs->ls->L, v, const2val(fs, e));
102       return 1;
103     }
104     default: return tonumeral(e, v);
105   }
106 }
107 
108 
109 /*
110 ** Return the previous instruction of the current code. If there
111 ** may be a jump target between the current instruction and the
112 ** previous one, return an invalid instruction (to avoid wrong
113 ** optimizations).
114 */
previousinstruction(FuncState * fs)115 static Instruction *previousinstruction (FuncState *fs) {
116   static const Instruction invalidinstruction = ~(Instruction)0;
117   if (fs->pc > fs->lasttarget)
118     return &fs->f->code[fs->pc - 1];  /* previous instruction */
119   else
120     return cast(Instruction*, &invalidinstruction);
121 }
122 
123 
124 /*
125 ** Create a OP_LOADNIL instruction, but try to optimize: if the previous
126 ** instruction is also OP_LOADNIL and ranges are compatible, adjust
127 ** range of previous instruction instead of emitting a new one. (For
128 ** instance, 'local a; local b' will generate a single opcode.)
129 */
luaK_nil(FuncState * fs,int from,int n)130 void luaK_nil (FuncState *fs, int from, int n) {
131   int l = from + n - 1;  /* last register to set nil */
132   Instruction *previous = previousinstruction(fs);
133   if (GET_OPCODE(*previous) == OP_LOADNIL) {  /* previous is LOADNIL? */
134     int pfrom = GETARG_A(*previous);  /* get previous range */
135     int pl = pfrom + GETARG_B(*previous);
136     if ((pfrom <= from && from <= pl + 1) ||
137         (from <= pfrom && pfrom <= l + 1)) {  /* can connect both? */
138       if (pfrom < from) from = pfrom;  /* from = min(from, pfrom) */
139       if (pl > l) l = pl;  /* l = max(l, pl) */
140       SETARG_A(*previous, from);
141       SETARG_B(*previous, l - from);
142       return;
143     }  /* else go through */
144   }
145   luaK_codeABC(fs, OP_LOADNIL, from, n - 1, 0);  /* else no optimization */
146 }
147 
148 
149 /*
150 ** Gets the destination address of a jump instruction. Used to traverse
151 ** a list of jumps.
152 */
getjump(FuncState * fs,int pc)153 static int getjump (FuncState *fs, int pc) {
154   int offset = GETARG_sJ(fs->f->code[pc]);
155   if (offset == NO_JUMP)  /* point to itself represents end of list */
156     return NO_JUMP;  /* end of list */
157   else
158     return (pc+1)+offset;  /* turn offset into absolute position */
159 }
160 
161 
162 /*
163 ** Fix jump instruction at position 'pc' to jump to 'dest'.
164 ** (Jump addresses are relative in Lua)
165 */
fixjump(FuncState * fs,int pc,int dest)166 static void fixjump (FuncState *fs, int pc, int dest) {
167   Instruction *jmp = &fs->f->code[pc];
168   int offset = dest - (pc + 1);
169   lua_assert(dest != NO_JUMP);
170   if (!(-OFFSET_sJ <= offset && offset <= MAXARG_sJ - OFFSET_sJ))
171     luaX_syntaxerror(fs->ls, "control structure too long");
172   lua_assert(GET_OPCODE(*jmp) == OP_JMP);
173   SETARG_sJ(*jmp, offset);
174 }
175 
176 
177 /*
178 ** Concatenate jump-list 'l2' into jump-list 'l1'
179 */
luaK_concat(FuncState * fs,int * l1,int l2)180 void luaK_concat (FuncState *fs, int *l1, int l2) {
181   if (l2 == NO_JUMP) return;  /* nothing to concatenate? */
182   else if (*l1 == NO_JUMP)  /* no original list? */
183     *l1 = l2;  /* 'l1' points to 'l2' */
184   else {
185     int list = *l1;
186     int next;
187     while ((next = getjump(fs, list)) != NO_JUMP)  /* find last element */
188       list = next;
189     fixjump(fs, list, l2);  /* last element links to 'l2' */
190   }
191 }
192 
193 
194 /*
195 ** Create a jump instruction and return its position, so its destination
196 ** can be fixed later (with 'fixjump').
197 */
luaK_jump(FuncState * fs)198 int luaK_jump (FuncState *fs) {
199   return codesJ(fs, OP_JMP, NO_JUMP, 0);
200 }
201 
202 
203 /*
204 ** Code a 'return' instruction
205 */
luaK_ret(FuncState * fs,int first,int nret)206 void luaK_ret (FuncState *fs, int first, int nret) {
207   OpCode op;
208   switch (nret) {
209     case 0: op = OP_RETURN0; break;
210     case 1: op = OP_RETURN1; break;
211     default: op = OP_RETURN; break;
212   }
213   luaK_codeABC(fs, op, first, nret + 1, 0);
214 }
215 
216 
217 /*
218 ** Code a "conditional jump", that is, a test or comparison opcode
219 ** followed by a jump. Return jump position.
220 */
condjump(FuncState * fs,OpCode op,int A,int B,int C,int k)221 static int condjump (FuncState *fs, OpCode op, int A, int B, int C, int k) {
222   luaK_codeABCk(fs, op, A, B, C, k);
223   return luaK_jump(fs);
224 }
225 
226 
227 /*
228 ** returns current 'pc' and marks it as a jump target (to avoid wrong
229 ** optimizations with consecutive instructions not in the same basic block).
230 */
luaK_getlabel(FuncState * fs)231 int luaK_getlabel (FuncState *fs) {
232   fs->lasttarget = fs->pc;
233   return fs->pc;
234 }
235 
236 
237 /*
238 ** Returns the position of the instruction "controlling" a given
239 ** jump (that is, its condition), or the jump itself if it is
240 ** unconditional.
241 */
getjumpcontrol(FuncState * fs,int pc)242 static Instruction *getjumpcontrol (FuncState *fs, int pc) {
243   Instruction *pi = &fs->f->code[pc];
244   if (pc >= 1 && testTMode(GET_OPCODE(*(pi-1))))
245     return pi-1;
246   else
247     return pi;
248 }
249 
250 
251 /*
252 ** Patch destination register for a TESTSET instruction.
253 ** If instruction in position 'node' is not a TESTSET, return 0 ("fails").
254 ** Otherwise, if 'reg' is not 'NO_REG', set it as the destination
255 ** register. Otherwise, change instruction to a simple 'TEST' (produces
256 ** no register value)
257 */
patchtestreg(FuncState * fs,int node,int reg)258 static int patchtestreg (FuncState *fs, int node, int reg) {
259   Instruction *i = getjumpcontrol(fs, node);
260   if (GET_OPCODE(*i) != OP_TESTSET)
261     return 0;  /* cannot patch other instructions */
262   if (reg != NO_REG && reg != GETARG_B(*i))
263     SETARG_A(*i, reg);
264   else {
265      /* no register to put value or register already has the value;
266         change instruction to simple test */
267     *i = CREATE_ABCk(OP_TEST, GETARG_B(*i), 0, 0, GETARG_k(*i));
268   }
269   return 1;
270 }
271 
272 
273 /*
274 ** Traverse a list of tests ensuring no one produces a value
275 */
removevalues(FuncState * fs,int list)276 static void removevalues (FuncState *fs, int list) {
277   for (; list != NO_JUMP; list = getjump(fs, list))
278       patchtestreg(fs, list, NO_REG);
279 }
280 
281 
282 /*
283 ** Traverse a list of tests, patching their destination address and
284 ** registers: tests producing values jump to 'vtarget' (and put their
285 ** values in 'reg'), other tests jump to 'dtarget'.
286 */
patchlistaux(FuncState * fs,int list,int vtarget,int reg,int dtarget)287 static void patchlistaux (FuncState *fs, int list, int vtarget, int reg,
288                           int dtarget) {
289   while (list != NO_JUMP) {
290     int next = getjump(fs, list);
291     if (patchtestreg(fs, list, reg))
292       fixjump(fs, list, vtarget);
293     else
294       fixjump(fs, list, dtarget);  /* jump to default target */
295     list = next;
296   }
297 }
298 
299 
300 /*
301 ** Path all jumps in 'list' to jump to 'target'.
302 ** (The assert means that we cannot fix a jump to a forward address
303 ** because we only know addresses once code is generated.)
304 */
luaK_patchlist(FuncState * fs,int list,int target)305 void luaK_patchlist (FuncState *fs, int list, int target) {
306   lua_assert(target <= fs->pc);
307   patchlistaux(fs, list, target, NO_REG, target);
308 }
309 
310 
luaK_patchtohere(FuncState * fs,int list)311 void luaK_patchtohere (FuncState *fs, int list) {
312   int hr = luaK_getlabel(fs);  /* mark "here" as a jump target */
313   luaK_patchlist(fs, list, hr);
314 }
315 
316 
317 /* limit for difference between lines in relative line info. */
318 #define LIMLINEDIFF	0x80
319 
320 
321 /*
322 ** Save line info for a new instruction. If difference from last line
323 ** does not fit in a byte, of after that many instructions, save a new
324 ** absolute line info; (in that case, the special value 'ABSLINEINFO'
325 ** in 'lineinfo' signals the existence of this absolute information.)
