1 //===- Inliner.cpp - Code common to all inliners --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the mechanics required to implement inlining without
10 // missing any calls and updating the call graph.  The decisions of which calls
11 // are profitable to inline are implemented elsewhere.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Transforms/IPO/Inliner.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/ScopeExit.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/BasicAliasAnalysis.h"
28 #include "llvm/Analysis/BlockFrequencyInfo.h"
29 #include "llvm/Analysis/CGSCCPassManager.h"
30 #include "llvm/Analysis/CallGraph.h"
31 #include "llvm/Analysis/GlobalsModRef.h"
32 #include "llvm/Analysis/InlineAdvisor.h"
33 #include "llvm/Analysis/InlineCost.h"
34 #include "llvm/Analysis/LazyCallGraph.h"
35 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
36 #include "llvm/Analysis/ProfileSummaryInfo.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 #include "llvm/Analysis/TargetTransformInfo.h"
39 #include "llvm/Analysis/Utils/ImportedFunctionsInliningStatistics.h"
40 #include "llvm/IR/Attributes.h"
41 #include "llvm/IR/BasicBlock.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DebugLoc.h"
44 #include "llvm/IR/DerivedTypes.h"
45 #include "llvm/IR/DiagnosticInfo.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/InstIterator.h"
48 #include "llvm/IR/Instruction.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/IntrinsicInst.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/PassManager.h"
54 #include "llvm/IR/User.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/Pass.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/CommandLine.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Transforms/Utils/CallPromotionUtils.h"
62 #include "llvm/Transforms/Utils/Cloning.h"
63 #include "llvm/Transforms/Utils/Local.h"
64 #include "llvm/Transforms/Utils/ModuleUtils.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <functional>
68 #include <sstream>
69 #include <tuple>
70 #include <utility>
71 #include <vector>
72 
73 using namespace llvm;
74 
75 #define DEBUG_TYPE "inline"
76 
77 STATISTIC(NumInlined, "Number of functions inlined");
78 STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
79 STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
80 STATISTIC(NumMergedAllocas, "Number of allocas merged together");
81 
82 /// Flag to disable manual alloca merging.
83 ///
84 /// Merging of allocas was originally done as a stack-size saving technique
85 /// prior to LLVM's code generator having support for stack coloring based on
86 /// lifetime markers. It is now in the process of being removed. To experiment
87 /// with disabling it and relying fully on lifetime marker based stack
88 /// coloring, you can pass this flag to LLVM.
89 static cl::opt<bool>
90     DisableInlinedAllocaMerging("disable-inlined-alloca-merging",
91                                 cl::init(false), cl::Hidden);
92 
93 extern cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats;
94 
95 static cl::opt<std::string> CGSCCInlineReplayFile(
96     "cgscc-inline-replay", cl::init(""), cl::value_desc("filename"),
97     cl::desc(
98         "Optimization remarks file containing inline remarks to be replayed "
99         "by inlining from cgscc inline remarks."),
100     cl::Hidden);
101 
102 static cl::opt<bool> InlineEnablePriorityOrder(
103     "inline-enable-priority-order", cl::Hidden, cl::init(false),
104     cl::desc("Enable the priority inline order for the inliner"));
105 
LegacyInlinerBase(char & ID)106 LegacyInlinerBase::LegacyInlinerBase(char &ID) : CallGraphSCCPass(ID) {}
107 
LegacyInlinerBase(char & ID,bool InsertLifetime)108 LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime)
109     : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {}
110 
111 /// For this class, we declare that we require and preserve the call graph.
112 /// If the derived class implements this method, it should
113 /// always explicitly call the implementation here.
getAnalysisUsage(AnalysisUsage & AU) const114 void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const {
115   AU.addRequired<AssumptionCacheTracker>();
116   AU.addRequired<ProfileSummaryInfoWrapperPass>();
117   AU.addRequired<TargetLibraryInfoWrapperPass>();
118   getAAResultsAnalysisUsage(AU);
119   CallGraphSCCPass::getAnalysisUsage(AU);
120 }
121 
122 using InlinedArrayAllocasTy = DenseMap<ArrayType *, std::vector<AllocaInst *>>;
123 
124 /// Look at all of the allocas that we inlined through this call site.  If we
125 /// have already inlined other allocas through other calls into this function,
126 /// then we know that they have disjoint lifetimes and that we can merge them.
127 ///
128 /// There are many heuristics possible for merging these allocas, and the
129 /// different options have different tradeoffs.  One thing that we *really*
130 /// don't want to hurt is SRoA: once inlining happens, often allocas are no
131 /// longer address taken and so they can be promoted.
132 ///
133 /// Our "solution" for that is to only merge allocas whose outermost type is an
134 /// array type.  These are usually not promoted because someone is using a
135 /// variable index into them.  These are also often the most important ones to
136 /// merge.
137 ///
138 /// A better solution would be to have real memory lifetime markers in the IR
139 /// and not have the inliner do any merging of allocas at all.  This would
140 /// allow the backend to do proper stack slot coloring of all allocas that
141 /// *actually make it to the backend*, which is really what we want.
142 ///
143 /// Because we don't have this information, we do this simple and useful hack.
mergeInlinedArrayAllocas(Function * Caller,InlineFunctionInfo & IFI,InlinedArrayAllocasTy & InlinedArrayAllocas,int InlineHistory)144 static void mergeInlinedArrayAllocas(Function *Caller, InlineFunctionInfo &IFI,
145                                      InlinedArrayAllocasTy &InlinedArrayAllocas,
146                                      int InlineHistory) {
147   SmallPtrSet<AllocaInst *, 16> UsedAllocas;
148 
149   // When processing our SCC, check to see if the call site was inlined from
150   // some other call site.  For example, if we're processing "A" in this code:
151   //   A() { B() }
152   //   B() { x = alloca ... C() }
153   //   C() { y = alloca ... }
154   // Assume that C was not inlined into B initially, and so we're processing A
155   // and decide to inline B into A.  Doing this makes an alloca available for
156   // reuse and makes a callsite (C) available for inlining.  When we process
157   // the C call site we don't want to do any alloca merging between X and Y
158   // because their scopes are not disjoint.  We could make this smarter by
159   // keeping track of the inline history for each alloca in the
160   // InlinedArrayAllocas but this isn't likely to be a significant win.
