1 /*
2  #
3  #  File        : pde_TschumperleDeriche2d.cpp
4  #                ( C++ source file )
5  #
6  #  Description : Implementation of the Tschumperlé-Deriche's Regularization
7  #                PDE, for 2D multivalued images, as described in the articles below.
8  #                This file is a part of the CImg Library project.
9  #                ( http://cimg.eu )
10  #
11  #  (1) PDE-Based Regularization of Multivalued Images and Applications.
12  #               (D. Tschumperlé). PhD Thesis. University of Nice-Sophia Antipolis, December 2002.
13  #  (2) Diffusion PDE's on Vector-valued Images : Local Approach and Geometric Viewpoint.
14  #               (D. Tschumperlé and R. Deriche). IEEE Signal Processing Magazine, October 2002.
15  #  (3) Vector-Valued Image Regularization with PDE's : A Common Framework for Different Applications.
16  #               (D. Tschumperlé and R. Deriche). CVPR'2003, Computer Vision and Pattern Recognition,
17  #                                                Madison, United States, June 2003.
18  #
19  #  This code can be used to perform image restoration, inpainting, magnification or flow visualization.
20  #
21  #  Copyright   : David Tschumperlé
22  #                ( http://tschumperle.users.greyc.fr/ )
23  #
24  #  License     : CeCILL v2.0
25  #                ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html )
26  #
27  #  This software is governed by the CeCILL  license under French law and
28  #  abiding by the rules of distribution of free software.  You can  use,
29  #  modify and/ or redistribute the software under the terms of the CeCILL
30  #  license as circulated by CEA, CNRS and INRIA at the following URL
31  #  "http://www.cecill.info".
32  #
33  #  As a counterpart to the access to the source code and  rights to copy,
34  #  modify and redistribute granted by the license, users are provided only
35  #  with a limited warranty  and the software's author,  the holder of the
36  #  economic rights,  and the successive licensors  have only  limited
37  #  liability.
38  #
39  #  In this respect, the user's attention is drawn to the risks associated
40  #  with loading,  using,  modifying and/or developing or reproducing the
41  #  software by the user in light of its specific status of free software,
42  #  that may mean  that it is complicated to manipulate,  and  that  also
43  #  therefore means  that it is reserved for developers  and  experienced
44  #  professionals having in-depth computer knowledge. Users are therefore
45  #  encouraged to load and test the software's suitability as regards their
46  #  requirements in conditions enabling the security of their systems and/or
47  #  data to be ensured and,  more generally, to use and operate it in the
48  #  same conditions as regards security.
49  #
50  #  The fact that you are presently reading this means that you have had
51  #  knowledge of the CeCILL license and that you accept its terms.
52  #
53 */
54 
55 #include "CImg.h"
56 using namespace cimg_library;
57 #ifndef cimg_imagepath
58 #define cimg_imagepath "img/"
59 #endif
60 #undef min
61 #undef max
62 
63 // Main procedure
64 //----------------
main(int argc,char ** argv)65 int main(int argc,char **argv) {
66 
67   // Read command line arguments
68   //-----------------------------
69   cimg_usage("Tschumperlé-Deriche's flow for 2D Image Restoration, Inpainting, Magnification or Flow visualization");
70   const char *file_i  = cimg_option("-i",cimg_imagepath "milla.bmp","Input image");
71   const char *file_m  = cimg_option("-m",(char*)NULL,"Mask image (if Inpainting)");
72   const char *file_f  = cimg_option("-f",(char*)NULL,"Flow image (if Flow visualization)");
73   const char *file_o  = cimg_option("-o",(char*)NULL,"Output file");
74   const double zoom   = cimg_option("-zoom",1.0,"Image magnification");
75 
76   const unsigned int nb_iter  = cimg_option("-iter",100000,"Number of iterations");
77   const double dt     = cimg_option("-dt",20.0,"Adapting time step");
78   const double alpha  = cimg_option("-alpha",0.0,"Gradient smoothing");
79   const double sigma  = cimg_option("-sigma",0.5,"Structure tensor smoothing");
80   const float a1      = cimg_option("-a1",0.5f,"Diffusion limiter along minimal variations");
81   const float a2      = cimg_option("-a2",0.9f,"Diffusion limiter along maximal variations");
82   const double noiseg = cimg_option("-ng",0.0,"Add gauss noise before aplying the algorithm");
83   const double noiseu = cimg_option("-nu",0.0,"Add uniform noise before applying the algorithm");
84   const double noises = cimg_option("-ns",0.0,"Add salt&pepper noise before applying the algorithm");
85   const bool stflag   = cimg_option("-stats",false,"Display image statistics at each iteration");
86   const unsigned int save = cimg_option("-save",0,"Iteration saving step");
87   const unsigned int visu = cimg_option("-visu",10,"Visualization step (0=no visualization)");
88   const unsigned int init = cimg_option("-init",3,"Inpainting initialization (0=black, 1=white, 2=noise, 3=unchanged)");
89   const unsigned int skip = cimg_option("-skip",1,"Step of image geometry computation");
90   bool view_t         = cimg_option("-d",false,"View tensor directions (useful for debug)");
91   double xdt = 0;
92 
93   // Variable initialization
94   //-------------------------
95   CImg<> img, flow;
96   CImg<int> mask;
97 
98   if (file_i) {
99     img = CImg<>(file_i).resize(-100,-100,1,-100);
100     if (file_m) mask = CImg<unsigned char>(file_m).resize(img.width(),img.height(),1,1);
101     else if (zoom>1) {
102       mask = CImg<int>(img.width(),img.height(),1,1,-1).