326 ** Otherwise, store the difference from last line in 'lineinfo'.
327 */
savelineinfo(FuncState * fs,Proto * f,int line)328 static void savelineinfo (FuncState *fs, Proto *f, int line) {
329   int linedif = line - fs->previousline;
330   int pc = fs->pc - 1;  /* last instruction coded */
331   if (abs(linedif) >= LIMLINEDIFF || fs->iwthabs++ >= MAXIWTHABS) {
332     luaM_growvector(fs->ls->L, f->abslineinfo, fs->nabslineinfo,
333                     f->sizeabslineinfo, AbsLineInfo, MAX_INT, "lines");
334     f->abslineinfo[fs->nabslineinfo].pc = pc;
335     f->abslineinfo[fs->nabslineinfo++].line = line;
336     linedif = ABSLINEINFO;  /* signal that there is absolute information */
337     fs->iwthabs = 1;  /* restart counter */
338   }
339   luaM_growvector(fs->ls->L, f->lineinfo, pc, f->sizelineinfo, ls_byte,
340                   MAX_INT, "opcodes");
341   f->lineinfo[pc] = linedif;
342   fs->previousline = line;  /* last line saved */
343 }
344 
345 
346 /*
347 ** Remove line information from the last instruction.
348 ** If line information for that instruction is absolute, set 'iwthabs'
349 ** above its max to force the new (replacing) instruction to have
350 ** absolute line info, too.
351 */
removelastlineinfo(FuncState * fs)352 static void removelastlineinfo (FuncState *fs) {
353   Proto *f = fs->f;
354   int pc = fs->pc - 1;  /* last instruction coded */
355   if (f->lineinfo[pc] != ABSLINEINFO) {  /* relative line info? */
356     fs->previousline -= f->lineinfo[pc];  /* correct last line saved */
357     fs->iwthabs--;  /* undo previous increment */
358   }
359   else {  /* absolute line information */
360     lua_assert(f->abslineinfo[fs->nabslineinfo - 1].pc == pc);
361     fs->nabslineinfo--;  /* remove it */
362     fs->iwthabs = MAXIWTHABS + 1;  /* force next line info to be absolute */
363   }
364 }
365 
366 
367 /*
368 ** Remove the last instruction created, correcting line information
369 ** accordingly.
370 */
removelastinstruction(FuncState * fs)371 static void removelastinstruction (FuncState *fs) {
372   removelastlineinfo(fs);
373   fs->pc--;
374 }
375 
376 
377 /*
378 ** Emit instruction 'i', checking for array sizes and saving also its
379 ** line information. Return 'i' position.
380 */
luaK_code(FuncState * fs,Instruction i)381 int luaK_code (FuncState *fs, Instruction i) {
382   Proto *f = fs->f;
383   /* put new instruction in code array */
384   luaM_growvector(fs->ls->L, f->code, fs->pc, f->sizecode, Instruction,
385                   MAX_INT, "opcodes");
386   f->code[fs->pc++] = i;
387   savelineinfo(fs, f, fs->ls->lastline);
388   return fs->pc - 1;  /* index of new instruction */
389 }
390 
391 
392 /*
393 ** Format and emit an 'iABC' instruction. (Assertions check consistency
394 ** of parameters versus opcode.)
395 */
luaK_codeABCk(FuncState * fs,OpCode o,int a,int b,int c,int k)396 int luaK_codeABCk (FuncState *fs, OpCode o, int a, int b, int c, int k) {
397   lua_assert(getOpMode(o) == iABC);
398   lua_assert(a <= MAXARG_A && b <= MAXARG_B &&
399              c <= MAXARG_C && (k & ~1) == 0);
400   return luaK_code(fs, CREATE_ABCk(o, a, b, c, k));
401 }
402 
403 
404 /*
405 ** Format and emit an 'iABx' instruction.
406 */
luaK_codeABx(FuncState * fs,OpCode o,int a,unsigned int bc)407 int luaK_codeABx (FuncState *fs, OpCode o, int a, unsigned int bc) {
408   lua_assert(getOpMode(o) == iABx);
409   lua_assert(a <= MAXARG_A && bc <= MAXARG_Bx);
410   return luaK_code(fs, CREATE_ABx(o, a, bc));
411 }
412 
413 
414 /*
415 ** Format and emit an 'iAsBx' instruction.
416 */
luaK_codeAsBx(FuncState * fs,OpCode o,int a,int bc)417 int luaK_codeAsBx (FuncState *fs, OpCode o, int a, int bc) {
418   unsigned int b = bc + OFFSET_sBx;
419   lua_assert(getOpMode(o) == iAsBx);
420   lua_assert(a <= MAXARG_A && b <= MAXARG_Bx);
421   return luaK_code(fs, CREATE_ABx(o, a, b));
422 }
423 
424 
425 /*
426 ** Format and emit an 'isJ' instruction.
427 */
codesJ(FuncState * fs,OpCode o,int sj,int k)428 static int codesJ (FuncState *fs, OpCode o, int sj, int k) {
429   unsigned int j = sj + OFFSET_sJ;
430   lua_assert(getOpMode(o) == isJ);
431   lua_assert(j <= MAXARG_sJ && (k & ~1) == 0);
432   return luaK_code(fs, CREATE_sJ(o, j, k));
433 }
434 
435 
436 /*
437 ** Emit an "extra argument" instruction (format 'iAx')
438 */
codeextraarg(FuncState * fs,int a)439 static int codeextraarg (FuncState *fs, int a) {
440   lua_assert(a <= MAXARG_Ax);
441   return luaK_code(fs, CREATE_Ax(OP_EXTRAARG, a));
442 }
443 
444 
445 /*
446 ** Emit a "load constant" instruction, using either 'OP_LOADK'
447 ** (if constant index 'k' fits in 18 bits) or an 'OP_LOADKX'
448 ** instruction with "extra argument".
449 */
luaK_codek(FuncState * fs,int reg,int k)450 static int luaK_codek (FuncState *fs, int reg, int k) {
451   if (k <= MAXARG_Bx)
452     return luaK_codeABx(fs, OP_LOADK, reg, k);
453   else {
454     int p = luaK_codeABx(fs, OP_LOADKX, reg, 0);
455     codeextraarg(fs, k);
456     return p;
457   }
458 }
459 
460 
461 /*
462 ** Check register-stack level, keeping track of its maximum size
463 ** in field 'maxstacksize'
464 */
luaK_checkstack(FuncState * fs,int n)465 void luaK_checkstack (FuncState *fs, int n) {
466   int newstack = fs->freereg + n;
467   if (newstack > fs->f->maxstacksize) {
468     if (newstack >= MAXREGS)
469       luaX_syntaxerror(fs->ls,
470         "function or expression needs too many registers");
471     fs->f->maxstacksize = cast_byte(newstack);
472   }
473 }
474 
475 
476 /*
477 ** Reserve 'n' registers in register stack
478 */
luaK_reserveregs(FuncState * fs,int n)479 void luaK_reserveregs (FuncState *fs, int n) {
480   luaK_checkstack(fs, n);
481   fs->freereg += n;
482 }
483 
484 
485 /*
486 ** Free register 'reg', if it is neither a constant index nor
487 ** a local variable.
488 )
489 */
freereg(FuncState * fs,int reg)490 static void freereg (FuncState *fs, int reg) {
491   if (reg >= luaY_nvarstack(fs)) {
492     fs->freereg--;
493     lua_assert(reg == fs->freereg);
494   }
495 }
496 
497 
498 /*
499 ** Free two registers in proper order
500 */
freeregs(FuncState * fs,int r1,int r2)501 static void freeregs (FuncState *fs, int r1, int r2) {
502   if (r1 > r2) {
503     freereg(fs, r1);
504     freereg(fs, r2);
505   }
506   else {
507     freereg(fs, r2);
508     freereg(fs, r1);
509   }
510 }
511 
512 
513 /*
514 ** Free register used by expression 'e' (if any)
515 */
freeexp(FuncState * fs,expdesc * e)516 static void freeexp (FuncState *fs, expdesc *e) {
517   if (e->k == VNONRELOC)
518     freereg(fs, e->u.info);
519 }
520 
521 
522 /*
523 ** Free registers used by expressions 'e1' and 'e2' (if any) in proper
524 ** order.
525 */
freeexps(FuncState * fs,expdesc * e1,expdesc * e2)526 static void freeexps (FuncState *fs, expdesc *e1, expdesc *e2) {
527   int r1 = (e1->k == VNONRELOC) ? e1->u.info : -1;
528   int r2 = (e2->k == VNONRELOC) ? e2->u.info : -1;
529   freeregs(fs, r1, r2);
530 }
531 
532 
533 /*
534 ** Add constant 'v' to prototype's list of constants (field 'k').
535 ** Use scanner's table to cache position of constants in constant list
536 ** and try to reuse constants. Because some values should not be used
537 ** as keys (nil cannot be a key, integer keys can collapse with float
538 ** keys), the caller must provide a useful 'key' for indexing the cache.
539 ** Note that all functions share the same table, so entering or exiting
540 ** a function can make some indices wrong.
