1 /*
2  * Copyright (C) 2005-2007  Brian Paul   All Rights Reserved.
3  * Copyright (C) 2008  VMware, Inc.   All Rights Reserved.
4  * Copyright © 2010 Intel Corporation
5  * Copyright © 2011 Bryan Cain
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the "Software"),
9  * to deal in the Software without restriction, including without limitation
10  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11  * and/or sell copies of the Software, and to permit persons to whom the
12  * Software is furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the next
15  * paragraph) shall be included in all copies or substantial portions of the
16  * Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
23  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
24  * DEALINGS IN THE SOFTWARE.
25  */
26 
27 /**
28  * \file glsl_to_tgsi.cpp
29  *
30  * Translate GLSL IR to TGSI.
31  */
32 
33 #include "st_glsl_to_tgsi.h"
34 #include "st_program.h"
35 
36 #include "compiler/glsl/glsl_parser_extras.h"
37 #include "compiler/glsl/ir_optimization.h"
38 #include "compiler/glsl/linker.h"
39 #include "compiler/glsl/program.h"
40 #include "compiler/glsl/string_to_uint_map.h"
41 
42 #include "main/errors.h"
43 #include "main/shaderobj.h"
44 #include "main/uniforms.h"
45 #include "main/shaderapi.h"
46 #include "program/prog_instruction.h"
47 
48 #include "pipe/p_context.h"
49 #include "pipe/p_screen.h"
50 #include "tgsi/tgsi_ureg.h"
51 #include "tgsi/tgsi_info.h"
52 #include "util/u_math.h"
53 #include "util/u_memory.h"
54 #include "st_program.h"
55 #include "st_format.h"
56 #include "st_glsl_to_tgsi_temprename.h"
57 
58 #include "util/hash_table.h"
59 #include <algorithm>
60 
61 #define PROGRAM_ANY_CONST ((1 << PROGRAM_STATE_VAR) |    \
62                            (1 << PROGRAM_CONSTANT) |     \
63                            (1 << PROGRAM_UNIFORM))
64 
65 #define MAX_GLSL_TEXTURE_OFFSET 4
66 
67 #ifndef NDEBUG
68 #include "util/u_atomic.h"
69 #include "util/simple_mtx.h"
70 #include <fstream>
71 #include <ios>
72 
73 /* Prepare to make it possible to specify log file */
74 static std::ofstream stats_log;
75 
76 /* Helper function to check whether we want to write some statistics
77  * of the shader conversion.
78  */
79 
80 static simple_mtx_t print_stats_mutex = _SIMPLE_MTX_INITIALIZER_NP;
81 
print_stats_enabled()82 static inline bool print_stats_enabled ()
83 {
84    static int stats_enabled = 0;
85 
86    if (!stats_enabled) {
87       simple_mtx_lock(&print_stats_mutex);
88       if (!stats_enabled) {
89 	 const char *stats_filename = getenv("GLSL_TO_TGSI_PRINT_STATS");
90 	 if (stats_filename) {
91 	    bool write_header = std::ifstream(stats_filename).fail();
92 	    stats_log.open(stats_filename, std::ios_base::out | std::ios_base::app);
93 	    stats_enabled = stats_log.good() ? 1 : -1;
94 	    if (write_header)
95 	       stats_log << "arrays,temps,temps in arrays,total,instructions\n";
96 	 } else {
97 	    stats_enabled = -1;
98 	 }
99       }
100       simple_mtx_unlock(&print_stats_mutex);
101    }
102    return stats_enabled > 0;
103 }
104 #define PRINT_STATS(X) if (print_stats_enabled()) do { X; } while (false);
105 #else
106 #define PRINT_STATS(X)
107 #endif
108 
109 
110 namespace {
111 
112 class add_uniform_to_shader : public program_resource_visitor {
113 public:
add_uniform_to_shader(struct gl_context * ctx,struct gl_shader_program * shader_program,struct gl_program_parameter_list * params)114    add_uniform_to_shader(struct gl_context *ctx,
115                          struct gl_shader_program *shader_program,
116 			 struct gl_program_parameter_list *params)
117       : ctx(ctx), shader_program(shader_program), params(params), idx(-1),
118         var(NULL)
119    {
120       /* empty */
121    }
122 
process(ir_variable * var)123    void process(ir_variable *var)
124    {
125       this->idx = -1;
126       this->var = var;
127       this->program_resource_visitor::process(var,
128                                          ctx->Const.UseSTD430AsDefaultPacking);
129       var->data.param_index = this->idx;
130    }
131 
132 private:
133    virtual void visit_field(const glsl_type *type, const char *name,
134                             bool row_major, const glsl_type *record_type,
135                             const enum glsl_interface_packing packing,
136                             bool last_field);
137 
138    struct gl_context *ctx;
139    struct gl_shader_program *shader_program;
140    struct gl_program_parameter_list *params;
141    int idx;
142    ir_variable *var;
143 };
144 
145 } /* anonymous namespace */
146 
147 void
visit_field(const glsl_type * type,const char * name,bool,const glsl_type *,const enum glsl_interface_packing,bool)148 add_uniform_to_shader::visit_field(const glsl_type *type, const char *name,
149                                    bool /* row_major */,
150                                    const glsl_type * /* record_type */,
151                                    const enum glsl_interface_packing,
152                                    bool /* last_field */)
153 {
154    /* opaque types don't use storage in the param list unless they are
155     * bindless samplers or images.
156     */
157    if (type->contains_opaque() && !var->data.bindless)
158       return;
159 
160    /* Add the uniform to the param list */
161    assert(_mesa_lookup_parameter_index(params, name) < 0);
162    int index = _mesa_lookup_parameter_index(params, name);
163 
164    unsigned num_params = type->arrays_of_arrays_size();
165    num_params = MAX2(num_params, 1);
166    num_params *= type->without_array()->matrix_columns;
167 
168    bool is_dual_slot = type->without_array()->is_dual_slot();
169    if (is_dual_slot)
170       num_params *= 2;
171 
172    _mesa_reserve_parameter_storage(params, num_params, num_params);
173    index = params->NumParameters;
174 
175    if (ctx->Const.PackedDriverUniformStorage) {
176       for (unsigned i = 0; i < num_params; i++) {
177          unsigned dmul = type->without_array()->is_64bit() ? 2 : 1;
178          unsigned comps = type->without_array()->vector_elements * dmul;
179          if (is_dual_slot) {
180             if (i & 0x1)
181                comps -= 4;
182             else
183                comps = 4;
184          }
185 
186          _mesa_add_parameter(params, PROGRAM_UNIFORM, name, comps,
187                              type->gl_type, NULL, NULL, false);
188       }
189    } else {
190       for (unsigned i = 0; i < num_params; i++) {
191          _mesa_add_parameter(params, PROGRAM_UNIFORM, name, 4,
192                              type->gl_type, NULL, NULL, true);
193       }
194    }
195 
196    /* The first part of the uniform that's processed determines the base
197     * location of the whole uniform (for structures).
198     */
199    if (this->idx < 0)
200       this->idx = index;
201 
202    /* Each Parameter will hold the index to the backing uniform storage.
203     * This avoids relying on names to match parameters and uniform
204     * storages later when associating uniform storage.
205     */
206    unsigned location = -1;
207    ASSERTED const bool found =
208       shader_program->UniformHash->get(location, params->Parameters[index].Name);
209    assert(found);
210 
211    for (unsigned i = 0; i < num_params; i++) {
212       struct gl_program_parameter *param = &params->Parameters[index + i];
213       param->UniformStorageIndex = location;
214       param->MainUniformStorageIndex = params->Parameters[this->idx].UniformStorageIndex;
215    }
216 }
217 
218 /**
219  * Generate the program parameters list for the user uniforms in a shader
220  *
221  * \param shader_program Linked shader program.  This is only used to
222  *                       emit possible link errors to the info log.
223  * \param sh             Shader whose uniforms are to be processed.
224  * \param params         Parameter list to be filled in.
225  */
226 static void
generate_parameters_list_for_uniforms(struct gl_context * ctx,struct gl_shader_program * shader_program,struct gl_linked_shader * sh,struct gl_program_parameter_list * params)227 generate_parameters_list_for_uniforms(struct gl_context *ctx,
228                                       struct gl_shader_program *shader_program,
229                                       struct gl_linked_shader *sh,
230                                       struct gl_program_parameter_list *params)
231 {
232    add_uniform_to_shader add(ctx, shader_program, params);
233 
234    foreach_in_list(ir_instruction, node, sh->ir) {
235       ir_variable *var = node->as_variable();
236 
237       if ((var == NULL) || (var->data.mode != ir_var_uniform)
238 	  || var->is_in_buffer_block() || (strncmp(var->name, "gl_", 3) == 0))
239 	 continue;
240 
241       add.process(var);
242    }
243 }
244 
is_precise(const ir_variable * ir)245 static unsigned is_precise(const ir_variable *ir)
246 {
247    if (!ir)
248       return 0;
249    return ir->data.precise || ir->data.invariant;
250 }
251 
252 class variable_storage {
253    DECLARE_RZALLOC_CXX_OPERATORS(variable_storage)
254 
255 public:
variable_storage(ir_variable * var,gl_register_file file,int index,unsigned array_id=0)256    variable_storage(ir_variable *var, gl_register_file file, int index,
257                     unsigned array_id = 0)
258       : file(file), index(index), component(0), var(var), array_id(array_id)
259    {
260       assert(file != PROGRAM_ARRAY || array_id != 0);
261    }
262 
263    gl_register_file file;
264    int index;
265 
266    /* Explicit component location. This is given in terms of the GLSL-style
267     * swizzles where each double is a single component, i.e. for 64-bit types
268     * it can only be 0 or 1.
269     */
270    int component;
271    ir_variable *var; /* variable that maps to this, if any */
272    unsigned array_id;
273 };
274 
275 class immediate_storage : public exec_node {
276 public:
immediate_storage(gl_constant_value * values,int size32,GLenum type)277    immediate_storage(gl_constant_value *values, int size32, GLenum type)
278    {
279       memcpy(this->values, values, size32 * sizeof(gl_constant_value));
280       this->size32 = size32;
281       this->type = type;
282    }
283 
284    /* doubles are stored across 2 gl_constant_values */
285    gl_constant_value values[4];
286    int size32; /**< Number of 32-bit components (1-4) */
287    GLenum type; /**< GL_DOUBLE, GL_FLOAT, GL_INT, GL_BOOL, or GL_UNSIGNED_INT */
288 };
289 
290 static const st_src_reg undef_src = st_src_reg(PROGRAM_UNDEFINED, 0, GLSL_TYPE_ERROR);
291 static const st_dst_reg undef_dst = st_dst_reg(PROGRAM_UNDEFINED, SWIZZLE_NOOP, GLSL_TYPE_ERROR);
292 
293 struct inout_decl {
294    unsigned mesa_index;
295    unsigned array_id; /* TGSI ArrayID; 1-based: 0 means not an array */
296    unsigned size;
297    unsigned interp_loc;
298    unsigned gs_out_streams;
299    enum glsl_interp_mode interp;
300    enum glsl_base_type base_type;
301    ubyte usage_mask; /* GLSL-style usage-mask,  i.e. single bit per double */
302    bool invariant;
303 };
304 
305 static struct inout_decl *
find_inout_array(struct inout_decl * decls,unsigned count,unsigned array_id)306 find_inout_array(struct inout_decl *decls, unsigned count, unsigned array_id)
307 {
308    assert(array_id != 0);
309 
310    for (unsigned i = 0; i < count; i++) {
311       struct inout_decl *decl = &decls[i];
312 
313       if (array_id == decl->array_id) {
314          return decl;
315       }
316    }
317 
318    return NULL;
319 }
320 
321 static enum glsl_base_type
find_array_type(struct inout_decl * decls,unsigned count,unsigned array_id)322 find_array_type(struct inout_decl *decls, unsigned count, unsigned array_id)
323 {
324    if (!array_id)
325       return GLSL_TYPE_ERROR;
326    struct inout_decl *decl = find_inout_array(decls, count, array_id);
327    if (decl)
328       return decl->base_type;
329    return GLSL_TYPE_ERROR;
330 }
331 
332 struct hwatomic_decl {
333    unsigned location;
334    unsigned binding;
335    unsigned size;
336    unsigned array_id;
337 };
338 
339 struct glsl_to_tgsi_visitor : public ir_visitor {
340 public:
341    glsl_to_tgsi_visitor();
342    ~glsl_to_tgsi_visitor();
343 
344    struct gl_context *ctx;
345    struct gl_program *prog;
346    struct gl_shader_program *shader_program;
347    struct gl_linked_shader *shader;
348    struct gl_shader_compiler_options *options;
349 
350    int next_temp;
351 
352    unsigned *array_sizes;
353    unsigned max_num_arrays;
354    unsigned next_array;
355 
356    struct inout_decl inputs[4 * PIPE_MAX_SHADER_INPUTS];
357    unsigned num_inputs;
358    unsigned num_input_arrays;
359    struct inout_decl outputs[4 * PIPE_MAX_SHADER_OUTPUTS];
360    unsigned num_outputs;
361    unsigned num_output_arrays;
362 
363    struct hwatomic_decl atomic_info[PIPE_MAX_HW_ATOMIC_BUFFERS];
364    unsigned num_atomics;
365    unsigned num_atomic_arrays;
366    int num_address_regs;
367    uint32_t samplers_used;
368    glsl_base_type sampler_types[PIPE_MAX_SAMPLERS];
369    enum tgsi_texture_type sampler_targets[PIPE_MAX_SAMPLERS];
370    int images_used;
371    enum tgsi_texture_type image_targets[PIPE_MAX_SHADER_IMAGES];
372    enum pipe_format image_formats[PIPE_MAX_SHADER_IMAGES];
373    bool image_wr[PIPE_MAX_SHADER_IMAGES];
374    bool indirect_addr_consts;
375    int wpos_transform_const;
376 
377    bool native_integers;
378    bool have_sqrt;
379    bool have_fma;
380    bool use_shared_memory;
381    bool has_tex_txf_lz;
382    bool precise;
383    bool tg4_component_in_swizzle;
384 
385    variable_storage *find_variable_storage(ir_variable *var);
386 
387    int add_constant(gl_register_file file, gl_constant_value values[8],
388                     int size, GLenum datatype, uint16_t *swizzle_out);
389 
390    st_src_reg get_temp(const glsl_type *type);
391    void reladdr_to_temp(ir_instruction *ir, st_src_reg *reg, int *num_reladdr);
392 
393    st_src_reg st_src_reg_for_double(double val);
394    st_src_reg st_src_reg_for_float(float val);
395    st_src_reg st_src_reg_for_int(int val);
396    st_src_reg st_src_reg_for_int64(int64_t val);
397    st_src_reg st_src_reg_for_type(enum glsl_base_type type, int val);
398 
399    /**
400     * \name Visit methods
401     *
402     * As typical for the visitor pattern, there must be one \c visit method for
403     * each concrete subclass of \c ir_instruction.  Virtual base classes within
404     * the hierarchy should not have \c visit methods.
405     */
406    /*@{*/
407    virtual void visit(ir_variable *);
408    virtual void visit(ir_loop *);
409    virtual void visit(ir_loop_jump *);
410    virtual void visit(ir_function_signature *);
411    virtual void visit(ir_function *);
412    virtual void visit(ir_expression *);
413    virtual void visit(ir_swizzle *);
414    virtual void visit(ir_dereference_variable  *);
415    virtual void visit(ir_dereference_array *);
416    virtual void visit(ir_dereference_record *);
417    virtual void visit(ir_assignment *);
418    virtual void visit(ir_constant *);
419    virtual void visit(ir_call *);
420    virtual void visit(ir_return *);
421    virtual void visit(ir_discard *);
422    virtual void visit(ir_demote *);
423    virtual void visit(ir_texture *);
424    virtual void visit(ir_if *);
425    virtual void visit(ir_emit_vertex *);
426    virtual void visit(ir_end_primitive *);
427    virtual void visit(ir_barrier *);
428    /*@}*/
429 
430    void ATTRIBUTE_NOINLINE visit_expression(ir_expression *, st_src_reg *);
431 
432    void visit_atomic_counter_intrinsic(ir_call *);
433    void visit_ssbo_intrinsic(ir_call *);
434    void visit_membar_intrinsic(ir_call *);
435    void visit_shared_intrinsic(ir_call *);
436    void visit_image_intrinsic(ir_call *);
437    void visit_generic_intrinsic(ir_call *, enum tgsi_opcode op);
438 
439    st_src_reg result;
440 
441    /** List of variable_storage */
442    struct hash_table *variables;
443 
444    /** List of immediate_storage */
445    exec_list immediates;
446    unsigned num_immediates;
447 
448    /** List of glsl_to_tgsi_instruction */
449    exec_list instructions;
450 
451    glsl_to_tgsi_instruction *emit_asm(ir_instruction *ir, enum tgsi_opcode op,
452                                       st_dst_reg dst = undef_dst,
453                                       st_src_reg src0 = undef_src,
454                                       st_src_reg src1 = undef_src,
455                                       st_src_reg src2 = undef_src,
456                                       st_src_reg src3 = undef_src);
457 
458    glsl_to_tgsi_instruction *emit_asm(ir_instruction *ir, enum tgsi_opcode op,
459                                       st_dst_reg dst, st_dst_reg dst1,
460                                       st_src_reg src0 = undef_src,
461                                       st_src_reg src1 = undef_src,
462                                       st_src_reg src2 = undef_src,
463                                       st_src_reg src3 = undef_src);
464 
465    enum tgsi_opcode get_opcode(enum tgsi_opcode op,
466                                st_dst_reg dst,
467                                st_src_reg src0, st_src_reg src1);
468 
469    /**
470     * Emit the correct dot-product instruction for the type of arguments
471     */
472    glsl_to_tgsi_instruction *emit_dp(ir_instruction *ir,
473                                      st_dst_reg dst,
474                                      st_src_reg src0,
475                                      st_src_reg src1,
476                                      unsigned elements);
477 
478    void emit_scalar(ir_instruction *ir, enum tgsi_opcode op,
479                     st_dst_reg dst, st_src_reg src0);
480 
481    void emit_scalar(ir_instruction *ir, enum tgsi_opcode op,
482                     st_dst_reg dst, st_src_reg src0, st_src_reg src1);
483 
484    void emit_arl(ir_instruction *ir, st_dst_reg dst, st_src_reg src0);
485 
486    void get_deref_offsets(ir_dereference *ir,
487                           unsigned *array_size,
488                           unsigned *base,
489                           uint16_t *index,
490                           st_src_reg *reladdr,
491                           bool opaque);
492   void calc_deref_offsets(ir_dereference *tail,
493                           unsigned *array_elements,
494                           uint16_t *index,
495                           st_src_reg *indirect,
496                           unsigned *location);
497    st_src_reg canonicalize_gather_offset(st_src_reg offset);
498    bool handle_bound_deref(ir_dereference *ir);
499 
500    bool try_emit_mad(ir_expression *ir,
501               int mul_operand);
502    bool try_emit_mad_for_and_not(ir_expression *ir,
503               int mul_operand);
504 
505    void emit_swz(ir_expression *ir);
506 
507    bool process_move_condition(ir_rvalue *ir);
508 
509    void simplify_cmp(void);
510 
511    void rename_temp_registers(struct rename_reg_pair *renames);
512    void get_first_temp_read(int *first_reads);
513    void get_first_temp_write(int *first_writes);
514    void get_last_temp_read_first_temp_write(int *last_reads, int *first_writes);
515    void get_last_temp_write(int *last_writes);
516 
517    void copy_propagate(void);
518    int eliminate_dead_code(void);
519 
520    void split_arrays(void);
521    void merge_two_dsts(void);
522    void merge_registers(void);
523    void renumber_registers(void);
524 
525    void emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
526                        st_dst_reg *l, st_src_reg *r,
527                        st_src_reg *cond, bool cond_swap);
528 
529    void print_stats();
530 
531    void *mem_ctx;
532 };
533 
534 static st_dst_reg address_reg = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X,
535                                            GLSL_TYPE_FLOAT, 0);
536 static st_dst_reg address_reg2 = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X,
537                                             GLSL_TYPE_FLOAT, 1);
538 static st_dst_reg sampler_reladdr = st_dst_reg(PROGRAM_ADDRESS, WRITEMASK_X,
539                                                GLSL_TYPE_FLOAT, 2);
540 
541 static void
542 fail_link(struct gl_shader_program *prog, const char *fmt, ...)
543    PRINTFLIKE(2, 3);
544 
545 static void
fail_link(struct gl_shader_program * prog,const char * fmt,...)546 fail_link(struct gl_shader_program *prog, const char *fmt, ...)
547 {
548    va_list args;
549    va_start(args, fmt);
550    ralloc_vasprintf_append(&prog->data->InfoLog, fmt, args);
551    va_end(args);
552 
553    prog->data->LinkStatus = LINKING_FAILURE;
554 }
555 
556 int
swizzle_for_size(int size)557 swizzle_for_size(int size)
558 {
559    static const int size_swizzles[4] = {
560       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_X),
561       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Y, SWIZZLE_Y),
562       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_Z),
563       MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_W),
564    };
565 
566    assert((size >= 1) && (size <= 4));
567    return size_swizzles[size - 1];
568 }
569 
570 
571 /**
572  * Map mesa texture target to TGSI texture target.
573  */
574 static enum tgsi_texture_type
st_translate_texture_target(gl_texture_index textarget,GLboolean shadow)575 st_translate_texture_target(gl_texture_index textarget, GLboolean shadow)
576 {
577    if (shadow) {
578       switch (textarget) {
579       case TEXTURE_1D_INDEX:
580          return TGSI_TEXTURE_SHADOW1D;
581       case TEXTURE_2D_INDEX:
582          return TGSI_TEXTURE_SHADOW2D;
583       case TEXTURE_RECT_INDEX:
584          return TGSI_TEXTURE_SHADOWRECT;
585       case TEXTURE_1D_ARRAY_INDEX:
586          return TGSI_TEXTURE_SHADOW1D_ARRAY;
587       case TEXTURE_2D_ARRAY_INDEX:
588          return TGSI_TEXTURE_SHADOW2D_ARRAY;
589       case TEXTURE_CUBE_INDEX:
590          return TGSI_TEXTURE_SHADOWCUBE;
591       case TEXTURE_CUBE_ARRAY_INDEX:
592          return TGSI_TEXTURE_SHADOWCUBE_ARRAY;
593       default:
594          break;
595       }
596    }
597 
598    switch (textarget) {
599    case TEXTURE_2D_MULTISAMPLE_INDEX:
600       return TGSI_TEXTURE_2D_MSAA;
601    case TEXTURE_2D_MULTISAMPLE_ARRAY_INDEX:
602       return TGSI_TEXTURE_2D_ARRAY_MSAA;
603    case TEXTURE_BUFFER_INDEX:
604       return TGSI_TEXTURE_BUFFER;
605    case TEXTURE_1D_INDEX:
606       return TGSI_TEXTURE_1D;
607    case TEXTURE_2D_INDEX:
608       return TGSI_TEXTURE_2D;
609    case TEXTURE_3D_INDEX:
610       return TGSI_TEXTURE_3D;
611    case TEXTURE_CUBE_INDEX:
612       return TGSI_TEXTURE_CUBE;
613    case TEXTURE_CUBE_ARRAY_INDEX:
614       return TGSI_TEXTURE_CUBE_ARRAY;
615    case TEXTURE_RECT_INDEX:
616       return TGSI_TEXTURE_RECT;
617    case TEXTURE_1D_ARRAY_INDEX:
618       return TGSI_TEXTURE_1D_ARRAY;
619    case TEXTURE_2D_ARRAY_INDEX:
620       return TGSI_TEXTURE_2D_ARRAY;
621    case TEXTURE_EXTERNAL_INDEX:
622       return TGSI_TEXTURE_2D;
623    default:
624       debug_assert(!"unexpected texture target index");
625       return TGSI_TEXTURE_1D;
626    }
627 }
628 
629 
630 /**
631  * Map GLSL base type to TGSI return type.
632  */
633 static enum tgsi_return_type
st_translate_texture_type(enum glsl_base_type type)634 st_translate_texture_type(enum glsl_base_type type)
635 {
636    switch (type) {
637    case GLSL_TYPE_INT:
638       return TGSI_RETURN_TYPE_SINT;
639    case GLSL_TYPE_UINT:
640       return TGSI_RETURN_TYPE_UINT;
641    case GLSL_TYPE_FLOAT:
642       return TGSI_RETURN_TYPE_FLOAT;
643    default:
644       assert(!"unexpected texture type");
645       return TGSI_RETURN_TYPE_UNKNOWN;
646    }
647 }
648 
649 
650 glsl_to_tgsi_instruction *
emit_asm(ir_instruction * ir,enum tgsi_opcode op,st_dst_reg dst,st_dst_reg dst1,st_src_reg src0,st_src_reg src1,st_src_reg src2,st_src_reg src3)651 glsl_to_tgsi_visitor::emit_asm(ir_instruction *ir, enum tgsi_opcode op,
652                                st_dst_reg dst, st_dst_reg dst1,
653                                st_src_reg src0, st_src_reg src1,
654                                st_src_reg src2, st_src_reg src3)
655 {
656    glsl_to_tgsi_instruction *inst = new(mem_ctx) glsl_to_tgsi_instruction();
657    int num_reladdr = 0, i, j;
658    bool dst_is_64bit[2];
659 
660    op = get_opcode(op, dst, src0, src1);
661 
662    /* If we have to do relative addressing, we want to load the ARL
663     * reg directly for one of the regs, and preload the other reladdr
664     * sources into temps.
665     */
666    num_reladdr += dst.reladdr != NULL || dst.reladdr2;
667    assert(!dst1.reladdr); /* should be lowered in earlier passes */
668    num_reladdr += src0.reladdr != NULL || src0.reladdr2 != NULL;
669    num_reladdr += src1.reladdr != NULL || src1.reladdr2 != NULL;
670    num_reladdr += src2.reladdr != NULL || src2.reladdr2 != NULL;
671    num_reladdr += src3.reladdr != NULL || src3.reladdr2 != NULL;
672 
673    reladdr_to_temp(ir, &src3, &num_reladdr);
674    reladdr_to_temp(ir, &src2, &num_reladdr);
675    reladdr_to_temp(ir, &src1, &num_reladdr);
676    reladdr_to_temp(ir, &src0, &num_reladdr);
677 
678    if (dst.reladdr || dst.reladdr2) {
679       if (dst.reladdr)
680          emit_arl(ir, address_reg, *dst.reladdr);
681       if (dst.reladdr2)
682          emit_arl(ir, address_reg2, *dst.reladdr2);
683       num_reladdr--;
684    }
685 
686    assert(num_reladdr == 0);
687 
688    /* inst->op has only 8 bits. */
689    STATIC_ASSERT(TGSI_OPCODE_LAST <= 255);
690 
691    inst->op = op;
692    inst->precise = this->precise;
693    inst->info = tgsi_get_opcode_info(op);
694    inst->dst[0] = dst;
695    inst->dst[1] = dst1;
696    inst->src[0] = src0;
697    inst->src[1] = src1;
698    inst->src[2] = src2;
699    inst->src[3] = src3;
700    inst->is_64bit_expanded = false;
701    inst->ir = ir;
702    inst->dead_mask = 0;
703    inst->tex_offsets = NULL;
704    inst->tex_offset_num_offset = 0;
705    inst->saturate = 0;
706    inst->tex_shadow = 0;
707    /* default to float, for paths where this is not initialized
708     * (since 0==UINT which is likely wrong):
709     */
710    inst->tex_type = GLSL_TYPE_FLOAT;
711 
712    /* Update indirect addressing status used by TGSI */
713    if (dst.reladdr || dst.reladdr2) {
714       switch (dst.file) {
715       case PROGRAM_STATE_VAR:
716       case PROGRAM_CONSTANT:
717       case PROGRAM_UNIFORM:
718          this->indirect_addr_consts = true;
719          break;
720       case PROGRAM_IMMEDIATE:
721          assert(!"immediates should not have indirect addressing");
722          break;
723       default:
724          break;
725       }
726    }
727    else {
728       for (i = 0; i < 4; i++) {
729          if (inst->src[i].reladdr) {
730             switch (inst->src[i].file) {
731             case PROGRAM_STATE_VAR:
732             case PROGRAM_CONSTANT:
733             case PROGRAM_UNIFORM:
734                this->indirect_addr_consts = true;
735                break;
736             case PROGRAM_IMMEDIATE:
737                assert(!"immediates should not have indirect addressing");
738                break;
739             default:
740                break;
741             }
742          }
743       }
744    }
745 
746    /*
747     * This section contains the double processing.