161   if (InlineHistory != -1) // Only do merging for top-level call sites in SCC.
162     return;
163 
164   // Loop over all the allocas we have so far and see if they can be merged with
165   // a previously inlined alloca.  If not, remember that we had it.
166   for (unsigned AllocaNo = 0, E = IFI.StaticAllocas.size(); AllocaNo != E;
167        ++AllocaNo) {
168     AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
169 
170     // Don't bother trying to merge array allocations (they will usually be
171     // canonicalized to be an allocation *of* an array), or allocations whose
172     // type is not itself an array (because we're afraid of pessimizing SRoA).
173     ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
174     if (!ATy || AI->isArrayAllocation())
175       continue;
176 
177     // Get the list of all available allocas for this array type.
178     std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy];
179 
180     // Loop over the allocas in AllocasForType to see if we can reuse one.  Note
181     // that we have to be careful not to reuse the same "available" alloca for
182     // multiple different allocas that we just inlined, we use the 'UsedAllocas'
183     // set to keep track of which "available" allocas are being used by this
184     // function.  Also, AllocasForType can be empty of course!
185     bool MergedAwayAlloca = false;
186     for (AllocaInst *AvailableAlloca : AllocasForType) {
187       Align Align1 = AI->getAlign();
188       Align Align2 = AvailableAlloca->getAlign();
189 
190       // The available alloca has to be in the right function, not in some other
191       // function in this SCC.
192       if (AvailableAlloca->getParent() != AI->getParent())
193         continue;
194 
195       // If the inlined function already uses this alloca then we can't reuse
196       // it.
197       if (!UsedAllocas.insert(AvailableAlloca).second)
198         continue;
199 
200       // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
201       // success!
202       LLVM_DEBUG(dbgs() << "    ***MERGED ALLOCA: " << *AI
203                         << "\n\t\tINTO: " << *AvailableAlloca << '\n');
204 
205       // Move affected dbg.declare calls immediately after the new alloca to
206       // avoid the situation when a dbg.declare precedes its alloca.
207       if (auto *L = LocalAsMetadata::getIfExists(AI))
208         if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
209           for (User *U : MDV->users())
210             if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
211               DDI->moveBefore(AvailableAlloca->getNextNode());
212 
213       AI->replaceAllUsesWith(AvailableAlloca);
214 
215       if (Align1 > Align2)
216         AvailableAlloca->setAlignment(AI->getAlign());
217 
218       AI->eraseFromParent();
219       MergedAwayAlloca = true;
220       ++NumMergedAllocas;
221       IFI.StaticAllocas[AllocaNo] = nullptr;
222       break;
223     }
224 
225     // If we already nuked the alloca, we're done with it.
226     if (MergedAwayAlloca)
227       continue;
228 
229     // If we were unable to merge away the alloca either because there are no
230     // allocas of the right type available or because we reused them all
231     // already, remember that this alloca came from an inlined function and mark
232     // it used so we don't reuse it for other allocas from this inline
233     // operation.
234     AllocasForType.push_back(AI);
235     UsedAllocas.insert(AI);
236   }
237 }
238 
239 /// If it is possible to inline the specified call site,
240 /// do so and update the CallGraph for this operation.
241 ///
242 /// This function also does some basic book-keeping to update the IR.  The
243 /// InlinedArrayAllocas map keeps track of any allocas that are already
244 /// available from other functions inlined into the caller.  If we are able to
245 /// inline this call site we attempt to reuse already available allocas or add
246 /// any new allocas to the set if not possible.
inlineCallIfPossible(CallBase & CB,InlineFunctionInfo & IFI,InlinedArrayAllocasTy & InlinedArrayAllocas,int InlineHistory,bool InsertLifetime,function_ref<AAResults & (Function &)> & AARGetter,ImportedFunctionsInliningStatistics & ImportedFunctionsStats)247 static InlineResult inlineCallIfPossible(
248     CallBase &CB, InlineFunctionInfo &IFI,
249     InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory,
250     bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter,
251     ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
252   Function *Callee = CB.getCalledFunction();
253   Function *Caller = CB.getCaller();
254 
255   AAResults &AAR = AARGetter(*Callee);
256 
257   // Try to inline the function.  Get the list of static allocas that were
258   // inlined.
259   InlineResult IR = InlineFunction(CB, IFI, &AAR, InsertLifetime);
260   if (!IR.isSuccess())
261     return IR;
262 
263   if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
264     ImportedFunctionsStats.recordInline(*Caller, *Callee);
265 
266   AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee);
267 
268   if (!DisableInlinedAllocaMerging)
269     mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory);
270 
271   return IR; // success
272 }
273 
274 /// Return true if the specified inline history ID
275 /// indicates an inline history that includes the specified function.
inlineHistoryIncludes(Function * F,int InlineHistoryID,const SmallVectorImpl<std::pair<Function *,int>> & InlineHistory)276 static bool inlineHistoryIncludes(
277     Function *F, int InlineHistoryID,
278     const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) {
279   while (InlineHistoryID != -1) {
280     assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
281            "Invalid inline history ID");
282     if (InlineHistory[InlineHistoryID].first == F)
283       return true;
284     InlineHistoryID = InlineHistory[InlineHistoryID].second;
285   }
286   return false;
287 }
288 
doInitialization(CallGraph & CG)289 bool LegacyInlinerBase::doInitialization(CallGraph &CG) {
290   if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
291     ImportedFunctionsStats.setModuleInfo(CG.getModule());
292   return false; // No changes to CallGraph.
293 }
294 
runOnSCC(CallGraphSCC & SCC)295 bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) {
296   if (skipSCC(SCC))
297     return false;
298   return inlineCalls(SCC);
299 }
300 
301 static bool
inlineCallsImpl(CallGraphSCC & SCC,CallGraph & CG,std::function<AssumptionCache & (Function &)> GetAssumptionCache,ProfileSummaryInfo * PSI,std::function<const TargetLibraryInfo & (Function &)> GetTLI,bool InsertLifetime,function_ref<InlineCost (CallBase & CB)> GetInlineCost,function_ref<AAResults & (Function &)> AARGetter,ImportedFunctionsInliningStatistics & ImportedFunctionsStats)302 inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG,
303                 std::function<AssumptionCache &(Function &)> GetAssumptionCache,
304                 ProfileSummaryInfo *PSI,
305                 std::function<const TargetLibraryInfo &(Function &)> GetTLI,
306                 bool InsertLifetime,
307                 function_ref<InlineCost(CallBase &CB)> GetInlineCost,
308                 function_ref<AAResults &(Function &)> AARGetter,
309                 ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
310   SmallPtrSet<Function *, 8> SCCFunctions;
311   LLVM_DEBUG(dbgs() << "Inliner visiting SCC:");
312   for (CallGraphNode *Node : SCC) {
313     Function *F = Node->getFunction();
314     if (F)
315       SCCFunctions.insert(F);
316     LLVM_DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
317   }
318 
319   // Scan through and identify all call sites ahead of time so that we only
320   // inline call sites in the original functions, not call sites that result
321   // from inlining other functions.