541 */
addk(FuncState * fs,TValue * key,TValue * v)542 static int addk (FuncState *fs, TValue *key, TValue *v) {
543   TValue val;
544   lua_State *L = fs->ls->L;
545   Proto *f = fs->f;
546   const TValue *idx = luaH_get(fs->ls->h, key);  /* query scanner table */
547   int k, oldsize;
548   if (ttisinteger(idx)) {  /* is there an index there? */
549     k = cast_int(ivalue(idx));
550     /* correct value? (warning: must distinguish floats from integers!) */
551     if (k < fs->nk && ttypetag(&f->k[k]) == ttypetag(v) &&
552                       luaV_rawequalobj(&f->k[k], v))
553       return k;  /* reuse index */
554   }
555   /* constant not found; create a new entry */
556   oldsize = f->sizek;
557   k = fs->nk;
558   /* numerical value does not need GC barrier;
559      table has no metatable, so it does not need to invalidate cache */
560   setivalue(&val, k);
561   luaH_finishset(L, fs->ls->h, key, idx, &val);
562   luaM_growvector(L, f->k, k, f->sizek, TValue, MAXARG_Ax, "constants");
563   while (oldsize < f->sizek) setnilvalue(&f->k[oldsize++]);
564   setobj(L, &f->k[k], v);
565   fs->nk++;
566   luaC_barrier(L, f, v);
567   return k;
568 }
569 
570 
571 /*
572 ** Add a string to list of constants and return its index.
573 */
stringK(FuncState * fs,TString * s)574 static int stringK (FuncState *fs, TString *s) {
575   TValue o;
576   setsvalue(fs->ls->L, &o, s);
577   return addk(fs, &o, &o);  /* use string itself as key */
578 }
579 
580 
581 /*
582 ** Add an integer to list of constants and return its index.
583 ** Integers use userdata as keys to avoid collision with floats with
584 ** same value; conversion to 'void*' is used only for hashing, so there
585 ** are no "precision" problems.
586 */
luaK_intK(FuncState * fs,lua_Integer n)587 static int luaK_intK (FuncState *fs, lua_Integer n) {
588   TValue k, o;
589   setpvalue(&k, cast_voidp(cast_sizet(n)));
590   setivalue(&o, n);
591   return addk(fs, &k, &o);
592 }
593 
594 /*
595 ** Add a float to list of constants and return its index.
596 */
luaK_numberK(FuncState * fs,lua_Number r)597 static int luaK_numberK (FuncState *fs, lua_Number r) {
598   TValue o;
599   setfltvalue(&o, r);
600   return addk(fs, &o, &o);  /* use number itself as key */
601 }
602 
603 
604 /*
605 ** Add a false to list of constants and return its index.
606 */
boolF(FuncState * fs)607 static int boolF (FuncState *fs) {
608   TValue o;
609   setbfvalue(&o);
610   return addk(fs, &o, &o);  /* use boolean itself as key */
611 }
612 
613 
614 /*
615 ** Add a true to list of constants and return its index.
616 */
boolT(FuncState * fs)617 static int boolT (FuncState *fs) {
618   TValue o;
619   setbtvalue(&o);
620   return addk(fs, &o, &o);  /* use boolean itself as key */
621 }
622 
623 
624 /*
625 ** Add nil to list of constants and return its index.
626 */
nilK(FuncState * fs)627 static int nilK (FuncState *fs) {
628   TValue k, v;
629   setnilvalue(&v);
630   /* cannot use nil as key; instead use table itself to represent nil */
631   sethvalue(fs->ls->L, &k, fs->ls->h);
632   return addk(fs, &k, &v);
633 }
634 
635 
636 /*
637 ** Check whether 'i' can be stored in an 'sC' operand. Equivalent to
638 ** (0 <= int2sC(i) && int2sC(i) <= MAXARG_C) but without risk of
639 ** overflows in the hidden addition inside 'int2sC'.
640 */
fitsC(lua_Integer i)641 static int fitsC (lua_Integer i) {
642   return (l_castS2U(i) + OFFSET_sC <= cast_uint(MAXARG_C));
643 }
644 
645 
646 /*
647 ** Check whether 'i' can be stored in an 'sBx' operand.
648 */
fitsBx(lua_Integer i)649 static int fitsBx (lua_Integer i) {
650   return (-OFFSET_sBx <= i && i <= MAXARG_Bx - OFFSET_sBx);
651 }
652 
653 
luaK_int(FuncState * fs,int reg,lua_Integer i)654 void luaK_int (FuncState *fs, int reg, lua_Integer i) {
655   if (fitsBx(i))
656     luaK_codeAsBx(fs, OP_LOADI, reg, cast_int(i));
657   else
658     luaK_codek(fs, reg, luaK_intK(fs, i));
659 }
660 
661 
luaK_float(FuncState * fs,int reg,lua_Number f)662 static void luaK_float (FuncState *fs, int reg, lua_Number f) {
663   lua_Integer fi;
664   if (luaV_flttointeger(f, &fi, F2Ieq) && fitsBx(fi))
665     luaK_codeAsBx(fs, OP_LOADF, reg, cast_int(fi));
666   else
667     luaK_codek(fs, reg, luaK_numberK(fs, f));
668 }
669 
670 
671 /*
672 ** Convert a constant in 'v' into an expression description 'e'
673 */
const2exp(TValue * v,expdesc * e)674 static void const2exp (TValue *v, expdesc *e) {
675   switch (ttypetag(v)) {
676     case LUA_VNUMINT:
677       e->k = VKINT; e->u.ival = ivalue(v);
678       break;
679     case LUA_VNUMFLT:
680       e->k = VKFLT; e->u.nval = fltvalue(v);
681       break;
682     case LUA_VFALSE:
683       e->k = VFALSE;
684       break;
685     case LUA_VTRUE:
686       e->k = VTRUE;
687       break;
688     case LUA_VNIL:
689       e->k = VNIL;
690       break;
691     case LUA_VSHRSTR:  case LUA_VLNGSTR:
692       e->k = VKSTR; e->u.strval = tsvalue(v);
693       break;
694     default: lua_assert(0);
695   }
696 }
697 
698 
699 /*
700 ** Fix an expression to return the number of results 'nresults'.
701 ** 'e' must be a multi-ret expression (function call or vararg).
702 */
luaK_setreturns(FuncState * fs,expdesc * e,int nresults)703 void luaK_setreturns (FuncState *fs, expdesc *e, int nresults) {
704   Instruction *pc = &getinstruction(fs, e);
705   if (e->k == VCALL)  /* expression is an open function call? */
706     SETARG_C(*pc, nresults + 1);
707   else {
708     lua_assert(e->k == VVARARG);
709     SETARG_C(*pc, nresults + 1);
710     SETARG_A(*pc, fs->freereg);
711     luaK_reserveregs(fs, 1);
712   }
713 }
714 
715 
716 /*
717 ** Convert a VKSTR to a VK
718 */
str2K(FuncState * fs,expdesc * e)719 static void str2K (FuncState *fs, expdesc *e) {
720   lua_assert(e->k == VKSTR);
721   e->u.info = stringK(fs, e->u.strval);
722   e->k = VK;
723 }
724 
725 
726 /*
727 ** Fix an expression to return one result.
728 ** If expression is not a multi-ret expression (function call or
729 ** vararg), it already returns one result, so nothing needs to be done.
730 ** Function calls become VNONRELOC expressions (as its result comes
731 ** fixed in the base register of the call), while vararg expressions
732 ** become VRELOC (as OP_VARARG puts its results where it wants).
733 ** (Calls are created returning one result, so that does not need
734 ** to be fixed.)
735 */
luaK_setoneret(FuncState * fs,expdesc * e)736 void luaK_setoneret (FuncState *fs, expdesc *e) {
737   if (e->k == VCALL) {  /* expression is an open function call? */
738     /* already returns 1 value */
739     lua_assert(GETARG_C(getinstruction(fs, e)) == 2);
740     e->k = VNONRELOC;  /* result has fixed position */
741     e->u.info = GETARG_A(getinstruction(fs, e));
742   }
743   else if (e->k == VVARARG) {
744     SETARG_C(getinstruction(fs, e), 2);
745     e->k = VRELOC;  /* can relocate its simple result */
746   }
747 }
748 
749 
750 /*
751 ** Ensure that expression 'e' is not a variable (nor a <const>).
752 ** (Expression still may have jump lists.)