748     * GLSL just represents doubles as single channel values,
749     * however most HW and TGSI represent doubles as pairs of register channels.
750     *
751     * so we have to fixup destination writemask/index and src swizzle/indexes.
752     * dest writemasks need to translate from single channel write mask
753     * to a dual-channel writemask, but also need to modify the index,
754     * if we are touching the Z,W fields in the pre-translated writemask.
755     *
756     * src channels have similiar index modifications along with swizzle
757     * changes to we pick the XY, ZW pairs from the correct index.
758     *
759     * GLSL [0].x -> TGSI [0].xy
760     * GLSL [0].y -> TGSI [0].zw
761     * GLSL [0].z -> TGSI [1].xy
762     * GLSL [0].w -> TGSI [1].zw
763     */
764    for (j = 0; j < 2; j++) {
765       dst_is_64bit[j] = glsl_base_type_is_64bit(inst->dst[j].type);
766       if (!dst_is_64bit[j] && inst->dst[j].file == PROGRAM_OUTPUT &&
767           inst->dst[j].type == GLSL_TYPE_ARRAY) {
768          enum glsl_base_type type = find_array_type(this->outputs,
769                                                     this->num_outputs,
770                                                     inst->dst[j].array_id);
771          if (glsl_base_type_is_64bit(type))
772             dst_is_64bit[j] = true;
773       }
774    }
775 
776    if (dst_is_64bit[0] || dst_is_64bit[1] ||
777        glsl_base_type_is_64bit(inst->src[0].type)) {
778       glsl_to_tgsi_instruction *dinst = NULL;
779       int initial_src_swz[4], initial_src_idx[4];
780       int initial_dst_idx[2], initial_dst_writemask[2];
781       /* select the writemask for dst0 or dst1 */
782       unsigned writemask = inst->dst[1].file == PROGRAM_UNDEFINED
783          ? inst->dst[0].writemask : inst->dst[1].writemask;
784 
785       /* copy out the writemask, index and swizzles for all src/dsts. */
786       for (j = 0; j < 2; j++) {
787          initial_dst_writemask[j] = inst->dst[j].writemask;
788          initial_dst_idx[j] = inst->dst[j].index;
789       }
790 
791       for (j = 0; j < 4; j++) {
792          initial_src_swz[j] = inst->src[j].swizzle;
793          initial_src_idx[j] = inst->src[j].index;
794       }
795 
796       /*
797        * scan all the components in the dst writemask
798        * generate an instruction for each of them if required.
799        */
800       st_src_reg addr;
801       while (writemask) {
802 
803          int i = u_bit_scan(&writemask);
804 
805          /* before emitting the instruction, see if we have to adjust
806           * load / store address */
807          if (i > 1 && (inst->op == TGSI_OPCODE_LOAD ||
808                        inst->op == TGSI_OPCODE_STORE) &&
809              addr.file == PROGRAM_UNDEFINED) {
810             /* We have to advance the buffer address by 16 */
811             addr = get_temp(glsl_type::uint_type);
812             emit_asm(ir, TGSI_OPCODE_UADD, st_dst_reg(addr),
813                      inst->src[0], st_src_reg_for_int(16));
814          }
815 
816          /* first time use previous instruction */
817          if (dinst == NULL) {
818             dinst = inst;
819          } else {
820             /* create a new instructions for subsequent attempts */
821             dinst = new(mem_ctx) glsl_to_tgsi_instruction();
822             *dinst = *inst;
823             dinst->next = NULL;
824             dinst->prev = NULL;
825          }
826          this->instructions.push_tail(dinst);
827          dinst->is_64bit_expanded = true;
828 
829          /* modify the destination if we are splitting */
830          for (j = 0; j < 2; j++) {
831             if (dst_is_64bit[j]) {
832                dinst->dst[j].writemask = (i & 1) ? WRITEMASK_ZW : WRITEMASK_XY;
833                dinst->dst[j].index = initial_dst_idx[j];
834                if (i > 1) {
835                   if (dinst->op == TGSI_OPCODE_LOAD ||
836                       dinst->op == TGSI_OPCODE_STORE)
837                      dinst->src[0] = addr;
838                   if (dinst->op != TGSI_OPCODE_STORE)
839                      dinst->dst[j].index++;
840                }
841             } else {
842                /* if we aren't writing to a double, just get the bit of the
843                 * initial writemask for this channel
844                 */
845                dinst->dst[j].writemask = initial_dst_writemask[j] & (1 << i);
846             }
847          }
848 
849          /* modify the src registers */
850          for (j = 0; j < 4; j++) {
851             int swz = GET_SWZ(initial_src_swz[j], i);
852 
853             if (glsl_base_type_is_64bit(dinst->src[j].type)) {
854                dinst->src[j].index = initial_src_idx[j];
855                if (swz > 1) {
856                   dinst->src[j].double_reg2 = true;
857                   dinst->src[j].index++;
858                }
859 
860                if (swz & 1)
861                   dinst->src[j].swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_W,
862                                                         SWIZZLE_Z, SWIZZLE_W);
863                else
864                   dinst->src[j].swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y,
865                                                         SWIZZLE_X, SWIZZLE_Y);
866 
867             } else {
868                /* some opcodes are special case in what they use as sources
869                 * - [FUI]2D/[UI]2I64 is a float/[u]int src0, (D)LDEXP is
870                 * integer src1
871                 */
872                if (op == TGSI_OPCODE_F2D || op == TGSI_OPCODE_U2D ||
873                    op == TGSI_OPCODE_I2D ||
874                    op == TGSI_OPCODE_I2I64 || op == TGSI_OPCODE_U2I64 ||
875                    op == TGSI_OPCODE_DLDEXP || op == TGSI_OPCODE_LDEXP ||
876                    (op == TGSI_OPCODE_UCMP && dst_is_64bit[0])) {
877                   dinst->src[j].swizzle = MAKE_SWIZZLE4(swz, swz, swz, swz);
878                }
879             }
880          }
881       }
882       inst = dinst;
883    } else {
884       this->instructions.push_tail(inst);
885    }
886 
887 
888    return inst;
889 }
890 
891 glsl_to_tgsi_instruction *
emit_asm(ir_instruction * ir,enum tgsi_opcode op,st_dst_reg dst,st_src_reg src0,st_src_reg src1,st_src_reg src2,st_src_reg src3)892 glsl_to_tgsi_visitor::emit_asm(ir_instruction *ir, enum tgsi_opcode op,
893                                st_dst_reg dst,
894                                st_src_reg src0, st_src_reg src1,
895                                st_src_reg src2, st_src_reg src3)
896 {
897    return emit_asm(ir, op, dst, undef_dst, src0, src1, src2, src3);
898 }
899 
900 /**
901  * Determines whether to use an integer, unsigned integer, or float opcode
902  * based on the operands and input opcode, then emits the result.
903  */
904 enum tgsi_opcode
get_opcode(enum tgsi_opcode op,st_dst_reg dst,st_src_reg src0,st_src_reg src1)905 glsl_to_tgsi_visitor::get_opcode(enum tgsi_opcode op,
906                                  st_dst_reg dst,
907                                  st_src_reg src0, st_src_reg src1)
908 {
909    enum glsl_base_type type = GLSL_TYPE_FLOAT;
910 
911    if (op == TGSI_OPCODE_MOV)
912        return op;
913 
914    assert(src0.type != GLSL_TYPE_ARRAY);
915    assert(src0.type != GLSL_TYPE_STRUCT);
916    assert(src1.type != GLSL_TYPE_ARRAY);
917    assert(src1.type != GLSL_TYPE_STRUCT);
918 
919    if (is_resource_instruction(op))
920       type = src1.type;
921    else if (src0.type == GLSL_TYPE_INT64 || src1.type == GLSL_TYPE_INT64)
922       type = GLSL_TYPE_INT64;
923    else if (src0.type == GLSL_TYPE_UINT64 || src1.type == GLSL_TYPE_UINT64)
924       type = GLSL_TYPE_UINT64;
925    else if (src0.type == GLSL_TYPE_DOUBLE || src1.type == GLSL_TYPE_DOUBLE)
926       type = GLSL_TYPE_DOUBLE;
927    else if (src0.type == GLSL_TYPE_FLOAT || src1.type == GLSL_TYPE_FLOAT)
928       type = GLSL_TYPE_FLOAT;
929    else if (native_integers)
930       type = src0.type == GLSL_TYPE_BOOL ? GLSL_TYPE_INT : src0.type;
931 
932 #define case7(c, f, i, u, d, i64, ui64)             \
933    case TGSI_OPCODE_##c: \
934       if (type == GLSL_TYPE_UINT64)           \
935          op = TGSI_OPCODE_##ui64; \
936       else if (type == GLSL_TYPE_INT64)       \
937          op = TGSI_OPCODE_##i64; \
938       else if (type == GLSL_TYPE_DOUBLE)       \
939          op = TGSI_OPCODE_##d; \
940       else if (type == GLSL_TYPE_INT)       \
941          op = TGSI_OPCODE_##i; \
942       else if (type == GLSL_TYPE_UINT) \
943          op = TGSI_OPCODE_##u; \
944       else \
945          op = TGSI_OPCODE_##f; \
946       break;
947 
948 #define casecomp(c, f, i, u, d, i64, ui64)           \
949    case TGSI_OPCODE_##c: \
950       if (type == GLSL_TYPE_INT64)             \
951          op = TGSI_OPCODE_##i64; \
952       else if (type == GLSL_TYPE_UINT64)        \
953          op = TGSI_OPCODE_##ui64; \
954       else if (type == GLSL_TYPE_DOUBLE)       \
955          op = TGSI_OPCODE_##d; \
956       else if (type == GLSL_TYPE_INT || type == GLSL_TYPE_SUBROUTINE)       \
957          op = TGSI_OPCODE_##i; \
958       else if (type == GLSL_TYPE_UINT) \
959          op = TGSI_OPCODE_##u; \
960       else if (native_integers) \
961          op = TGSI_OPCODE_##f; \
962       else \
963          op = TGSI_OPCODE_##c; \
964       break;
965 
966    switch (op) {
967       /* Some instructions are initially selected without considering the type.
968        * This fixes the type:
969        *
970        *    INIT     FLOAT SINT     UINT     DOUBLE   SINT64   UINT64
971        */
972       case7(ADD,     ADD,  UADD,    UADD,    DADD,    U64ADD,  U64ADD);
973       case7(CEIL,    CEIL, LAST,    LAST,    DCEIL,   LAST,    LAST);
974       case7(DIV,     DIV,  IDIV,    UDIV,    DDIV,    I64DIV,  U64DIV);
975       case7(FMA,     FMA,  UMAD,    UMAD,    DFMA,    LAST,    LAST);
976       case7(FLR,     FLR,  LAST,    LAST,    DFLR,    LAST,    LAST);
977       case7(FRC,     FRC,  LAST,    LAST,    DFRAC,   LAST,    LAST);
978       case7(MUL,     MUL,  UMUL,    UMUL,    DMUL,    U64MUL,  U64MUL);
979       case7(MAD,     MAD,  UMAD,    UMAD,    DMAD,    LAST,    LAST);
980       case7(MAX,     MAX,  IMAX,    UMAX,    DMAX,    I64MAX,  U64MAX);
981       case7(MIN,     MIN,  IMIN,    UMIN,    DMIN,    I64MIN,  U64MIN);
982       case7(RCP,     RCP,  LAST,    LAST,    DRCP,    LAST,    LAST);
983       case7(ROUND,   ROUND,LAST,    LAST,    DROUND,  LAST,    LAST);
984       case7(RSQ,     RSQ,  LAST,    LAST,    DRSQ,    LAST,    LAST);
985       case7(SQRT,    SQRT, LAST,    LAST,    DSQRT,   LAST,    LAST);
986       case7(SSG,     SSG,  ISSG,    ISSG,    DSSG,    I64SSG,  I64SSG);
987       case7(TRUNC,   TRUNC,LAST,    LAST,    DTRUNC,  LAST,    LAST);
988 
989       case7(MOD,     LAST, MOD,     UMOD,    LAST,    I64MOD,  U64MOD);
990       case7(SHL,     LAST, SHL,     SHL,     LAST,    U64SHL,  U64SHL);
991       case7(IBFE,    LAST, IBFE,    UBFE,    LAST,    LAST,    LAST);
992       case7(IMSB,    LAST, IMSB,    UMSB,    LAST,    LAST,    LAST);
993       case7(IMUL_HI, LAST, IMUL_HI, UMUL_HI, LAST,    LAST,    LAST);
994       case7(ISHR,    LAST, ISHR,    USHR,    LAST,    I64SHR,  U64SHR);
995       case7(ATOMIMAX,LAST, ATOMIMAX,ATOMUMAX,LAST,    LAST,    LAST);
996       case7(ATOMIMIN,LAST, ATOMIMIN,ATOMUMIN,LAST,    LAST,    LAST);
997       case7(ATOMUADD,ATOMFADD,ATOMUADD,ATOMUADD,LAST, LAST,    LAST);
998 
999       casecomp(SEQ, FSEQ, USEQ, USEQ, DSEQ, U64SEQ, U64SEQ);
1000       casecomp(SNE, FSNE, USNE, USNE, DSNE, U64SNE, U64SNE);
1001       casecomp(SGE, FSGE, ISGE, USGE, DSGE, I64SGE, U64SGE);
1002       casecomp(SLT, FSLT, ISLT, USLT, DSLT, I64SLT, U64SLT);
1003 
1004       default:
1005          break;
1006    }
1007 
1008    assert(op != TGSI_OPCODE_LAST);
1009    return op;
1010 }
1011 
1012 glsl_to_tgsi_instruction *
emit_dp(ir_instruction * ir,st_dst_reg dst,st_src_reg src0,st_src_reg src1,unsigned elements)1013 glsl_to_tgsi_visitor::emit_dp(ir_instruction *ir,
1014                               st_dst_reg dst, st_src_reg src0, st_src_reg src1,
1015                               unsigned elements)
1016 {
1017    static const enum tgsi_opcode dot_opcodes[] = {
1018       TGSI_OPCODE_DP2, TGSI_OPCODE_DP3, TGSI_OPCODE_DP4
1019    };
1020 
1021    return emit_asm(ir, dot_opcodes[elements - 2], dst, src0, src1);
1022 }
1023 
1024 /**
1025  * Emits TGSI scalar opcodes to produce unique answers across channels.
1026  *
1027  * Some TGSI opcodes are scalar-only, like ARB_fp/vp.  The src X
1028  * channel determines the result across all channels.  So to do a vec4
1029  * of this operation, we want to emit a scalar per source channel used
1030  * to produce dest channels.
1031  */
1032 void
emit_scalar(ir_instruction * ir,enum tgsi_opcode op,st_dst_reg dst,st_src_reg orig_src0,st_src_reg orig_src1)1033 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, enum tgsi_opcode op,
1034                                   st_dst_reg dst,
1035                                   st_src_reg orig_src0, st_src_reg orig_src1)
1036 {
1037    int i, j;
1038    int done_mask = ~dst.writemask;
1039 
1040    /* TGSI RCP is a scalar operation splatting results to all channels,
1041     * like ARB_fp/vp.  So emit as many RCPs as necessary to cover our
1042     * dst channels.
1043     */
1044    for (i = 0; i < 4; i++) {
1045       GLuint this_mask = (1 << i);
1046       st_src_reg src0 = orig_src0;
1047       st_src_reg src1 = orig_src1;
1048 
1049       if (done_mask & this_mask)
1050          continue;
1051 
1052       GLuint src0_swiz = GET_SWZ(src0.swizzle, i);
1053       GLuint src1_swiz = GET_SWZ(src1.swizzle, i);
1054       for (j = i + 1; j < 4; j++) {
1055          /* If there is another enabled component in the destination that is
1056           * derived from the same inputs, generate its value on this pass as
1057           * well.
1058           */
1059          if (!(done_mask & (1 << j)) &&
1060              GET_SWZ(src0.swizzle, j) == src0_swiz &&
1061              GET_SWZ(src1.swizzle, j) == src1_swiz) {
1062             this_mask |= (1 << j);
1063          }
1064       }
1065       src0.swizzle = MAKE_SWIZZLE4(src0_swiz, src0_swiz,
1066                                    src0_swiz, src0_swiz);
1067       src1.swizzle = MAKE_SWIZZLE4(src1_swiz, src1_swiz,
1068                                    src1_swiz, src1_swiz);
1069 
1070       dst.writemask = this_mask;
1071       emit_asm(ir, op, dst, src0, src1);
1072       done_mask |= this_mask;
1073    }
1074 }
1075 
1076 void
emit_scalar(ir_instruction * ir,enum tgsi_opcode op,st_dst_reg dst,st_src_reg src0)1077 glsl_to_tgsi_visitor::emit_scalar(ir_instruction *ir, enum tgsi_opcode op,
1078                                   st_dst_reg dst, st_src_reg src0)
1079 {
1080    st_src_reg undef = undef_src;
1081 
1082    undef.swizzle = SWIZZLE_XXXX;
1083 
1084    emit_scalar(ir, op, dst, src0, undef);
1085 }
1086 
1087 void
emit_arl(ir_instruction * ir,st_dst_reg dst,st_src_reg src0)1088 glsl_to_tgsi_visitor::emit_arl(ir_instruction *ir,
1089                                st_dst_reg dst, st_src_reg src0)
1090 {
1091    enum tgsi_opcode op = TGSI_OPCODE_ARL;
1092 
1093    if (src0.type == GLSL_TYPE_INT || src0.type == GLSL_TYPE_UINT) {
1094       op = TGSI_OPCODE_UARL;
1095    }
1096 
1097    assert(dst.file == PROGRAM_ADDRESS);
1098    if (dst.index >= this->num_address_regs)
1099       this->num_address_regs = dst.index + 1;
1100 
1101    emit_asm(NULL, op, dst, src0);
1102 }
1103 
1104 int
add_constant(gl_register_file file,gl_constant_value values[8],int size,GLenum datatype,uint16_t * swizzle_out)1105 glsl_to_tgsi_visitor::add_constant(gl_register_file file,
1106                                    gl_constant_value values[8], int size,
1107                                    GLenum datatype,
1108                                    uint16_t *swizzle_out)
1109 {
1110    if (file == PROGRAM_CONSTANT) {
1111       GLuint swizzle = swizzle_out ? *swizzle_out : 0;
1112       int result = _mesa_add_typed_unnamed_constant(this->prog->Parameters,
1113                                                     values, size, datatype,
1114                                                     &swizzle);
1115       if (swizzle_out)
1116          *swizzle_out = swizzle;
1117       return result;
1118    }
1119 
1120    assert(file == PROGRAM_IMMEDIATE);
1121 
1122    int index = 0;
1123    immediate_storage *entry;
1124    int size32 = size * ((datatype == GL_DOUBLE ||
1125                          datatype == GL_INT64_ARB ||
1126                          datatype == GL_UNSIGNED_INT64_ARB) ? 2 : 1);
1127    int i;
1128 
1129    /* Search immediate storage to see if we already have an identical
1130     * immediate that we can use instead of adding a duplicate entry.
1131     */
1132    foreach_in_list(immediate_storage, entry, &this->immediates) {
1133       immediate_storage *tmp = entry;
1134 
1135       for (i = 0; i * 4 < size32; i++) {
1136          int slot_size = MIN2(size32 - (i * 4), 4);
1137          if (tmp->type != datatype || tmp->size32 != slot_size)
1138             break;
1139          if (memcmp(tmp->values, &values[i * 4],
1140                     slot_size * sizeof(gl_constant_value)))
1141             break;
1142 
1143          /* Everything matches, keep going until the full size is matched */
1144          tmp = (immediate_storage *)tmp->next;
1145       }
1146 
1147       /* The full value matched */
1148       if (i * 4 >= size32)
1149          return index;
1150 
1151       index++;
1152    }
1153 
1154    for (i = 0; i * 4 < size32; i++) {
1155       int slot_size = MIN2(size32 - (i * 4), 4);
1156       /* Add this immediate to the list. */
1157       entry = new(mem_ctx) immediate_storage(&values[i * 4],
1158                                              slot_size, datatype);
1159       this->immediates.push_tail(entry);
1160       this->num_immediates++;
1161    }
1162    return index;
1163 }
1164 
1165 st_src_reg
st_src_reg_for_float(float val)1166 glsl_to_tgsi_visitor::st_src_reg_for_float(float val)
1167 {
1168    st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_FLOAT);
1169    union gl_constant_value uval;
1170 
1171    uval.f = val;
1172    src.index = add_constant(src.file, &uval, 1, GL_FLOAT, &src.swizzle);
1173 
1174    return src;
1175 }
1176 
1177 st_src_reg
st_src_reg_for_double(double val)1178 glsl_to_tgsi_visitor::st_src_reg_for_double(double val)
1179 {
1180    st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_DOUBLE);
1181    union gl_constant_value uval[2];
1182 
1183    memcpy(uval, &val, sizeof(uval));
1184    src.index = add_constant(src.file, uval, 1, GL_DOUBLE, &src.swizzle);
1185    src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
1186    return src;
1187 }
1188 
1189 st_src_reg
st_src_reg_for_int(int val)1190 glsl_to_tgsi_visitor::st_src_reg_for_int(int val)
1191 {
1192    st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT);
1193    union gl_constant_value uval;
1194 
1195    assert(native_integers);
1196 
1197    uval.i = val;
1198    src.index = add_constant(src.file, &uval, 1, GL_INT, &src.swizzle);
1199 
1200    return src;
1201 }
1202 
1203 st_src_reg
st_src_reg_for_int64(int64_t val)1204 glsl_to_tgsi_visitor::st_src_reg_for_int64(int64_t val)
1205 {
1206    st_src_reg src(PROGRAM_IMMEDIATE, -1, GLSL_TYPE_INT64);
1207    union gl_constant_value uval[2];
1208 
1209    memcpy(uval, &val, sizeof(uval));
1210    src.index = add_constant(src.file, uval, 1, GL_DOUBLE, &src.swizzle);
1211    src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_Y);
1212 
1213    return src;
1214 }
1215 
1216 st_src_reg
st_src_reg_for_type(enum glsl_base_type type,int val)1217 glsl_to_tgsi_visitor::st_src_reg_for_type(enum glsl_base_type type, int val)
1218 {
1219    if (native_integers)
1220       return type == GLSL_TYPE_FLOAT ? st_src_reg_for_float(val) :
1221                                        st_src_reg_for_int(val);
1222    else
1223       return st_src_reg_for_float(val);
1224 }
1225 
1226 static int
attrib_type_size(const struct glsl_type * type,bool is_vs_input)1227 attrib_type_size(const struct glsl_type *type, bool is_vs_input)
1228 {
1229    return type->count_attribute_slots(is_vs_input);
1230 }
1231 
1232 static int
type_size(const struct glsl_type * type)1233 type_size(const struct glsl_type *type)
1234 {
1235    return type->count_attribute_slots(false);
1236 }
1237 
1238 static void
add_buffer_to_load_and_stores(glsl_to_tgsi_instruction * inst,st_src_reg * buf,exec_list * instructions,ir_constant * access)1239 add_buffer_to_load_and_stores(glsl_to_tgsi_instruction *inst, st_src_reg *buf,
1240                               exec_list *instructions, ir_constant *access)
1241 {
1242    /**
1243     * emit_asm() might have actually split the op into pieces, e.g. for
1244     * double stores. We have to go back and fix up all the generated ops.
1245     */
1246    enum tgsi_opcode op = inst->op;
1247    do {
1248       inst->resource = *buf;
1249       if (access)
1250          inst->buffer_access = access->value.u[0];
1251 
1252       if (inst == instructions->get_head_raw())
1253          break;
1254       inst = (glsl_to_tgsi_instruction *)inst->get_prev();
1255 
1256       if (inst->op == TGSI_OPCODE_UADD) {
1257          if (inst == instructions->get_head_raw())
1258             break;
1259          inst = (glsl_to_tgsi_instruction *)inst->get_prev();
1260       }
1261    } while (inst->op == op && inst->resource.file == PROGRAM_UNDEFINED);
1262 }
1263 
1264 /**
1265  * If the given GLSL type is an array or matrix or a structure containing
1266  * an array/matrix member, return true.  Else return false.
1267  *
1268  * This is used to determine which kind of temp storage (PROGRAM_TEMPORARY
1269  * or PROGRAM_ARRAY) should be used for variables of this type.  Anytime
1270  * we have an array that might be indexed with a variable, we need to use
1271  * the later storage type.
1272  */
1273 static bool
type_has_array_or_matrix(const glsl_type * type)1274 type_has_array_or_matrix(const glsl_type *type)
1275 {
1276    if (type->is_array() || type->is_matrix())
1277       return true;
1278 
1279    if (type->is_struct()) {
1280       for (unsigned i = 0; i < type->length; i++) {
1281          if (type_has_array_or_matrix(type->fields.structure[i].type)) {
1282             return true;
1283          }
1284       }
1285    }
1286 
1287    return false;
1288 }
1289 
1290 
1291 /**
1292  * In the initial pass of codegen, we assign temporary numbers to
1293  * intermediate results.  (not SSA -- variable assignments will reuse
1294  * storage).
1295  */
1296 st_src_reg
get_temp(const glsl_type * type)1297 glsl_to_tgsi_visitor::get_temp(const glsl_type *type)
1298 {
1299    st_src_reg src;
1300 
1301    src.type = native_integers ? type->base_type : GLSL_TYPE_FLOAT;
1302    src.reladdr = NULL;
1303    src.negate = 0;
1304    src.abs = 0;
1305 
1306    if (!options->EmitNoIndirectTemp && type_has_array_or_matrix(type)) {
1307       if (next_array >= max_num_arrays) {
1308          max_num_arrays += 32;
1309          array_sizes = (unsigned*)
1310             realloc(array_sizes, sizeof(array_sizes[0]) * max_num_arrays);
1311       }
1312 
1313       src.file = PROGRAM_ARRAY;
1314       src.index = 0;
1315       src.array_id = next_array + 1;
1316       array_sizes[next_array] = type_size(type);
1317       ++next_array;
1318 
1319    } else {
1320       src.file = PROGRAM_TEMPORARY;
1321       src.index = next_temp;
1322       next_temp += type_size(type);
1323    }
1324 
1325    if (type->is_array() || type->is_struct()) {
1326       src.swizzle = SWIZZLE_NOOP;
1327    } else {
1328       src.swizzle = swizzle_for_size(type->vector_elements);
1329    }
1330 
1331    return src;
1332 }
1333 
1334 variable_storage *
find_variable_storage(ir_variable * var)1335 glsl_to_tgsi_visitor::find_variable_storage(ir_variable *var)
1336 {
1337    struct hash_entry *entry;
1338 
1339    entry = _mesa_hash_table_search(this->variables, var);
1340    if (!entry)
1341       return NULL;
1342 
1343    return (variable_storage *)entry->data;
1344 }
1345 
1346 void
visit(ir_variable * ir)1347 glsl_to_tgsi_visitor::visit(ir_variable *ir)
1348 {
1349    if (ir->data.mode == ir_var_uniform && strncmp(ir->name, "gl_", 3) == 0) {
1350       unsigned int i;
1351       const ir_state_slot *const slots = ir->get_state_slots();
1352       assert(slots != NULL);
1353 
1354       /* Check if this statevar's setup in the STATE file exactly
1355        * matches how we'll want to reference it as a
1356        * struct/array/whatever.  If not, then we need to move it into
1357        * temporary storage and hope that it'll get copy-propagated
1358        * out.
1359        */
1360       for (i = 0; i < ir->get_num_state_slots(); i++) {
1361          if (slots[i].swizzle != SWIZZLE_XYZW) {
1362             break;
1363          }
1364       }
1365 
1366       variable_storage *storage;
1367       st_dst_reg dst;
1368       if (i == ir->get_num_state_slots()) {
1369          /* We'll set the index later. */
1370          storage = new(mem_ctx) variable_storage(ir, PROGRAM_STATE_VAR, -1);
1371 
1372          _mesa_hash_table_insert(this->variables, ir, storage);
1373 
1374          dst = undef_dst;
1375       } else {
1376          /* The variable_storage constructor allocates slots based on the size
1377           * of the type.  However, this had better match the number of state
1378           * elements that we're going to copy into the new temporary.