322   SmallVector<std::pair<CallBase *, int>, 16> CallSites;
323 
324   // When inlining a callee produces new call sites, we want to keep track of
325   // the fact that they were inlined from the callee.  This allows us to avoid
326   // infinite inlining in some obscure cases.  To represent this, we use an
327   // index into the InlineHistory vector.
328   SmallVector<std::pair<Function *, int>, 8> InlineHistory;
329 
330   for (CallGraphNode *Node : SCC) {
331     Function *F = Node->getFunction();
332     if (!F || F->isDeclaration())
333       continue;
334 
335     OptimizationRemarkEmitter ORE(F);
336     for (BasicBlock &BB : *F)
337       for (Instruction &I : BB) {
338         auto *CB = dyn_cast<CallBase>(&I);
339         // If this isn't a call, or it is a call to an intrinsic, it can
340         // never be inlined.
341         if (!CB || isa<IntrinsicInst>(I))
342           continue;
343 
344         // If this is a direct call to an external function, we can never inline
345         // it.  If it is an indirect call, inlining may resolve it to be a
346         // direct call, so we keep it.
347         if (Function *Callee = CB->getCalledFunction())
348           if (Callee->isDeclaration()) {
349             using namespace ore;
350 
351             setInlineRemark(*CB, "unavailable definition");
352             ORE.emit([&]() {
353               return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
354                      << NV("Callee", Callee) << " will not be inlined into "
355                      << NV("Caller", CB->getCaller())
356                      << " because its definition is unavailable"
357                      << setIsVerbose();
358             });
359             continue;
360           }
361 
362         CallSites.push_back(std::make_pair(CB, -1));
363       }
364   }
365 
366   LLVM_DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
367 
368   // If there are no calls in this function, exit early.
369   if (CallSites.empty())
370     return false;
371 
372   // Now that we have all of the call sites, move the ones to functions in the
373   // current SCC to the end of the list.
374   unsigned FirstCallInSCC = CallSites.size();
375   for (unsigned I = 0; I < FirstCallInSCC; ++I)
376     if (Function *F = CallSites[I].first->getCalledFunction())
377       if (SCCFunctions.count(F))
378         std::swap(CallSites[I--], CallSites[--FirstCallInSCC]);
379 
380   InlinedArrayAllocasTy InlinedArrayAllocas;
381   InlineFunctionInfo InlineInfo(&CG, GetAssumptionCache, PSI);
382 
383   // Now that we have all of the call sites, loop over them and inline them if
384   // it looks profitable to do so.
385   bool Changed = false;
386   bool LocalChange;
387   do {
388     LocalChange = false;
389     // Iterate over the outer loop because inlining functions can cause indirect
390     // calls to become direct calls.
391     // CallSites may be modified inside so ranged for loop can not be used.
392     for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
393       auto &P = CallSites[CSi];
394       CallBase &CB = *P.first;
395       const int InlineHistoryID = P.second;
396 
397       Function *Caller = CB.getCaller();
398       Function *Callee = CB.getCalledFunction();
399 
400       // We can only inline direct calls to non-declarations.
401       if (!Callee || Callee->isDeclaration())
402         continue;
403 
404       bool IsTriviallyDead = isInstructionTriviallyDead(&CB, &GetTLI(*Caller));
405 
406       if (!IsTriviallyDead) {
407         // If this call site was obtained by inlining another function, verify
408         // that the include path for the function did not include the callee
409         // itself.  If so, we'd be recursively inlining the same function,
410         // which would provide the same callsites, which would cause us to
411         // infinitely inline.
412         if (InlineHistoryID != -1 &&
413             inlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) {
414           setInlineRemark(CB, "recursive");
415           continue;
416         }
417       }
418 
419       // FIXME for new PM: because of the old PM we currently generate ORE and
420       // in turn BFI on demand.  With the new PM, the ORE dependency should
421       // just become a regular analysis dependency.
422       OptimizationRemarkEmitter ORE(Caller);
423 
424       auto OIC = shouldInline(CB, GetInlineCost, ORE);
425       // If the policy determines that we should inline this function,
426       // delete the call instead.
427       if (!OIC)
428         continue;
429 
430       // If this call site is dead and it is to a readonly function, we should
431       // just delete the call instead of trying to inline it, regardless of
432       // size.  This happens because IPSCCP propagates the result out of the
433       // call and then we're left with the dead call.
434       if (IsTriviallyDead) {
435         LLVM_DEBUG(dbgs() << "    -> Deleting dead call: " << CB << "\n");
436         // Update the call graph by deleting the edge from Callee to Caller.
437         setInlineRemark(CB, "trivially dead");
438         CG[Caller]->removeCallEdgeFor(CB);
439         CB.eraseFromParent();
440         ++NumCallsDeleted;
441       } else {
442         // Get DebugLoc to report. CB will be invalid after Inliner.
443         DebugLoc DLoc = CB.getDebugLoc();
444         BasicBlock *Block = CB.getParent();
445 
446         // Attempt to inline the function.
447         using namespace ore;
448 
449         InlineResult IR = inlineCallIfPossible(
450             CB, InlineInfo, InlinedArrayAllocas, InlineHistoryID,
451             InsertLifetime, AARGetter, ImportedFunctionsStats);
452         if (!IR.isSuccess()) {
453           setInlineRemark(CB, std::string(IR.getFailureReason()) + "; " +
454                                   inlineCostStr(*OIC));
455           ORE.emit([&]() {
456             return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc,
457                                             Block)
458                    << NV("Callee", Callee) << " will not be inlined into "
459                    << NV("Caller", Caller) << ": "
460                    << NV("Reason", IR.getFailureReason());
461           });
462           continue;
463         }
464         ++NumInlined;
465 
466         emitInlinedInto(ORE, DLoc, Block, *Callee, *Caller, *OIC);
467 
468         // If inlining this function gave us any new call sites, throw them
469         // onto our worklist to process.  They are useful inline candidates.