753 */
luaK_dischargevars(FuncState * fs,expdesc * e)754 void luaK_dischargevars (FuncState *fs, expdesc *e) {
755   switch (e->k) {
756     case VCONST: {
757       const2exp(const2val(fs, e), e);
758       break;
759     }
760     case VLOCAL: {  /* already in a register */
761       e->u.info = e->u.var.ridx;
762       e->k = VNONRELOC;  /* becomes a non-relocatable value */
763       break;
764     }
765     case VUPVAL: {  /* move value to some (pending) register */
766       e->u.info = luaK_codeABC(fs, OP_GETUPVAL, 0, e->u.info, 0);
767       e->k = VRELOC;
768       break;
769     }
770     case VINDEXUP: {
771       e->u.info = luaK_codeABC(fs, OP_GETTABUP, 0, e->u.ind.t, e->u.ind.idx);
772       e->k = VRELOC;
773       break;
774     }
775     case VINDEXI: {
776       freereg(fs, e->u.ind.t);
777       e->u.info = luaK_codeABC(fs, OP_GETI, 0, e->u.ind.t, e->u.ind.idx);
778       e->k = VRELOC;
779       break;
780     }
781     case VINDEXSTR: {
782       freereg(fs, e->u.ind.t);
783       e->u.info = luaK_codeABC(fs, OP_GETFIELD, 0, e->u.ind.t, e->u.ind.idx);
784       e->k = VRELOC;
785       break;
786     }
787     case VINDEXED: {
788       freeregs(fs, e->u.ind.t, e->u.ind.idx);
789       e->u.info = luaK_codeABC(fs, OP_GETTABLE, 0, e->u.ind.t, e->u.ind.idx);
790       e->k = VRELOC;
791       break;
792     }
793     case VVARARG: case VCALL: {
794       luaK_setoneret(fs, e);
795       break;
796     }
797     default: break;  /* there is one value available (somewhere) */
798   }
799 }
800 
801 
802 /*
803 ** Ensure expression value is in register 'reg', making 'e' a
804 ** non-relocatable expression.
805 ** (Expression still may have jump lists.)
806 */
discharge2reg(FuncState * fs,expdesc * e,int reg)807 static void discharge2reg (FuncState *fs, expdesc *e, int reg) {
808   luaK_dischargevars(fs, e);
809   switch (e->k) {
810     case VNIL: {
811       luaK_nil(fs, reg, 1);
812       break;
813     }
814     case VFALSE: {
815       luaK_codeABC(fs, OP_LOADFALSE, reg, 0, 0);
816       break;
817     }
818     case VTRUE: {
819       luaK_codeABC(fs, OP_LOADTRUE, reg, 0, 0);
820       break;
821     }
822     case VKSTR: {
823       str2K(fs, e);
824     }  /* FALLTHROUGH */
825     case VK: {
826       luaK_codek(fs, reg, e->u.info);
827       break;
828     }
829     case VKFLT: {
830       luaK_float(fs, reg, e->u.nval);
831       break;
832     }
833     case VKINT: {
834       luaK_int(fs, reg, e->u.ival);
835       break;
836     }
837     case VRELOC: {
838       Instruction *pc = &getinstruction(fs, e);
839       SETARG_A(*pc, reg);  /* instruction will put result in 'reg' */
840       break;
841     }
842     case VNONRELOC: {
843       if (reg != e->u.info)
844         luaK_codeABC(fs, OP_MOVE, reg, e->u.info, 0);
845       break;
846     }
847     default: {
848       lua_assert(e->k == VJMP);
849       return;  /* nothing to do... */
850     }
851   }
852   e->u.info = reg;
853   e->k = VNONRELOC;
854 }
855 
856 
857 /*
858 ** Ensure expression value is in a register, making 'e' a
859 ** non-relocatable expression.
860 ** (Expression still may have jump lists.)
861 */
discharge2anyreg(FuncState * fs,expdesc * e)862 static void discharge2anyreg (FuncState *fs, expdesc *e) {
863   if (e->k != VNONRELOC) {  /* no fixed register yet? */
864     luaK_reserveregs(fs, 1);  /* get a register */
865     discharge2reg(fs, e, fs->freereg-1);  /* put value there */
866   }
867 }
868 
869 
code_loadbool(FuncState * fs,int A,OpCode op)870 static int code_loadbool (FuncState *fs, int A, OpCode op) {
871   luaK_getlabel(fs);  /* those instructions may be jump targets */
872   return luaK_codeABC(fs, op, A, 0, 0);
873 }
874 
875 
876 /*
877 ** check whether list has any jump that do not produce a value
878 ** or produce an inverted value
879 */
need_value(FuncState * fs,int list)880 static int need_value (FuncState *fs, int list) {
881   for (; list != NO_JUMP; list = getjump(fs, list)) {
882     Instruction i = *getjumpcontrol(fs, list);
883     if (GET_OPCODE(i) != OP_TESTSET) return 1;
884   }
885   return 0;  /* not found */
886 }
887 
888 
889 /*
890 ** Ensures final expression result (which includes results from its
891 ** jump lists) is in register 'reg'.
892 ** If expression has jumps, need to patch these jumps either to
893 ** its final position or to "load" instructions (for those tests
894 ** that do not produce values).
895 */
exp2reg(FuncState * fs,expdesc * e,int reg)896 static void exp2reg (FuncState *fs, expdesc *e, int reg) {
897   discharge2reg(fs, e, reg);
898   if (e->k == VJMP)  /* expression itself is a test? */
899     luaK_concat(fs, &e->t, e->u.info);  /* put this jump in 't' list */
900   if (hasjumps(e)) {
901     int final;  /* position after whole expression */
902     int p_f = NO_JUMP;  /* position of an eventual LOAD false */
903     int p_t = NO_JUMP;  /* position of an eventual LOAD true */
904     if (need_value(fs, e->t) || need_value(fs, e->f)) {
905       int fj = (e->k == VJMP) ? NO_JUMP : luaK_jump(fs);
906       p_f = code_loadbool(fs, reg, OP_LFALSESKIP);  /* skip next inst. */
907       p_t = code_loadbool(fs, reg, OP_LOADTRUE);
908       /* jump around these booleans if 'e' is not a test */
909       luaK_patchtohere(fs, fj);
910     }
911     final = luaK_getlabel(fs);
912     patchlistaux(fs, e->f, final, reg, p_f);
913     patchlistaux(fs, e->t, final, reg, p_t);
914   }
915   e->f = e->t = NO_JUMP;
916   e->u.info = reg;
917   e->k = VNONRELOC;
918 }
919 
920 
921 /*
922 ** Ensures final expression result is in next available register.
923 */
luaK_exp2nextreg(FuncState * fs,expdesc * e)924 void luaK_exp2nextreg (FuncState *fs, expdesc *e) {
925   luaK_dischargevars(fs, e);
926   freeexp(fs, e);
927   luaK_reserveregs(fs, 1);
928   exp2reg(fs, e, fs->freereg - 1);
929 }
930 
931 
932 /*
933 ** Ensures final expression result is in some (any) register
934 ** and return that register.
935 */
luaK_exp2anyreg(FuncState * fs,expdesc * e)936 int luaK_exp2anyreg (FuncState *fs, expdesc *e) {
937   luaK_dischargevars(fs, e);
938   if (e->k == VNONRELOC) {  /* expression already has a register? */
939     if (!hasjumps(e))  /* no jumps? */
940       return e->u.info;  /* result is already in a register */
941     if (e->u.info >= luaY_nvarstack(fs)) {  /* reg. is not a local? */
942       exp2reg(fs, e, e->u.info);  /* put final result in it */
943       return e->u.info;
944     }
945     /* else expression has jumps and cannot change its register
946        to hold the jump values, because it is a local variable.
947        Go through to the default case. */
948   }
949   luaK_exp2nextreg(fs, e);  /* default: use next available register */
950   return e->u.info;
951 }
952 
953 
954 /*
955 ** Ensures final expression result is either in a register
956 ** or in an upvalue.
957 */
luaK_exp2anyregup(FuncState * fs,expdesc * e)958 void luaK_exp2anyregup (FuncState *fs, expdesc *e) {
959   if (e->k != VUPVAL || hasjumps(e))
960     luaK_exp2anyreg(fs, e);
961 }
962 
963 
964 /*
965 ** Ensures final expression result is either in a register
966 ** or it is a constant.
967 */
luaK_exp2val(FuncState * fs,expdesc * e)968 void luaK_exp2val (FuncState *fs, expdesc *e) {
969   if (hasjumps(e))
970     luaK_exp2anyreg(fs, e);
971   else
972     luaK_dischargevars(fs, e);
973 }
974 
975 
976 /*
977 ** Try to make 'e' a K expression with an index in the range of R/K
978 ** indices. Return true iff succeeded.
979 */
luaK_exp2K(FuncState * fs,expdesc * e)980 static int luaK_exp2K (FuncState *fs, expdesc *e) {
981   if (!hasjumps(e)) {
982     int info;
983     switch (e->k) {  /* move constants to 'k' */
984       case VTRUE: info = boolT(fs); break;
985       case VFALSE: info = boolF(fs); break;
986       case VNIL: info = nilK(fs); break;
987       case VKINT: info = luaK_intK(fs, e->u.ival); break;
988       case VKFLT: info = luaK_numberK(fs, e->u.nval); break;
989       case VKSTR: info = stringK(fs, e->u.strval); break;
990       case VK: info = e->u.info; break;
991       default: return 0;  /* not a constant */
992     }
993     if (info <= MAXINDEXRK) {  /* does constant fit in 'argC'? */
994       e->k = VK;  /* make expression a 'K' expression */
995       e->u.info = info;
996       return 1;
997     }
998   }
999   /* else, expression doesn't fit; leave it unchanged */
1000   return 0;
1001 }
1002 
1003 
1004 /*
1005 ** Ensures final expression result is in a valid R/K index
1006 ** (that is, it is either in a register or in 'k' with an index
1007 ** in the range of R/K indices).
1008 ** Returns 1 iff expression is K.