1379           */
1380          assert((int) ir->get_num_state_slots() == type_size(ir->type));
1381 
1382          dst = st_dst_reg(get_temp(ir->type));
1383 
1384          storage = new(mem_ctx) variable_storage(ir, dst.file, dst.index,
1385                                                  dst.array_id);
1386 
1387          _mesa_hash_table_insert(this->variables, ir, storage);
1388       }
1389 
1390 
1391       for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
1392          int index = _mesa_add_state_reference(this->prog->Parameters,
1393                                                slots[i].tokens);
1394 
1395          if (storage->file == PROGRAM_STATE_VAR) {
1396             if (storage->index == -1) {
1397                storage->index = index;
1398             } else {
1399                assert(index == storage->index + (int)i);
1400             }
1401          } else {
1402             /* We use GLSL_TYPE_FLOAT here regardless of the actual type of
1403              * the data being moved since MOV does not care about the type of
1404              * data it is moving, and we don't want to declare registers with
1405              * array or struct types.
1406              */
1407             st_src_reg src(PROGRAM_STATE_VAR, index, GLSL_TYPE_FLOAT);
1408             src.swizzle = slots[i].swizzle;
1409             emit_asm(ir, TGSI_OPCODE_MOV, dst, src);
1410             /* even a float takes up a whole vec4 reg in a struct/array. */
1411             dst.index++;
1412          }
1413       }
1414 
1415       if (storage->file == PROGRAM_TEMPORARY &&
1416           dst.index != storage->index + (int) ir->get_num_state_slots()) {
1417          fail_link(this->shader_program,
1418                   "failed to load builtin uniform `%s'  (%d/%d regs loaded)\n",
1419                   ir->name, dst.index - storage->index,
1420                   type_size(ir->type));
1421       }
1422    }
1423 }
1424 
1425 void
visit(ir_loop * ir)1426 glsl_to_tgsi_visitor::visit(ir_loop *ir)
1427 {
1428    emit_asm(NULL, TGSI_OPCODE_BGNLOOP);
1429 
1430    visit_exec_list(&ir->body_instructions, this);
1431 
1432    emit_asm(NULL, TGSI_OPCODE_ENDLOOP);
1433 }
1434 
1435 void
visit(ir_loop_jump * ir)1436 glsl_to_tgsi_visitor::visit(ir_loop_jump *ir)
1437 {
1438    switch (ir->mode) {
1439    case ir_loop_jump::jump_break:
1440       emit_asm(NULL, TGSI_OPCODE_BRK);
1441       break;
1442    case ir_loop_jump::jump_continue:
1443       emit_asm(NULL, TGSI_OPCODE_CONT);
1444       break;
1445    }
1446 }
1447 
1448 
1449 void
visit(ir_function_signature * ir)1450 glsl_to_tgsi_visitor::visit(ir_function_signature *ir)
1451 {
1452    assert(0);
1453    (void)ir;
1454 }
1455 
1456 void
visit(ir_function * ir)1457 glsl_to_tgsi_visitor::visit(ir_function *ir)
1458 {
1459    /* Ignore function bodies other than main() -- we shouldn't see calls to
1460     * them since they should all be inlined before we get to glsl_to_tgsi.
1461     */
1462    if (strcmp(ir->name, "main") == 0) {
1463       const ir_function_signature *sig;
1464       exec_list empty;
1465 
1466       sig = ir->matching_signature(NULL, &empty, false);
1467 
1468       assert(sig);
1469 
1470       foreach_in_list(ir_instruction, ir, &sig->body) {
1471          ir->accept(this);
1472       }
1473    }
1474 }
1475 
1476 bool
try_emit_mad(ir_expression * ir,int mul_operand)1477 glsl_to_tgsi_visitor::try_emit_mad(ir_expression *ir, int mul_operand)
1478 {
1479    int nonmul_operand = 1 - mul_operand;
1480    st_src_reg a, b, c;
1481    st_dst_reg result_dst;
1482 
1483    // there is no TGSI opcode for this
1484    if (ir->type->is_integer_64())
1485       return false;
1486 
1487    ir_expression *expr = ir->operands[mul_operand]->as_expression();
1488    if (!expr || expr->operation != ir_binop_mul)
1489       return false;
1490 
1491    expr->operands[0]->accept(this);
1492    a = this->result;
1493    expr->operands[1]->accept(this);
1494    b = this->result;
1495    ir->operands[nonmul_operand]->accept(this);
1496    c = this->result;
1497 
1498    this->result = get_temp(ir->type);
1499    result_dst = st_dst_reg(this->result);
1500    result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1501    emit_asm(ir, TGSI_OPCODE_MAD, result_dst, a, b, c);
1502 
1503    return true;
1504 }
1505 
1506 /**
1507  * Emit MAD(a, -b, a) instead of AND(a, NOT(b))
1508  *
1509  * The logic values are 1.0 for true and 0.0 for false.  Logical-and is
1510  * implemented using multiplication, and logical-or is implemented using
1511  * addition.  Logical-not can be implemented as (true - x), or (1.0 - x).
1512  * As result, the logical expression (a & !b) can be rewritten as:
1513  *
1514  *     - a * !b
1515  *     - a * (1 - b)
1516  *     - (a * 1) - (a * b)
1517  *     - a + -(a * b)
1518  *     - a + (a * -b)
1519  *
1520  * This final expression can be implemented as a single MAD(a, -b, a)
1521  * instruction.
1522  */
1523 bool
try_emit_mad_for_and_not(ir_expression * ir,int try_operand)1524 glsl_to_tgsi_visitor::try_emit_mad_for_and_not(ir_expression *ir,
1525                                                int try_operand)
1526 {
1527    const int other_operand = 1 - try_operand;
1528    st_src_reg a, b;
1529 
1530    ir_expression *expr = ir->operands[try_operand]->as_expression();
1531    if (!expr || expr->operation != ir_unop_logic_not)
1532       return false;
1533 
1534    ir->operands[other_operand]->accept(this);
1535    a = this->result;
1536    expr->operands[0]->accept(this);
1537    b = this->result;
1538 
1539    b.negate = ~b.negate;
1540 
1541    this->result = get_temp(ir->type);
1542    emit_asm(ir, TGSI_OPCODE_MAD, st_dst_reg(this->result), a, b, a);
1543 
1544    return true;
1545 }
1546 
1547 void
reladdr_to_temp(ir_instruction * ir,st_src_reg * reg,int * num_reladdr)1548 glsl_to_tgsi_visitor::reladdr_to_temp(ir_instruction *ir,
1549                                       st_src_reg *reg, int *num_reladdr)
1550 {
1551    if (!reg->reladdr && !reg->reladdr2)
1552       return;
1553 
1554    if (reg->reladdr)
1555       emit_arl(ir, address_reg, *reg->reladdr);
1556    if (reg->reladdr2)
1557       emit_arl(ir, address_reg2, *reg->reladdr2);
1558 
1559    if (*num_reladdr != 1) {
1560       st_src_reg temp = get_temp(glsl_type::get_instance(reg->type, 4, 1));
1561 
1562       emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), *reg);
1563       *reg = temp;
1564    }
1565 
1566    (*num_reladdr)--;
1567 }
1568 
1569 void
visit(ir_expression * ir)1570 glsl_to_tgsi_visitor::visit(ir_expression *ir)
1571 {
1572    st_src_reg op[ARRAY_SIZE(ir->operands)];
1573 
1574    /* Quick peephole: Emit MAD(a, b, c) instead of ADD(MUL(a, b), c)
1575     */
1576    if (!this->precise && ir->operation == ir_binop_add) {
1577       if (try_emit_mad(ir, 1))
1578          return;
1579       if (try_emit_mad(ir, 0))
1580          return;
1581    }
1582 
1583    /* Quick peephole: Emit OPCODE_MAD(-a, -b, a) instead of AND(a, NOT(b))
1584     */
1585    if (!native_integers && ir->operation == ir_binop_logic_and) {
1586       if (try_emit_mad_for_and_not(ir, 1))
1587          return;
1588       if (try_emit_mad_for_and_not(ir, 0))
1589          return;
1590    }
1591 
1592    if (ir->operation == ir_quadop_vector)
1593       assert(!"ir_quadop_vector should have been lowered");
1594 
1595    for (unsigned int operand = 0; operand < ir->num_operands; operand++) {
1596       this->result.file = PROGRAM_UNDEFINED;
1597       ir->operands[operand]->accept(this);
1598       if (this->result.file == PROGRAM_UNDEFINED) {
1599          printf("Failed to get tree for expression operand:\n");
1600          ir->operands[operand]->print();
1601          printf("\n");
1602          exit(1);
1603       }
1604       op[operand] = this->result;
1605 
1606       /* Matrix expression operands should have been broken down to vector
1607        * operations already.
1608        */
1609       assert(!ir->operands[operand]->type->is_matrix());
1610    }
1611 
1612    visit_expression(ir, op);
1613 }
1614 
1615 /* The non-recursive part of the expression visitor lives in a separate
1616  * function and should be prevented from being inlined, to avoid a stack
1617  * explosion when deeply nested expressions are visited.
1618  */
1619 void
visit_expression(ir_expression * ir,st_src_reg * op)1620 glsl_to_tgsi_visitor::visit_expression(ir_expression* ir, st_src_reg *op)
1621 {
1622    st_src_reg result_src;
1623    st_dst_reg result_dst;
1624 
1625    int vector_elements = ir->operands[0]->type->vector_elements;
1626    if (ir->operands[1] &&
1627        ir->operation != ir_binop_interpolate_at_offset &&
1628        ir->operation != ir_binop_interpolate_at_sample) {
1629       st_src_reg *swz_op = NULL;
1630       if (vector_elements > ir->operands[1]->type->vector_elements) {
1631          assert(ir->operands[1]->type->vector_elements == 1);
1632          swz_op = &op[1];
1633       } else if (vector_elements < ir->operands[1]->type->vector_elements) {
1634          assert(ir->operands[0]->type->vector_elements == 1);
1635          swz_op = &op[0];
1636       }
1637       if (swz_op) {
1638          uint16_t swizzle_x = GET_SWZ(swz_op->swizzle, 0);
1639          swz_op->swizzle = MAKE_SWIZZLE4(swizzle_x, swizzle_x,
1640                                          swizzle_x, swizzle_x);
1641       }
1642       vector_elements = MAX2(vector_elements,
1643                              ir->operands[1]->type->vector_elements);
1644    }
1645    if (ir->operands[2] &&
1646        ir->operands[2]->type->vector_elements != vector_elements) {
1647       /* This can happen with ir_triop_lrp, i.e. glsl mix */
1648       assert(ir->operands[2]->type->vector_elements == 1);
1649       uint16_t swizzle_x = GET_SWZ(op[2].swizzle, 0);
1650       op[2].swizzle = MAKE_SWIZZLE4(swizzle_x, swizzle_x,
1651                                     swizzle_x, swizzle_x);
1652    }
1653 
1654    this->result.file = PROGRAM_UNDEFINED;
1655 
1656    /* Storage for our result.  Ideally for an assignment we'd be using
1657     * the actual storage for the result here, instead.
1658     */
1659    result_src = get_temp(ir->type);
1660    /* convenience for the emit functions below. */
1661    result_dst = st_dst_reg(result_src);
1662    /* Limit writes to the channels that will be used by result_src later.
1663     * This does limit this temp's use as a temporary for multi-instruction
1664     * sequences.
1665     */
1666    result_dst.writemask = (1 << ir->type->vector_elements) - 1;
1667 
1668    switch (ir->operation) {
1669    case ir_unop_logic_not:
1670       if (result_dst.type != GLSL_TYPE_FLOAT)
1671          emit_asm(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
1672       else {
1673          /* Previously 'SEQ dst, src, 0.0' was used for this.  However, many
1674           * older GPUs implement SEQ using multiple instructions (i915 uses two
1675           * SGE instructions and a MUL instruction).  Since our logic values are
1676           * 0.0 and 1.0, 1-x also implements !x.
1677           */
1678          op[0].negate = ~op[0].negate;
1679          emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0],
1680                   st_src_reg_for_float(1.0));
1681       }
1682       break;
1683    case ir_unop_neg:
1684       if (result_dst.type == GLSL_TYPE_INT64 ||
1685           result_dst.type == GLSL_TYPE_UINT64)
1686          emit_asm(ir, TGSI_OPCODE_I64NEG, result_dst, op[0]);
1687       else if (result_dst.type == GLSL_TYPE_INT ||
1688                result_dst.type == GLSL_TYPE_UINT)
1689          emit_asm(ir, TGSI_OPCODE_INEG, result_dst, op[0]);
1690       else if (result_dst.type == GLSL_TYPE_DOUBLE)
1691          emit_asm(ir, TGSI_OPCODE_DNEG, result_dst, op[0]);
1692       else {
1693          op[0].negate = ~op[0].negate;
1694          result_src = op[0];
1695       }
1696       break;
1697    case ir_unop_subroutine_to_int:
1698       emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
1699       break;
1700    case ir_unop_abs:
1701       if (result_dst.type == GLSL_TYPE_FLOAT)
1702          emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0].get_abs());
1703       else if (result_dst.type == GLSL_TYPE_DOUBLE)
1704          emit_asm(ir, TGSI_OPCODE_DABS, result_dst, op[0]);
1705       else if (result_dst.type == GLSL_TYPE_INT64 ||
1706                result_dst.type == GLSL_TYPE_UINT64)
1707          emit_asm(ir, TGSI_OPCODE_I64ABS, result_dst, op[0]);
1708       else
1709          emit_asm(ir, TGSI_OPCODE_IABS, result_dst, op[0]);
1710       break;
1711    case ir_unop_sign:
1712       emit_asm(ir, TGSI_OPCODE_SSG, result_dst, op[0]);
1713       break;
1714    case ir_unop_rcp:
1715       emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, op[0]);
1716       break;
1717 
1718    case ir_unop_exp2:
1719       emit_scalar(ir, TGSI_OPCODE_EX2, result_dst, op[0]);
1720       break;
1721    case ir_unop_exp:
1722       assert(!"not reached: should be handled by exp_to_exp2");
1723       break;
1724    case ir_unop_log:
1725       assert(!"not reached: should be handled by log_to_log2");
1726       break;
1727    case ir_unop_log2:
1728       emit_scalar(ir, TGSI_OPCODE_LG2, result_dst, op[0]);
1729       break;
1730    case ir_unop_sin:
1731       emit_scalar(ir, TGSI_OPCODE_SIN, result_dst, op[0]);
1732       break;
1733    case ir_unop_cos:
1734       emit_scalar(ir, TGSI_OPCODE_COS, result_dst, op[0]);
1735       break;
1736    case ir_unop_saturate: {
1737       glsl_to_tgsi_instruction *inst;
1738       inst = emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
1739       inst->saturate = true;
1740       break;
1741    }
1742 
1743    case ir_unop_dFdx:
1744    case ir_unop_dFdx_coarse:
1745       emit_asm(ir, TGSI_OPCODE_DDX, result_dst, op[0]);
1746       break;
1747    case ir_unop_dFdx_fine:
1748       emit_asm(ir, TGSI_OPCODE_DDX_FINE, result_dst, op[0]);
1749       break;
1750    case ir_unop_dFdy:
1751    case ir_unop_dFdy_coarse:
1752    case ir_unop_dFdy_fine:
1753    {
1754       /* The X component contains 1 or -1 depending on whether the framebuffer
1755        * is a FBO or the window system buffer, respectively.
1756        * It is then multiplied with the source operand of DDY.
1757        */
1758       static const gl_state_index16 transform_y_state[STATE_LENGTH]
1759          = { STATE_FB_WPOS_Y_TRANSFORM };
1760 
1761       unsigned transform_y_index =
1762          _mesa_add_state_reference(this->prog->Parameters,
1763                                    transform_y_state);
1764 
1765       st_src_reg transform_y = st_src_reg(PROGRAM_STATE_VAR,
1766                                           transform_y_index,
1767                                           glsl_type::vec4_type);
1768       transform_y.swizzle = SWIZZLE_XXXX;
1769 
1770       st_src_reg temp = get_temp(glsl_type::vec4_type);
1771 
1772       emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(temp), transform_y, op[0]);
1773       emit_asm(ir, ir->operation == ir_unop_dFdy_fine ?
1774            TGSI_OPCODE_DDY_FINE : TGSI_OPCODE_DDY, result_dst, temp);
1775       break;
1776    }
1777 
1778    case ir_unop_frexp_sig:
1779       emit_asm(ir, TGSI_OPCODE_DFRACEXP, result_dst, undef_dst, op[0]);
1780       break;
1781 
1782    case ir_unop_frexp_exp:
1783       emit_asm(ir, TGSI_OPCODE_DFRACEXP, undef_dst, result_dst, op[0]);
1784       break;
1785 
1786    case ir_binop_add:
1787       emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1788       break;
1789    case ir_binop_sub:
1790       op[1].negate = ~op[1].negate;
1791       emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1792       break;
1793 
1794    case ir_binop_mul:
1795       emit_asm(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
1796       break;
1797    case ir_binop_div:
1798       emit_asm(ir, TGSI_OPCODE_DIV, result_dst, op[0], op[1]);
1799       break;
1800    case ir_binop_mod:
1801       if (result_dst.type == GLSL_TYPE_FLOAT)
1802          assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1803       else
1804          emit_asm(ir, TGSI_OPCODE_MOD, result_dst, op[0], op[1]);
1805       break;
1806 
1807    case ir_binop_less:
1808       emit_asm(ir, TGSI_OPCODE_SLT, result_dst, op[0], op[1]);
1809       break;
1810    case ir_binop_gequal:
1811       emit_asm(ir, TGSI_OPCODE_SGE, result_dst, op[0], op[1]);
1812       break;
1813    case ir_binop_equal:
1814       emit_asm(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1815       break;
1816    case ir_binop_nequal:
1817       emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1818       break;
1819    case ir_binop_all_equal:
1820       /* "==" operator producing a scalar boolean. */
1821       if (ir->operands[0]->type->is_vector() ||
1822           ir->operands[1]->type->is_vector()) {
1823          st_src_reg temp = get_temp(native_integers ?
1824                                     glsl_type::uvec4_type :
1825                                     glsl_type::vec4_type);
1826 
1827          if (native_integers) {
1828             st_dst_reg temp_dst = st_dst_reg(temp);
1829             st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1830 
1831             if (ir->operands[0]->type->is_boolean() &&
1832                 ir->operands[1]->as_constant() &&
1833                 ir->operands[1]->as_constant()->is_one()) {
1834                emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), op[0]);
1835             } else {
1836                emit_asm(ir, TGSI_OPCODE_SEQ, st_dst_reg(temp), op[0], op[1]);
1837             }
1838 
1839             /* Emit 1-3 AND operations to combine the SEQ results. */
1840             switch (ir->operands[0]->type->vector_elements) {
1841             case 2:
1842                break;
1843             case 3:
1844                temp_dst.writemask = WRITEMASK_Y;
1845                temp1.swizzle = SWIZZLE_YYYY;
1846                temp2.swizzle = SWIZZLE_ZZZZ;
1847                emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1848                break;
1849             case 4:
1850                temp_dst.writemask = WRITEMASK_X;
1851                temp1.swizzle = SWIZZLE_XXXX;
1852                temp2.swizzle = SWIZZLE_YYYY;
1853                emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1854                temp_dst.writemask = WRITEMASK_Y;
1855                temp1.swizzle = SWIZZLE_ZZZZ;
1856                temp2.swizzle = SWIZZLE_WWWW;
1857                emit_asm(ir, TGSI_OPCODE_AND, temp_dst, temp1, temp2);
1858             }
1859 
1860             temp1.swizzle = SWIZZLE_XXXX;
1861             temp2.swizzle = SWIZZLE_YYYY;
1862             emit_asm(ir, TGSI_OPCODE_AND, result_dst, temp1, temp2);
1863          } else {
1864             emit_asm(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1865 
1866             /* After the dot-product, the value will be an integer on the
1867              * range [0,4].  Zero becomes 1.0, and positive values become zero.
1868              */
1869             emit_dp(ir, result_dst, temp, temp, vector_elements);
1870 
1871             /* Negating the result of the dot-product gives values on the range
1872              * [-4, 0].  Zero becomes 1.0, and negative values become zero.
1873              * This is achieved using SGE.
1874              */
1875             st_src_reg sge_src = result_src;
1876             sge_src.negate = ~sge_src.negate;
1877             emit_asm(ir, TGSI_OPCODE_SGE, result_dst, sge_src,
1878                      st_src_reg_for_float(0.0));
1879          }
1880       } else {
1881          emit_asm(ir, TGSI_OPCODE_SEQ, result_dst, op[0], op[1]);
1882       }
1883       break;
1884    case ir_binop_any_nequal:
1885       /* "!=" operator producing a scalar boolean. */
1886       if (ir->operands[0]->type->is_vector() ||
1887           ir->operands[1]->type->is_vector()) {
1888          st_src_reg temp = get_temp(native_integers ?
1889                                     glsl_type::uvec4_type :
1890                                     glsl_type::vec4_type);
1891          if (ir->operands[0]->type->is_boolean() &&
1892              ir->operands[1]->as_constant() &&
1893              ir->operands[1]->as_constant()->is_zero()) {
1894             emit_asm(ir, TGSI_OPCODE_MOV, st_dst_reg(temp), op[0]);
1895          } else {
1896             emit_asm(ir, TGSI_OPCODE_SNE, st_dst_reg(temp), op[0], op[1]);
1897          }
1898 
1899          if (native_integers) {
1900             st_dst_reg temp_dst = st_dst_reg(temp);
1901             st_src_reg temp1 = st_src_reg(temp), temp2 = st_src_reg(temp);
1902 
1903             /* Emit 1-3 OR operations to combine the SNE results. */
1904             switch (ir->operands[0]->type->vector_elements) {
1905             case 2:
1906                break;
1907             case 3:
1908                temp_dst.writemask = WRITEMASK_Y;
1909                temp1.swizzle = SWIZZLE_YYYY;
1910                temp2.swizzle = SWIZZLE_ZZZZ;
1911                emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1912                break;
1913             case 4:
1914                temp_dst.writemask = WRITEMASK_X;
1915                temp1.swizzle = SWIZZLE_XXXX;
1916                temp2.swizzle = SWIZZLE_YYYY;
1917                emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1918                temp_dst.writemask = WRITEMASK_Y;
1919                temp1.swizzle = SWIZZLE_ZZZZ;
1920                temp2.swizzle = SWIZZLE_WWWW;
1921                emit_asm(ir, TGSI_OPCODE_OR, temp_dst, temp1, temp2);
1922             }
1923 
1924             temp1.swizzle = SWIZZLE_XXXX;
1925             temp2.swizzle = SWIZZLE_YYYY;
1926             emit_asm(ir, TGSI_OPCODE_OR, result_dst, temp1, temp2);
1927          } else {
1928             /* After the dot-product, the value will be an integer on the
1929              * range [0,4].  Zero stays zero, and positive values become 1.0.
1930              */
1931             glsl_to_tgsi_instruction *const dp =
1932                   emit_dp(ir, result_dst, temp, temp, vector_elements);
1933             if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1934                /* The clamping to [0,1] can be done for free in the fragment
1935                 * shader with a saturate.
1936                 */
1937                dp->saturate = true;
1938             } else {
1939                /* Negating the result of the dot-product gives values on the
1940                 * range [-4, 0].  Zero stays zero, and negative values become
1941                 * 1.0.  This achieved using SLT.
1942                 */
1943                st_src_reg slt_src = result_src;
1944                slt_src.negate = ~slt_src.negate;
1945                emit_asm(ir, TGSI_OPCODE_SLT, result_dst, slt_src,
1946                         st_src_reg_for_float(0.0));
1947             }
1948          }
1949       } else {
1950          emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1951       }
1952       break;
1953 
1954    case ir_binop_logic_xor:
1955       if (native_integers)
1956          emit_asm(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
1957       else
1958          emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0], op[1]);
1959       break;
1960 
1961    case ir_binop_logic_or: {
1962       if (native_integers) {
1963          /* If integers are used as booleans, we can use an actual "or"
1964           * instruction.
1965           */
1966          assert(native_integers);
1967          emit_asm(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
1968       } else {
1969          /* After the addition, the value will be an integer on the
1970           * range [0,2].  Zero stays zero, and positive values become 1.0.
1971           */
1972          glsl_to_tgsi_instruction *add =
1973             emit_asm(ir, TGSI_OPCODE_ADD, result_dst, op[0], op[1]);
1974          if (this->prog->Target == GL_FRAGMENT_PROGRAM_ARB) {
1975             /* The clamping to [0,1] can be done for free in the fragment
1976              * shader with a saturate if floats are being used as boolean
1977              * values.
1978              */
1979             add->saturate = true;
1980          } else {
1981             /* Negating the result of the addition gives values on the range
1982              * [-2, 0].  Zero stays zero, and negative values become 1.0
1983              * This is achieved using SLT.
1984              */
1985             st_src_reg slt_src = result_src;
1986             slt_src.negate = ~slt_src.negate;
1987             emit_asm(ir, TGSI_OPCODE_SLT, result_dst, slt_src,
1988                      st_src_reg_for_float(0.0));
1989          }
1990       }
1991       break;
1992    }
1993 
1994    case ir_binop_logic_and:
1995       /* If native integers are disabled, the bool args are stored as float 0.0
1996        * or 1.0, so "mul" gives us "and".  If they're enabled, just use the
1997        * actual AND opcode.
1998        */
1999       if (native_integers)
2000          emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
2001       else
2002          emit_asm(ir, TGSI_OPCODE_MUL, result_dst, op[0], op[1]);
2003       break;
2004 
2005    case ir_binop_dot:
2006       assert(ir->operands[0]->type->is_vector());
2007       assert(ir->operands[0]->type == ir->operands[1]->type);
2008       emit_dp(ir, result_dst, op[0], op[1],
2009               ir->operands[0]->type->vector_elements);
2010       break;
2011 
2012    case ir_unop_sqrt:
2013       if (have_sqrt) {
2014          emit_scalar(ir, TGSI_OPCODE_SQRT, result_dst, op[0]);
2015       } else {
2016          /* This is the only instruction sequence that makes the game "Risen"
2017           * render correctly. ABS is not required for the game, but since GLSL
2018           * declares negative values as "undefined", allowing us to do whatever
2019           * we want, I choose to use ABS to match DX9 and pre-GLSL RSQ
2020           * behavior.
2021           */
2022          emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0].get_abs());
2023          emit_scalar(ir, TGSI_OPCODE_RCP, result_dst, result_src);
2024       }
2025       break;
2026    case ir_unop_rsq:
2027       emit_scalar(ir, TGSI_OPCODE_RSQ, result_dst, op[0]);
2028       break;
2029    case ir_unop_i2f:
2030       if (native_integers) {
2031          emit_asm(ir, TGSI_OPCODE_I2F, result_dst, op[0]);
2032          break;
2033       }
2034       FALLTHROUGH;
2035    case ir_unop_b2f:
2036       if (native_integers) {
2037          emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0],
2038                   st_src_reg_for_float(1.0));
2039          break;
2040       }
2041       FALLTHROUGH;
2042    case ir_unop_i2u:
2043    case ir_unop_u2i:
2044    case ir_unop_i642u64:
2045    case ir_unop_u642i64:
2046       /* Converting between signed and unsigned integers is a no-op. */
2047       result_src = op[0];
2048       result_src.type = result_dst.type;
2049       break;
2050    case ir_unop_b2i:
2051       if (native_integers) {
2052          /* Booleans are stored as integers using ~0 for true and 0 for false.
2053           * GLSL requires that int(bool) return 1 for true and 0 for false.
2054           * This conversion is done with AND, but it could be done with NEG.
2055           */
2056          emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0],
2057                   st_src_reg_for_int(1));
2058       } else {
2059          /* Booleans and integers are both stored as floats when native
2060           * integers are disabled.