470         if (!InlineInfo.InlinedCalls.empty()) {
471           // Create a new inline history entry for this, so that we remember
472           // that these new callsites came about due to inlining Callee.
473           int NewHistoryID = InlineHistory.size();
474           InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
475 
476 #ifndef NDEBUG
477           // Make sure no dupplicates in the inline candidates. This could
478           // happen when a callsite is simpilfied to reusing the return value
479           // of another callsite during function cloning, thus the other
480           // callsite will be reconsidered here.
481           DenseSet<CallBase *> DbgCallSites;
482           for (auto &II : CallSites)
483             DbgCallSites.insert(II.first);
484 #endif
485 
486           for (Value *Ptr : InlineInfo.InlinedCalls) {
487 #ifndef NDEBUG
488             assert(DbgCallSites.count(dyn_cast<CallBase>(Ptr)) == 0);
489 #endif
490             CallSites.push_back(
491                 std::make_pair(dyn_cast<CallBase>(Ptr), NewHistoryID));
492           }
493         }
494       }
495 
496       // If we inlined or deleted the last possible call site to the function,
497       // delete the function body now.
498       if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
499           // TODO: Can remove if in SCC now.
500           !SCCFunctions.count(Callee) &&
501           // The function may be apparently dead, but if there are indirect
502           // callgraph references to the node, we cannot delete it yet, this
503           // could invalidate the CGSCC iterator.
504           CG[Callee]->getNumReferences() == 0) {
505         LLVM_DEBUG(dbgs() << "    -> Deleting dead function: "
506                           << Callee->getName() << "\n");
507         CallGraphNode *CalleeNode = CG[Callee];
508 
509         // Remove any call graph edges from the callee to its callees.
510         CalleeNode->removeAllCalledFunctions();
511 
512         // Removing the node for callee from the call graph and delete it.
513         delete CG.removeFunctionFromModule(CalleeNode);
514         ++NumDeleted;
515       }
516 
517       // Remove this call site from the list.  If possible, use
518       // swap/pop_back for efficiency, but do not use it if doing so would
519       // move a call site to a function in this SCC before the
520       // 'FirstCallInSCC' barrier.
521       if (SCC.isSingular()) {
522         CallSites[CSi] = CallSites.back();
523         CallSites.pop_back();
524       } else {
525         CallSites.erase(CallSites.begin() + CSi);
526       }
527       --CSi;
528 
529       Changed = true;
530       LocalChange = true;
531     }
532   } while (LocalChange);
533 
534   return Changed;
535 }
536 
inlineCalls(CallGraphSCC & SCC)537 bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) {
538   CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
539   ACT = &getAnalysis<AssumptionCacheTracker>();
540   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
541   GetTLI = [&](Function &F) -> const TargetLibraryInfo & {
542     return getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
543   };
544   auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
545     return ACT->getAssumptionCache(F);
546   };
547   return inlineCallsImpl(
548       SCC, CG, GetAssumptionCache, PSI, GetTLI, InsertLifetime,
549       [&](CallBase &CB) { return getInlineCost(CB); }, LegacyAARGetter(*this),
550       ImportedFunctionsStats);
551 }
552 
553 /// Remove now-dead linkonce functions at the end of
554 /// processing to avoid breaking the SCC traversal.
doFinalization(CallGraph & CG)555 bool LegacyInlinerBase::doFinalization(CallGraph &CG) {
556   if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
557     ImportedFunctionsStats.dump(InlinerFunctionImportStats ==
558                                 InlinerFunctionImportStatsOpts::Verbose);
559   return removeDeadFunctions(CG);
560 }
561 
562 /// Remove dead functions that are not included in DNR (Do Not Remove) list.
removeDeadFunctions(CallGraph & CG,bool AlwaysInlineOnly)563 bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG,
564                                             bool AlwaysInlineOnly) {
565   SmallVector<CallGraphNode *, 16> FunctionsToRemove;
566   SmallVector<Function *, 16> DeadFunctionsInComdats;
567 
568   auto RemoveCGN = [&](CallGraphNode *CGN) {
569     // Remove any call graph edges from the function to its callees.
570     CGN->removeAllCalledFunctions();
571 
572     // Remove any edges from the external node to the function's call graph
573     // node.  These edges might have been made irrelegant due to
574     // optimization of the program.
575     CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
576 
577     // Removing the node for callee from the call graph and delete it.
578     FunctionsToRemove.push_back(CGN);
579   };
580 
581   // Scan for all of the functions, looking for ones that should now be removed
582   // from the program.  Insert the dead ones in the FunctionsToRemove set.
583   for (const auto &I : CG) {
584     CallGraphNode *CGN = I.second.get();
585     Function *F = CGN->getFunction();
586     if (!F || F->isDeclaration())
587       continue;
588 
589     // Handle the case when this function is called and we only want to care
590     // about always-inline functions. This is a bit of a hack to share code
591     // between here and the InlineAlways pass.
592     if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline))
593       continue;
594 
595     // If the only remaining users of the function are dead constants, remove
596     // them.
597     F->removeDeadConstantUsers();
598 
599     if (!F->isDefTriviallyDead())
600       continue;
601 
602     // It is unsafe to drop a function with discardable linkage from a COMDAT
603     // without also dropping the other members of the COMDAT.
604     // The inliner doesn't visit non-function entities which are in COMDAT
605     // groups so it is unsafe to do so *unless* the linkage is local.
606     if (!F->hasLocalLinkage()) {
607       if (F->hasComdat()) {
608         DeadFunctionsInComdats.push_back(F);
609         continue;
610       }
611     }
612 
613     RemoveCGN(CGN);
614   }
615   if (!DeadFunctionsInComdats.empty()) {
616     // Filter out the functions whose comdats remain alive.
617     filterDeadComdatFunctions(CG.getModule(), DeadFunctionsInComdats);
618     // Remove the rest.