1009 */
luaK_exp2RK(FuncState * fs,expdesc * e)1010 int luaK_exp2RK (FuncState *fs, expdesc *e) {
1011   if (luaK_exp2K(fs, e))
1012     return 1;
1013   else {  /* not a constant in the right range: put it in a register */
1014     luaK_exp2anyreg(fs, e);
1015     return 0;
1016   }
1017 }
1018 
1019 
codeABRK(FuncState * fs,OpCode o,int a,int b,expdesc * ec)1020 static void codeABRK (FuncState *fs, OpCode o, int a, int b,
1021                       expdesc *ec) {
1022   int k = luaK_exp2RK(fs, ec);
1023   luaK_codeABCk(fs, o, a, b, ec->u.info, k);
1024 }
1025 
1026 
1027 /*
1028 ** Generate code to store result of expression 'ex' into variable 'var'.
1029 */
luaK_storevar(FuncState * fs,expdesc * var,expdesc * ex)1030 void luaK_storevar (FuncState *fs, expdesc *var, expdesc *ex) {
1031   switch (var->k) {
1032     case VLOCAL: {
1033       freeexp(fs, ex);
1034       exp2reg(fs, ex, var->u.var.ridx);  /* compute 'ex' into proper place */
1035       return;
1036     }
1037     case VUPVAL: {
1038       int e = luaK_exp2anyreg(fs, ex);
1039       luaK_codeABC(fs, OP_SETUPVAL, e, var->u.info, 0);
1040       break;
1041     }
1042     case VINDEXUP: {
1043       codeABRK(fs, OP_SETTABUP, var->u.ind.t, var->u.ind.idx, ex);
1044       break;
1045     }
1046     case VINDEXI: {
1047       codeABRK(fs, OP_SETI, var->u.ind.t, var->u.ind.idx, ex);
1048       break;
1049     }
1050     case VINDEXSTR: {
1051       codeABRK(fs, OP_SETFIELD, var->u.ind.t, var->u.ind.idx, ex);
1052       break;
1053     }
1054     case VINDEXED: {
1055       codeABRK(fs, OP_SETTABLE, var->u.ind.t, var->u.ind.idx, ex);
1056       break;
1057     }
1058     default: lua_assert(0);  /* invalid var kind to store */
1059   }
1060   freeexp(fs, ex);
1061 }
1062 
1063 
1064 /*
1065 ** Emit SELF instruction (convert expression 'e' into 'e:key(e,').
1066 */
luaK_self(FuncState * fs,expdesc * e,expdesc * key)1067 void luaK_self (FuncState *fs, expdesc *e, expdesc *key) {
1068   int ereg;
1069   luaK_exp2anyreg(fs, e);
1070   ereg = e->u.info;  /* register where 'e' was placed */
1071   freeexp(fs, e);
1072   e->u.info = fs->freereg;  /* base register for op_self */
1073   e->k = VNONRELOC;  /* self expression has a fixed register */
1074   luaK_reserveregs(fs, 2);  /* function and 'self' produced by op_self */
1075   codeABRK(fs, OP_SELF, e->u.info, ereg, key);
1076   freeexp(fs, key);
1077 }
1078 
1079 
1080 /*
1081 ** Negate condition 'e' (where 'e' is a comparison).
1082 */
negatecondition(FuncState * fs,expdesc * e)1083 static void negatecondition (FuncState *fs, expdesc *e) {
1084   Instruction *pc = getjumpcontrol(fs, e->u.info);
1085   lua_assert(testTMode(GET_OPCODE(*pc)) && GET_OPCODE(*pc) != OP_TESTSET &&
1086                                            GET_OPCODE(*pc) != OP_TEST);
1087   SETARG_k(*pc, (GETARG_k(*pc) ^ 1));
1088 }
1089 
1090 
1091 /*
1092 ** Emit instruction to jump if 'e' is 'cond' (that is, if 'cond'
1093 ** is true, code will jump if 'e' is true.) Return jump position.
1094 ** Optimize when 'e' is 'not' something, inverting the condition
1095 ** and removing the 'not'.
1096 */
jumponcond(FuncState * fs,expdesc * e,int cond)1097 static int jumponcond (FuncState *fs, expdesc *e, int cond) {
1098   if (e->k == VRELOC) {
1099     Instruction ie = getinstruction(fs, e);
1100     if (GET_OPCODE(ie) == OP_NOT) {
1101       removelastinstruction(fs);  /* remove previous OP_NOT */
1102       return condjump(fs, OP_TEST, GETARG_B(ie), 0, 0, !cond);
1103     }
1104     /* else go through */
1105   }
1106   discharge2anyreg(fs, e);
1107   freeexp(fs, e);
1108   return condjump(fs, OP_TESTSET, NO_REG, e->u.info, 0, cond);
1109 }
1110 
1111 
1112 /*
1113 ** Emit code to go through if 'e' is true, jump otherwise.
1114 */
luaK_goiftrue(FuncState * fs,expdesc * e)1115 void luaK_goiftrue (FuncState *fs, expdesc *e) {
1116   int pc;  /* pc of new jump */
1117   luaK_dischargevars(fs, e);
1118   switch (e->k) {
1119     case VJMP: {  /* condition? */
1120       negatecondition(fs, e);  /* jump when it is false */
1121       pc = e->u.info;  /* save jump position */
1122       break;
1123     }
1124     case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
1125       pc = NO_JUMP;  /* always true; do nothing */
1126       break;
1127     }
1128     default: {
1129       pc = jumponcond(fs, e, 0);  /* jump when false */
1130       break;
1131     }
1132   }
1133   luaK_concat(fs, &e->f, pc);  /* insert new jump in false list */
1134   luaK_patchtohere(fs, e->t);  /* true list jumps to here (to go through) */
1135   e->t = NO_JUMP;
1136 }
1137 
1138 
1139 /*
1140 ** Emit code to go through if 'e' is false, jump otherwise.
1141 */
luaK_goiffalse(FuncState * fs,expdesc * e)1142 void luaK_goiffalse (FuncState *fs, expdesc *e) {
1143   int pc;  /* pc of new jump */
1144   luaK_dischargevars(fs, e);
1145   switch (e->k) {
1146     case VJMP: {
1147       pc = e->u.info;  /* already jump if true */
1148       break;
1149     }
1150     case VNIL: case VFALSE: {
1151       pc = NO_JUMP;  /* always false; do nothing */
1152       break;
1153     }
1154     default: {
1155       pc = jumponcond(fs, e, 1);  /* jump if true */
1156       break;
1157     }
1158   }
1159   luaK_concat(fs, &e->t, pc);  /* insert new jump in 't' list */
1160   luaK_patchtohere(fs, e->f);  /* false list jumps to here (to go through) */
1161   e->f = NO_JUMP;
1162 }
1163 
1164 
1165 /*
1166 ** Code 'not e', doing constant folding.
1167 */
codenot(FuncState * fs,expdesc * e)1168 static void codenot (FuncState *fs, expdesc *e) {
1169   switch (e->k) {
1170     case VNIL: case VFALSE: {
1171       e->k = VTRUE;  /* true == not nil == not false */
1172       break;
1173     }
1174     case VK: case VKFLT: case VKINT: case VKSTR: case VTRUE: {
1175       e->k = VFALSE;  /* false == not "x" == not 0.5 == not 1 == not true */
1176       break;
1177     }
1178     case VJMP: {
1179       negatecondition(fs, e);
1180       break;
1181     }
1182     case VRELOC:
1183     case VNONRELOC: {
1184       discharge2anyreg(fs, e);
1185       freeexp(fs, e);
1186       e->u.info = luaK_codeABC(fs, OP_NOT, 0, e->u.info, 0);
1187       e->k = VRELOC;
1188       break;
1189     }
1190     default: lua_assert(0);  /* cannot happen */
1191   }
1192   /* interchange true and false lists */
1193   { int temp = e->f; e->f = e->t; e->t = temp; }
1194   removevalues(fs, e->f);  /* values are useless when negated */
1195   removevalues(fs, e->t);
1196 }
1197 
1198 
1199 /*
1200 ** Check whether expression 'e' is a small literal string
1201 */
isKstr(FuncState * fs,expdesc * e)1202 static int isKstr (FuncState *fs, expdesc *e) {
1203   return (e->k == VK && !hasjumps(e) && e->u.info <= MAXARG_B &&
1204           ttisshrstring(&fs->f->k[e->u.info]));
1205 }
1206 
1207 /*
1208 ** Check whether expression 'e' is a literal integer.
1209 */
luaK_isKint(expdesc * e)1210 int luaK_isKint (expdesc *e) {
1211   return (e->k == VKINT && !hasjumps(e));
1212 }
1213 
1214 
1215 /*
1216 ** Check whether expression 'e' is a literal integer in
1217 ** proper range to fit in register C
1218 */
isCint(expdesc * e)1219 static int isCint (expdesc *e) {
1220   return luaK_isKint(e) && (l_castS2U(e->u.ival) <= l_castS2U(MAXARG_C));
1221 }
1222 
1223 
1224 /*
1225 ** Check whether expression 'e' is a literal integer in
1226 ** proper range to fit in register sC
1227 */
isSCint(expdesc * e)1228 static int isSCint (expdesc *e) {
1229   return luaK_isKint(e) && fitsC(e->u.ival);
1230 }
1231 
1232 
1233 /*
1234 ** Check whether expression 'e' is a literal integer or float in
1235 ** proper range to fit in a register (sB or sC).