2061           */
2062          result_src = op[0];
2063       }
2064       break;
2065    case ir_unop_f2i:
2066       if (native_integers)
2067          emit_asm(ir, TGSI_OPCODE_F2I, result_dst, op[0]);
2068       else
2069          emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
2070       break;
2071    case ir_unop_f2u:
2072       if (native_integers)
2073          emit_asm(ir, TGSI_OPCODE_F2U, result_dst, op[0]);
2074       else
2075          emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
2076       break;
2077    case ir_unop_bitcast_f2i:
2078    case ir_unop_bitcast_f2u:
2079       /* Make sure we don't propagate the negate modifier to integer opcodes. */
2080       if (op[0].negate || op[0].abs)
2081          emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
2082       else
2083          result_src = op[0];
2084       result_src.type = ir->operation == ir_unop_bitcast_f2i ? GLSL_TYPE_INT :
2085                                                                GLSL_TYPE_UINT;
2086       break;
2087    case ir_unop_bitcast_i2f:
2088    case ir_unop_bitcast_u2f:
2089       result_src = op[0];
2090       result_src.type = GLSL_TYPE_FLOAT;
2091       break;
2092    case ir_unop_f2b:
2093       emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0],
2094                st_src_reg_for_float(0.0));
2095       break;
2096    case ir_unop_d2b:
2097       emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0],
2098                st_src_reg_for_double(0.0));
2099       break;
2100    case ir_unop_i2b:
2101       if (native_integers)
2102          emit_asm(ir, TGSI_OPCODE_USNE, result_dst, op[0],
2103                   st_src_reg_for_int(0));
2104       else
2105          emit_asm(ir, TGSI_OPCODE_SNE, result_dst, op[0],
2106                   st_src_reg_for_float(0.0));
2107       break;
2108    case ir_unop_bitcast_u642d:
2109    case ir_unop_bitcast_i642d:
2110       result_src = op[0];
2111       result_src.type = GLSL_TYPE_DOUBLE;
2112       break;
2113    case ir_unop_bitcast_d2i64:
2114       result_src = op[0];
2115       result_src.type = GLSL_TYPE_INT64;
2116       break;
2117    case ir_unop_bitcast_d2u64:
2118       result_src = op[0];
2119       result_src.type = GLSL_TYPE_UINT64;
2120       break;
2121    case ir_unop_trunc:
2122       emit_asm(ir, TGSI_OPCODE_TRUNC, result_dst, op[0]);
2123       break;
2124    case ir_unop_ceil:
2125       emit_asm(ir, TGSI_OPCODE_CEIL, result_dst, op[0]);
2126       break;
2127    case ir_unop_floor:
2128       emit_asm(ir, TGSI_OPCODE_FLR, result_dst, op[0]);
2129       break;
2130    case ir_unop_round_even:
2131       emit_asm(ir, TGSI_OPCODE_ROUND, result_dst, op[0]);
2132       break;
2133    case ir_unop_fract:
2134       emit_asm(ir, TGSI_OPCODE_FRC, result_dst, op[0]);
2135       break;
2136 
2137    case ir_binop_min:
2138       emit_asm(ir, TGSI_OPCODE_MIN, result_dst, op[0], op[1]);
2139       break;
2140    case ir_binop_max:
2141       emit_asm(ir, TGSI_OPCODE_MAX, result_dst, op[0], op[1]);
2142       break;
2143    case ir_binop_pow:
2144       emit_scalar(ir, TGSI_OPCODE_POW, result_dst, op[0], op[1]);
2145       break;
2146 
2147    case ir_unop_bit_not:
2148       if (native_integers) {
2149          emit_asm(ir, TGSI_OPCODE_NOT, result_dst, op[0]);
2150          break;
2151       }
2152       FALLTHROUGH;
2153    case ir_unop_u2f:
2154       if (native_integers) {
2155          emit_asm(ir, TGSI_OPCODE_U2F, result_dst, op[0]);
2156          break;
2157       }
2158       FALLTHROUGH;
2159    case ir_binop_lshift:
2160    case ir_binop_rshift:
2161       if (native_integers) {
2162          enum tgsi_opcode opcode = ir->operation == ir_binop_lshift
2163             ? TGSI_OPCODE_SHL : TGSI_OPCODE_ISHR;
2164          st_src_reg count;
2165 
2166          if (glsl_base_type_is_64bit(op[0].type)) {
2167             /* GLSL shift operations have 32-bit shift counts, but TGSI uses
2168              * 64 bits.
2169              */
2170             count = get_temp(glsl_type::u64vec(ir->operands[1]
2171                                                ->type->components()));
2172             emit_asm(ir, TGSI_OPCODE_U2I64, st_dst_reg(count), op[1]);
2173          } else {
2174             count = op[1];
2175          }
2176 
2177          emit_asm(ir, opcode, result_dst, op[0], count);
2178          break;
2179       }
2180       FALLTHROUGH;
2181    case ir_binop_bit_and:
2182       if (native_integers) {
2183          emit_asm(ir, TGSI_OPCODE_AND, result_dst, op[0], op[1]);
2184          break;
2185       }
2186       FALLTHROUGH;
2187    case ir_binop_bit_xor:
2188       if (native_integers) {
2189          emit_asm(ir, TGSI_OPCODE_XOR, result_dst, op[0], op[1]);
2190          break;
2191       }
2192       FALLTHROUGH;
2193    case ir_binop_bit_or:
2194       if (native_integers) {
2195          emit_asm(ir, TGSI_OPCODE_OR, result_dst, op[0], op[1]);
2196          break;
2197       }
2198 
2199       assert(!"GLSL 1.30 features unsupported");
2200       break;
2201 
2202    case ir_binop_ubo_load: {
2203       if (ctx->Const.UseSTD430AsDefaultPacking) {
2204          ir_rvalue *block = ir->operands[0];
2205          ir_rvalue *offset = ir->operands[1];
2206          ir_constant *const_block = block->as_constant();
2207 
2208          st_src_reg cbuf(PROGRAM_CONSTANT,
2209             (const_block ? const_block->value.u[0] + 1 : 1),
2210             ir->type->base_type);
2211 
2212          cbuf.has_index2 = true;
2213 
2214          if (!const_block) {
2215             block->accept(this);
2216             cbuf.reladdr = ralloc(mem_ctx, st_src_reg);
2217             *cbuf.reladdr = this->result;
2218             emit_arl(ir, sampler_reladdr, this->result);
2219          }
2220 
2221          /* Calculate the surface offset */
2222          offset->accept(this);
2223          st_src_reg off = this->result;
2224 
2225          glsl_to_tgsi_instruction *inst =
2226             emit_asm(ir, TGSI_OPCODE_LOAD, result_dst, off);
2227 
2228          if (result_dst.type == GLSL_TYPE_BOOL)
2229             emit_asm(ir, TGSI_OPCODE_USNE, result_dst, st_src_reg(result_dst),
2230                      st_src_reg_for_int(0));
2231 
2232          add_buffer_to_load_and_stores(inst, &cbuf, &this->instructions,
2233                                        NULL);
2234       } else {
2235          ir_constant *const_uniform_block = ir->operands[0]->as_constant();
2236          ir_constant *const_offset_ir = ir->operands[1]->as_constant();
2237          unsigned const_offset = const_offset_ir ?
2238             const_offset_ir->value.u[0] : 0;
2239          unsigned const_block = const_uniform_block ?
2240             const_uniform_block->value.u[0] + 1 : 1;
2241          st_src_reg index_reg = get_temp(glsl_type::uint_type);
2242          st_src_reg cbuf;
2243 
2244          cbuf.type = ir->type->base_type;
2245          cbuf.file = PROGRAM_CONSTANT;
2246          cbuf.index = 0;
2247          cbuf.reladdr = NULL;
2248          cbuf.negate = 0;
2249          cbuf.abs = 0;
2250          cbuf.index2D = const_block;
2251 
2252          assert(ir->type->is_vector() || ir->type->is_scalar());
2253 
2254          if (const_offset_ir) {
2255             /* Constant index into constant buffer */
2256             cbuf.reladdr = NULL;
2257             cbuf.index = const_offset / 16;
2258          } else {
2259             ir_expression *offset_expr = ir->operands[1]->as_expression();
2260             st_src_reg offset = op[1];
2261 
2262             /* The OpenGL spec is written in such a way that accesses with
2263              * non-constant offset are almost always vec4-aligned. The only
2264              * exception to this are members of structs in arrays of structs:
2265              * each struct in an array of structs is at least vec4-aligned,
2266              * but single-element and [ui]vec2 members of the struct may be at
2267              * an offset that is not a multiple of 16 bytes.
2268              *
2269              * Here, we extract that offset, relying on previous passes to
2270              * always generate offset expressions of the form
2271              * (+ expr constant_offset).
2272              *
2273              * Note that the std430 layout, which allows more cases of
2274              * alignment less than vec4 in arrays, is not supported for
2275              * uniform blocks, so we do not have to deal with it here.
2276              */
2277             if (offset_expr && offset_expr->operation == ir_binop_add) {
2278                const_offset_ir = offset_expr->operands[1]->as_constant();
2279                if (const_offset_ir) {
2280                   const_offset = const_offset_ir->value.u[0];
2281                   cbuf.index = const_offset / 16;
2282                   offset_expr->operands[0]->accept(this);
2283                   offset = this->result;
2284                }
2285             }
2286 
2287             /* Relative/variable index into constant buffer */
2288             emit_asm(ir, TGSI_OPCODE_USHR, st_dst_reg(index_reg), offset,
2289                  st_src_reg_for_int(4));
2290             cbuf.reladdr = ralloc(mem_ctx, st_src_reg);
2291             *cbuf.reladdr = index_reg;
2292          }
2293 
2294          if (const_uniform_block) {
2295             /* Constant constant buffer */
2296             cbuf.reladdr2 = NULL;
2297          } else {
2298             /* Relative/variable constant buffer */
2299             cbuf.reladdr2 = ralloc(mem_ctx, st_src_reg);
2300             *cbuf.reladdr2 = op[0];
2301          }
2302          cbuf.has_index2 = true;
2303 
2304          cbuf.swizzle = swizzle_for_size(ir->type->vector_elements);
2305          if (glsl_base_type_is_64bit(cbuf.type))
2306             cbuf.swizzle += MAKE_SWIZZLE4(const_offset % 16 / 8,
2307                                           const_offset % 16 / 8,
2308                                           const_offset % 16 / 8,
2309                                           const_offset % 16 / 8);
2310          else
2311             cbuf.swizzle += MAKE_SWIZZLE4(const_offset % 16 / 4,
2312                                           const_offset % 16 / 4,
2313                                           const_offset % 16 / 4,
2314                                           const_offset % 16 / 4);
2315 
2316          if (ir->type->is_boolean()) {
2317             emit_asm(ir, TGSI_OPCODE_USNE, result_dst, cbuf,
2318                      st_src_reg_for_int(0));
2319          } else {
2320             emit_asm(ir, TGSI_OPCODE_MOV, result_dst, cbuf);
2321          }
2322       }
2323       break;
2324    }
2325    case ir_triop_lrp:
2326       /* note: we have to reorder the three args here */
2327       emit_asm(ir, TGSI_OPCODE_LRP, result_dst, op[2], op[1], op[0]);
2328       break;
2329    case ir_triop_csel:
2330       if (this->ctx->Const.NativeIntegers)
2331          emit_asm(ir, TGSI_OPCODE_UCMP, result_dst, op[0], op[1], op[2]);
2332       else {
2333          op[0].negate = ~op[0].negate;
2334          emit_asm(ir, TGSI_OPCODE_CMP, result_dst, op[0], op[1], op[2]);
2335       }
2336       break;
2337    case ir_triop_bitfield_extract:
2338       emit_asm(ir, TGSI_OPCODE_IBFE, result_dst, op[0], op[1], op[2]);
2339       break;
2340    case ir_quadop_bitfield_insert:
2341       emit_asm(ir, TGSI_OPCODE_BFI, result_dst, op[0], op[1], op[2], op[3]);
2342       break;
2343    case ir_unop_bitfield_reverse:
2344       emit_asm(ir, TGSI_OPCODE_BREV, result_dst, op[0]);
2345       break;
2346    case ir_unop_bit_count:
2347       emit_asm(ir, TGSI_OPCODE_POPC, result_dst, op[0]);
2348       break;
2349    case ir_unop_find_msb:
2350       emit_asm(ir, TGSI_OPCODE_IMSB, result_dst, op[0]);
2351       break;
2352    case ir_unop_find_lsb:
2353       emit_asm(ir, TGSI_OPCODE_LSB, result_dst, op[0]);
2354       break;
2355    case ir_binop_imul_high:
2356       emit_asm(ir, TGSI_OPCODE_IMUL_HI, result_dst, op[0], op[1]);
2357       break;
2358    case ir_triop_fma:
2359       /* In theory, MAD is incorrect here. */
2360       if (have_fma)
2361          emit_asm(ir, TGSI_OPCODE_FMA, result_dst, op[0], op[1], op[2]);
2362       else
2363          emit_asm(ir, TGSI_OPCODE_MAD, result_dst, op[0], op[1], op[2]);
2364       break;
2365    case ir_unop_interpolate_at_centroid:
2366       emit_asm(ir, TGSI_OPCODE_INTERP_CENTROID, result_dst, op[0]);
2367       break;
2368    case ir_binop_interpolate_at_offset: {
2369       /* The y coordinate needs to be flipped for the default fb */
2370       static const gl_state_index16 transform_y_state[STATE_LENGTH]
2371          = { STATE_FB_WPOS_Y_TRANSFORM };
2372 
2373       unsigned transform_y_index =
2374          _mesa_add_state_reference(this->prog->Parameters,
2375                                    transform_y_state);
2376 
2377       st_src_reg transform_y = st_src_reg(PROGRAM_STATE_VAR,
2378                                           transform_y_index,
2379                                           glsl_type::vec4_type);
2380       transform_y.swizzle = SWIZZLE_XXXX;
2381 
2382       st_src_reg temp = get_temp(glsl_type::vec2_type);
2383       st_dst_reg temp_dst = st_dst_reg(temp);
2384 
2385       emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, op[1]);
2386       temp_dst.writemask = WRITEMASK_Y;
2387       emit_asm(ir, TGSI_OPCODE_MUL, temp_dst, transform_y, op[1]);
2388       emit_asm(ir, TGSI_OPCODE_INTERP_OFFSET, result_dst, op[0], temp);
2389       break;
2390    }
2391    case ir_binop_interpolate_at_sample:
2392       emit_asm(ir, TGSI_OPCODE_INTERP_SAMPLE, result_dst, op[0], op[1]);
2393       break;
2394 
2395    case ir_unop_d2f:
2396       emit_asm(ir, TGSI_OPCODE_D2F, result_dst, op[0]);
2397       break;
2398    case ir_unop_f2d:
2399       emit_asm(ir, TGSI_OPCODE_F2D, result_dst, op[0]);
2400       break;
2401    case ir_unop_d2i:
2402       emit_asm(ir, TGSI_OPCODE_D2I, result_dst, op[0]);
2403       break;
2404    case ir_unop_i2d:
2405       emit_asm(ir, TGSI_OPCODE_I2D, result_dst, op[0]);
2406       break;
2407    case ir_unop_d2u:
2408       emit_asm(ir, TGSI_OPCODE_D2U, result_dst, op[0]);
2409       break;
2410    case ir_unop_u2d:
2411       emit_asm(ir, TGSI_OPCODE_U2D, result_dst, op[0]);
2412       break;
2413    case ir_unop_unpack_double_2x32:
2414    case ir_unop_pack_double_2x32:
2415    case ir_unop_unpack_int_2x32:
2416    case ir_unop_pack_int_2x32:
2417    case ir_unop_unpack_uint_2x32:
2418    case ir_unop_pack_uint_2x32:
2419    case ir_unop_unpack_sampler_2x32:
2420    case ir_unop_pack_sampler_2x32:
2421    case ir_unop_unpack_image_2x32:
2422    case ir_unop_pack_image_2x32:
2423       emit_asm(ir, TGSI_OPCODE_MOV, result_dst, op[0]);
2424       break;
2425 
2426    case ir_binop_ldexp:
2427       if (ir->operands[0]->type->is_double()) {
2428          emit_asm(ir, TGSI_OPCODE_DLDEXP, result_dst, op[0], op[1]);
2429       } else if (ir->operands[0]->type->is_float()) {
2430          emit_asm(ir, TGSI_OPCODE_LDEXP, result_dst, op[0], op[1]);
2431       } else {
2432          assert(!"Invalid ldexp for non-double opcode in glsl_to_tgsi_visitor::visit()");
2433       }
2434       break;
2435 
2436    case ir_unop_pack_half_2x16:
2437       emit_asm(ir, TGSI_OPCODE_PK2H, result_dst, op[0]);
2438       break;
2439    case ir_unop_unpack_half_2x16:
2440       emit_asm(ir, TGSI_OPCODE_UP2H, result_dst, op[0]);
2441       break;
2442 
2443    case ir_unop_get_buffer_size: {
2444       ir_constant *const_offset = ir->operands[0]->as_constant();
2445       st_src_reg buffer(
2446             PROGRAM_BUFFER,
2447             const_offset ? const_offset->value.u[0] : 0,
2448             GLSL_TYPE_UINT);
2449       if (!const_offset) {
2450          buffer.reladdr = ralloc(mem_ctx, st_src_reg);
2451          *buffer.reladdr = op[0];
2452          emit_arl(ir, sampler_reladdr, op[0]);
2453       }
2454       emit_asm(ir, TGSI_OPCODE_RESQ, result_dst)->resource = buffer;
2455       break;
2456    }
2457 
2458    case ir_unop_u2i64:
2459    case ir_unop_u2u64:
2460    case ir_unop_b2i64: {
2461       st_src_reg temp = get_temp(glsl_type::uvec4_type);
2462       st_dst_reg temp_dst = st_dst_reg(temp);
2463       unsigned orig_swz = op[0].swizzle;
2464       /*
2465        * To convert unsigned to 64-bit:
2466        * zero Y channel, copy X channel.
2467        */
2468       temp_dst.writemask = WRITEMASK_Y;
2469       if (vector_elements > 1)
2470          temp_dst.writemask |= WRITEMASK_W;
2471       emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, st_src_reg_for_int(0));
2472       temp_dst.writemask = WRITEMASK_X;
2473       if (vector_elements > 1)
2474           temp_dst.writemask |= WRITEMASK_Z;
2475       op[0].swizzle = MAKE_SWIZZLE4(GET_SWZ(orig_swz, 0), GET_SWZ(orig_swz, 0),
2476                                     GET_SWZ(orig_swz, 1), GET_SWZ(orig_swz, 1));
2477       if (ir->operation == ir_unop_u2i64 || ir->operation == ir_unop_u2u64)
2478          emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, op[0]);
2479       else
2480          emit_asm(ir, TGSI_OPCODE_AND, temp_dst, op[0], st_src_reg_for_int(1));
2481       result_src = temp;
2482       result_src.type = GLSL_TYPE_UINT64;
2483       if (vector_elements > 2) {
2484          /* Subtle: We rely on the fact that get_temp here returns the next
2485           * TGSI temporary register directly after the temp register used for
2486           * the first two components, so that the result gets picked up
2487           * automatically.
2488           */
2489          st_src_reg temp = get_temp(glsl_type::uvec4_type);
2490          st_dst_reg temp_dst = st_dst_reg(temp);
2491          temp_dst.writemask = WRITEMASK_Y;
2492          if (vector_elements > 3)
2493             temp_dst.writemask |= WRITEMASK_W;
2494          emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, st_src_reg_for_int(0));
2495 
2496          temp_dst.writemask = WRITEMASK_X;
2497          if (vector_elements > 3)
2498             temp_dst.writemask |= WRITEMASK_Z;
2499          op[0].swizzle = MAKE_SWIZZLE4(GET_SWZ(orig_swz, 2),
2500                                        GET_SWZ(orig_swz, 2),
2501                                        GET_SWZ(orig_swz, 3),
2502                                        GET_SWZ(orig_swz, 3));
2503          if (ir->operation == ir_unop_u2i64 || ir->operation == ir_unop_u2u64)
2504             emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, op[0]);
2505          else
2506             emit_asm(ir, TGSI_OPCODE_AND, temp_dst, op[0],
2507                      st_src_reg_for_int(1));
2508       }
2509       break;
2510    }
2511    case ir_unop_i642i:
2512    case ir_unop_u642i:
2513    case ir_unop_u642u:
2514    case ir_unop_i642u: {
2515       st_src_reg temp = get_temp(glsl_type::uvec4_type);
2516       st_dst_reg temp_dst = st_dst_reg(temp);
2517       unsigned orig_swz = op[0].swizzle;
2518       unsigned orig_idx = op[0].index;
2519       int el;
2520       temp_dst.writemask = WRITEMASK_X;
2521 
2522       for (el = 0; el < vector_elements; el++) {
2523          unsigned swz = GET_SWZ(orig_swz, el);
2524          if (swz & 1)
2525             op[0].swizzle = MAKE_SWIZZLE4(SWIZZLE_Z, SWIZZLE_Z,
2526                                           SWIZZLE_Z, SWIZZLE_Z);
2527          else
2528             op[0].swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X,
2529                                           SWIZZLE_X, SWIZZLE_X);
2530          if (swz > 2)
2531             op[0].index = orig_idx + 1;
2532          op[0].type = GLSL_TYPE_UINT;
2533          temp_dst.writemask = WRITEMASK_X << el;
2534          emit_asm(ir, TGSI_OPCODE_MOV, temp_dst, op[0]);
2535       }
2536       result_src = temp;
2537       if (ir->operation == ir_unop_u642u || ir->operation == ir_unop_i642u)
2538          result_src.type = GLSL_TYPE_UINT;
2539       else
2540          result_src.type = GLSL_TYPE_INT;
2541       break;
2542    }
2543    case ir_unop_i642b:
2544       emit_asm(ir, TGSI_OPCODE_U64SNE, result_dst, op[0],
2545                st_src_reg_for_int64(0));
2546       break;
2547    case ir_unop_i642f:
2548       emit_asm(ir, TGSI_OPCODE_I642F, result_dst, op[0]);
2549       break;
2550    case ir_unop_u642f:
2551       emit_asm(ir, TGSI_OPCODE_U642F, result_dst, op[0]);
2552       break;
2553    case ir_unop_i642d:
2554       emit_asm(ir, TGSI_OPCODE_I642D, result_dst, op[0]);
2555       break;
2556    case ir_unop_u642d:
2557       emit_asm(ir, TGSI_OPCODE_U642D, result_dst, op[0]);
2558       break;
2559    case ir_unop_i2i64:
2560       emit_asm(ir, TGSI_OPCODE_I2I64, result_dst, op[0]);
2561       break;
2562    case ir_unop_f2i64:
2563       emit_asm(ir, TGSI_OPCODE_F2I64, result_dst, op[0]);
2564       break;
2565    case ir_unop_d2i64:
2566       emit_asm(ir, TGSI_OPCODE_D2I64, result_dst, op[0]);
2567       break;
2568    case ir_unop_i2u64:
2569       emit_asm(ir, TGSI_OPCODE_I2I64, result_dst, op[0]);
2570       break;
2571    case ir_unop_f2u64:
2572       emit_asm(ir, TGSI_OPCODE_F2U64, result_dst, op[0]);
2573       break;
2574    case ir_unop_d2u64:
2575       emit_asm(ir, TGSI_OPCODE_D2U64, result_dst, op[0]);
2576       break;
2577       /* these might be needed */
2578    case ir_unop_pack_snorm_2x16:
2579    case ir_unop_pack_unorm_2x16:
2580    case ir_unop_pack_snorm_4x8:
2581    case ir_unop_pack_unorm_4x8:
2582 
2583    case ir_unop_unpack_snorm_2x16:
2584    case ir_unop_unpack_unorm_2x16:
2585    case ir_unop_unpack_snorm_4x8:
2586    case ir_unop_unpack_unorm_4x8:
2587 
2588    case ir_quadop_vector:
2589    case ir_binop_vector_extract:
2590    case ir_triop_vector_insert:
2591    case ir_binop_carry:
2592    case ir_binop_borrow:
2593    case ir_unop_ssbo_unsized_array_length:
2594    case ir_unop_implicitly_sized_array_length:
2595    case ir_unop_atan:
2596    case ir_binop_atan2:
2597    case ir_unop_clz:
2598    case ir_binop_add_sat:
2599    case ir_binop_sub_sat:
2600    case ir_binop_abs_sub:
2601    case ir_binop_avg:
2602    case ir_binop_avg_round:
2603    case ir_binop_mul_32x16:
2604    case ir_unop_f162f:
2605    case ir_unop_f2f16:
2606    case ir_unop_f2fmp:
2607    case ir_unop_f162b:
2608    case ir_unop_b2f16:
2609    case ir_unop_i2i:
2610    case ir_unop_i2imp:
2611    case ir_unop_u2u:
2612    case ir_unop_u2ump:
2613       /* This operation is not supported, or should have already been handled.
2614        */
2615       assert(!"Invalid ir opcode in glsl_to_tgsi_visitor::visit()");
2616       break;
2617    }
2618 
2619    this->result = result_src;
2620 }
2621 
2622 
2623 void
visit(ir_swizzle * ir)2624 glsl_to_tgsi_visitor::visit(ir_swizzle *ir)
2625 {
2626    st_src_reg src;
2627    int i;
2628    int swizzle[4] = {0};
2629 
2630    /* Note that this is only swizzles in expressions, not those on the left
2631     * hand side of an assignment, which do write masking.  See ir_assignment
2632     * for that.
2633     */
2634 
2635    ir->val->accept(this);
2636    src = this->result;
2637    assert(src.file != PROGRAM_UNDEFINED);
2638    assert(ir->type->vector_elements > 0);
2639 
2640    for (i = 0; i < 4; i++) {
2641       if (i < ir->type->vector_elements) {
2642          switch (i) {
2643          case 0:
2644             swizzle[i] = GET_SWZ(src.swizzle, ir->mask.x);
2645             break;
2646          case 1:
2647             swizzle[i] = GET_SWZ(src.swizzle, ir->mask.y);
2648             break;
2649          case 2:
2650             swizzle[i] = GET_SWZ(src.swizzle, ir->mask.z);
2651             break;
2652          case 3:
2653             swizzle[i] = GET_SWZ(src.swizzle, ir->mask.w);
2654             break;
2655          }
2656       } else {
2657          /* If the type is smaller than a vec4, replicate the last
2658           * channel out.
2659           */
2660          swizzle[i] = swizzle[ir->type->vector_elements - 1];
2661       }
2662    }
2663 
2664    src.swizzle = MAKE_SWIZZLE4(swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
2665 
2666    this->result = src;
2667 }
2668 
2669 /* Test if the variable is an array. Note that geometry and
2670  * tessellation shader inputs are outputs are always arrays (except
2671  * for patch inputs), so only the array element type is considered.
2672  */
2673 static bool
is_inout_array(unsigned stage,ir_variable * var,bool * remove_array)2674 is_inout_array(unsigned stage, ir_variable *var, bool *remove_array)
2675 {
2676    const glsl_type *type = var->type;
2677 
2678    *remove_array = false;
2679 
2680    if ((stage == MESA_SHADER_VERTEX && var->data.mode == ir_var_shader_in) ||
2681        (stage == MESA_SHADER_FRAGMENT && var->data.mode == ir_var_shader_out))
2682       return false;
2683 
2684    if (((stage == MESA_SHADER_GEOMETRY && var->data.mode == ir_var_shader_in) ||
2685         (stage == MESA_SHADER_TESS_EVAL && var->data.mode == ir_var_shader_in) ||
2686         stage == MESA_SHADER_TESS_CTRL) &&
2687        !var->data.patch) {
2688       if (!var->type->is_array())
2689          return false; /* a system value probably */
2690 
2691       type = var->type->fields.array;
2692       *remove_array = true;
2693    }
2694 
2695    return type->is_array() || type->is_matrix();
2696 }
2697 
2698 static unsigned
st_translate_interp_loc(ir_variable * var)2699 st_translate_interp_loc(ir_variable *var)
2700 {
2701    if (var->data.centroid)
2702       return TGSI_INTERPOLATE_LOC_CENTROID;
2703    else if (var->data.sample)
2704       return TGSI_INTERPOLATE_LOC_SAMPLE;
2705    else
2706       return TGSI_INTERPOLATE_LOC_CENTER;
2707 }
2708 
2709 void
visit(ir_dereference_variable * ir)2710 glsl_to_tgsi_visitor::visit(ir_dereference_variable *ir)
2711 {
2712    variable_storage *entry;
2713    ir_variable *var = ir->var;
2714    bool remove_array;
2715 
2716    if (handle_bound_deref(ir->as_dereference()))
2717       return;
2718 
2719    entry = find_variable_storage(ir->var);
2720 
2721    if (!entry) {
2722       switch (var->data.mode) {
2723       case ir_var_uniform:
2724          entry = new(mem_ctx) variable_storage(var, PROGRAM_UNIFORM,
2725                                                var->data.param_index);
2726          _mesa_hash_table_insert(this->variables, var, entry);
2727          break;
2728       case ir_var_shader_in: {
2729          /* The linker assigns locations for varyings and attributes,
2730           * including deprecated builtins (like gl_Color), user-assign
2731           * generic attributes (glBindVertexLocation), and
2732           * user-defined varyings.