619     for (Function *F : DeadFunctionsInComdats)
620       RemoveCGN(CG[F]);
621   }
622 
623   if (FunctionsToRemove.empty())
624     return false;
625 
626   // Now that we know which functions to delete, do so.  We didn't want to do
627   // this inline, because that would invalidate our CallGraph::iterator
628   // objects. :(
629   //
630   // Note that it doesn't matter that we are iterating over a non-stable order
631   // here to do this, it doesn't matter which order the functions are deleted
632   // in.
633   array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
634   FunctionsToRemove.erase(
635       std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()),
636       FunctionsToRemove.end());
637   for (CallGraphNode *CGN : FunctionsToRemove) {
638     delete CG.removeFunctionFromModule(CGN);
639     ++NumDeleted;
640   }
641   return true;
642 }
643 
644 InlineAdvisor &
getAdvisor(const ModuleAnalysisManagerCGSCCProxy::Result & MAM,FunctionAnalysisManager & FAM,Module & M)645 InlinerPass::getAdvisor(const ModuleAnalysisManagerCGSCCProxy::Result &MAM,
646                         FunctionAnalysisManager &FAM, Module &M) {
647   if (OwnedAdvisor)
648     return *OwnedAdvisor;
649 
650   auto *IAA = MAM.getCachedResult<InlineAdvisorAnalysis>(M);
651   if (!IAA) {
652     // It should still be possible to run the inliner as a stand-alone SCC pass,
653     // for test scenarios. In that case, we default to the
654     // DefaultInlineAdvisor, which doesn't need to keep state between SCC pass
655     // runs. It also uses just the default InlineParams.
656     // In this case, we need to use the provided FAM, which is valid for the
657     // duration of the inliner pass, and thus the lifetime of the owned advisor.
658     // The one we would get from the MAM can be invalidated as a result of the
659     // inliner's activity.
660     OwnedAdvisor =
661         std::make_unique<DefaultInlineAdvisor>(M, FAM, getInlineParams());
662 
663     if (!CGSCCInlineReplayFile.empty())
664       OwnedAdvisor = std::make_unique<ReplayInlineAdvisor>(
665           M, FAM, M.getContext(), std::move(OwnedAdvisor),
666           CGSCCInlineReplayFile,
667           /*EmitRemarks=*/true);
668 
669     return *OwnedAdvisor;
670   }
671   assert(IAA->getAdvisor() &&
672          "Expected a present InlineAdvisorAnalysis also have an "
673          "InlineAdvisor initialized");
674   return *IAA->getAdvisor();
675 }
676 
677 template <typename T> class InlineOrder {
678 public:
679   using reference = T &;
680   using const_reference = const T &;
681 
~InlineOrder()682   virtual ~InlineOrder() {}
683 
684   virtual size_t size() = 0;
685 
686   virtual void push(const T &Elt) = 0;
687 
688   virtual T pop() = 0;
689 
690   virtual const_reference front() = 0;
691 
692   virtual void erase_if(function_ref<bool(T)> Pred) = 0;
693 
empty()694   bool empty() { return !size(); }
695 };
696 
697 template <typename T, typename Container = SmallVector<T, 16>>
698 class DefaultInlineOrder : public InlineOrder<T> {
699   using reference = T &;
700   using const_reference = const T &;
701 
702 public:
size()703   size_t size() override { return Calls.size() - FirstIndex; }
704 
push(const T & Elt)705   void push(const T &Elt) override { Calls.push_back(Elt); }
706 
pop()707   T pop() override {
708     assert(size() > 0);
709     return Calls[FirstIndex++];
710   }
711 
front()712   const_reference front() override {
713     assert(size() > 0);
714     return Calls[FirstIndex];
715   }
716 
erase_if(function_ref<bool (T)> Pred)717   void erase_if(function_ref<bool(T)> Pred) override {
718     Calls.erase(std::remove_if(Calls.begin() + FirstIndex, Calls.end(), Pred),
719                 Calls.end());
720   }
721 
722 private:
723   Container Calls;
724   size_t FirstIndex = 0;
725 };
726 
727 class Priority {
728 public:
Priority(int Size)729   Priority(int Size) : Size(Size) {}
730 
isMoreDesirable(const Priority & S1,const Priority & S2)731   static bool isMoreDesirable(const Priority &S1, const Priority &S2) {
732     return S1.Size < S2.Size;
733   }
734 
evaluate(CallBase * CB)735   static Priority evaluate(CallBase *CB) {
736     Function *Callee = CB->getCalledFunction();
737     return Priority(Callee->getInstructionCount());
738   }
739 
740   int Size;
741 };
742 
743 template <typename PriorityT>
744 class PriorityInlineOrder : public InlineOrder<std::pair<CallBase *, int>> {
745   using T = std::pair<CallBase *, int>;
746   using HeapT = std::pair<CallBase *, PriorityT>;
747   using reference = T &;
748   using const_reference = const T &;
749 
cmp(const HeapT & P1,const HeapT & P2)750   static bool cmp(const HeapT &P1, const HeapT &P2) {
751     return PriorityT::isMoreDesirable(P2.second, P1.second);
752   }
753 
754   // A call site could become less desirable for inlining because of the size
755   // growth from prior inlining into the callee. This method is used to lazily
756   // update the desirability of a call site if it's decreasing. It is only
757   // called on pop() or front(), not every time the desirability changes. When
758   // the desirability of the front call site decreases, an updated one would be
759   // pushed right back into the heap. For simplicity, those cases where
760   // the desirability of a call site increases are ignored here.