1236 */
isSCnumber(expdesc * e,int * pi,int * isfloat)1237 static int isSCnumber (expdesc *e, int *pi, int *isfloat) {
1238   lua_Integer i;
1239   if (e->k == VKINT)
1240     i = e->u.ival;
1241   else if (e->k == VKFLT && luaV_flttointeger(e->u.nval, &i, F2Ieq))
1242     *isfloat = 1;
1243   else
1244     return 0;  /* not a number */
1245   if (!hasjumps(e) && fitsC(i)) {
1246     *pi = int2sC(cast_int(i));
1247     return 1;
1248   }
1249   else
1250     return 0;
1251 }
1252 
1253 
1254 /*
1255 ** Create expression 't[k]'. 't' must have its final result already in a
1256 ** register or upvalue. Upvalues can only be indexed by literal strings.
1257 ** Keys can be literal strings in the constant table or arbitrary
1258 ** values in registers.
1259 */
luaK_indexed(FuncState * fs,expdesc * t,expdesc * k)1260 void luaK_indexed (FuncState *fs, expdesc *t, expdesc *k) {
1261   if (k->k == VKSTR)
1262     str2K(fs, k);
1263   lua_assert(!hasjumps(t) &&
1264              (t->k == VLOCAL || t->k == VNONRELOC || t->k == VUPVAL));
1265   if (t->k == VUPVAL && !isKstr(fs, k))  /* upvalue indexed by non 'Kstr'? */
1266     luaK_exp2anyreg(fs, t);  /* put it in a register */
1267   if (t->k == VUPVAL) {
1268     t->u.ind.t = t->u.info;  /* upvalue index */
1269     t->u.ind.idx = k->u.info;  /* literal string */
1270     t->k = VINDEXUP;
1271   }
1272   else {
1273     /* register index of the table */
1274     t->u.ind.t = (t->k == VLOCAL) ? t->u.var.ridx: t->u.info;
1275     if (isKstr(fs, k)) {
1276       t->u.ind.idx = k->u.info;  /* literal string */
1277       t->k = VINDEXSTR;
1278     }
1279     else if (isCint(k)) {
1280       t->u.ind.idx = cast_int(k->u.ival);  /* int. constant in proper range */
1281       t->k = VINDEXI;
1282     }
1283     else {
1284       t->u.ind.idx = luaK_exp2anyreg(fs, k);  /* register */
1285       t->k = VINDEXED;
1286     }
1287   }
1288 }
1289 
1290 
1291 /*
1292 ** Return false if folding can raise an error.
1293 ** Bitwise operations need operands convertible to integers; division
1294 ** operations cannot have 0 as divisor.
1295 */
validop(int op,TValue * v1,TValue * v2)1296 static int validop (int op, TValue *v1, TValue *v2) {
1297   switch (op) {
1298     case LUA_OPBAND: case LUA_OPBOR: case LUA_OPBXOR:
1299     case LUA_OPSHL: case LUA_OPSHR: case LUA_OPBNOT: {  /* conversion errors */
1300       lua_Integer i;
1301       return (luaV_tointegerns(v1, &i, LUA_FLOORN2I) &&
1302               luaV_tointegerns(v2, &i, LUA_FLOORN2I));
1303     }
1304     case LUA_OPDIV: case LUA_OPIDIV: case LUA_OPMOD:  /* division by 0 */
1305       return (nvalue(v2) != 0);
1306     default: return 1;  /* everything else is valid */
1307   }
1308 }
1309 
1310 
1311 /*
1312 ** Try to "constant-fold" an operation; return 1 iff successful.
1313 ** (In this case, 'e1' has the final result.)
1314 */
constfolding(FuncState * fs,int op,expdesc * e1,const expdesc * e2)1315 static int constfolding (FuncState *fs, int op, expdesc *e1,
1316                                         const expdesc *e2) {
1317   TValue v1, v2, res;
1318   if (!tonumeral(e1, &v1) || !tonumeral(e2, &v2) || !validop(op, &v1, &v2))
1319     return 0;  /* non-numeric operands or not safe to fold */
1320   luaO_rawarith(fs->ls->L, op, &v1, &v2, &res);  /* does operation */
1321   if (ttisinteger(&res)) {
1322     e1->k = VKINT;
1323     e1->u.ival = ivalue(&res);
1324   }
1325   else {  /* folds neither NaN nor 0.0 (to avoid problems with -0.0) */
1326     lua_Number n = fltvalue(&res);
1327     if (luai_numisnan(n) || n == 0)
1328       return 0;
1329     e1->k = VKFLT;
1330     e1->u.nval = n;
1331   }
1332   return 1;
1333 }
1334 
1335 
1336 /*
1337 ** Emit code for unary expressions that "produce values"
1338 ** (everything but 'not').
1339 ** Expression to produce final result will be encoded in 'e'.
1340 */
codeunexpval(FuncState * fs,OpCode op,expdesc * e,int line)1341 static void codeunexpval (FuncState *fs, OpCode op, expdesc *e, int line) {
1342   int r = luaK_exp2anyreg(fs, e);  /* opcodes operate only on registers */
1343   freeexp(fs, e);
1344   e->u.info = luaK_codeABC(fs, op, 0, r, 0);  /* generate opcode */
1345   e->k = VRELOC;  /* all those operations are relocatable */
1346   luaK_fixline(fs, line);
1347 }
1348 
1349 
1350 /*
1351 ** Emit code for binary expressions that "produce values"
1352 ** (everything but logical operators 'and'/'or' and comparison
1353 ** operators).
1354 ** Expression to produce final result will be encoded in 'e1'.
1355 */
finishbinexpval(FuncState * fs,expdesc * e1,expdesc * e2,OpCode op,int v2,int flip,int line,OpCode mmop,TMS event)1356 static void finishbinexpval (FuncState *fs, expdesc *e1, expdesc *e2,
1357                              OpCode op, int v2, int flip, int line,
1358                              OpCode mmop, TMS event) {
1359   int v1 = luaK_exp2anyreg(fs, e1);
1360   int pc = luaK_codeABCk(fs, op, 0, v1, v2, 0);
1361   freeexps(fs, e1, e2);
1362   e1->u.info = pc;
1363   e1->k = VRELOC;  /* all those operations are relocatable */
1364   luaK_fixline(fs, line);
1365   luaK_codeABCk(fs, mmop, v1, v2, event, flip);  /* to call metamethod */
1366   luaK_fixline(fs, line);
1367 }
1368 
1369 
1370 /*
1371 ** Emit code for binary expressions that "produce values" over
1372 ** two registers.
1373 */
codebinexpval(FuncState * fs,OpCode op,expdesc * e1,expdesc * e2,int line)1374 static void codebinexpval (FuncState *fs, OpCode op,
1375                            expdesc *e1, expdesc *e2, int line) {
1376   int v2 = luaK_exp2anyreg(fs, e2);  /* both operands are in registers */
1377   lua_assert(OP_ADD <= op && op <= OP_SHR);
1378   finishbinexpval(fs, e1, e2, op, v2, 0, line, OP_MMBIN,
1379                   cast(TMS, (op - OP_ADD) + TM_ADD));
1380 }
1381 
1382 
1383 /*
1384 ** Code binary operators with immediate operands.
1385 */
codebini(FuncState * fs,OpCode op,expdesc * e1,expdesc * e2,int flip,int line,TMS event)1386 static void codebini (FuncState *fs, OpCode op,
1387                        expdesc *e1, expdesc *e2, int flip, int line,
1388                        TMS event) {
1389   int v2 = int2sC(cast_int(e2->u.ival));  /* immediate operand */
1390   lua_assert(e2->k == VKINT);
1391   finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINI, event);
1392 }
1393 
1394 
1395 /* Try to code a binary operator negating its second operand.
1396 ** For the metamethod, 2nd operand must keep its original value.
1397 */
finishbinexpneg(FuncState * fs,expdesc * e1,expdesc * e2,OpCode op,int line,TMS event)1398 static int finishbinexpneg (FuncState *fs, expdesc *e1, expdesc *e2,
1399                              OpCode op, int line, TMS event) {
1400   if (!luaK_isKint(e2))
1401     return 0;  /* not an integer constant */
1402   else {
1403     lua_Integer i2 = e2->u.ival;
1404     if (!(fitsC(i2) && fitsC(-i2)))
1405       return 0;  /* not in the proper range */
1406     else {  /* operating a small integer constant */
1407       int v2 = cast_int(i2);
1408       finishbinexpval(fs, e1, e2, op, int2sC(-v2), 0, line, OP_MMBINI, event);
1409       /* correct metamethod argument */
1410       SETARG_B(fs->f->code[fs->pc - 1], int2sC(v2));
1411       return 1;  /* successfully coded */
1412     }
1413   }
1414 }
1415 
1416 
swapexps(expdesc * e1,expdesc * e2)1417 static void swapexps (expdesc *e1, expdesc *e2) {
1418   expdesc temp = *e1; *e1 = *e2; *e2 = temp;  /* swap 'e1' and 'e2' */
1419 }
1420 
1421 
1422 /*
1423 ** Code arithmetic operators ('+', '-', ...). If second operand is a
1424 ** constant in the proper range, use variant opcodes with K operands.