2733           */
2734          assert(var->data.location != -1);
2735 
2736          const glsl_type *type_without_array = var->type->without_array();
2737          struct inout_decl *decl = &inputs[num_inputs];
2738          unsigned component = var->data.location_frac;
2739          unsigned num_components;
2740          num_inputs++;
2741 
2742          if (type_without_array->is_64bit())
2743             component = component / 2;
2744          if (type_without_array->vector_elements)
2745             num_components = type_without_array->vector_elements;
2746          else
2747             num_components = 4;
2748 
2749          decl->mesa_index = var->data.location;
2750          decl->interp = (glsl_interp_mode) var->data.interpolation;
2751          decl->interp_loc = st_translate_interp_loc(var);
2752          decl->base_type = type_without_array->base_type;
2753          decl->usage_mask = u_bit_consecutive(component, num_components);
2754 
2755          if (is_inout_array(shader->Stage, var, &remove_array)) {
2756             decl->array_id = num_input_arrays + 1;
2757             num_input_arrays++;
2758          } else {
2759             decl->array_id = 0;
2760          }
2761 
2762          if (remove_array)
2763             decl->size = type_size(var->type->fields.array);
2764          else
2765             decl->size = type_size(var->type);
2766 
2767          entry = new(mem_ctx) variable_storage(var,
2768                                                PROGRAM_INPUT,
2769                                                decl->mesa_index,
2770                                                decl->array_id);
2771          entry->component = component;
2772 
2773          _mesa_hash_table_insert(this->variables, var, entry);
2774 
2775          break;
2776       }
2777       case ir_var_shader_out: {
2778          assert(var->data.location != -1);
2779 
2780          const glsl_type *type_without_array = var->type->without_array();
2781          struct inout_decl *decl = &outputs[num_outputs];
2782          unsigned component = var->data.location_frac;
2783          unsigned num_components;
2784          num_outputs++;
2785 
2786          decl->invariant = var->data.invariant;
2787 
2788          if (type_without_array->is_64bit())
2789             component = component / 2;
2790          if (type_without_array->vector_elements)
2791             num_components = type_without_array->vector_elements;
2792          else
2793             num_components = 4;
2794 
2795          decl->mesa_index = var->data.location + FRAG_RESULT_MAX * var->data.index;
2796          decl->base_type = type_without_array->base_type;
2797          decl->usage_mask = u_bit_consecutive(component, num_components);
2798          if (var->data.stream & (1u << 31)) {
2799             decl->gs_out_streams = var->data.stream & ~(1u << 31);
2800          } else {
2801             assert(var->data.stream < 4);
2802             decl->gs_out_streams = 0;
2803             for (unsigned i = 0; i < num_components; ++i)
2804                decl->gs_out_streams |= var->data.stream << (2 * (component + i));
2805          }
2806 
2807          if (is_inout_array(shader->Stage, var, &remove_array)) {
2808             decl->array_id = num_output_arrays + 1;
2809             num_output_arrays++;
2810          } else {
2811             decl->array_id = 0;
2812          }
2813 
2814          if (remove_array)
2815             decl->size = type_size(var->type->fields.array);
2816          else
2817             decl->size = type_size(var->type);
2818 
2819          if (var->data.fb_fetch_output) {
2820             st_dst_reg dst = st_dst_reg(get_temp(var->type));
2821             st_src_reg src = st_src_reg(PROGRAM_OUTPUT, decl->mesa_index,
2822                                         var->type, component, decl->array_id);
2823             emit_asm(NULL, TGSI_OPCODE_FBFETCH, dst, src);
2824             entry = new(mem_ctx) variable_storage(var, dst.file, dst.index,
2825                                                   dst.array_id);
2826          } else {
2827             entry = new(mem_ctx) variable_storage(var,
2828                                                   PROGRAM_OUTPUT,
2829                                                   decl->mesa_index,
2830                                                   decl->array_id);
2831          }
2832          entry->component = component;
2833 
2834          _mesa_hash_table_insert(this->variables, var, entry);
2835 
2836          break;
2837       }
2838       case ir_var_system_value:
2839          entry = new(mem_ctx) variable_storage(var,
2840                                                PROGRAM_SYSTEM_VALUE,
2841                                                var->data.location);
2842          break;
2843       case ir_var_auto:
2844       case ir_var_temporary:
2845          st_src_reg src = get_temp(var->type);
2846 
2847          entry = new(mem_ctx) variable_storage(var, src.file, src.index,
2848                                                src.array_id);
2849          _mesa_hash_table_insert(this->variables, var, entry);
2850 
2851          break;
2852       }
2853 
2854       if (!entry) {
2855          printf("Failed to make storage for %s\n", var->name);
2856          exit(1);
2857       }
2858    }
2859 
2860    this->result = st_src_reg(entry->file, entry->index, var->type,
2861                              entry->component, entry->array_id);
2862    if (this->shader->Stage == MESA_SHADER_VERTEX &&
2863        var->data.mode == ir_var_shader_in &&
2864        var->type->without_array()->is_double())
2865       this->result.is_double_vertex_input = true;
2866    if (!native_integers)
2867       this->result.type = GLSL_TYPE_FLOAT;
2868 }
2869 
2870 static void
shrink_array_declarations(struct inout_decl * decls,unsigned count,GLbitfield64 * usage_mask,GLbitfield64 double_usage_mask,GLbitfield * patch_usage_mask)2871 shrink_array_declarations(struct inout_decl *decls, unsigned count,
2872                           GLbitfield64* usage_mask,
2873                           GLbitfield64 double_usage_mask,
2874                           GLbitfield* patch_usage_mask)
2875 {
2876    unsigned i;
2877    int j;
2878 
2879    /* Fix array declarations by removing unused array elements at both ends
2880     * of the arrays. For example, mat4[3] where only mat[1] is used.
2881     */
2882    for (i = 0; i < count; i++) {
2883       struct inout_decl *decl = &decls[i];
2884       if (!decl->array_id)
2885          continue;
2886 
2887       /* Shrink the beginning. */
2888       for (j = 0; j < (int)decl->size; j++) {
2889          if (decl->mesa_index >= VARYING_SLOT_PATCH0) {
2890             if (*patch_usage_mask &
2891                 BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j))
2892                break;
2893          }
2894          else {
2895             if (*usage_mask & BITFIELD64_BIT(decl->mesa_index+j))
2896                break;
2897             if (double_usage_mask & BITFIELD64_BIT(decl->mesa_index+j-1))
2898                break;
2899          }
2900 
2901          decl->mesa_index++;
2902          decl->size--;
2903          j--;
2904       }
2905 
2906       /* Shrink the end. */
2907       for (j = decl->size-1; j >= 0; j--) {
2908          if (decl->mesa_index >= VARYING_SLOT_PATCH0) {
2909             if (*patch_usage_mask &
2910                 BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j))
2911                break;
2912          }
2913          else {
2914             if (*usage_mask & BITFIELD64_BIT(decl->mesa_index+j))
2915                break;
2916             if (double_usage_mask & BITFIELD64_BIT(decl->mesa_index+j-1))
2917                break;
2918          }
2919 
2920          decl->size--;
2921       }
2922 
2923       /* When not all entries of an array are accessed, we mark them as used
2924        * here anyway, to ensure that the input/output mapping logic doesn't get
2925        * confused.
2926        *
2927        * TODO This happens when an array isn't used via indirect access, which
2928        * some game ports do (at least eON-based). There is an optimization
2929        * opportunity here by replacing the array declaration with non-array
2930        * declarations of those slots that are actually used.
2931        */
2932       for (j = 1; j < (int)decl->size; ++j) {
2933          if (decl->mesa_index >= VARYING_SLOT_PATCH0)
2934             *patch_usage_mask |= BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j);
2935          else
2936             *usage_mask |= BITFIELD64_BIT(decl->mesa_index + j);
2937       }
2938    }
2939 }
2940 
2941 
2942 static void
mark_array_io(struct inout_decl * decls,unsigned count,GLbitfield64 * usage_mask,GLbitfield64 double_usage_mask,GLbitfield * patch_usage_mask)2943 mark_array_io(struct inout_decl *decls, unsigned count,
2944               GLbitfield64* usage_mask,
2945               GLbitfield64 double_usage_mask,
2946               GLbitfield* patch_usage_mask)
2947 {
2948    unsigned i;
2949    int j;
2950 
2951    /* Fix array declarations by removing unused array elements at both ends
2952     * of the arrays. For example, mat4[3] where only mat[1] is used.
2953     */
2954    for (i = 0; i < count; i++) {
2955       struct inout_decl *decl = &decls[i];
2956       if (!decl->array_id)
2957          continue;
2958 
2959       /* When not all entries of an array are accessed, we mark them as used
2960        * here anyway, to ensure that the input/output mapping logic doesn't get
2961        * confused.
2962        *
2963        * TODO This happens when an array isn't used via indirect access, which
2964        * some game ports do (at least eON-based). There is an optimization
2965        * opportunity here by replacing the array declaration with non-array
2966        * declarations of those slots that are actually used.
2967        */
2968       for (j = 0; j < (int)decl->size; ++j) {
2969          if (decl->mesa_index >= VARYING_SLOT_PATCH0)
2970             *patch_usage_mask |= BITFIELD64_BIT(decl->mesa_index - VARYING_SLOT_PATCH0 + j);
2971          else
2972             *usage_mask |= BITFIELD64_BIT(decl->mesa_index + j);
2973       }
2974    }
2975 }
2976 
2977 void
visit(ir_dereference_array * ir)2978 glsl_to_tgsi_visitor::visit(ir_dereference_array *ir)
2979 {
2980    ir_constant *index;
2981    st_src_reg src;
2982    bool is_2D = false;
2983    ir_variable *var = ir->variable_referenced();
2984 
2985    if (handle_bound_deref(ir->as_dereference()))
2986       return;
2987 
2988    /* We only need the logic provided by count_vec4_slots()
2989     * for arrays of structs. Indirect sampler and image indexing is handled
2990     * elsewhere.
2991     */
2992    int element_size = ir->type->without_array()->is_struct() ?
2993       ir->type->count_vec4_slots(false, var->data.bindless) :
2994       type_size(ir->type);
2995 
2996    index = ir->array_index->constant_expression_value(ralloc_parent(ir));
2997 
2998    ir->array->accept(this);
2999    src = this->result;
3000 
3001    if (!src.has_index2) {
3002       switch (this->prog->Target) {
3003       case GL_TESS_CONTROL_PROGRAM_NV:
3004          is_2D = (src.file == PROGRAM_INPUT || src.file == PROGRAM_OUTPUT) &&
3005                  !ir->variable_referenced()->data.patch;
3006          break;
3007       case GL_TESS_EVALUATION_PROGRAM_NV:
3008          is_2D = src.file == PROGRAM_INPUT &&
3009                  !ir->variable_referenced()->data.patch;
3010          break;
3011       case GL_GEOMETRY_PROGRAM_NV:
3012          is_2D = src.file == PROGRAM_INPUT;
3013          break;
3014       }
3015    }
3016 
3017    if (is_2D)
3018       element_size = 1;
3019 
3020    if (index) {
3021 
3022       if (this->prog->Target == GL_VERTEX_PROGRAM_ARB &&
3023           src.file == PROGRAM_INPUT)
3024          element_size = attrib_type_size(ir->type, true);
3025       if (is_2D) {
3026          src.index2D = index->value.i[0];
3027          src.has_index2 = true;
3028       } else
3029          src.index += index->value.i[0] * element_size;
3030    } else {
3031       /* Variable index array dereference.  It eats the "vec4" of the
3032        * base of the array and an index that offsets the TGSI register
3033        * index.
3034        */
3035       ir->array_index->accept(this);
3036 
3037       st_src_reg index_reg;
3038 
3039       if (element_size == 1) {
3040          index_reg = this->result;
3041       } else {
3042          index_reg = get_temp(native_integers ?
3043                               glsl_type::int_type : glsl_type::float_type);
3044 
3045          emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(index_reg),
3046               this->result, st_src_reg_for_type(index_reg.type, element_size));
3047       }
3048 
3049       /* If there was already a relative address register involved, add the
3050        * new and the old together to get the new offset.
3051        */
3052       if (!is_2D && src.reladdr != NULL) {
3053          st_src_reg accum_reg = get_temp(native_integers ?
3054                                 glsl_type::int_type : glsl_type::float_type);
3055 
3056          emit_asm(ir, TGSI_OPCODE_ADD, st_dst_reg(accum_reg),
3057               index_reg, *src.reladdr);
3058 
3059          index_reg = accum_reg;
3060       }
3061 
3062       if (is_2D) {
3063          src.reladdr2 = ralloc(mem_ctx, st_src_reg);
3064          *src.reladdr2 = index_reg;
3065          src.index2D = 0;
3066          src.has_index2 = true;
3067       } else {
3068          src.reladdr = ralloc(mem_ctx, st_src_reg);
3069          *src.reladdr = index_reg;
3070       }
3071    }
3072 
3073    /* Change the register type to the element type of the array. */
3074    src.type = ir->type->base_type;
3075 
3076    this->result = src;
3077 }
3078 
3079 void
visit(ir_dereference_record * ir)3080 glsl_to_tgsi_visitor::visit(ir_dereference_record *ir)
3081 {
3082    unsigned int i;
3083    const glsl_type *struct_type = ir->record->type;
3084    ir_variable *var = ir->record->variable_referenced();
3085    int offset = 0;
3086 
3087    if (handle_bound_deref(ir->as_dereference()))
3088       return;
3089 
3090    ir->record->accept(this);
3091 
3092    assert(ir->field_idx >= 0);
3093    assert(var);
3094    for (i = 0; i < struct_type->length; i++) {
3095       if (i == (unsigned) ir->field_idx)
3096          break;
3097       const glsl_type *member_type = struct_type->fields.structure[i].type;
3098       offset += member_type->count_vec4_slots(false, var->data.bindless);
3099    }
3100 
3101    /* If the type is smaller than a vec4, replicate the last channel out. */
3102    if (ir->type->is_scalar() || ir->type->is_vector())
3103       this->result.swizzle = swizzle_for_size(ir->type->vector_elements);
3104    else
3105       this->result.swizzle = SWIZZLE_NOOP;
3106 
3107    this->result.index += offset;
3108    this->result.type = ir->type->base_type;
3109 }
3110 
3111 /**
3112  * We want to be careful in assignment setup to hit the actual storage
3113  * instead of potentially using a temporary like we might with the
3114  * ir_dereference handler.
3115  */
3116 static st_dst_reg
get_assignment_lhs(ir_dereference * ir,glsl_to_tgsi_visitor * v,int * component)3117 get_assignment_lhs(ir_dereference *ir, glsl_to_tgsi_visitor *v, int *component)
3118 {
3119    /* The LHS must be a dereference.  If the LHS is a variable indexed array
3120     * access of a vector, it must be separated into a series conditional moves
3121     * before reaching this point (see ir_vec_index_to_cond_assign).
3122     */
3123    assert(ir->as_dereference());
3124    ir_dereference_array *deref_array = ir->as_dereference_array();
3125    if (deref_array) {
3126       assert(!deref_array->array->type->is_vector());
3127    }
3128 
3129    /* Use the rvalue deref handler for the most part.  We write swizzles using
3130     * the writemask, but we do extract the base component for enhanced layouts
3131     * from the source swizzle.
3132     */
3133    ir->accept(v);
3134    *component = GET_SWZ(v->result.swizzle, 0);
3135    return st_dst_reg(v->result);
3136 }
3137 
3138 /**
3139  * Process the condition of a conditional assignment
3140  *
3141  * Examines the condition of a conditional assignment to generate the optimal
3142  * first operand of a \c CMP instruction.  If the condition is a relational
3143  * operator with 0 (e.g., \c ir_binop_less), the value being compared will be
3144  * used as the source for the \c CMP instruction.  Otherwise the comparison
3145  * is processed to a boolean result, and the boolean result is used as the
3146  * operand to the CMP instruction.
3147  */
3148 bool
process_move_condition(ir_rvalue * ir)3149 glsl_to_tgsi_visitor::process_move_condition(ir_rvalue *ir)
3150 {
3151    ir_rvalue *src_ir = ir;
3152    bool negate = true;
3153    bool switch_order = false;
3154 
3155    ir_expression *const expr = ir->as_expression();
3156 
3157    if (native_integers) {
3158       if ((expr != NULL) && (expr->num_operands == 2)) {
3159          enum glsl_base_type type = expr->operands[0]->type->base_type;
3160          if (type == GLSL_TYPE_INT || type == GLSL_TYPE_UINT ||
3161              type == GLSL_TYPE_BOOL) {
3162             if (expr->operation == ir_binop_equal) {
3163                if (expr->operands[0]->is_zero()) {
3164                   src_ir = expr->operands[1];
3165                   switch_order = true;
3166                }
3167                else if (expr->operands[1]->is_zero()) {
3168                   src_ir = expr->operands[0];
3169                   switch_order = true;
3170                }
3171             }
3172             else if (expr->operation == ir_binop_nequal) {
3173                if (expr->operands[0]->is_zero()) {
3174                   src_ir = expr->operands[1];
3175                }
3176                else if (expr->operands[1]->is_zero()) {
3177                   src_ir = expr->operands[0];
3178                }
3179             }
3180          }
3181       }
3182 
3183       src_ir->accept(this);
3184       return switch_order;
3185    }
3186 
3187    if ((expr != NULL) && (expr->num_operands == 2)) {
3188       bool zero_on_left = false;
3189 
3190       if (expr->operands[0]->is_zero()) {
3191          src_ir = expr->operands[1];
3192          zero_on_left = true;
3193       } else if (expr->operands[1]->is_zero()) {
3194          src_ir = expr->operands[0];
3195          zero_on_left = false;
3196       }
3197 
3198       /*      a is -  0  +            -  0  +
3199        * (a <  0)  T  F  F  ( a < 0)  T  F  F
3200        * (0 <  a)  F  F  T  (-a < 0)  F  F  T
3201        * (a >= 0)  F  T  T  ( a < 0)  T  F  F  (swap order of other operands)
3202        * (0 >= a)  T  T  F  (-a < 0)  F  F  T  (swap order of other operands)
3203        *
3204        * Note that exchanging the order of 0 and 'a' in the comparison simply
3205        * means that the value of 'a' should be negated.
3206        */
3207       if (src_ir != ir) {
3208          switch (expr->operation) {
3209          case ir_binop_less:
3210             switch_order = false;
3211             negate = zero_on_left;
3212             break;
3213 
3214          case ir_binop_gequal:
3215             switch_order = true;
3216             negate = zero_on_left;
3217             break;
3218 
3219          default:
3220             /* This isn't the right kind of comparison afterall, so make sure
3221              * the whole condition is visited.
3222              */
3223             src_ir = ir;
3224             break;
3225          }
3226       }
3227    }
3228 
3229    src_ir->accept(this);
3230 
3231    /* We use the TGSI_OPCODE_CMP (a < 0 ? b : c) for conditional moves, and the
3232     * condition we produced is 0.0 or 1.0.  By flipping the sign, we can
3233     * choose which value TGSI_OPCODE_CMP produces without an extra instruction
3234     * computing the condition.
3235     */
3236    if (negate)
3237       this->result.negate = ~this->result.negate;
3238 
3239    return switch_order;
3240 }
3241 
3242 void
emit_block_mov(ir_assignment * ir,const struct glsl_type * type,st_dst_reg * l,st_src_reg * r,st_src_reg * cond,bool cond_swap)3243 glsl_to_tgsi_visitor::emit_block_mov(ir_assignment *ir, const struct glsl_type *type,
3244                                      st_dst_reg *l, st_src_reg *r,
3245                                      st_src_reg *cond, bool cond_swap)
3246 {
3247    if (type->is_struct()) {
3248       for (unsigned int i = 0; i < type->length; i++) {
3249          emit_block_mov(ir, type->fields.structure[i].type, l, r,
3250                         cond, cond_swap);
3251       }
3252       return;
3253    }
3254 
3255    if (type->is_array()) {
3256       for (unsigned int i = 0; i < type->length; i++) {
3257          emit_block_mov(ir, type->fields.array, l, r, cond, cond_swap);
3258       }
3259       return;
3260    }
3261 
3262    if (type->is_matrix()) {
3263       const struct glsl_type *vec_type;
3264 
3265       vec_type = glsl_type::get_instance(type->is_double()
3266                                          ? GLSL_TYPE_DOUBLE : GLSL_TYPE_FLOAT,
3267                                          type->vector_elements, 1);
3268 
3269       for (int i = 0; i < type->matrix_columns; i++) {
3270          emit_block_mov(ir, vec_type, l, r, cond, cond_swap);
3271       }
3272       return;
3273    }
3274 
3275    assert(type->is_scalar() || type->is_vector());
3276 
3277    l->type = type->base_type;
3278    r->type = type->base_type;
3279    if (cond) {
3280       st_src_reg l_src = st_src_reg(*l);
3281 
3282       if (l_src.file == PROGRAM_OUTPUT &&
3283           this->prog->Target == GL_FRAGMENT_PROGRAM_ARB &&
3284           (l_src.index == FRAG_RESULT_DEPTH ||
3285            l_src.index == FRAG_RESULT_STENCIL)) {
3286          /* This is a special case because the source swizzles will be shifted
3287           * later to account for the difference between GLSL (where they're
3288           * plain floats) and TGSI (where they're Z and Y components). */
3289          l_src.swizzle = SWIZZLE_XXXX;
3290       }
3291 
3292       if (native_integers) {
3293          emit_asm(ir, TGSI_OPCODE_UCMP, *l, *cond,
3294               cond_swap ? l_src : *r,
3295               cond_swap ? *r : l_src);
3296       } else {
3297          emit_asm(ir, TGSI_OPCODE_CMP, *l, *cond,
3298               cond_swap ? l_src : *r,
3299               cond_swap ? *r : l_src);
3300       }
3301    } else {
3302       emit_asm(ir, TGSI_OPCODE_MOV, *l, *r);
3303    }
3304    l->index++;
3305    r->index++;
3306    if (type->is_dual_slot()) {
3307       l->index++;
3308       if (r->is_double_vertex_input == false)
3309          r->index++;
3310    }
3311 }
3312 
3313 void
visit(ir_assignment * ir)3314 glsl_to_tgsi_visitor::visit(ir_assignment *ir)
3315 {
3316    int dst_component;
3317    st_dst_reg l;
3318    st_src_reg r;
3319 
3320    /* all generated instructions need to be flaged as precise */
3321    this->precise = is_precise(ir->lhs->variable_referenced());
3322    ir->rhs->accept(this);
3323    r = this->result;
3324 
3325    l = get_assignment_lhs(ir->lhs, this, &dst_component);
3326 
3327    {
3328       int swizzles[4];
3329       int first_enabled_chan = 0;
3330       int rhs_chan = 0;
3331       ir_variable *variable = ir->lhs->variable_referenced();
3332 
3333       if (shader->Stage == MESA_SHADER_FRAGMENT &&
3334           variable->data.mode == ir_var_shader_out &&
3335           (variable->data.location == FRAG_RESULT_DEPTH ||
3336            variable->data.location == FRAG_RESULT_STENCIL)) {
3337          assert(ir->lhs->type->is_scalar());
3338          assert(ir->write_mask == WRITEMASK_X);
3339 
3340          if (variable->data.location == FRAG_RESULT_DEPTH)
3341             l.writemask = WRITEMASK_Z;
3342          else {
3343             assert(variable->data.location == FRAG_RESULT_STENCIL);
3344             l.writemask = WRITEMASK_Y;
3345          }
3346       } else if (ir->write_mask == 0) {
3347          assert(!ir->lhs->type->is_scalar() && !ir->lhs->type->is_vector());
3348 
3349          unsigned num_elements =
3350             ir->lhs->type->without_array()->vector_elements;
3351 
3352          if (num_elements) {
3353             l.writemask = u_bit_consecutive(0, num_elements);
3354          } else {
3355             /* The type is a struct or an array of (array of) structs. */
3356             l.writemask = WRITEMASK_XYZW;
3357          }
3358       } else {
3359          l.writemask = ir->write_mask;
3360       }
3361 
3362       for (int i = 0; i < 4; i++) {
3363          if (l.writemask & (1 << i)) {
3364             first_enabled_chan = GET_SWZ(r.swizzle, i);
3365             break;
3366          }
3367       }
3368 
3369       l.writemask = l.writemask << dst_component;
3370 
3371       /* Swizzle a small RHS vector into the channels being written.
3372        *
3373        * glsl ir treats write_mask as dictating how many channels are
3374        * present on the RHS while TGSI treats write_mask as just
3375        * showing which channels of the vec4 RHS get written.
3376        */
3377       for (int i = 0; i < 4; i++) {
3378          if (l.writemask & (1 << i))
3379             swizzles[i] = GET_SWZ(r.swizzle, rhs_chan++);
3380          else
3381             swizzles[i] = first_enabled_chan;
3382       }
3383       r.swizzle = MAKE_SWIZZLE4(swizzles[0], swizzles[1],
3384                                 swizzles[2], swizzles[3]);
3385    }
3386 
3387    assert(l.file != PROGRAM_UNDEFINED);
3388    assert(r.file != PROGRAM_UNDEFINED);
3389 
3390    if (ir->rhs->as_expression() &&
3391        this->instructions.get_tail() &&
3392        ir->rhs == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->ir &&
3393        !((glsl_to_tgsi_instruction *)this->instructions.get_tail())->is_64bit_expanded &&
3394        type_size(ir->lhs->type) == 1 &&
3395        !ir->lhs->type->is_64bit() &&
3396        l.writemask == ((glsl_to_tgsi_instruction *)this->instructions.get_tail())->dst[0].writemask) {
3397       /* To avoid emitting an extra MOV when assigning an expression to a
3398        * variable, emit the last instruction of the expression again, but
3399        * replace the destination register with the target of the assignment.
3400        * Dead code elimination will remove the original instruction.
3401        */
3402       glsl_to_tgsi_instruction *inst, *new_inst;
3403       inst = (glsl_to_tgsi_instruction *)this->instructions.get_tail();
3404       new_inst = emit_asm(ir, inst->op, l, inst->src[0], inst->src[1], inst->src[2], inst->src[3]);
3405       new_inst->saturate = inst->saturate;
3406       new_inst->resource = inst->resource;
3407       inst->dead_mask = inst->dst[0].writemask;
3408    } else {
3409       emit_block_mov(ir, ir->rhs->type, &l, &r, NULL, false);
3410    }
3411    this->precise = 0;
3412 }
3413 
3414 
3415 void
visit(ir_constant * ir)3416 glsl_to_tgsi_visitor::visit(ir_constant *ir)
3417 {
3418    st_src_reg src;
3419    GLdouble stack_vals[4] = { 0 };
3420    gl_constant_value *values = (gl_constant_value *) stack_vals;
3421    GLenum gl_type = GL_NONE;
3422    unsigned int i, elements;
3423    static int in_array = 0;
3424    gl_register_file file = in_array ? PROGRAM_CONSTANT : PROGRAM_IMMEDIATE;
3425 
3426    /* Unfortunately, 4 floats is all we can get into
3427     * _mesa_add_typed_unnamed_constant.  So, make a temp to store an
3428     * aggregate constant and move each constant value into it.  If we
3429     * get lucky, copy propagation will eliminate the extra moves.