adjust()761   void adjust() {
762     bool Changed = false;
763     do {
764       CallBase *CB = Heap.front().first;
765       const PriorityT PreviousGoodness = Heap.front().second;
766       const PriorityT CurrentGoodness = PriorityT::evaluate(CB);
767       Changed = PriorityT::isMoreDesirable(PreviousGoodness, CurrentGoodness);
768       if (Changed) {
769         std::pop_heap(Heap.begin(), Heap.end(), cmp);
770         Heap.pop_back();
771         Heap.push_back({CB, CurrentGoodness});
772         std::push_heap(Heap.begin(), Heap.end(), cmp);
773       }
774     } while (Changed);
775   }
776 
777 public:
size()778   size_t size() override { return Heap.size(); }
779 
push(const T & Elt)780   void push(const T &Elt) override {
781     CallBase *CB = Elt.first;
782     const int InlineHistoryID = Elt.second;
783     const PriorityT Goodness = PriorityT::evaluate(CB);
784 
785     Heap.push_back({CB, Goodness});
786     std::push_heap(Heap.begin(), Heap.end(), cmp);
787     InlineHistoryMap[CB] = InlineHistoryID;
788   }
789 
pop()790   T pop() override {
791     assert(size() > 0);
792     adjust();
793 
794     CallBase *CB = Heap.front().first;
795     T Result = std::make_pair(CB, InlineHistoryMap[CB]);
796     InlineHistoryMap.erase(CB);
797     std::pop_heap(Heap.begin(), Heap.end(), cmp);
798     Heap.pop_back();
799     return Result;
800   }
801 
front()802   const_reference front() override {
803     assert(size() > 0);
804     adjust();
805 
806     CallBase *CB = Heap.front().first;
807     return *InlineHistoryMap.find(CB);
808   }
809 
erase_if(function_ref<bool (T)> Pred)810   void erase_if(function_ref<bool(T)> Pred) override {
811     auto PredWrapper = [=](HeapT P) -> bool {
812       return Pred(std::make_pair(P.first, 0));
813     };
814     Heap.erase(std::remove_if(Heap.begin(), Heap.end(), PredWrapper),
815                Heap.end());
816     std::make_heap(Heap.begin(), Heap.end(), cmp);
817   }
818 
819 private:
820   SmallVector<HeapT, 16> Heap;
821   DenseMap<CallBase *, int> InlineHistoryMap;
822 };
823 
run(LazyCallGraph::SCC & InitialC,CGSCCAnalysisManager & AM,LazyCallGraph & CG,CGSCCUpdateResult & UR)824 PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC,
825                                    CGSCCAnalysisManager &AM, LazyCallGraph &CG,
826                                    CGSCCUpdateResult &UR) {
827   const auto &MAMProxy =
828       AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG);
829   bool Changed = false;
830 
831   assert(InitialC.size() > 0 && "Cannot handle an empty SCC!");
832   Module &M = *InitialC.begin()->getFunction().getParent();
833   ProfileSummaryInfo *PSI = MAMProxy.getCachedResult<ProfileSummaryAnalysis>(M);
834 
835   FunctionAnalysisManager &FAM =
836       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(InitialC, CG)
837           .getManager();
838 
839   InlineAdvisor &Advisor = getAdvisor(MAMProxy, FAM, M);
840   Advisor.onPassEntry();
841 
842   auto AdvisorOnExit = make_scope_exit([&] { Advisor.onPassExit(); });
843 
844   // We use a single common worklist for calls across the entire SCC. We
845   // process these in-order and append new calls introduced during inlining to
846   // the end. The PriorityInlineOrder is optional here, in which the smaller
847   // callee would have a higher priority to inline.
848   //
849   // Note that this particular order of processing is actually critical to
850   // avoid very bad behaviors. Consider *highly connected* call graphs where
851   // each function contains a small amount of code and a couple of calls to
852   // other functions. Because the LLVM inliner is fundamentally a bottom-up
853   // inliner, it can handle gracefully the fact that these all appear to be
854   // reasonable inlining candidates as it will flatten things until they become
855   // too big to inline, and then move on and flatten another batch.
856   //
857   // However, when processing call edges *within* an SCC we cannot rely on this
858   // bottom-up behavior. As a consequence, with heavily connected *SCCs* of
859   // functions we can end up incrementally inlining N calls into each of
860   // N functions because each incremental inlining decision looks good and we
861   // don't have a topological ordering to prevent explosions.
862   //
863   // To compensate for this, we don't process transitive edges made immediate
864   // by inlining until we've done one pass of inlining across the entire SCC.
865   // Large, highly connected SCCs still lead to some amount of code bloat in
866   // this model, but it is uniformly spread across all the functions in the SCC
867   // and eventually they all become too large to inline, rather than
868   // incrementally maknig a single function grow in a super linear fashion.
869   std::unique_ptr<InlineOrder<std::pair<CallBase *, int>>> Calls;
870   if (InlineEnablePriorityOrder)
871     Calls = std::make_unique<PriorityInlineOrder<Priority>>();
872   else
873     Calls = std::make_unique<DefaultInlineOrder<std::pair<CallBase *, int>>>();
874   assert(Calls != nullptr && "Expected an initialized InlineOrder");
875 
876   // Populate the initial list of calls in this SCC.
877   for (auto &N : InitialC) {
878     auto &ORE =
879         FAM.getResult<OptimizationRemarkEmitterAnalysis>(N.getFunction());
880     // We want to generally process call sites top-down in order for
881     // simplifications stemming from replacing the call with the returned value
882     // after inlining to be visible to subsequent inlining decisions.
883     // FIXME: Using instructions sequence is a really bad way to do this.
884     // Instead we should do an actual RPO walk of the function body.
885     for (Instruction &I : instructions(N.getFunction()))
886       if (auto *CB = dyn_cast<CallBase>(&I))
887         if (Function *Callee = CB->getCalledFunction()) {
888           if (!Callee->isDeclaration())
889             Calls->push({CB, -1});
890           else if (!isa<IntrinsicInst>(I)) {
891             using namespace ore;
892             setInlineRemark(*CB, "unavailable definition");
893             ORE.emit([&]() {
894               return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
895                      << NV("Callee", Callee) << " will not be inlined into "
896                      << NV("Caller", CB->getCaller())
897                      << " because its definition is unavailable"
898                      << setIsVerbose();
899             });
900           }
901         }
902   }
903   if (Calls->empty())
904     return PreservedAnalyses::all();
905 
906   // Capture updatable variable for the current SCC.
907   auto *C = &InitialC;
908 
909   // When inlining a callee produces new call sites, we want to keep track of
910   // the fact that they were inlined from the callee.  This allows us to avoid
911   // infinite inlining in some obscure cases.  To represent this, we use an
912   // index into the InlineHistory vector.
913   SmallVector<std::pair<Function *, int>, 16> InlineHistory;
914 
915   // Track a set vector of inlined callees so that we can augment the caller
916   // with all of their edges in the call graph before pruning out the ones that
917   // got simplified away.
918   SmallSetVector<Function *, 4> InlinedCallees;
919 
920   // Track the dead functions to delete once finished with inlining calls. We
921   // defer deleting these to make it easier to handle the call graph updates.
922   SmallVector<Function *, 4> DeadFunctions;
923 
924   // Loop forward over all of the calls.