1425 */
codearith(FuncState * fs,BinOpr opr,expdesc * e1,expdesc * e2,int flip,int line)1426 static void codearith (FuncState *fs, BinOpr opr,
1427                        expdesc *e1, expdesc *e2, int flip, int line) {
1428   TMS event = cast(TMS, opr + TM_ADD);
1429   if (tonumeral(e2, NULL) && luaK_exp2K(fs, e2)) {  /* K operand? */
1430     int v2 = e2->u.info;  /* K index */
1431     OpCode op = cast(OpCode, opr + OP_ADDK);
1432     finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK, event);
1433   }
1434   else {  /* 'e2' is neither an immediate nor a K operand */
1435     OpCode op = cast(OpCode, opr + OP_ADD);
1436     if (flip)
1437       swapexps(e1, e2);  /* back to original order */
1438     codebinexpval(fs, op, e1, e2, line);  /* use standard operators */
1439   }
1440 }
1441 
1442 
1443 /*
1444 ** Code commutative operators ('+', '*'). If first operand is a
1445 ** numeric constant, change order of operands to try to use an
1446 ** immediate or K operator.
1447 */
codecommutative(FuncState * fs,BinOpr op,expdesc * e1,expdesc * e2,int line)1448 static void codecommutative (FuncState *fs, BinOpr op,
1449                              expdesc *e1, expdesc *e2, int line) {
1450   int flip = 0;
1451   if (tonumeral(e1, NULL)) {  /* is first operand a numeric constant? */
1452     swapexps(e1, e2);  /* change order */
1453     flip = 1;
1454   }
1455   if (op == OPR_ADD && isSCint(e2))  /* immediate operand? */
1456     codebini(fs, cast(OpCode, OP_ADDI), e1, e2, flip, line, TM_ADD);
1457   else
1458     codearith(fs, op, e1, e2, flip, line);
1459 }
1460 
1461 
1462 /*
1463 ** Code bitwise operations; they are all associative, so the function
1464 ** tries to put an integer constant as the 2nd operand (a K operand).
1465 */
codebitwise(FuncState * fs,BinOpr opr,expdesc * e1,expdesc * e2,int line)1466 static void codebitwise (FuncState *fs, BinOpr opr,
1467                          expdesc *e1, expdesc *e2, int line) {
1468   int flip = 0;
1469   int v2;
1470   OpCode op;
1471   if (e1->k == VKINT && luaK_exp2RK(fs, e1)) {
1472     swapexps(e1, e2);  /* 'e2' will be the constant operand */
1473     flip = 1;
1474   }
1475   else if (!(e2->k == VKINT && luaK_exp2RK(fs, e2))) {  /* no constants? */
1476     op = cast(OpCode, opr + OP_ADD);
1477     codebinexpval(fs, op, e1, e2, line);  /* all-register opcodes */
1478     return;
1479   }
1480   v2 = e2->u.info;  /* index in K array */
1481   op = cast(OpCode, opr + OP_ADDK);
1482   lua_assert(ttisinteger(&fs->f->k[v2]));
1483   finishbinexpval(fs, e1, e2, op, v2, flip, line, OP_MMBINK,
1484                   cast(TMS, opr + TM_ADD));
1485 }
1486 
1487 
1488 /*
1489 ** Emit code for order comparisons. When using an immediate operand,
1490 ** 'isfloat' tells whether the original value was a float.
1491 */
codeorder(FuncState * fs,OpCode op,expdesc * e1,expdesc * e2)1492 static void codeorder (FuncState *fs, OpCode op, expdesc *e1, expdesc *e2) {
1493   int r1, r2;
1494   int im;
1495   int isfloat = 0;
1496   if (isSCnumber(e2, &im, &isfloat)) {
1497     /* use immediate operand */
1498     r1 = luaK_exp2anyreg(fs, e1);
1499     r2 = im;
1500     op = cast(OpCode, (op - OP_LT) + OP_LTI);
1501   }
1502   else if (isSCnumber(e1, &im, &isfloat)) {
1503     /* transform (A < B) to (B > A) and (A <= B) to (B >= A) */
1504     r1 = luaK_exp2anyreg(fs, e2);
1505     r2 = im;
1506     op = (op == OP_LT) ? OP_GTI : OP_GEI;
1507   }
1508   else {  /* regular case, compare two registers */
1509     r1 = luaK_exp2anyreg(fs, e1);
1510     r2 = luaK_exp2anyreg(fs, e2);
1511   }
1512   freeexps(fs, e1, e2);
1513   e1->u.info = condjump(fs, op, r1, r2, isfloat, 1);
1514   e1->k = VJMP;
1515 }
1516 
1517 
1518 /*
1519 ** Emit code for equality comparisons ('==', '~=').
1520 ** 'e1' was already put as RK by 'luaK_infix'.
1521 */
codeeq(FuncState * fs,BinOpr opr,expdesc * e1,expdesc * e2)1522 static void codeeq (FuncState *fs, BinOpr opr, expdesc *e1, expdesc *e2) {
1523   int r1, r2;
1524   int im;
1525   int isfloat = 0;  /* not needed here, but kept for symmetry */
1526   OpCode op;
1527   if (e1->k != VNONRELOC) {
1528     lua_assert(e1->k == VK || e1->k == VKINT || e1->k == VKFLT);
1529     swapexps(e1, e2);
1530   }
1531   r1 = luaK_exp2anyreg(fs, e1);  /* 1st expression must be in register */
1532   if (isSCnumber(e2, &im, &isfloat)) {
1533     op = OP_EQI;
1534     r2 = im;  /* immediate operand */
1535   }
1536   else if (luaK_exp2RK(fs, e2)) {  /* 1st expression is constant? */
1537     op = OP_EQK;
1538     r2 = e2->u.info;  /* constant index */
1539   }
1540   else {
1541     op = OP_EQ;  /* will compare two registers */
1542     r2 = luaK_exp2anyreg(fs, e2);
1543   }
1544   freeexps(fs, e1, e2);
1545   e1->u.info = condjump(fs, op, r1, r2, isfloat, (opr == OPR_EQ));
1546   e1->k = VJMP;
1547 }
1548 
1549 
1550 /*
1551 ** Apply prefix operation 'op' to expression 'e'.
1552 */
luaK_prefix(FuncState * fs,UnOpr op,expdesc * e,int line)1553 void luaK_prefix (FuncState *fs, UnOpr op, expdesc *e, int line) {
1554   static const expdesc ef = {VKINT, {0}, NO_JUMP, NO_JUMP};
1555   luaK_dischargevars(fs, e);
1556   switch (op) {
1557     case OPR_MINUS: case OPR_BNOT:  /* use 'ef' as fake 2nd operand */
1558       if (constfolding(fs, op + LUA_OPUNM, e, &ef))
1559         break;
1560       /* else */ /* FALLTHROUGH */
1561     case OPR_LEN:
1562       codeunexpval(fs, cast(OpCode, op + OP_UNM), e, line);
1563       break;
1564     case OPR_NOT: codenot(fs, e); break;
1565     default: lua_assert(0);
1566   }
1567 }
1568 
1569 
1570 /*
1571 ** Process 1st operand 'v' of binary operation 'op' before reading
1572 ** 2nd operand.
1573 */
luaK_infix(FuncState * fs,BinOpr op,expdesc * v)1574 void luaK_infix (FuncState *fs, BinOpr op, expdesc *v) {
1575   luaK_dischargevars(fs, v);
1576   switch (op) {
1577     case OPR_AND: {
1578       luaK_goiftrue(fs, v);  /* go ahead only if 'v' is true */
1579       break;
1580     }
1581     case OPR_OR: {
1582       luaK_goiffalse(fs, v);  /* go ahead only if 'v' is false */
1583       break;
1584     }
1585     case OPR_CONCAT: {
1586       luaK_exp2nextreg(fs, v);  /* operand must be on the stack */
1587       break;
1588     }
1589     case OPR_ADD: case OPR_SUB:
1590     case OPR_MUL: case OPR_DIV: case OPR_IDIV:
1591     case OPR_MOD: case OPR_POW:
1592     case OPR_BAND: case OPR_BOR: case OPR_BXOR:
1593     case OPR_SHL: case OPR_SHR: {
1594       if (!tonumeral(v, NULL))
1595         luaK_exp2anyreg(fs, v);
1596       /* else keep numeral, which may be folded with 2nd operand */
1597       break;
1598     }
1599     case OPR_EQ: case OPR_NE: {
1600       if (!tonumeral(v, NULL))
1601         luaK_exp2RK(fs, v);
1602       /* else keep numeral, which may be an immediate operand */
1603       break;
1604     }
1605     case OPR_LT: case OPR_LE:
1606     case OPR_GT: case OPR_GE: {
1607       int dummy, dummy2;
1608       if (!isSCnumber(v, &dummy, &dummy2))
1609         luaK_exp2anyreg(fs, v);
1610       /* else keep numeral, which may be an immediate operand */
1611       break;
1612     }
1613     default: lua_assert(0);
1614   }
1615 }
1616 
1617 /*
1618 ** Create code for '(e1 .. e2)'.