103         resize((int)(img.width()*zoom),(int)(img.height()*zoom),1,1,4) + 1;
104       img.resize((int)(img.width()*zoom),(int)(img.height()*zoom),1,-100,3);
105     }
106   } else {
107     if (file_f) {
108       flow = CImg<>(file_f);
109       img = CImg<>((int)(flow.width()*zoom),(int)(flow.height()*zoom),1,1,0).noise(100,2);
110       flow.resize(img.width(),img.height(),1,2,3);
111     } else
112       throw CImgException("You need to specify at least one input image (option -i), or one flow image (option -f)");
113   }
114   img.noise(noiseg,0).noise(noiseu,1).noise(noises,2);
115   float initial_min, initial_max = img.max_min(initial_min);
116   if (mask && init!=3)
117     cimg_forXYC(img,x,y,k) if (mask(x,y))
118       img(x,y,k) = (float)((init?
119                             (init==1?initial_max:((initial_max - initial_min)*cimg::rand())):
120                             initial_min));
121 
122   CImgDisplay disp;
123   if (visu) disp.assign(img,"Iterated Image");
124   CImg<> G(img.width(),img.height(),1,3,0), T(G), veloc(img), val(2), vec(2,2);
125 
126   // PDE main iteration loop
127   //-------------------------
128   for (unsigned int iter = 0; iter<nb_iter &&
129          (!disp || (!disp.is_closed() && !disp.is_keyQ() && !disp.is_keyESC())); ++iter) {
130     std::printf("\riter %u , xdt = %g               ",iter,xdt); std::fflush(stdout);
131     if (stflag) img.print();
132     if (disp && disp.is_keySPACE()) { view_t = !view_t; disp.set_key(); }
133 
134     if (!(iter%skip)) {
135 
136       // Compute the tensor field T, used to drive the diffusion
137       //---------------------------------------------------------
138 
139       // When using PDE for flow visualization
140       if (flow) cimg_forXY(flow,x,y) {
141         const float
142           u = flow(x,y,0,0),
143           v = flow(x,y,0,1),
144           n = (float)std::sqrt((double)(u*u + v*v)),
145           nn = (n!=0)?n:1;
146         T(x,y,0) = u*u/nn;
147         T(x,y,1) = u*v/nn;
148         T(x,y,2) = v*v/nn;
149       } else {
150 
151         // Compute structure tensor field G
152         CImgList<> grad = img.get_gradient();
153         if (alpha!=0) cimglist_for(grad,l) grad[l].blur((float)alpha);
154         G.fill(0);
155         cimg_forXYC(img,x,y,k) {
156           const float ix = grad[0](x,y,k), iy = grad[1](x,y,k);
157           G(x,y,0) += ix*ix;
158           G(x,y,1) += ix*iy;
159           G(x,y,2) += iy*iy;
160         }
161         if (sigma!=0) G.blur((float)sigma);
162 
163         // When using PDE for image restoration, inpainting or zooming
164         T.fill(0);
165         if (!mask) cimg_forXY(G,x,y) {
166           G.get_tensor_at(x,y).symmetric_eigen(val,vec);
167           const float
168             l1 = (float)std::pow(1.0f + val[0] + val[1],-a1),
169             l2 = (float)std::pow(1.0f + val[0] + val[1],-a2),
170             ux = vec(1,0),
171             uy = vec(1,1);
172           T(x,y,0) = l1*ux*ux + l2*uy*uy;
173           T(x,y,1) = l1*ux*uy - l2*ux*uy;
174           T(x,y,2) = l1*uy*uy + l2*ux*ux;
175         }
176         else cimg_forXY(G,x,y) if (mask(x,y)) {
177           G.get_tensor_at(x,y).symmetric_eigen(val,vec);
178           const float
179             ux = vec(1,0),
180             uy = vec(1,1);
181           T(x,y,0) = ux*ux;
182           T(x,y,1) = ux*uy;
183           T(x,y,2) = uy*uy;
184         }
185       }
186     }
187 
188     // Compute the PDE velocity and update the iterated image
189     //--------------------------------------------------------
190     CImg_3x3(I,float);
191     veloc.fill(0);
192     cimg_forC(img,k) cimg_for3x3(img,x,y,0,k,I,float) {
193       const float
194         a = T(x,y,0),
195         b = T(x,y,1),
196         c = T(x,y,2),
197         ixx = Inc + Ipc - 2*Icc,
198         iyy = Icn + Icp - 2*Icc,
199         ixy = 0.25f*(Ipp + Inn - Ipn - Inp);
200       veloc(x,y,k) = a*ixx + 2*b*ixy + c*iyy;
201     }
202     if (dt>0) {
203       float m, M = veloc.max_min(m);
204       xdt = dt/std::max(cimg::abs(m),cimg::abs(M));
205     } else xdt=-dt;
206     img+=veloc*xdt;
207     img.cut((float)initial_min,(float)initial_max);
208 
209     // Display and save iterations
210     if (disp && !(iter%visu)) {
211       if (!view_t) img.display(disp);
212       else {
213         const unsigned char white[3] = {255,255,255};
214         CImg<unsigned char> nvisu = img.get_resize(disp.width(),disp.height()).normalize(0,255);
215         CImg<> isophotes(img.width(),img.height(),1,2,0);
216         cimg_forXY(img,x,y) if (!mask || mask(x,y)) {
217           T.get_tensor_at(x,y).symmetric_eigen(val,vec);
218           isophotes(x,y,0) = vec(0,0);
219           isophotes(x,y,1) = vec(0,1);
220         }
221         nvisu.draw_quiver(isophotes,white,0.5f,10,9,0).display(disp);
222       }
223     }
224     if (save && file_o && !(iter%save)) img.save(file_o,iter);
225     if (disp) disp.resize().display(img);
226   }
227 
228   // Save result and exit.
229   if (file_o) img.save(file_o);
230   return 0;
231 }
232