925   while (!Calls->empty()) {
926     // We expect the calls to typically be batched with sequences of calls that
927     // have the same caller, so we first set up some shared infrastructure for
928     // this caller. We also do any pruning we can at this layer on the caller
929     // alone.
930     Function &F = *Calls->front().first->getCaller();
931     LazyCallGraph::Node &N = *CG.lookup(F);
932     if (CG.lookupSCC(N) != C) {
933       Calls->pop();
934       continue;
935     }
936 
937     LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n"
938                       << "    Function size: " << F.getInstructionCount()
939                       << "\n");
940 
941     auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
942       return FAM.getResult<AssumptionAnalysis>(F);
943     };
944 
945     // Now process as many calls as we have within this caller in the sequence.
946     // We bail out as soon as the caller has to change so we can update the
947     // call graph and prepare the context of that new caller.
948     bool DidInline = false;
949     while (!Calls->empty() && Calls->front().first->getCaller() == &F) {
950       auto P = Calls->pop();
951       CallBase *CB = P.first;
952       const int InlineHistoryID = P.second;
953       Function &Callee = *CB->getCalledFunction();
954 
955       if (InlineHistoryID != -1 &&
956           inlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) {
957         setInlineRemark(*CB, "recursive");
958         continue;
959       }
960 
961       // Check if this inlining may repeat breaking an SCC apart that has
962       // already been split once before. In that case, inlining here may
963       // trigger infinite inlining, much like is prevented within the inliner
964       // itself by the InlineHistory above, but spread across CGSCC iterations
965       // and thus hidden from the full inline history.
966       if (CG.lookupSCC(*CG.lookup(Callee)) == C &&
967           UR.InlinedInternalEdges.count({&N, C})) {
968         LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node "
969                              "previously split out of this SCC by inlining: "
970                           << F.getName() << " -> " << Callee.getName() << "\n");
971         setInlineRemark(*CB, "recursive SCC split");
972         continue;
973       }
974 
975       auto Advice = Advisor.getAdvice(*CB, OnlyMandatory);
976       // Check whether we want to inline this callsite.
977       if (!Advice->isInliningRecommended()) {
978         Advice->recordUnattemptedInlining();
979         continue;
980       }
981 
982       // Setup the data structure used to plumb customization into the
983       // `InlineFunction` routine.
984       InlineFunctionInfo IFI(
985           /*cg=*/nullptr, GetAssumptionCache, PSI,
986           &FAM.getResult<BlockFrequencyAnalysis>(*(CB->getCaller())),
987           &FAM.getResult<BlockFrequencyAnalysis>(Callee));
988 
989       InlineResult IR =
990           InlineFunction(*CB, IFI, &FAM.getResult<AAManager>(*CB->getCaller()));
991       if (!IR.isSuccess()) {
992         Advice->recordUnsuccessfulInlining(IR);
993         continue;
994       }
995 
996       DidInline = true;
997       InlinedCallees.insert(&Callee);
998       ++NumInlined;
999 
1000       LLVM_DEBUG(dbgs() << "    Size after inlining: "
1001                         << F.getInstructionCount() << "\n");
1002 
1003       // Add any new callsites to defined functions to the worklist.
1004       if (!IFI.InlinedCallSites.empty()) {
1005         int NewHistoryID = InlineHistory.size();
1006         InlineHistory.push_back({&Callee, InlineHistoryID});
1007 
1008         for (CallBase *ICB : reverse(IFI.InlinedCallSites)) {
1009           Function *NewCallee = ICB->getCalledFunction();
1010           assert(!(NewCallee && NewCallee->isIntrinsic()) &&
1011                  "Intrinsic calls should not be tracked.");
1012           if (!NewCallee) {
1013             // Try to promote an indirect (virtual) call without waiting for
1014             // the post-inline cleanup and the next DevirtSCCRepeatedPass
1015             // iteration because the next iteration may not happen and we may
1016             // miss inlining it.
1017             if (tryPromoteCall(*ICB))
1018               NewCallee = ICB->getCalledFunction();
1019           }
1020           if (NewCallee)
1021             if (!NewCallee->isDeclaration())
1022               Calls->push({ICB, NewHistoryID});
1023         }
1024       }
1025 
1026       // Merge the attributes based on the inlining.
1027       AttributeFuncs::mergeAttributesForInlining(F, Callee);
1028 
1029       // For local functions, check whether this makes the callee trivially
1030       // dead. In that case, we can drop the body of the function eagerly
1031       // which may reduce the number of callers of other functions to one,
1032       // changing inline cost thresholds.
1033       bool CalleeWasDeleted = false;
1034       if (Callee.hasLocalLinkage()) {
1035         // To check this we also need to nuke any dead constant uses (perhaps
1036         // made dead by this operation on other functions).
1037         Callee.removeDeadConstantUsers();
1038         if (Callee.use_empty() && !CG.isLibFunction(Callee)) {
1039           Calls->erase_if([&](const std::pair<CallBase *, int> &Call) {
1040             return Call.first->getCaller() == &Callee;
1041           });
1042           // Clear the body and queue the function itself for deletion when we
1043           // finish inlining and call graph updates.
1044           // Note that after this point, it is an error to do anything other
1045           // than use the callee's address or delete it.
1046           Callee.dropAllReferences();
1047           assert(!is_contained(DeadFunctions, &Callee) &&
1048                  "Cannot put cause a function to become dead twice!");
1049           DeadFunctions.push_back(&Callee);
1050           CalleeWasDeleted = true;
1051         }
1052       }
1053       if (CalleeWasDeleted)
1054         Advice->recordInliningWithCalleeDeleted();
1055       else
1056         Advice->recordInlining();
1057     }
1058 
1059     if (!DidInline)
1060       continue;
1061     Changed = true;
1062 
1063     // At this point, since we have made changes we have at least removed
1064     // a call instruction. However, in the process we do some incremental
1065     // simplification of the surrounding code. This simplification can
1066     // essentially do all of the same things as a function pass and we can
1067     // re-use the exact same logic for updating the call graph to reflect the
1068     // change.
1069 
1070     // Inside the update, we also update the FunctionAnalysisManager in the
1071     // proxy for this particular SCC. We do this as the SCC may have changed and
1072     // as we're going to mutate this particular function we want to make sure
1073     // the proxy is in place to forward any invalidation events.