3430     */
3431    if (ir->type->is_struct()) {
3432       st_src_reg temp_base = get_temp(ir->type);
3433       st_dst_reg temp = st_dst_reg(temp_base);
3434 
3435       for (i = 0; i < ir->type->length; i++) {
3436          ir_constant *const field_value = ir->get_record_field(i);
3437          int size = type_size(field_value->type);
3438 
3439          assert(size > 0);
3440 
3441          field_value->accept(this);
3442          src = this->result;
3443 
3444          for (unsigned j = 0; j < (unsigned int)size; j++) {
3445             emit_asm(ir, TGSI_OPCODE_MOV, temp, src);
3446 
3447             src.index++;
3448             temp.index++;
3449          }
3450       }
3451       this->result = temp_base;
3452       return;
3453    }
3454 
3455    if (ir->type->is_array()) {
3456       st_src_reg temp_base = get_temp(ir->type);
3457       st_dst_reg temp = st_dst_reg(temp_base);
3458       int size = type_size(ir->type->fields.array);
3459 
3460       assert(size > 0);
3461       in_array++;
3462 
3463       for (i = 0; i < ir->type->length; i++) {
3464          ir->const_elements[i]->accept(this);
3465          src = this->result;
3466          for (int j = 0; j < size; j++) {
3467             emit_asm(ir, TGSI_OPCODE_MOV, temp, src);
3468 
3469             src.index++;
3470             temp.index++;
3471          }
3472       }
3473       this->result = temp_base;
3474       in_array--;
3475       return;
3476    }
3477 
3478    if (ir->type->is_matrix()) {
3479       st_src_reg mat = get_temp(ir->type);
3480       st_dst_reg mat_column = st_dst_reg(mat);
3481 
3482       for (i = 0; i < ir->type->matrix_columns; i++) {
3483          switch (ir->type->base_type) {
3484          case GLSL_TYPE_FLOAT:
3485             values = (gl_constant_value *)
3486                &ir->value.f[i * ir->type->vector_elements];
3487 
3488             src = st_src_reg(file, -1, ir->type->base_type);
3489             src.index = add_constant(file,
3490                                      values,
3491                                      ir->type->vector_elements,
3492                                      GL_FLOAT,
3493                                      &src.swizzle);
3494             emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3495             break;
3496          case GLSL_TYPE_DOUBLE:
3497             values = (gl_constant_value *)
3498                &ir->value.d[i * ir->type->vector_elements];
3499             src = st_src_reg(file, -1, ir->type->base_type);
3500             src.index = add_constant(file,
3501                                      values,
3502                                      ir->type->vector_elements,
3503                                      GL_DOUBLE,
3504                                      &src.swizzle);
3505             if (ir->type->vector_elements >= 2) {
3506                mat_column.writemask = WRITEMASK_XY;
3507                src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y,
3508                                            SWIZZLE_X, SWIZZLE_Y);
3509                emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3510             } else {
3511                mat_column.writemask = WRITEMASK_X;
3512                src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X,
3513                                            SWIZZLE_X, SWIZZLE_X);
3514                emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3515             }
3516             src.index++;
3517             if (ir->type->vector_elements > 2) {
3518                if (ir->type->vector_elements == 4) {
3519                   mat_column.writemask = WRITEMASK_ZW;
3520                   src.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y,
3521                                               SWIZZLE_X, SWIZZLE_Y);
3522                   emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3523                } else {
3524                   mat_column.writemask = WRITEMASK_Z;
3525                   src.swizzle = MAKE_SWIZZLE4(SWIZZLE_Y, SWIZZLE_Y,
3526                                               SWIZZLE_Y, SWIZZLE_Y);
3527                   emit_asm(ir, TGSI_OPCODE_MOV, mat_column, src);
3528                   mat_column.writemask = WRITEMASK_XYZW;
3529                   src.swizzle = SWIZZLE_XYZW;
3530                }
3531                mat_column.index++;
3532             }
3533             break;
3534          default:
3535             unreachable("Illegal matrix constant type.\n");
3536             break;
3537          }
3538          mat_column.index++;
3539       }
3540       this->result = mat;
3541       return;
3542    }
3543 
3544    elements = ir->type->vector_elements;
3545    switch (ir->type->base_type) {
3546    case GLSL_TYPE_FLOAT:
3547       gl_type = GL_FLOAT;
3548       for (i = 0; i < ir->type->vector_elements; i++) {
3549          values[i].f = ir->value.f[i];
3550       }
3551       break;
3552    case GLSL_TYPE_DOUBLE:
3553       gl_type = GL_DOUBLE;
3554       for (i = 0; i < ir->type->vector_elements; i++) {
3555          memcpy(&values[i * 2], &ir->value.d[i], sizeof(double));
3556       }
3557       break;
3558    case GLSL_TYPE_INT64:
3559       gl_type = GL_INT64_ARB;
3560       for (i = 0; i < ir->type->vector_elements; i++) {
3561          memcpy(&values[i * 2], &ir->value.d[i], sizeof(int64_t));
3562       }
3563       break;
3564    case GLSL_TYPE_UINT64:
3565       gl_type = GL_UNSIGNED_INT64_ARB;
3566       for (i = 0; i < ir->type->vector_elements; i++) {
3567          memcpy(&values[i * 2], &ir->value.d[i], sizeof(uint64_t));
3568       }
3569       break;
3570    case GLSL_TYPE_UINT:
3571       gl_type = native_integers ? GL_UNSIGNED_INT : GL_FLOAT;
3572       for (i = 0; i < ir->type->vector_elements; i++) {
3573          if (native_integers)
3574             values[i].u = ir->value.u[i];
3575          else
3576             values[i].f = ir->value.u[i];
3577       }
3578       break;
3579    case GLSL_TYPE_INT:
3580       gl_type = native_integers ? GL_INT : GL_FLOAT;
3581       for (i = 0; i < ir->type->vector_elements; i++) {
3582          if (native_integers)
3583             values[i].i = ir->value.i[i];
3584          else
3585             values[i].f = ir->value.i[i];
3586       }
3587       break;
3588    case GLSL_TYPE_BOOL:
3589       gl_type = native_integers ? GL_BOOL : GL_FLOAT;
3590       for (i = 0; i < ir->type->vector_elements; i++) {
3591          values[i].u = ir->value.b[i] ? ctx->Const.UniformBooleanTrue : 0;
3592       }
3593       break;
3594    case GLSL_TYPE_SAMPLER:
3595    case GLSL_TYPE_IMAGE:
3596       gl_type = GL_UNSIGNED_INT;
3597       elements = 2;
3598       values[0].u = ir->value.u64[0] & 0xffffffff;
3599       values[1].u = ir->value.u64[0] >> 32;
3600       break;
3601    default:
3602       assert(!"Non-float/uint/int/bool/sampler/image constant");
3603    }
3604 
3605    this->result = st_src_reg(file, -1, ir->type);
3606    this->result.index = add_constant(file,
3607                                      values,
3608                                      elements,
3609                                      gl_type,
3610                                      &this->result.swizzle);
3611 }
3612 
3613 void
visit_atomic_counter_intrinsic(ir_call * ir)3614 glsl_to_tgsi_visitor::visit_atomic_counter_intrinsic(ir_call *ir)
3615 {
3616    exec_node *param = ir->actual_parameters.get_head();
3617    ir_dereference *deref = static_cast<ir_dereference *>(param);
3618    ir_variable *location = deref->variable_referenced();
3619    bool has_hw_atomics = st_context(ctx)->has_hw_atomics;
3620    /* Calculate the surface offset */
3621    st_src_reg offset;
3622    unsigned array_size = 0, base = 0;
3623    uint16_t index = 0;
3624    st_src_reg resource;
3625 
3626    get_deref_offsets(deref, &array_size, &base, &index, &offset, false);
3627 
3628    if (has_hw_atomics) {
3629       variable_storage *entry = find_variable_storage(location);
3630       st_src_reg buffer(PROGRAM_HW_ATOMIC, 0, GLSL_TYPE_ATOMIC_UINT,
3631                         location->data.binding);
3632 
3633       if (!entry) {
3634          entry = new(mem_ctx) variable_storage(location, PROGRAM_HW_ATOMIC,
3635                                                num_atomics);
3636          _mesa_hash_table_insert(this->variables, location, entry);
3637 
3638          atomic_info[num_atomics].location = location->data.location;
3639          atomic_info[num_atomics].binding = location->data.binding;
3640          atomic_info[num_atomics].size = location->type->arrays_of_arrays_size();
3641          if (atomic_info[num_atomics].size == 0)
3642             atomic_info[num_atomics].size = 1;
3643          atomic_info[num_atomics].array_id = 0;
3644          num_atomics++;
3645       }
3646 
3647       if (offset.file != PROGRAM_UNDEFINED) {
3648          if (atomic_info[entry->index].array_id == 0) {
3649             num_atomic_arrays++;
3650             atomic_info[entry->index].array_id = num_atomic_arrays;
3651          }
3652          buffer.array_id = atomic_info[entry->index].array_id;
3653       }
3654 
3655       buffer.index = index;
3656       buffer.index += location->data.offset / ATOMIC_COUNTER_SIZE;
3657       buffer.has_index2 = true;
3658 
3659       if (offset.file != PROGRAM_UNDEFINED) {
3660          buffer.reladdr = ralloc(mem_ctx, st_src_reg);
3661          *buffer.reladdr = offset;
3662          emit_arl(ir, sampler_reladdr, offset);
3663       }
3664       offset = st_src_reg_for_int(0);
3665 
3666       resource = buffer;
3667    } else {
3668       st_src_reg buffer(PROGRAM_BUFFER,
3669                         prog->info.num_ssbos +
3670                         location->data.binding,
3671                         GLSL_TYPE_ATOMIC_UINT);
3672 
3673       if (offset.file != PROGRAM_UNDEFINED) {
3674          emit_asm(ir, TGSI_OPCODE_MUL, st_dst_reg(offset),
3675                   offset, st_src_reg_for_int(ATOMIC_COUNTER_SIZE));
3676          emit_asm(ir, TGSI_OPCODE_ADD, st_dst_reg(offset),
3677                   offset, st_src_reg_for_int(location->data.offset + index * ATOMIC_COUNTER_SIZE));
3678       } else {
3679          offset = st_src_reg_for_int(location->data.offset + index * ATOMIC_COUNTER_SIZE);
3680       }
3681       resource = buffer;
3682    }
3683 
3684    ir->return_deref->accept(this);
3685    st_dst_reg dst(this->result);
3686    dst.writemask = WRITEMASK_X;
3687 
3688    glsl_to_tgsi_instruction *inst;
3689 
3690    if (ir->callee->intrinsic_id == ir_intrinsic_atomic_counter_read) {
3691       inst = emit_asm(ir, TGSI_OPCODE_LOAD, dst, offset);
3692    } else if (ir->callee->intrinsic_id == ir_intrinsic_atomic_counter_increment) {
3693       inst = emit_asm(ir, TGSI_OPCODE_ATOMUADD, dst, offset,
3694                       st_src_reg_for_int(1));
3695    } else if (ir->callee->intrinsic_id == ir_intrinsic_atomic_counter_predecrement) {
3696       inst = emit_asm(ir, TGSI_OPCODE_ATOMUADD, dst, offset,
3697                       st_src_reg_for_int(-1));
3698       emit_asm(ir, TGSI_OPCODE_ADD, dst, this->result, st_src_reg_for_int(-1));
3699    } else {
3700       param = param->get_next();
3701       ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3702       val->accept(this);
3703 
3704       st_src_reg data = this->result, data2 = undef_src;
3705       enum tgsi_opcode opcode;
3706       switch (ir->callee->intrinsic_id) {
3707       case ir_intrinsic_atomic_counter_add:
3708          opcode = TGSI_OPCODE_ATOMUADD;
3709          break;
3710       case ir_intrinsic_atomic_counter_min:
3711          opcode = TGSI_OPCODE_ATOMIMIN;
3712          break;
3713       case ir_intrinsic_atomic_counter_max:
3714          opcode = TGSI_OPCODE_ATOMIMAX;
3715          break;
3716       case ir_intrinsic_atomic_counter_and:
3717          opcode = TGSI_OPCODE_ATOMAND;
3718          break;
3719       case ir_intrinsic_atomic_counter_or:
3720          opcode = TGSI_OPCODE_ATOMOR;
3721          break;
3722       case ir_intrinsic_atomic_counter_xor:
3723          opcode = TGSI_OPCODE_ATOMXOR;
3724          break;
3725       case ir_intrinsic_atomic_counter_exchange:
3726          opcode = TGSI_OPCODE_ATOMXCHG;
3727          break;
3728       case ir_intrinsic_atomic_counter_comp_swap: {
3729          opcode = TGSI_OPCODE_ATOMCAS;
3730          param = param->get_next();
3731          val = ((ir_instruction *)param)->as_rvalue();
3732          val->accept(this);
3733          data2 = this->result;
3734          break;
3735       }
3736       default:
3737          assert(!"Unexpected intrinsic");
3738          return;
3739       }
3740 
3741       inst = emit_asm(ir, opcode, dst, offset, data, data2);
3742    }
3743 
3744    inst->resource = resource;
3745 }
3746 
3747 void
visit_ssbo_intrinsic(ir_call * ir)3748 glsl_to_tgsi_visitor::visit_ssbo_intrinsic(ir_call *ir)
3749 {
3750    exec_node *param = ir->actual_parameters.get_head();
3751 
3752    ir_rvalue *block = ((ir_instruction *)param)->as_rvalue();
3753 
3754    param = param->get_next();
3755    ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue();
3756 
3757    ir_constant *const_block = block->as_constant();
3758    st_src_reg buffer(
3759          PROGRAM_BUFFER,
3760          const_block ? const_block->value.u[0] : 0,
3761          GLSL_TYPE_UINT);
3762 
3763    if (!const_block) {
3764       block->accept(this);
3765       buffer.reladdr = ralloc(mem_ctx, st_src_reg);
3766       *buffer.reladdr = this->result;
3767       emit_arl(ir, sampler_reladdr, this->result);
3768    }
3769 
3770    /* Calculate the surface offset */
3771    offset->accept(this);
3772    st_src_reg off = this->result;
3773 
3774    st_dst_reg dst = undef_dst;
3775    if (ir->return_deref) {
3776       ir->return_deref->accept(this);
3777       dst = st_dst_reg(this->result);
3778       dst.writemask = (1 << ir->return_deref->type->vector_elements) - 1;
3779    }
3780 
3781    glsl_to_tgsi_instruction *inst;
3782 
3783    if (ir->callee->intrinsic_id == ir_intrinsic_ssbo_load) {
3784       inst = emit_asm(ir, TGSI_OPCODE_LOAD, dst, off);
3785       if (dst.type == GLSL_TYPE_BOOL)
3786          emit_asm(ir, TGSI_OPCODE_USNE, dst, st_src_reg(dst),
3787                   st_src_reg_for_int(0));
3788    } else if (ir->callee->intrinsic_id == ir_intrinsic_ssbo_store) {
3789       param = param->get_next();
3790       ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3791       val->accept(this);
3792 
3793       param = param->get_next();
3794       ir_constant *write_mask = ((ir_instruction *)param)->as_constant();
3795       assert(write_mask);
3796       dst.writemask = write_mask->value.u[0];
3797 
3798       dst.type = this->result.type;
3799       inst = emit_asm(ir, TGSI_OPCODE_STORE, dst, off, this->result);
3800    } else {
3801       param = param->get_next();
3802       ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3803       val->accept(this);
3804 
3805       st_src_reg data = this->result, data2 = undef_src;
3806       enum tgsi_opcode opcode;
3807       switch (ir->callee->intrinsic_id) {
3808       case ir_intrinsic_ssbo_atomic_add:
3809          opcode = TGSI_OPCODE_ATOMUADD;
3810          break;
3811       case ir_intrinsic_ssbo_atomic_min:
3812          opcode = TGSI_OPCODE_ATOMIMIN;
3813          break;
3814       case ir_intrinsic_ssbo_atomic_max:
3815          opcode = TGSI_OPCODE_ATOMIMAX;
3816          break;
3817       case ir_intrinsic_ssbo_atomic_and:
3818          opcode = TGSI_OPCODE_ATOMAND;
3819          break;
3820       case ir_intrinsic_ssbo_atomic_or:
3821          opcode = TGSI_OPCODE_ATOMOR;
3822          break;
3823       case ir_intrinsic_ssbo_atomic_xor:
3824          opcode = TGSI_OPCODE_ATOMXOR;
3825          break;
3826       case ir_intrinsic_ssbo_atomic_exchange:
3827          opcode = TGSI_OPCODE_ATOMXCHG;
3828          break;
3829       case ir_intrinsic_ssbo_atomic_comp_swap:
3830          opcode = TGSI_OPCODE_ATOMCAS;
3831          param = param->get_next();
3832          val = ((ir_instruction *)param)->as_rvalue();
3833          val->accept(this);
3834          data2 = this->result;
3835          break;
3836       default:
3837          assert(!"Unexpected intrinsic");
3838          return;
3839       }
3840 
3841       inst = emit_asm(ir, opcode, dst, off, data, data2);
3842    }
3843 
3844    param = param->get_next();
3845    ir_constant *access = NULL;
3846    if (!param->is_tail_sentinel()) {
3847       access = ((ir_instruction *)param)->as_constant();
3848       assert(access);
3849    }
3850 
3851    add_buffer_to_load_and_stores(inst, &buffer, &this->instructions, access);
3852 }
3853 
3854 void
visit_membar_intrinsic(ir_call * ir)3855 glsl_to_tgsi_visitor::visit_membar_intrinsic(ir_call *ir)
3856 {
3857    switch (ir->callee->intrinsic_id) {
3858    case ir_intrinsic_memory_barrier:
3859       emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3860                st_src_reg_for_int(TGSI_MEMBAR_SHADER_BUFFER |
3861                                   TGSI_MEMBAR_ATOMIC_BUFFER |
3862                                   TGSI_MEMBAR_SHADER_IMAGE |
3863                                   TGSI_MEMBAR_SHARED));
3864       break;
3865    case ir_intrinsic_memory_barrier_atomic_counter:
3866       emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3867                st_src_reg_for_int(TGSI_MEMBAR_ATOMIC_BUFFER));
3868       break;
3869    case ir_intrinsic_memory_barrier_buffer:
3870       emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3871                st_src_reg_for_int(TGSI_MEMBAR_SHADER_BUFFER));
3872       break;
3873    case ir_intrinsic_memory_barrier_image:
3874       emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3875                st_src_reg_for_int(TGSI_MEMBAR_SHADER_IMAGE));
3876       break;
3877    case ir_intrinsic_memory_barrier_shared:
3878       emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3879                st_src_reg_for_int(TGSI_MEMBAR_SHARED));
3880       break;
3881    case ir_intrinsic_group_memory_barrier:
3882       emit_asm(ir, TGSI_OPCODE_MEMBAR, undef_dst,
3883                st_src_reg_for_int(TGSI_MEMBAR_SHADER_BUFFER |
3884                                   TGSI_MEMBAR_ATOMIC_BUFFER |
3885                                   TGSI_MEMBAR_SHADER_IMAGE |
3886                                   TGSI_MEMBAR_SHARED |
3887                                   TGSI_MEMBAR_THREAD_GROUP));
3888       break;
3889    default:
3890       assert(!"Unexpected memory barrier intrinsic");
3891    }
3892 }
3893 
3894 void
visit_shared_intrinsic(ir_call * ir)3895 glsl_to_tgsi_visitor::visit_shared_intrinsic(ir_call *ir)
3896 {
3897    exec_node *param = ir->actual_parameters.get_head();
3898 
3899    ir_rvalue *offset = ((ir_instruction *)param)->as_rvalue();
3900 
3901    st_src_reg buffer(PROGRAM_MEMORY, 0, GLSL_TYPE_UINT);
3902 
3903    /* Calculate the surface offset */
3904    offset->accept(this);
3905    st_src_reg off = this->result;
3906 
3907    st_dst_reg dst = undef_dst;
3908    if (ir->return_deref) {
3909       ir->return_deref->accept(this);
3910       dst = st_dst_reg(this->result);
3911       dst.writemask = (1 << ir->return_deref->type->vector_elements) - 1;
3912    }
3913 
3914    glsl_to_tgsi_instruction *inst;
3915 
3916    if (ir->callee->intrinsic_id == ir_intrinsic_shared_load) {
3917       inst = emit_asm(ir, TGSI_OPCODE_LOAD, dst, off);
3918       inst->resource = buffer;
3919    } else if (ir->callee->intrinsic_id == ir_intrinsic_shared_store) {
3920       param = param->get_next();
3921       ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3922       val->accept(this);
3923 
3924       param = param->get_next();
3925       ir_constant *write_mask = ((ir_instruction *)param)->as_constant();
3926       assert(write_mask);
3927       dst.writemask = write_mask->value.u[0];
3928 
3929       dst.type = this->result.type;
3930       inst = emit_asm(ir, TGSI_OPCODE_STORE, dst, off, this->result);
3931       inst->resource = buffer;
3932    } else {
3933       param = param->get_next();
3934       ir_rvalue *val = ((ir_instruction *)param)->as_rvalue();
3935       val->accept(this);
3936 
3937       st_src_reg data = this->result, data2 = undef_src;
3938       enum tgsi_opcode opcode;
3939       switch (ir->callee->intrinsic_id) {
3940       case ir_intrinsic_shared_atomic_add:
3941          opcode = TGSI_OPCODE_ATOMUADD;
3942          break;
3943       case ir_intrinsic_shared_atomic_min:
3944          opcode = TGSI_OPCODE_ATOMIMIN;
3945          break;
3946       case ir_intrinsic_shared_atomic_max:
3947          opcode = TGSI_OPCODE_ATOMIMAX;
3948          break;
3949       case ir_intrinsic_shared_atomic_and:
3950          opcode = TGSI_OPCODE_ATOMAND;
3951          break;
3952       case ir_intrinsic_shared_atomic_or:
3953          opcode = TGSI_OPCODE_ATOMOR;
3954          break;
3955       case ir_intrinsic_shared_atomic_xor:
3956          opcode = TGSI_OPCODE_ATOMXOR;
3957          break;
3958       case ir_intrinsic_shared_atomic_exchange:
3959          opcode = TGSI_OPCODE_ATOMXCHG;
3960          break;
3961       case ir_intrinsic_shared_atomic_comp_swap:
3962          opcode = TGSI_OPCODE_ATOMCAS;
3963          param = param->get_next();
3964          val = ((ir_instruction *)param)->as_rvalue();
3965          val->accept(this);
3966          data2 = this->result;
3967          break;
3968       default:
3969          assert(!"Unexpected intrinsic");
3970          return;
3971       }
3972 
3973       inst = emit_asm(ir, opcode, dst, off, data, data2);
3974       inst->resource = buffer;
3975    }
3976 }
3977 
3978 static void
get_image_qualifiers(ir_dereference * ir,const glsl_type ** type,bool * memory_coherent,bool * memory_volatile,bool * memory_restrict,bool * memory_read_only,enum pipe_format * image_format)3979 get_image_qualifiers(ir_dereference *ir, const glsl_type **type,
3980                      bool *memory_coherent, bool *memory_volatile,
3981                      bool *memory_restrict, bool *memory_read_only,
3982                      enum pipe_format *image_format)
3983 {
3984 
3985    switch (ir->ir_type) {
3986    case ir_type_dereference_record: {
3987       ir_dereference_record *deref_record = ir->as_dereference_record();
3988       const glsl_type *struct_type = deref_record->record->type;
3989       int fild_idx = deref_record->field_idx;
3990 
3991       *type = struct_type->fields.structure[fild_idx].type->without_array();
3992       *memory_coherent =
3993          struct_type->fields.structure[fild_idx].memory_coherent;
3994       *memory_volatile =
3995          struct_type->fields.structure[fild_idx].memory_volatile;
3996       *memory_restrict =
3997          struct_type->fields.structure[fild_idx].memory_restrict;
3998       *memory_read_only =
3999          struct_type->fields.structure[fild_idx].memory_read_only;
4000       *image_format =
4001          struct_type->fields.structure[fild_idx].image_format;
4002       break;
4003    }
4004 
4005    case ir_type_dereference_array: {
4006       ir_dereference_array *deref_arr = ir->as_dereference_array();
4007       get_image_qualifiers((ir_dereference *)deref_arr->array, type,
4008                            memory_coherent, memory_volatile, memory_restrict,
4009                            memory_read_only, image_format);
4010       break;
4011    }
4012 
4013    case ir_type_dereference_variable: {
4014       ir_variable *var = ir->variable_referenced();
4015 
4016       *type = var->type->without_array();
4017       *memory_coherent = var->data.memory_coherent;
4018       *memory_volatile = var->data.memory_volatile;
4019       *memory_restrict = var->data.memory_restrict;
4020       *memory_read_only = var->data.memory_read_only;
4021       *image_format = var->data.image_format;
4022       break;
4023    }
4024 
4025    default:
4026       break;
4027    }
4028 }
4029 
4030 void
visit_image_intrinsic(ir_call * ir)4031 glsl_to_tgsi_visitor::visit_image_intrinsic(ir_call *ir)
4032 {
4033    exec_node *param = ir->actual_parameters.get_head();
4034 
4035    ir_dereference *img = (ir_dereference *)param;
4036    const ir_variable *imgvar = img->variable_referenced();
4037    unsigned sampler_array_size = 1, sampler_base = 0;
4038    bool memory_coherent = false, memory_volatile = false,
4039         memory_restrict = false, memory_read_only = false;
4040    enum pipe_format image_format = PIPE_FORMAT_NONE;
4041    const glsl_type *type = NULL;
4042 
4043    get_image_qualifiers(img, &type, &memory_coherent, &memory_volatile,
4044                         &memory_restrict, &memory_read_only, &image_format);
4045 
4046    st_src_reg reladdr;
4047    st_src_reg image(PROGRAM_IMAGE, 0, GLSL_TYPE_UINT);
4048    uint16_t index = 0;
4049    get_deref_offsets(img, &sampler_array_size, &sampler_base,
4050                      &index, &reladdr, !imgvar->contains_bindless());
4051 
4052    image.index = index;
4053    if (reladdr.file != PROGRAM_UNDEFINED) {
4054       image.reladdr = ralloc(mem_ctx, st_src_reg);
4055       *image.reladdr = reladdr;
4056       emit_arl(ir, sampler_reladdr, reladdr);
4057    }
4058 
4059    st_dst_reg dst = undef_dst;
4060    if (ir->return_deref) {
4061       ir->return_deref->accept(this);
4062       dst = st_dst_reg(this->result);
4063       dst.writemask = (1 << ir->return_deref->type->vector_elements) - 1;
4064    }
4065 
4066    glsl_to_tgsi_instruction *inst;
4067 
4068    st_src_reg bindless;
4069    if (imgvar->contains_bindless()) {
4070       img->accept(this);
4071       bindless = this->result;
4072    }
4073 
4074    if (ir->callee->intrinsic_id == ir_intrinsic_image_size) {
4075       dst.writemask = WRITEMASK_XYZ;
4076       inst = emit_asm(ir, TGSI_OPCODE_RESQ, dst);
4077    } else if (ir->callee->intrinsic_id == ir_intrinsic_image_samples) {
4078       st_src_reg res = get_temp(glsl_type::ivec4_type);
4079       st_dst_reg dstres = st_dst_reg(res);
4080       dstres.writemask = WRITEMASK_W;
4081       inst = emit_asm(ir, TGSI_OPCODE_RESQ, dstres);
4082       res.swizzle = SWIZZLE_WWWW;
4083       emit_asm(ir, TGSI_OPCODE_MOV, dst, res);
4084    } else {
4085       st_src_reg arg1 = undef_src, arg2 = undef_src;
4086       st_src_reg coord;
4087       st_dst_reg coord_dst;
4088       coord = get_temp(glsl_type::ivec4_type);
4089       coord_dst = st_dst_reg(coord);
4090       coord_dst.writemask = (1 << type->coordinate_components()) - 1;
4091       param = param->get_next();
4092       ((ir_dereference *)param)->accept(this);
4093       emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
4094       coord.swizzle = SWIZZLE_XXXX;
4095       switch (type->coordinate_components()) {
4096       case 4: assert(!"unexpected coord count");
4097       FALLTHROUGH;
4098       case 3: coord.swizzle |= SWIZZLE_Z << 6;
4099       FALLTHROUGH;
4100       case 2: coord.swizzle |= SWIZZLE_Y << 3;
4101       }
4102 
4103       if (type->sampler_dimensionality == GLSL_SAMPLER_DIM_MS) {
4104          param = param->get_next();
4105          ((ir_dereference *)param)->accept(this);
4106          st_src_reg sample = this->result;
4107          sample.swizzle = SWIZZLE_XXXX;
4108          coord_dst.writemask = WRITEMASK_W;
4109          emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, sample);
4110          coord.swizzle |= SWIZZLE_W << 9;
4111       }
4112 
4113       param = param->get_next();
4114       if (!param->is_tail_sentinel()) {
4115          ((ir_dereference *)param)->accept(this);
4116          arg1 = this->result;
4117          param = param->get_next();
4118       }
4119 
4120       if (!param->is_tail_sentinel()) {
4121          ((ir_dereference *)param)->accept(this);
4122          arg2 = this->result;
4123          param = param->get_next();
4124       }
4125 
4126       assert(param->is_tail_sentinel());
4127 
4128       enum tgsi_opcode opcode;
4129       switch (ir->callee->intrinsic_id) {
4130       case ir_intrinsic_image_load:
4131          opcode = TGSI_OPCODE_LOAD;
4132          break;
4133       case ir_intrinsic_image_store:
4134          opcode = TGSI_OPCODE_STORE;
4135          break;
4136       case ir_intrinsic_image_atomic_add:
4137          opcode = TGSI_OPCODE_ATOMUADD;
4138          break;
4139       case ir_intrinsic_image_atomic_min:
4140          opcode = TGSI_OPCODE_ATOMIMIN;
4141          break;
4142       case ir_intrinsic_image_atomic_max:
4143          opcode = TGSI_OPCODE_ATOMIMAX;
4144          break;
4145       case ir_intrinsic_image_atomic_and:
4146          opcode = TGSI_OPCODE_ATOMAND;
4147          break;
4148       case ir_intrinsic_image_atomic_or:
4149          opcode = TGSI_OPCODE_ATOMOR;
4150          break;
4151       case ir_intrinsic_image_atomic_xor:
4152          opcode = TGSI_OPCODE_ATOMXOR;
4153          break;
4154       case ir_intrinsic_image_atomic_exchange:
4155          opcode = TGSI_OPCODE_ATOMXCHG;
4156          break;
4157       case ir_intrinsic_image_atomic_comp_swap:
4158          opcode = TGSI_OPCODE_ATOMCAS;
4159          break;
4160       case ir_intrinsic_image_atomic_inc_wrap: {
4161          /* There's a bit of disagreement between GLSL and the hardware. The
4162           * hardware wants to wrap after the given wrap value, while GLSL
4163           * wants to wrap at the value. Subtract 1 to make up the difference.