1619 ** For '(e1 .. e2.1 .. e2.2)' (which is '(e1 .. (e2.1 .. e2.2))',
1620 ** because concatenation is right associative), merge both CONCATs.
1621 */
codeconcat(FuncState * fs,expdesc * e1,expdesc * e2,int line)1622 static void codeconcat (FuncState *fs, expdesc *e1, expdesc *e2, int line) {
1623   Instruction *ie2 = previousinstruction(fs);
1624   if (GET_OPCODE(*ie2) == OP_CONCAT) {  /* is 'e2' a concatenation? */
1625     int n = GETARG_B(*ie2);  /* # of elements concatenated in 'e2' */
1626     lua_assert(e1->u.info + 1 == GETARG_A(*ie2));
1627     freeexp(fs, e2);
1628     SETARG_A(*ie2, e1->u.info);  /* correct first element ('e1') */
1629     SETARG_B(*ie2, n + 1);  /* will concatenate one more element */
1630   }
1631   else {  /* 'e2' is not a concatenation */
1632     luaK_codeABC(fs, OP_CONCAT, e1->u.info, 2, 0);  /* new concat opcode */
1633     freeexp(fs, e2);
1634     luaK_fixline(fs, line);
1635   }
1636 }
1637 
1638 
1639 /*
1640 ** Finalize code for binary operation, after reading 2nd operand.
1641 */
luaK_posfix(FuncState * fs,BinOpr opr,expdesc * e1,expdesc * e2,int line)1642 void luaK_posfix (FuncState *fs, BinOpr opr,
1643                   expdesc *e1, expdesc *e2, int line) {
1644   luaK_dischargevars(fs, e2);
1645   if (foldbinop(opr) && constfolding(fs, opr + LUA_OPADD, e1, e2))
1646     return;  /* done by folding */
1647   switch (opr) {
1648     case OPR_AND: {
1649       lua_assert(e1->t == NO_JUMP);  /* list closed by 'luaK_infix' */
1650       luaK_concat(fs, &e2->f, e1->f);
1651       *e1 = *e2;
1652       break;
1653     }
1654     case OPR_OR: {
1655       lua_assert(e1->f == NO_JUMP);  /* list closed by 'luaK_infix' */
1656       luaK_concat(fs, &e2->t, e1->t);
1657       *e1 = *e2;
1658       break;
1659     }
1660     case OPR_CONCAT: {  /* e1 .. e2 */
1661       luaK_exp2nextreg(fs, e2);
1662       codeconcat(fs, e1, e2, line);
1663       break;
1664     }
1665     case OPR_ADD: case OPR_MUL: {
1666       codecommutative(fs, opr, e1, e2, line);
1667       break;
1668     }
1669     case OPR_SUB: {
1670       if (finishbinexpneg(fs, e1, e2, OP_ADDI, line, TM_SUB))
1671         break; /* coded as (r1 + -I) */
1672       /* ELSE */
1673     }  /* FALLTHROUGH */
1674     case OPR_DIV: case OPR_IDIV: case OPR_MOD: case OPR_POW: {
1675       codearith(fs, opr, e1, e2, 0, line);
1676       break;
1677     }
1678     case OPR_BAND: case OPR_BOR: case OPR_BXOR: {
1679       codebitwise(fs, opr, e1, e2, line);
1680       break;
1681     }
1682     case OPR_SHL: {
1683       if (isSCint(e1)) {
1684         swapexps(e1, e2);
1685         codebini(fs, OP_SHLI, e1, e2, 1, line, TM_SHL);  /* I << r2 */
1686       }
1687       else if (finishbinexpneg(fs, e1, e2, OP_SHRI, line, TM_SHL)) {
1688         /* coded as (r1 >> -I) */;
1689       }
1690       else  /* regular case (two registers) */
1691        codebinexpval(fs, OP_SHL, e1, e2, line);
1692       break;
1693     }
1694     case OPR_SHR: {
1695       if (isSCint(e2))
1696         codebini(fs, OP_SHRI, e1, e2, 0, line, TM_SHR);  /* r1 >> I */
1697       else  /* regular case (two registers) */
1698         codebinexpval(fs, OP_SHR, e1, e2, line);
1699       break;
1700     }
1701     case OPR_EQ: case OPR_NE: {
1702       codeeq(fs, opr, e1, e2);
1703       break;
1704     }
1705     case OPR_LT: case OPR_LE: {
1706       OpCode op = cast(OpCode, (opr - OPR_EQ) + OP_EQ);
1707       codeorder(fs, op, e1, e2);
1708       break;
1709     }
1710     case OPR_GT: case OPR_GE: {
1711       /* '(a > b)' <=> '(b < a)';  '(a >= b)' <=> '(b <= a)' */
1712       OpCode op = cast(OpCode, (opr - OPR_NE) + OP_EQ);
1713       swapexps(e1, e2);
1714       codeorder(fs, op, e1, e2);
1715       break;
1716     }
1717     default: lua_assert(0);
1718   }
1719 }
1720 
1721 
1722 /*
1723 ** Change line information associated with current position, by removing
1724 ** previous info and adding it again with new line.
1725 */
luaK_fixline(FuncState * fs,int line)1726 void luaK_fixline (FuncState *fs, int line) {
1727   removelastlineinfo(fs);
1728   savelineinfo(fs, fs->f, line);
1729 }
1730 
1731 
luaK_settablesize(FuncState * fs,int pc,int ra,int asize,int hsize)1732 void luaK_settablesize (FuncState *fs, int pc, int ra, int asize, int hsize) {
1733   Instruction *inst = &fs->f->code[pc];
1734   int rb = (hsize != 0) ? luaO_ceillog2(hsize) + 1 : 0;  /* hash size */
1735   int extra = asize / (MAXARG_C + 1);  /* higher bits of array size */
1736   int rc = asize % (MAXARG_C + 1);  /* lower bits of array size */
1737   int k = (extra > 0);  /* true iff needs extra argument */
1738   *inst = CREATE_ABCk(OP_NEWTABLE, ra, rb, rc, k);
1739   *(inst + 1) = CREATE_Ax(OP_EXTRAARG, extra);
1740 }
1741 
1742 
1743 /*
1744 ** Emit a SETLIST instruction.
1745 ** 'base' is register that keeps table;
1746 ** 'nelems' is #table plus those to be stored now;
1747 ** 'tostore' is number of values (in registers 'base + 1',...) to add to
1748 ** table (or LUA_MULTRET to add up to stack top).
1749 */
luaK_setlist(FuncState * fs,int base,int nelems,int tostore)1750 void luaK_setlist (FuncState *fs, int base, int nelems, int tostore) {
1751   lua_assert(tostore != 0 && tostore <= LFIELDS_PER_FLUSH);
1752   if (tostore == LUA_MULTRET)
1753     tostore = 0;
1754   if (nelems <= MAXARG_C)
1755     luaK_codeABC(fs, OP_SETLIST, base, tostore, nelems);
1756   else {
1757     int extra = nelems / (MAXARG_C + 1);
1758     nelems %= (MAXARG_C + 1);
1759     luaK_codeABCk(fs, OP_SETLIST, base, tostore, nelems, 1);
1760     codeextraarg(fs, extra);
1761   }
1762   fs->freereg = base + 1;  /* free registers with list values */
1763 }
1764 
1765 
1766 /*
1767 ** return the final target of a jump (skipping jumps to jumps)
1768 */
finaltarget(Instruction * code,int i)1769 static int finaltarget (Instruction *code, int i) {
1770   int count;
1771   for (count = 0; count < 100; count++) {  /* avoid infinite loops */
1772     Instruction pc = code[i];
1773     if (GET_OPCODE(pc) != OP_JMP)
1774       break;
1775      else
1776        i += GETARG_sJ(pc) + 1;
1777   }
1778   return i;
1779 }
1780 
1781 
1782 /*
1783 ** Do a final pass over the code of a function, doing small peephole
1784 ** optimizations and adjustments.
1785 */
luaK_finish(FuncState * fs)1786 void luaK_finish (FuncState *fs) {
1787   int i;
1788   Proto *p = fs->f;
1789   for (i = 0; i < fs->pc; i++) {
1790     Instruction *pc = &p->code[i];
1791     lua_assert(i == 0 || isOT(*(pc - 1)) == isIT(*pc));
1792     switch (GET_OPCODE(*pc)) {
1793       case OP_RETURN0: case OP_RETURN1: {
1794         if (!(fs->needclose || p->is_vararg))
1795           break;  /* no extra work */
1796         /* else use OP_RETURN to do the extra work */
1797         SET_OPCODE(*pc, OP_RETURN);
1798       }  /* FALLTHROUGH */
1799       case OP_RETURN: case OP_TAILCALL: {
1800         if (fs->needclose)
1801           SETARG_k(*pc, 1);  /* signal that it needs to close */
1802         if (p->is_vararg)
1803           SETARG_C(*pc, p->numparams + 1);  /* signal that it is vararg */
1804         break;
1805       }
1806       case OP_JMP: {
1807         int target = finaltarget(p->code, i);
1808         fixjump(fs, i, target);
1809         break;
1810       }
1811       default: break;
1812     }
1813   }
1814 }
1815