1074     LazyCallGraph::SCC *OldC = C;
1075     C = &updateCGAndAnalysisManagerForCGSCCPass(CG, *C, N, AM, UR, FAM);
1076     LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n");
1077 
1078     // If this causes an SCC to split apart into multiple smaller SCCs, there
1079     // is a subtle risk we need to prepare for. Other transformations may
1080     // expose an "infinite inlining" opportunity later, and because of the SCC
1081     // mutation, we will revisit this function and potentially re-inline. If we
1082     // do, and that re-inlining also has the potentially to mutate the SCC
1083     // structure, the infinite inlining problem can manifest through infinite
1084     // SCC splits and merges. To avoid this, we capture the originating caller
1085     // node and the SCC containing the call edge. This is a slight over
1086     // approximation of the possible inlining decisions that must be avoided,
1087     // but is relatively efficient to store. We use C != OldC to know when
1088     // a new SCC is generated and the original SCC may be generated via merge
1089     // in later iterations.
1090     //
1091     // It is also possible that even if no new SCC is generated
1092     // (i.e., C == OldC), the original SCC could be split and then merged
1093     // into the same one as itself. and the original SCC will be added into
1094     // UR.CWorklist again, we want to catch such cases too.
1095     //
1096     // FIXME: This seems like a very heavyweight way of retaining the inline
1097     // history, we should look for a more efficient way of tracking it.
1098     if ((C != OldC || UR.CWorklist.count(OldC)) &&
1099         llvm::any_of(InlinedCallees, [&](Function *Callee) {
1100           return CG.lookupSCC(*CG.lookup(*Callee)) == OldC;
1101         })) {
1102       LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, "
1103                            "retaining this to avoid infinite inlining.\n");
1104       UR.InlinedInternalEdges.insert({&N, OldC});
1105     }
1106     InlinedCallees.clear();
1107   }
1108 
1109   // Now that we've finished inlining all of the calls across this SCC, delete
1110   // all of the trivially dead functions, updating the call graph and the CGSCC
1111   // pass manager in the process.
1112   //
1113   // Note that this walks a pointer set which has non-deterministic order but
1114   // that is OK as all we do is delete things and add pointers to unordered
1115   // sets.
1116   for (Function *DeadF : DeadFunctions) {
1117     // Get the necessary information out of the call graph and nuke the
1118     // function there. Also, clear out any cached analyses.
1119     auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF));
1120     FAM.clear(*DeadF, DeadF->getName());
1121     AM.clear(DeadC, DeadC.getName());
1122     auto &DeadRC = DeadC.getOuterRefSCC();
1123     CG.removeDeadFunction(*DeadF);
1124 
1125     // Mark the relevant parts of the call graph as invalid so we don't visit
1126     // them.
1127     UR.InvalidatedSCCs.insert(&DeadC);
1128     UR.InvalidatedRefSCCs.insert(&DeadRC);
1129 
1130     // If the updated SCC was the one containing the deleted function, clear it.
1131     if (&DeadC == UR.UpdatedC)
1132       UR.UpdatedC = nullptr;
1133 
1134     // And delete the actual function from the module.
1135     // The Advisor may use Function pointers to efficiently index various
1136     // internal maps, e.g. for memoization. Function cleanup passes like
1137     // argument promotion create new functions. It is possible for a new
1138     // function to be allocated at the address of a deleted function. We could
1139     // index using names, but that's inefficient. Alternatively, we let the
1140     // Advisor free the functions when it sees fit.
1141     DeadF->getBasicBlockList().clear();
1142     M.getFunctionList().remove(DeadF);
1143 
1144     ++NumDeleted;
1145   }
1146 
1147   if (!Changed)
1148     return PreservedAnalyses::all();
1149 
1150   // Even if we change the IR, we update the core CGSCC data structures and so
1151   // can preserve the proxy to the function analysis manager.
1152   PreservedAnalyses PA;
1153   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
1154   return PA;
1155 }
1156 
ModuleInlinerWrapperPass(InlineParams Params,bool MandatoryFirst,InliningAdvisorMode Mode,unsigned MaxDevirtIterations)1157 ModuleInlinerWrapperPass::ModuleInlinerWrapperPass(InlineParams Params,
1158                                                    bool MandatoryFirst,
1159                                                    InliningAdvisorMode Mode,
1160                                                    unsigned MaxDevirtIterations)
1161     : Params(Params), Mode(Mode), MaxDevirtIterations(MaxDevirtIterations),
1162       PM(), MPM() {
1163   // Run the inliner first. The theory is that we are walking bottom-up and so
1164   // the callees have already been fully optimized, and we want to inline them
1165   // into the callers so that our optimizations can reflect that.
1166   // For PreLinkThinLTO pass, we disable hot-caller heuristic for sample PGO
1167   // because it makes profile annotation in the backend inaccurate.
1168   if (MandatoryFirst)
1169     PM.addPass(InlinerPass(/*OnlyMandatory*/ true));
1170   PM.addPass(InlinerPass());
1171 }
1172 
run(Module & M,ModuleAnalysisManager & MAM)1173 PreservedAnalyses ModuleInlinerWrapperPass::run(Module &M,
1174                                                 ModuleAnalysisManager &MAM) {
1175   auto &IAA = MAM.getResult<InlineAdvisorAnalysis>(M);
1176   if (!IAA.tryCreate(Params, Mode, CGSCCInlineReplayFile)) {
1177     M.getContext().emitError(
1178         "Could not setup Inlining Advisor for the requested "
1179         "mode and/or options");
1180     return PreservedAnalyses::all();
1181   }
1182 
1183   // We wrap the CGSCC pipeline in a devirtualization repeater. This will try
1184   // to detect when we devirtualize indirect calls and iterate the SCC passes
1185   // in that case to try and catch knock-on inlining or function attrs
1186   // opportunities. Then we add it to the module pipeline by walking the SCCs
1187   // in postorder (or bottom-up).
1188   // If MaxDevirtIterations is 0, we just don't use the devirtualization
1189   // wrapper.
1190   if (MaxDevirtIterations == 0)
1191     MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(PM)));
1192   else
1193     MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(
1194         createDevirtSCCRepeatedPass(std::move(PM), MaxDevirtIterations)));
1195   MPM.run(M, MAM);
1196 
1197   IAA.clear();
1198 
1199   // The ModulePassManager has already taken care of invalidating analyses.
1200   return PreservedAnalyses::all();
1201 }
1202