4164           */
4165          st_src_reg wrap = get_temp(glsl_type::uint_type);
4166          emit_asm(ir, TGSI_OPCODE_ADD, st_dst_reg(wrap),
4167                   arg1, st_src_reg_for_int(-1));
4168          arg1 = wrap;
4169          opcode = TGSI_OPCODE_ATOMINC_WRAP;
4170          break;
4171       }
4172       case ir_intrinsic_image_atomic_dec_wrap:
4173          opcode = TGSI_OPCODE_ATOMDEC_WRAP;
4174          break;
4175       default:
4176          assert(!"Unexpected intrinsic");
4177          return;
4178       }
4179 
4180       inst = emit_asm(ir, opcode, dst, coord, arg1, arg2);
4181       if (opcode == TGSI_OPCODE_STORE)
4182          inst->dst[0].writemask = WRITEMASK_XYZW;
4183    }
4184 
4185    if (imgvar->contains_bindless()) {
4186       inst->resource = bindless;
4187       inst->resource.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y,
4188                                              SWIZZLE_X, SWIZZLE_Y);
4189    } else {
4190       inst->resource = image;
4191       inst->sampler_array_size = sampler_array_size;
4192       inst->sampler_base = sampler_base;
4193    }
4194 
4195    inst->tex_target = type->sampler_index();
4196    inst->image_format = image_format;
4197    inst->read_only = memory_read_only;
4198 
4199    if (memory_coherent)
4200       inst->buffer_access |= TGSI_MEMORY_COHERENT;
4201    if (memory_restrict)
4202       inst->buffer_access |= TGSI_MEMORY_RESTRICT;
4203    if (memory_volatile)
4204       inst->buffer_access |= TGSI_MEMORY_VOLATILE;
4205 }
4206 
4207 void
visit_generic_intrinsic(ir_call * ir,enum tgsi_opcode op)4208 glsl_to_tgsi_visitor::visit_generic_intrinsic(ir_call *ir, enum tgsi_opcode op)
4209 {
4210    ir->return_deref->accept(this);
4211    st_dst_reg dst = st_dst_reg(this->result);
4212 
4213    dst.writemask = u_bit_consecutive(0, ir->return_deref->var->type->vector_elements);
4214 
4215    st_src_reg src[4] = { undef_src, undef_src, undef_src, undef_src };
4216    unsigned num_src = 0;
4217    foreach_in_list(ir_rvalue, param, &ir->actual_parameters) {
4218       assert(num_src < ARRAY_SIZE(src));
4219 
4220       this->result.file = PROGRAM_UNDEFINED;
4221       param->accept(this);
4222       assert(this->result.file != PROGRAM_UNDEFINED);
4223 
4224       src[num_src] = this->result;
4225       num_src++;
4226    }
4227 
4228    emit_asm(ir, op, dst, src[0], src[1], src[2], src[3]);
4229 }
4230 
4231 void
visit(ir_call * ir)4232 glsl_to_tgsi_visitor::visit(ir_call *ir)
4233 {
4234    ir_function_signature *sig = ir->callee;
4235 
4236    /* Filter out intrinsics */
4237    switch (sig->intrinsic_id) {
4238    case ir_intrinsic_atomic_counter_read:
4239    case ir_intrinsic_atomic_counter_increment:
4240    case ir_intrinsic_atomic_counter_predecrement:
4241    case ir_intrinsic_atomic_counter_add:
4242    case ir_intrinsic_atomic_counter_min:
4243    case ir_intrinsic_atomic_counter_max:
4244    case ir_intrinsic_atomic_counter_and:
4245    case ir_intrinsic_atomic_counter_or:
4246    case ir_intrinsic_atomic_counter_xor:
4247    case ir_intrinsic_atomic_counter_exchange:
4248    case ir_intrinsic_atomic_counter_comp_swap:
4249       visit_atomic_counter_intrinsic(ir);
4250       return;
4251 
4252    case ir_intrinsic_ssbo_load:
4253    case ir_intrinsic_ssbo_store:
4254    case ir_intrinsic_ssbo_atomic_add:
4255    case ir_intrinsic_ssbo_atomic_min:
4256    case ir_intrinsic_ssbo_atomic_max:
4257    case ir_intrinsic_ssbo_atomic_and:
4258    case ir_intrinsic_ssbo_atomic_or:
4259    case ir_intrinsic_ssbo_atomic_xor:
4260    case ir_intrinsic_ssbo_atomic_exchange:
4261    case ir_intrinsic_ssbo_atomic_comp_swap:
4262       visit_ssbo_intrinsic(ir);
4263       return;
4264 
4265    case ir_intrinsic_memory_barrier:
4266    case ir_intrinsic_memory_barrier_atomic_counter:
4267    case ir_intrinsic_memory_barrier_buffer:
4268    case ir_intrinsic_memory_barrier_image:
4269    case ir_intrinsic_memory_barrier_shared:
4270    case ir_intrinsic_group_memory_barrier:
4271       visit_membar_intrinsic(ir);
4272       return;
4273 
4274    case ir_intrinsic_shared_load:
4275    case ir_intrinsic_shared_store:
4276    case ir_intrinsic_shared_atomic_add:
4277    case ir_intrinsic_shared_atomic_min:
4278    case ir_intrinsic_shared_atomic_max:
4279    case ir_intrinsic_shared_atomic_and:
4280    case ir_intrinsic_shared_atomic_or:
4281    case ir_intrinsic_shared_atomic_xor:
4282    case ir_intrinsic_shared_atomic_exchange:
4283    case ir_intrinsic_shared_atomic_comp_swap:
4284       visit_shared_intrinsic(ir);
4285       return;
4286 
4287    case ir_intrinsic_image_load:
4288    case ir_intrinsic_image_store:
4289    case ir_intrinsic_image_atomic_add:
4290    case ir_intrinsic_image_atomic_min:
4291    case ir_intrinsic_image_atomic_max:
4292    case ir_intrinsic_image_atomic_and:
4293    case ir_intrinsic_image_atomic_or:
4294    case ir_intrinsic_image_atomic_xor:
4295    case ir_intrinsic_image_atomic_exchange:
4296    case ir_intrinsic_image_atomic_comp_swap:
4297    case ir_intrinsic_image_size:
4298    case ir_intrinsic_image_samples:
4299    case ir_intrinsic_image_atomic_inc_wrap:
4300    case ir_intrinsic_image_atomic_dec_wrap:
4301       visit_image_intrinsic(ir);
4302       return;
4303 
4304    case ir_intrinsic_shader_clock:
4305       visit_generic_intrinsic(ir, TGSI_OPCODE_CLOCK);
4306       return;
4307 
4308    case ir_intrinsic_vote_all:
4309       visit_generic_intrinsic(ir, TGSI_OPCODE_VOTE_ALL);
4310       return;
4311    case ir_intrinsic_vote_any:
4312       visit_generic_intrinsic(ir, TGSI_OPCODE_VOTE_ANY);
4313       return;
4314    case ir_intrinsic_vote_eq:
4315       visit_generic_intrinsic(ir, TGSI_OPCODE_VOTE_EQ);
4316       return;
4317    case ir_intrinsic_ballot:
4318       visit_generic_intrinsic(ir, TGSI_OPCODE_BALLOT);
4319       return;
4320    case ir_intrinsic_read_first_invocation:
4321       visit_generic_intrinsic(ir, TGSI_OPCODE_READ_FIRST);
4322       return;
4323    case ir_intrinsic_read_invocation:
4324       visit_generic_intrinsic(ir, TGSI_OPCODE_READ_INVOC);
4325       return;
4326 
4327    case ir_intrinsic_helper_invocation:
4328       visit_generic_intrinsic(ir, TGSI_OPCODE_READ_HELPER);
4329       return;
4330 
4331    case ir_intrinsic_invalid:
4332    case ir_intrinsic_generic_load:
4333    case ir_intrinsic_generic_store:
4334    case ir_intrinsic_generic_atomic_add:
4335    case ir_intrinsic_generic_atomic_and:
4336    case ir_intrinsic_generic_atomic_or:
4337    case ir_intrinsic_generic_atomic_xor:
4338    case ir_intrinsic_generic_atomic_min:
4339    case ir_intrinsic_generic_atomic_max:
4340    case ir_intrinsic_generic_atomic_exchange:
4341    case ir_intrinsic_generic_atomic_comp_swap:
4342    case ir_intrinsic_begin_invocation_interlock:
4343    case ir_intrinsic_end_invocation_interlock:
4344    case ir_intrinsic_image_sparse_load:
4345    case ir_intrinsic_is_sparse_texels_resident:
4346       unreachable("Invalid intrinsic");
4347    }
4348 }
4349 
4350 void
calc_deref_offsets(ir_dereference * tail,unsigned * array_elements,uint16_t * index,st_src_reg * indirect,unsigned * location)4351 glsl_to_tgsi_visitor::calc_deref_offsets(ir_dereference *tail,
4352                                          unsigned *array_elements,
4353                                          uint16_t *index,
4354                                          st_src_reg *indirect,
4355                                          unsigned *location)
4356 {
4357    switch (tail->ir_type) {
4358    case ir_type_dereference_record: {
4359       ir_dereference_record *deref_record = tail->as_dereference_record();
4360       const glsl_type *struct_type = deref_record->record->type;
4361       int field_index = deref_record->field_idx;
4362 
4363       calc_deref_offsets(deref_record->record->as_dereference(), array_elements, index, indirect, location);
4364 
4365       assert(field_index >= 0);
4366       *location += struct_type->struct_location_offset(field_index);
4367       break;
4368    }
4369 
4370    case ir_type_dereference_array: {
4371       ir_dereference_array *deref_arr = tail->as_dereference_array();
4372 
4373       void *mem_ctx = ralloc_parent(deref_arr);
4374       ir_constant *array_index =
4375          deref_arr->array_index->constant_expression_value(mem_ctx);
4376 
4377       if (!array_index) {
4378          st_src_reg temp_reg;
4379          st_dst_reg temp_dst;
4380 
4381          temp_reg = get_temp(glsl_type::uint_type);
4382          temp_dst = st_dst_reg(temp_reg);
4383          temp_dst.writemask = 1;
4384 
4385          deref_arr->array_index->accept(this);
4386          if (*array_elements != 1)
4387             emit_asm(NULL, TGSI_OPCODE_MUL, temp_dst, this->result, st_src_reg_for_int(*array_elements));
4388          else
4389             emit_asm(NULL, TGSI_OPCODE_MOV, temp_dst, this->result);
4390 
4391          if (indirect->file == PROGRAM_UNDEFINED)
4392             *indirect = temp_reg;
4393          else {
4394             temp_dst = st_dst_reg(*indirect);
4395             temp_dst.writemask = 1;
4396             emit_asm(NULL, TGSI_OPCODE_ADD, temp_dst, *indirect, temp_reg);
4397          }
4398       } else
4399          *index += array_index->value.u[0] * *array_elements;
4400 
4401       *array_elements *= deref_arr->array->type->length;
4402 
4403       calc_deref_offsets(deref_arr->array->as_dereference(), array_elements, index, indirect, location);
4404       break;
4405    }
4406    default:
4407       break;
4408    }
4409 }
4410 
4411 void
get_deref_offsets(ir_dereference * ir,unsigned * array_size,unsigned * base,uint16_t * index,st_src_reg * reladdr,bool opaque)4412 glsl_to_tgsi_visitor::get_deref_offsets(ir_dereference *ir,
4413                                         unsigned *array_size,
4414                                         unsigned *base,
4415                                         uint16_t *index,
4416                                         st_src_reg *reladdr,
4417                                         bool opaque)
4418 {
4419    GLuint shader = _mesa_program_enum_to_shader_stage(this->prog->Target);
4420    unsigned location = 0;
4421    ir_variable *var = ir->variable_referenced();
4422 
4423    reladdr->reset();
4424 
4425    *base = 0;
4426    *array_size = 1;
4427 
4428    assert(var);
4429    location = var->data.location;
4430    calc_deref_offsets(ir, array_size, index, reladdr, &location);
4431 
4432    /*
4433     * If we end up with no indirect then adjust the base to the index,
4434     * and set the array size to 1.
4435     */
4436    if (reladdr->file == PROGRAM_UNDEFINED) {
4437       *base = *index;
4438       *array_size = 1;
4439    }
4440 
4441    if (opaque) {
4442       assert(location != 0xffffffff);
4443       *base += this->shader_program->data->UniformStorage[location].opaque[shader].index;
4444       *index += this->shader_program->data->UniformStorage[location].opaque[shader].index;
4445    }
4446 }
4447 
4448 st_src_reg
canonicalize_gather_offset(st_src_reg offset)4449 glsl_to_tgsi_visitor::canonicalize_gather_offset(st_src_reg offset)
4450 {
4451    if (offset.reladdr || offset.reladdr2 ||
4452        offset.has_index2 ||
4453        offset.file == PROGRAM_UNIFORM ||
4454        offset.file == PROGRAM_CONSTANT ||
4455        offset.file == PROGRAM_STATE_VAR) {
4456       st_src_reg tmp = get_temp(glsl_type::ivec2_type);
4457       st_dst_reg tmp_dst = st_dst_reg(tmp);
4458       tmp_dst.writemask = WRITEMASK_XY;
4459       emit_asm(NULL, TGSI_OPCODE_MOV, tmp_dst, offset);
4460       return tmp;
4461    }
4462 
4463    return offset;
4464 }
4465 
4466 bool
handle_bound_deref(ir_dereference * ir)4467 glsl_to_tgsi_visitor::handle_bound_deref(ir_dereference *ir)
4468 {
4469    ir_variable *var = ir->variable_referenced();
4470 
4471    if (!var || var->data.mode != ir_var_uniform || var->data.bindless ||
4472        !(ir->type->is_image() || ir->type->is_sampler()))
4473       return false;
4474 
4475    /* Convert from bound sampler/image to bindless handle. */
4476    bool is_image = ir->type->is_image();
4477    st_src_reg resource(is_image ? PROGRAM_IMAGE : PROGRAM_SAMPLER, 0, GLSL_TYPE_UINT);
4478    uint16_t index = 0;
4479    unsigned array_size = 1, base = 0;
4480    st_src_reg reladdr;
4481    get_deref_offsets(ir, &array_size, &base, &index, &reladdr, true);
4482 
4483    resource.index = index;
4484    if (reladdr.file != PROGRAM_UNDEFINED) {
4485       resource.reladdr = ralloc(mem_ctx, st_src_reg);
4486       *resource.reladdr = reladdr;
4487       emit_arl(ir, sampler_reladdr, reladdr);
4488    }
4489 
4490    this->result = get_temp(glsl_type::uvec2_type);
4491    st_dst_reg dst(this->result);
4492    dst.writemask = WRITEMASK_XY;
4493 
4494    glsl_to_tgsi_instruction *inst = emit_asm(
4495       ir, is_image ? TGSI_OPCODE_IMG2HND : TGSI_OPCODE_SAMP2HND, dst);
4496 
4497    inst->tex_target = ir->type->sampler_index();
4498    inst->resource = resource;
4499    inst->sampler_array_size = array_size;
4500    inst->sampler_base = base;
4501 
4502    return true;
4503 }
4504 
4505 void
visit(ir_texture * ir)4506 glsl_to_tgsi_visitor::visit(ir_texture *ir)
4507 {
4508    st_src_reg result_src, coord, cube_sc, lod_info, projector, dx, dy;
4509    st_src_reg offset[MAX_GLSL_TEXTURE_OFFSET], sample_index, component;
4510    st_src_reg levels_src, reladdr;
4511    st_dst_reg result_dst, coord_dst, cube_sc_dst;
4512    glsl_to_tgsi_instruction *inst = NULL;
4513    enum tgsi_opcode opcode = TGSI_OPCODE_NOP;
4514    const glsl_type *sampler_type = ir->sampler->type;
4515    unsigned sampler_array_size = 1, sampler_base = 0;
4516    bool is_cube_array = false;
4517    ir_variable *var = ir->sampler->variable_referenced();
4518    unsigned i;
4519 
4520    /* if we are a cube array sampler or a cube shadow */
4521    if (sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE) {
4522       is_cube_array = sampler_type->sampler_array;
4523    }
4524 
4525    if (ir->coordinate) {
4526       ir->coordinate->accept(this);
4527 
4528       /* Put our coords in a temp.  We'll need to modify them for shadow,
4529        * projection, or LOD, so the only case we'd use it as-is is if
4530        * we're doing plain old texturing.  The optimization passes on
4531        * glsl_to_tgsi_visitor should handle cleaning up our mess in that case.
4532        */
4533       coord = get_temp(glsl_type::vec4_type);
4534       coord_dst = st_dst_reg(coord);
4535       coord_dst.writemask = (1 << ir->coordinate->type->vector_elements) - 1;
4536       emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
4537    }
4538 
4539    if (ir->projector) {
4540       ir->projector->accept(this);
4541       projector = this->result;
4542    }
4543 
4544    /* Storage for our result.  Ideally for an assignment we'd be using
4545     * the actual storage for the result here, instead.
4546     */
4547    result_src = get_temp(ir->type);
4548    result_dst = st_dst_reg(result_src);
4549    result_dst.writemask = (1 << ir->type->vector_elements) - 1;
4550 
4551    switch (ir->op) {
4552    case ir_tex:
4553       opcode = (is_cube_array && ir->shadow_comparator) ? TGSI_OPCODE_TEX2 : TGSI_OPCODE_TEX;
4554       if (ir->offset) {
4555          ir->offset->accept(this);
4556          offset[0] = this->result;
4557       }
4558       break;
4559    case ir_txb:
4560       if (is_cube_array ||
4561          (sampler_type->sampler_shadow && sampler_type->coordinate_components() >= 3)) {
4562          opcode = TGSI_OPCODE_TXB2;
4563       }
4564       else {
4565          opcode = TGSI_OPCODE_TXB;
4566       }
4567       ir->lod_info.bias->accept(this);
4568       lod_info = this->result;
4569       if (ir->offset) {
4570          ir->offset->accept(this);
4571          offset[0] = this->result;
4572       }
4573       break;
4574    case ir_txl:
4575       if (this->has_tex_txf_lz && ir->lod_info.lod->is_zero()) {
4576          opcode = TGSI_OPCODE_TEX_LZ;
4577       } else {
4578          opcode = (is_cube_array || (sampler_type->sampler_shadow && sampler_type->coordinate_components() >= 3)) ? TGSI_OPCODE_TXL2 : TGSI_OPCODE_TXL;
4579          ir->lod_info.lod->accept(this);
4580          lod_info = this->result;
4581       }
4582       if (ir->offset) {
4583          ir->offset->accept(this);
4584          offset[0] = this->result;
4585       }
4586       break;
4587    case ir_txd:
4588       opcode = TGSI_OPCODE_TXD;
4589       ir->lod_info.grad.dPdx->accept(this);
4590       dx = this->result;
4591       ir->lod_info.grad.dPdy->accept(this);
4592       dy = this->result;
4593       if (ir->offset) {
4594          ir->offset->accept(this);
4595          offset[0] = this->result;
4596       }
4597       break;
4598    case ir_txs:
4599       opcode = TGSI_OPCODE_TXQ;
4600       ir->lod_info.lod->accept(this);
4601       lod_info = this->result;
4602       break;
4603    case ir_query_levels:
4604       opcode = TGSI_OPCODE_TXQ;
4605       lod_info = undef_src;
4606       levels_src = get_temp(ir->type);
4607       break;
4608    case ir_txf:
4609       if (this->has_tex_txf_lz && ir->lod_info.lod->is_zero()) {
4610          opcode = TGSI_OPCODE_TXF_LZ;
4611       } else {
4612          opcode = TGSI_OPCODE_TXF;
4613          ir->lod_info.lod->accept(this);
4614          lod_info = this->result;
4615       }
4616       if (ir->offset) {
4617          ir->offset->accept(this);
4618          offset[0] = this->result;
4619       }
4620       break;
4621    case ir_txf_ms:
4622       opcode = TGSI_OPCODE_TXF;
4623       ir->lod_info.sample_index->accept(this);
4624       sample_index = this->result;
4625       break;
4626    case ir_tg4:
4627       opcode = TGSI_OPCODE_TG4;
4628       ir->lod_info.component->accept(this);
4629       component = this->result;
4630       if (ir->offset) {
4631          ir->offset->accept(this);
4632          if (ir->offset->type->is_array()) {
4633             const glsl_type *elt_type = ir->offset->type->fields.array;
4634             for (i = 0; i < ir->offset->type->length; i++) {
4635                offset[i] = this->result;
4636                offset[i].index += i * type_size(elt_type);
4637                offset[i].type = elt_type->base_type;
4638                offset[i].swizzle = swizzle_for_size(elt_type->vector_elements);
4639                offset[i] = canonicalize_gather_offset(offset[i]);
4640             }
4641          } else {
4642             offset[0] = canonicalize_gather_offset(this->result);
4643          }
4644       }
4645       break;
4646    case ir_lod:
4647       opcode = TGSI_OPCODE_LODQ;
4648       break;
4649    case ir_texture_samples:
4650       opcode = TGSI_OPCODE_TXQS;
4651       break;
4652    case ir_samples_identical:
4653       unreachable("Unexpected ir_samples_identical opcode");
4654    }
4655 
4656    if (ir->projector) {
4657       if (opcode == TGSI_OPCODE_TEX) {
4658          /* Slot the projector in as the last component of the coord. */
4659          coord_dst.writemask = WRITEMASK_W;
4660          emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, projector);
4661          coord_dst.writemask = WRITEMASK_XYZW;
4662          opcode = TGSI_OPCODE_TXP;
4663       } else {
4664          st_src_reg coord_w = coord;
4665          coord_w.swizzle = SWIZZLE_WWWW;
4666 
4667          /* For the other TEX opcodes there's no projective version
4668           * since the last slot is taken up by LOD info.  Do the
4669           * projective divide now.
4670           */
4671          coord_dst.writemask = WRITEMASK_W;
4672          emit_asm(ir, TGSI_OPCODE_RCP, coord_dst, projector);
4673 
4674          /* In the case where we have to project the coordinates "by hand,"
4675           * the shadow comparator value must also be projected.
4676           */
4677          st_src_reg tmp_src = coord;
4678          if (ir->shadow_comparator) {
4679             /* Slot the shadow value in as the second to last component of the
4680              * coord.
4681              */
4682             ir->shadow_comparator->accept(this);
4683 
4684             tmp_src = get_temp(glsl_type::vec4_type);
4685             st_dst_reg tmp_dst = st_dst_reg(tmp_src);
4686 
4687             /* Projective division not allowed for array samplers. */
4688             assert(!sampler_type->sampler_array);
4689 
4690             tmp_dst.writemask = WRITEMASK_Z;
4691             emit_asm(ir, TGSI_OPCODE_MOV, tmp_dst, this->result);
4692 
4693             tmp_dst.writemask = WRITEMASK_XY;
4694             emit_asm(ir, TGSI_OPCODE_MOV, tmp_dst, coord);
4695          }
4696 
4697          coord_dst.writemask = WRITEMASK_XYZ;
4698          emit_asm(ir, TGSI_OPCODE_MUL, coord_dst, tmp_src, coord_w);
4699 
4700          coord_dst.writemask = WRITEMASK_XYZW;
4701          coord.swizzle = SWIZZLE_XYZW;
4702       }
4703    }
4704 
4705    /* If projection is done and the opcode is not TGSI_OPCODE_TXP, then the
4706     * shadow comparator was put in the correct place (and projected) by the
4707     * code, above, that handles by-hand projection.
4708     */
4709    if (ir->shadow_comparator && (!ir->projector || opcode == TGSI_OPCODE_TXP)) {
4710       /* Slot the shadow value in as the second to last component of the
4711        * coord.
4712        */
4713       ir->shadow_comparator->accept(this);
4714 
4715       if (is_cube_array) {
4716          if (lod_info.file != PROGRAM_UNDEFINED) {
4717             // If we have both a cube array *and* a bias/lod, stick the
4718             // comparator into the .Y of the second argument.
4719             st_src_reg tmp = get_temp(glsl_type::vec2_type);
4720             cube_sc_dst = st_dst_reg(tmp);
4721             cube_sc_dst.writemask = WRITEMASK_X;
4722             emit_asm(ir, TGSI_OPCODE_MOV, cube_sc_dst, lod_info);
4723             lod_info = tmp;
4724             cube_sc_dst.writemask = WRITEMASK_Y;
4725          } else {
4726             cube_sc = get_temp(glsl_type::float_type);
4727             cube_sc_dst = st_dst_reg(cube_sc);
4728             cube_sc_dst.writemask = WRITEMASK_X;
4729          }
4730          emit_asm(ir, TGSI_OPCODE_MOV, cube_sc_dst, this->result);
4731       }
4732       else {
4733          if ((sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_2D &&
4734               sampler_type->sampler_array) ||
4735              sampler_type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE) {
4736             coord_dst.writemask = WRITEMASK_W;
4737          } else {
4738             coord_dst.writemask = WRITEMASK_Z;
4739          }
4740          emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, this->result);
4741          coord_dst.writemask = WRITEMASK_XYZW;
4742       }
4743    }
4744 
4745    if (ir->op == ir_txf_ms) {
4746       coord_dst.writemask = WRITEMASK_W;
4747       emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, sample_index);
4748       coord_dst.writemask = WRITEMASK_XYZW;
4749    } else if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXB ||
4750        opcode == TGSI_OPCODE_TXF) {
4751       /* TGSI stores LOD or LOD bias in the last channel of the coords. */
4752       coord_dst.writemask = WRITEMASK_W;
4753       emit_asm(ir, TGSI_OPCODE_MOV, coord_dst, lod_info);
4754       coord_dst.writemask = WRITEMASK_XYZW;
4755    }
4756 
4757    st_src_reg sampler(PROGRAM_SAMPLER, 0, GLSL_TYPE_UINT);
4758 
4759    uint16_t index = 0;
4760    get_deref_offsets(ir->sampler, &sampler_array_size, &sampler_base,
4761                      &index, &reladdr, !var->contains_bindless());
4762 
4763    sampler.index = index;
4764    if (reladdr.file != PROGRAM_UNDEFINED) {
4765       sampler.reladdr = ralloc(mem_ctx, st_src_reg);
4766       *sampler.reladdr = reladdr;
4767       emit_arl(ir, sampler_reladdr, reladdr);
4768    }
4769 
4770    st_src_reg bindless;
4771    if (var->contains_bindless()) {
4772       ir->sampler->accept(this);
4773       bindless = this->result;
4774    }
4775 
4776    if (opcode == TGSI_OPCODE_TXD)
4777       inst = emit_asm(ir, opcode, result_dst, coord, dx, dy);
4778    else if (opcode == TGSI_OPCODE_TXQ) {
4779       if (ir->op == ir_query_levels) {
4780          /* the level is stored in W */
4781          inst = emit_asm(ir, opcode, st_dst_reg(levels_src), lod_info);
4782          result_dst.writemask = WRITEMASK_X;
4783          levels_src.swizzle = SWIZZLE_WWWW;
4784          emit_asm(ir, TGSI_OPCODE_MOV, result_dst, levels_src);
4785       } else
4786          inst = emit_asm(ir, opcode, result_dst, lod_info);
4787    } else if (opcode == TGSI_OPCODE_TXQS) {
4788       inst = emit_asm(ir, opcode, result_dst);
4789    } else if (opcode == TGSI_OPCODE_TXL2 || opcode == TGSI_OPCODE_TXB2) {
4790       inst = emit_asm(ir, opcode, result_dst, coord, lod_info);
4791    } else if (opcode == TGSI_OPCODE_TEX2) {
4792       inst = emit_asm(ir, opcode, result_dst, coord, cube_sc);
4793    } else if (opcode == TGSI_OPCODE_TG4) {
4794       if (is_cube_array && ir->shadow_comparator) {
4795          inst = emit_asm(ir, opcode, result_dst, coord, cube_sc);
4796       } else {
4797          if (this->tg4_component_in_swizzle) {
4798             inst = emit_asm(ir, opcode, result_dst, coord);
4799             int idx = 0;
4800             foreach_in_list(immediate_storage, entry, &this->immediates) {
4801                if (component.index == idx) {
4802                   gl_constant_value value = entry->values[component.swizzle];
4803                   inst->gather_component = value.i;
4804                   break;
4805                }
4806                idx++;
4807             }
4808          } else {
4809             inst = emit_asm(ir, opcode, result_dst, coord, component);
4810          }
4811       }
4812    } else
4813       inst = emit_asm(ir, opcode, result_dst, coord);
4814 
4815    if (ir->shadow_comparator)
4816       inst->tex_shadow = GL_TRUE;
4817 
4818    if (var->contains_bindless()) {
4819       inst->resource = bindless;
4820       inst->resource.swizzle = MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_Y,
4821                                              SWIZZLE_X, SWIZZLE_Y);
4822    } else {
4823       inst->resource = sampler;
4824       inst->sampler_array_size = sampler_array_size;
4825       inst->sampler_base = sampler_base;
4826    }
4827 
4828    if (ir->offset) {
4829       if (!inst->tex_offsets)
4830          inst->tex_offsets = rzalloc_array(inst, st_src_reg,
4831                                            MAX_GLSL_TEXTURE_OFFSET);
4832 
4833       for (i = 0; i < MAX_GLSL_TEXTURE_OFFSET &&
4834                   offset[i].file != PROGRAM_UNDEFINED; i++)
4835          inst->tex_offsets[i] = offset[i];
4836       inst->tex_offset_num_offset = i;
4837    }
4838 
4839    inst->tex_target = sampler_type->sampler_index();
4840    inst->tex_type = ir->type->base_type;
4841 
4842    this->result = result_src;
4843 }
4844 
4845 void
visit(ir_return * ir)4846 glsl_to_tgsi_visitor::visit(ir_return *ir)
4847 {
4848    assert(!ir->get_value());
4849 
4850    emit_asm(ir, TGSI_OPCODE_RET);
4851 }
4852 
4853 void
visit(ir_discard * ir)4854 glsl_to_tgsi_visitor::visit(ir_discard *ir)
4855 {
4856    if (ir->condition) {
4857       ir->condition->accept(this);
4858       st_src_reg condition = this->result;
4859 
4860       /* Convert the bool condition to a float so we can negate. */
4861       if (native_integers) {
4862          st_src_reg temp = get_temp(ir->condition->type);
4863          emit_asm(ir, TGSI_OPCODE_AND, st_dst_reg(temp),
4864               condition, st_src_reg_for_float(1.0));
4865          condition = temp;
4866       }
4867 
4868       condition.negate = ~condition.negate;
4869       emit_asm(ir, TGSI_OPCODE_KILL_IF, undef_dst, condition);
4870    } else {
4871       /* unconditional kil */
4872       emit_asm(ir, TGSI_OPCODE_KILL);
4873    }
4874 }
4875 
4876 void
visit(ir_demote * ir)4877 glsl_to_tgsi_visitor::visit(ir_demote *ir)
4878 {
4879    emit_asm(ir, TGSI_OPCODE_DEMOTE);
4880 }
4881 
4882 void
visit(ir_if * ir)4883 glsl_to_tgsi_visitor::visit(ir_if *ir)
4884 {
4885    enum tgsi_opcode if_opcode;
4886    glsl_to_tgsi_instruction *if_inst;
4887 
4888    ir->condition->accept(this);
4889    assert(this->result.file != PROGRAM_UNDEFINED);
4890 
4891    if_opcode = native_integers ? TGSI_OPCODE_UIF : TGSI_OPCODE_IF;
4892 
4893    if_inst = emit_asm(ir->condition, if_opcode, undef_dst, this->result);
4894 
4895    this->instructions.push_tail(if_inst);
4896 
4897    visit_exec_list(&ir->then_instructions, this);
4898 
4899    if (!ir->else_instructions.is_empty()) {
4900       emit_asm(ir->condition, TGSI_OPCODE_ELSE);
4901       visit_exec_list(&ir->else_instructions, this);
4902    }
4903 
4904    if_inst = emit_asm(ir->condition, TGSI_OPCODE_ENDIF);
4905 }
4906 
4907 
4908 void
visit(ir_emit_vertex * ir)4909 glsl_to_tgsi_visitor::visit(ir_emit_vertex *ir)
4910 {
4911    assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
4912 
4913    ir->stream->accept(this);
4914    emit_asm(ir, TGSI_OPCODE_EMIT, undef_dst, this->result);
4915 }
4916 
4917 void
visit(ir_end_primitive * ir)4918 glsl_to_tgsi_visitor::visit(ir_end_primitive *ir)
4919 {
4920    assert(this->prog->Target == GL_GEOMETRY_PROGRAM_NV);
4921 
4922    ir->stream->accept(this);
4923    emit_asm(ir, TGSI_OPCODE_ENDPRIM, undef_dst, this->result);
4924 }
4925 
4926 void
visit(ir_barrier * ir)4927 glsl_to_tgsi_visitor::visit(ir_barrier *ir)
4928 {
4929    assert(this->prog->Target == GL_TESS_CONTROL_PROGRAM_NV ||
4930           this->prog->Target == GL_COMPUTE_PROGRAM_NV);
4931 
4932    emit_asm(ir, TGSI_OPCODE_BARRIER);
4933 }
4934 
glsl_to_tgsi_visitor()4935 glsl_to_tgsi_visitor::glsl_to_tgsi_visitor()
4936 {
4937    STATIC_ASSERT(sizeof(samplers_used) * 8 >= PIPE_MAX_SAMPLERS);
4938 
4939    result.file = PROGRAM_UNDEFINED;
4940    next_temp = 1;
4941    array_sizes = NULL;
4942    max_num_arrays = 0;
4943    next_array = 0;
4944    num_inputs = 0;
4945    num_outputs = 0;
4946    num_input_arrays = 0;
4947    num_output_arrays = 0;
4948    num_atomics = 0;
4949    num_atomic_arrays = 0;
4950    num_immediates = 0;
4951    num_address_regs = 0;
4952    samplers_used = 0;
4953    images_used = 0;
4954    indirect_addr_consts = false;
4955    wpos_transform_const = -1;
4956    native_integers = false;
4957    mem_ctx = ralloc_context(NULL);
4958    ctx = NULL;
4959    prog = NULL;
4960    precise = 0;
4961    tg4_component_in_swizzle = false;
4962    shader_program = NULL;
4963    shader = NULL;
4964    options = NULL;
4965    have_sqrt = false;
4966    have_fma = false;
4967    use_shared_memory = false;
4968    has_tex_txf_lz = false;
4969    variables = NULL;
4970 }
4971 
var_destroy(struct hash_entry * entry)4972 static void var_destroy(struct hash_entry *entry)
4973 {
4974    variable_storage *storage = (variable_storage *)entry->data;
4975 
4976    delete storage;
4977 }
4978 
~glsl_to_tgsi_visitor()4979 glsl_to_tgsi_visitor::~glsl_to_tgsi_visitor()
4980 {
4981    _mesa_hash_table_destroy(variables, var_destroy);
4982    free(array_sizes);
4983    ralloc_free(mem_ctx);
4984 }
4985 
free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor * v)4986 extern "C" void free_glsl_to_tgsi_visitor(glsl_to_tgsi_visitor *v)
4987 {
4988    delete v;
4989 }
4990 
4991 
4992 /**
4993  * Count resources used by the given gpu program (number of texture
4994  * samplers, etc).
4995  */
4996 static void
count_resources(glsl_to_tgsi_visitor * v,gl_program * prog)4997 count_resources(glsl_to_tgsi_visitor *v, gl_program *prog)
4998 {
4999    v->samplers_used = 0;
5000    v->images_used = 0;
5001    BITSET_ZERO(prog->info.textures_used_by_txf);
5002 
5003    foreach_in_list(glsl_to_tgsi_instruction, inst, &v->instructions) {
5004       if (inst->info->is_tex) {
5005          for (int i = 0; i < inst->sampler_array_size; i++) {
5006             unsigned idx = inst->sampler_base + i;
5007             v->samplers_used |= 1u << idx;
5008 
5009             debug_assert(idx < (int)ARRAY_SIZE(v->sampler_types));
5010             v->sampler_types[idx] = inst->tex_type;
5011             v->sampler_targets[idx] =
5012                st_translate_texture_target(inst->tex_target, inst->tex_shadow);
5013 
5014             if (inst->op == TGSI_OPCODE_TXF || inst->op == TGSI_OPCODE_TXF_LZ) {
5015                BITSET_SET(prog->info.textures_used_by_txf, idx);
5016             }
5017          }
5018       }
5019 
5020       if (inst->tex_target == TEXTURE_EXTERNAL_INDEX)
5021          prog->ExternalSamplersUsed |= 1 << inst->resource.index;
5022 
5023       if (inst->resource.file != PROGRAM_UNDEFINED && (
5024                 is_resource_instruction(inst->op) ||
5025                 inst->op == TGSI_OPCODE_STORE)) {
5026          if (inst->resource.file == PROGRAM_MEMORY) {
5027             v->use_shared_memory = true;
5028          } else if (inst->resource.file == PROGRAM_IMAGE) {
5029             for (int i = 0; i < inst->sampler_array_size; i++) {
5030                unsigned idx = inst->sampler_base + i;
5031                v->images_used |= 1 << idx;
5032                v->image_targets[idx] =
5033                   st_translate_texture_target(inst->tex_target, false);
5034                v->image_formats[idx] = inst->image_format;
5035                v->image_wr[idx] = !inst->read_only;
5036             }
5037          }
5038       }
5039    }
5040    prog->SamplersUsed = v->samplers_used;
5041 
5042    if (v->shader_program != NULL)
5043       _mesa_update_shader_textures_used(v->shader_program, prog);
5044 }
5045 
5046 /**
5047  * Returns the mask of channels (bitmask of WRITEMASK_X,Y,Z,W) which
5048  * are read from the given src in this instruction
5049  */
5050 static int
get_src_arg_mask(st_dst_reg dst,st_src_reg src)5051 get_src_arg_mask(st_dst_reg dst, st_src_reg src)
5052 {
5053    int read_mask = 0, comp;
5054 
5055    /* Now, given the src swizzle and the written channels, find which
5056     * components are actually read
5057     */
5058    for (comp = 0; comp < 4; ++comp) {
5059       const unsigned coord = GET_SWZ(src.swizzle, comp);
5060       assert(coord < 4);
5061       if (dst.writemask & (1 << comp) && coord <= SWIZZLE_W)
5062          read_mask |= 1 << coord;
5063    }
5064 
5065    return read_mask;
5066 }
5067 
5068 /**
5069  * This pass replaces CMP T0, T1 T2 T0 with MOV T0, T2 when the CMP
5070  * instruction is the first instruction to write to register T0.  There are
5071  * several lowering passes done in GLSL IR (e.g. branches and
5072  * relative addressing) that create a large number of conditional assignments
5073  * that glsl_to_tgsi converts to CMP instructions like the one mentioned above.
5074  *
5075  * Here is why this conversion is safe:
5076  * CMP T0, T1 T2 T0 can be expanded to:
5077  * if (T1 < 0.0)
5078  *   MOV T0, T2;
5079  * else
5080  *   MOV T0, T0;
5081  *
5082  * If (T1 < 0.0) evaluates to true then our replacement MOV T0, T2 is the same
5083  * as the original program.  If (T1 < 0.0) evaluates to false, executing
5084  * MOV T0, T0 will store a garbage value in T0 since T0 is uninitialized.
5085  * Therefore, it doesn't matter that we are replacing MOV T0, T0 with MOV T0, T2
5086  * because any instruction that was going to read from T0 after this was going
5087  * to read a garbage value anyway.
5088  */
5089 void
simplify_cmp(void)5090 glsl_to_tgsi_visitor::simplify_cmp(void)
5091 {
5092    int tempWritesSize = 0;
5093    unsigned *tempWrites = NULL;
5094    unsigned outputWrites[VARYING_SLOT_TESS_MAX];
5095 
5096    memset(outputWrites, 0, sizeof(outputWrites));
5097 
5098    foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
5099       unsigned prevWriteMask = 0;
5100 
5101       /* Give up if we encounter relative addressing or flow control. */
5102       if (inst->dst[0].reladdr || inst->dst[0].reladdr2 ||
5103           inst->dst[1].reladdr || inst->dst[1].reladdr2 ||
5104           inst->info->is_branch ||
5105           inst->op == TGSI_OPCODE_CONT ||
5106           inst->op == TGSI_OPCODE_END ||
5107           inst->op == TGSI_OPCODE_RET) {
5108          break;
5109       }
5110 
5111       if (inst->dst[0].file == PROGRAM_OUTPUT) {
5112          assert(inst->dst[0].index < (signed)ARRAY_SIZE(outputWrites));
5113          prevWriteMask = outputWrites[inst->dst[0].index];
5114          outputWrites[inst->dst[0].index] |= inst->dst[0].writemask;
5115       } else if (inst->dst[0].file == PROGRAM_TEMPORARY) {
5116          if (inst->dst[0].index >= tempWritesSize) {
5117             const int inc = 4096;
5118 
5119             tempWrites = (unsigned*)
5120                          realloc(tempWrites,
5121                                  (tempWritesSize + inc) * sizeof(unsigned));
5122             if (!tempWrites)
5123                return;
5124 
5125             memset(tempWrites + tempWritesSize, 0, inc * sizeof(unsigned));
5126             tempWritesSize += inc;
5127          }
5128 
5129          prevWriteMask = tempWrites[inst->dst[0].index];
5130          tempWrites[inst->dst[0].index] |= inst->dst[0].writemask;
5131       } else
5132          continue;
5133 
5134       /* For a CMP to be considered a conditional write, the destination
5135        * register and source register two must be the same. */
5136       if (inst->op == TGSI_OPCODE_CMP
5137           && !(inst->dst[0].writemask & prevWriteMask)
5138           && inst->src[2].file == inst->dst[0].file
5139           && inst->src[2].index == inst->dst[0].index
5140           && inst->dst[0].writemask ==
5141              get_src_arg_mask(inst->dst[0], inst->src[2])) {
5142 
5143          inst->op = TGSI_OPCODE_MOV;
5144          inst->info = tgsi_get_opcode_info(inst->op);
5145          inst->src[0] = inst->src[1];
5146       }
5147    }
5148 
5149    free(tempWrites);
5150 }
5151 
5152 static void
rename_temp_handle_src(struct rename_reg_pair * renames,st_src_reg * src)5153 rename_temp_handle_src(struct rename_reg_pair *renames, st_src_reg *src)
5154 {
5155    if (src && src->file == PROGRAM_TEMPORARY) {
5156       int old_idx = src->index;
5157       if (renames[old_idx].valid)
5158          src->index = renames[old_idx].new_reg;
5159    }
5160 }
5161 
5162 /* Replaces all references to a temporary register index with another index. */
5163 void
rename_temp_registers(struct rename_reg_pair * renames)5164 glsl_to_tgsi_visitor::rename_temp_registers(struct rename_reg_pair *renames)
5165 {
5166    foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
5167       unsigned j;
5168       for (j = 0; j < num_inst_src_regs(inst); j++) {
5169          rename_temp_handle_src(renames, &inst->src[j]);
5170          rename_temp_handle_src(renames, inst->src[j].reladdr);
5171          rename_temp_handle_src(renames, inst->src[j].reladdr2);
5172       }
5173 
5174       for (j = 0; j < inst->tex_offset_num_offset; j++) {
5175          rename_temp_handle_src(renames, &inst->tex_offsets[j]);
5176          rename_temp_handle_src(renames, inst->tex_offsets[j].reladdr);
5177          rename_temp_handle_src(renames, inst->tex_offsets[j].reladdr2);
5178       }
5179 
5180       rename_temp_handle_src(renames, &inst->resource);
5181       rename_temp_handle_src(renames, inst->resource.reladdr);
5182       rename_temp_handle_src(renames, inst->resource.reladdr2);
5183 
5184       for (j = 0; j < num_inst_dst_regs(inst); j++) {
5185          if (inst->dst[j].file == PROGRAM_TEMPORARY) {
5186             int old_idx = inst->dst[j].index;
5187             if (renames[old_idx].valid)
5188                inst->dst[j].index = renames[old_idx].new_reg;
5189          }
5190          rename_temp_handle_src(renames, inst->dst[j].reladdr);
5191          rename_temp_handle_src(renames, inst->dst[j].reladdr2);
5192       }
5193    }
5194 }
5195 
5196 void
get_first_temp_write(int * first_writes)5197 glsl_to_tgsi_visitor::get_first_temp_write(int *first_writes)
5198 {
5199    int depth = 0; /* loop depth */
5200    int loop_start = -1; /* index of the first active BGNLOOP (if any) */
5201    unsigned i = 0, j;
5202 
5203    foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
5204       for (j = 0; j < num_inst_dst_regs(inst); j++) {
5205          if (inst->dst[j].file == PROGRAM_TEMPORARY) {
5206             if (first_writes[inst->dst[j].index] == -1)
5207                 first_writes[inst->dst[j].index] = (depth == 0) ? i : loop_start;
5208          }
5209       }
5210 
5211       if (inst->op == TGSI_OPCODE_BGNLOOP) {
5212          if (depth++ == 0)
5213             loop_start = i;
5214       } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
5215          if (--depth == 0)
5216             loop_start = -1;
5217       }
5218       assert(depth >= 0);
5219       i++;
5220    }
5221 }
5222 
5223 void
get_first_temp_read(int * first_reads)5224 glsl_to_tgsi_visitor::get_first_temp_read(int *first_reads)
5225 {
5226    int depth = 0; /* loop depth */
5227    int loop_start = -1; /* index of the first active BGNLOOP (if any) */
5228    unsigned i = 0, j;
5229 
5230    foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
5231       for (j = 0; j < num_inst_src_regs(inst); j++) {
5232          if (inst->src[j].file == PROGRAM_TEMPORARY) {
5233             if (first_reads[inst->src[j].index] == -1)
5234                 first_reads[inst->src[j].index] = (depth == 0) ? i : loop_start;
5235          }
5236       }
5237       for (j = 0; j < inst->tex_offset_num_offset; j++) {
5238          if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY) {
5239             if (first_reads[inst->tex_offsets[j].index] == -1)
5240                first_reads[inst->tex_offsets[j].index] = (depth == 0) ? i : loop_start;
5241          }
5242       }
5243       if (inst->op == TGSI_OPCODE_BGNLOOP) {
5244          if (depth++ == 0)
5245             loop_start = i;
5246       } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
5247          if (--depth == 0)
5248             loop_start = -1;
5249       }
5250       assert(depth >= 0);
5251       i++;
5252    }
5253 }
5254 
5255 void
get_last_temp_read_first_temp_write(int * last_reads,int * first_writes)5256 glsl_to_tgsi_visitor::get_last_temp_read_first_temp_write(int *last_reads, int *first_writes)
5257 {
5258    int depth = 0; /* loop depth */
5259    int loop_start = -1; /* index of the first active BGNLOOP (if any) */
5260    unsigned i = 0, j;
5261    int k;
5262    foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
5263       for (j = 0; j < num_inst_src_regs(inst); j++) {
5264          if (inst->src[j].file == PROGRAM_TEMPORARY)
5265             last_reads[inst->src[j].index] = (depth == 0) ? i : -2;
5266       }
5267       for (j = 0; j < num_inst_dst_regs(inst); j++) {
5268          if (inst->dst[j].file == PROGRAM_TEMPORARY) {
5269             if (first_writes[inst->dst[j].index] == -1)
5270                first_writes[inst->dst[j].index] = (depth == 0) ? i : loop_start;
5271             last_reads[inst->dst[j].index] = (depth == 0) ? i : -2;
5272          }
5273       }
5274       for (j = 0; j < inst->tex_offset_num_offset; j++) {
5275          if (inst->tex_offsets[j].file == PROGRAM_TEMPORARY)
5276             last_reads[inst->tex_offsets[j].index] = (depth == 0) ? i : -2;
5277       }
5278       if (inst->op == TGSI_OPCODE_BGNLOOP) {
5279          if (depth++ == 0)
5280             loop_start = i;
5281       } else if (inst->op == TGSI_OPCODE_ENDLOOP) {
5282          if (--depth == 0) {
5283             loop_start = -1;
5284             for (k = 0; k < this->next_temp; k++) {
5285                if (last_reads[k] == -2) {
5286                   last_reads[k] = i;
5287                }
5288             }
5289          }
5290       }
5291       assert(depth >= 0);
5292       i++;
5293    }
5294 }
5295 
5296 void
get_last_temp_write(int * last_writes)5297 glsl_to_tgsi_visitor::get_last_temp_write(int *last_writes)
5298 {
5299    int depth = 0; /* loop depth */
5300    int i = 0, k;
5301    unsigned j;
5302 
5303    foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
5304       for (j = 0; j < num_inst_dst_regs(inst); j++) {
5305          if (inst->dst[j].file == PROGRAM_TEMPORARY)
5306             last_writes[inst->dst[j].index] = (depth == 0) ? i : -2;
5307       }
5308 
5309       if (inst->op == TGSI_OPCODE_BGNLOOP)
5310          depth++;
5311       else if (inst->op == TGSI_OPCODE_ENDLOOP)
5312          if (--depth == 0) {
5313             for (k = 0; k < this->next_temp; k++) {
5314                if (last_writes[k] == -2) {
5315                   last_writes[k] = i;
5316                }
5317             }
5318          }
5319       assert(depth >= 0);
5320       i++;
5321    }
5322 }
5323 
5324 /*
5325  * On a basic block basis, tracks available PROGRAM_TEMPORARY register
5326  * channels for copy propagation and updates following instructions to
5327  * use the original versions.
5328  *
5329  * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
5330  * will occur.  As an example, a TXP production before this pass:
5331  *
5332  * 0: MOV TEMP[1], INPUT[4].xyyy;
5333  * 1: MOV TEMP[1].w, INPUT[4].wwww;
5334  * 2: TXP TEMP[2], TEMP[1], texture[0], 2D;
5335  *
5336  * and after:
5337  *
5338  * 0: MOV TEMP[1], INPUT[4].xyyy;
5339  * 1: MOV TEMP[1].w, INPUT[4].wwww;
5340  * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
5341  *
5342  * which allows for dead code elimination on TEMP[1]'s writes.
5343  */
5344 void
copy_propagate(void)5345 glsl_to_tgsi_visitor::copy_propagate(void)
5346 {
5347    glsl_to_tgsi_instruction **acp = rzalloc_array(mem_ctx,
5348                                                   glsl_to_tgsi_instruction *,
5349                                                   this->next_temp * 4);
5350    int *acp_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
5351    int level = 0;
5352 
5353    foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
5354       assert(inst->dst[0].file != PROGRAM_TEMPORARY
5355              || inst->dst[0].index < this->next_temp);
5356 
5357       /* First, do any copy propagation possible into the src regs. */
5358       for (int r = 0; r < 3; r++) {
5359          glsl_to_tgsi_instruction *first = NULL;
5360          bool good = true;
5361          int acp_base = inst->src[r].index * 4;
5362 
5363          if (inst->src[r].file != PROGRAM_TEMPORARY ||
5364              inst->src[r].reladdr ||
5365              inst->src[r].reladdr2)
5366             continue;
5367 
5368          /* See if we can find entries in the ACP consisting of MOVs
5369           * from the same src register for all the swizzled channels
5370           * of this src register reference.
5371           */
5372          for (int i = 0; i < 4; i++) {
5373             int src_chan = GET_SWZ(inst->src[r].swizzle, i);
5374             glsl_to_tgsi_instruction *copy_chan = acp[acp_base + src_chan];
5375 
5376             if (!copy_chan) {
5377                good = false;
5378                break;
5379             }
5380 
5381             assert(acp_level[acp_base + src_chan] <= level);
5382 
5383             if (!first) {
5384                first = copy_chan;
5385             } else {
5386                if (first->src[0].file != copy_chan->src[0].file ||
5387                    first->src[0].index != copy_chan->src[0].index ||
5388                    first->src[0].double_reg2 != copy_chan->src[0].double_reg2 ||
5389                    first->src[0].index2D != copy_chan->src[0].index2D) {
5390                   good = false;
5391                   break;
5392                }
5393             }
5394          }
5395 
5396          if (good) {
5397             /* We've now validated that we can copy-propagate to
5398              * replace this src register reference.  Do it.
5399              */
5400             inst->src[r].file = first->src[0].file;
5401             inst->src[r].index = first->src[0].index;
5402             inst->src[r].index2D = first->src[0].index2D;
5403             inst->src[r].has_index2 = first->src[0].has_index2;
5404             inst->src[r].double_reg2 = first->src[0].double_reg2;
5405             inst->src[r].array_id = first->src[0].array_id;
5406 
5407             int swizzle = 0;
5408             for (int i = 0; i < 4; i++) {
5409                int src_chan = GET_SWZ(inst->src[r].swizzle, i);
5410                glsl_to_tgsi_instruction *copy_inst = acp[acp_base + src_chan];
5411                swizzle |= (GET_SWZ(copy_inst->src[0].swizzle, src_chan) << (3 * i));
5412             }
5413             inst->src[r].swizzle = swizzle;
5414          }
5415       }
5416 
5417       switch (inst->op) {
5418       case TGSI_OPCODE_BGNLOOP:
5419       case TGSI_OPCODE_ENDLOOP:
5420          /* End of a basic block, clear the ACP entirely. */
5421          memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
5422          break;
5423 
5424       case TGSI_OPCODE_IF:
5425       case TGSI_OPCODE_UIF:
5426          ++level;
5427          break;
5428 
5429       case TGSI_OPCODE_ENDIF:
5430       case TGSI_OPCODE_ELSE:
5431          /* Clear all channels written inside the block from the ACP, but
5432           * leaving those that were not touched.
5433           */
5434          for (int r = 0; r < this->next_temp; r++) {
5435             for (int c = 0; c < 4; c++) {
5436                if (!acp[4 * r + c])
5437                   continue;
5438 
5439                if (acp_level[4 * r + c] >= level)
5440                   acp[4 * r + c] = NULL;
5441             }
5442          }
5443          if (inst->op == TGSI_OPCODE_ENDIF)
5444             --level;
5445          break;
5446 
5447       default:
5448          /* Continuing the block, clear any written channels from
5449           * the ACP.
5450           */
5451          for (int d = 0; d < 2; d++) {
5452             if (inst->dst[d].file == PROGRAM_TEMPORARY && inst->dst[d].reladdr) {
5453                /* Any temporary might be written, so no copy propagation
5454                 * across this instruction.
5455                 */
5456                memset(acp, 0, sizeof(*acp) * this->next_temp * 4);
5457             } else if (inst->dst[d].file == PROGRAM_OUTPUT &&
5458                        inst->dst[d].reladdr) {
5459                /* Any output might be written, so no copy propagation
5460                 * from outputs across this instruction.
5461                 */
5462                for (int r = 0; r < this->next_temp; r++) {
5463                   for (int c = 0; c < 4; c++) {
5464                      if (!acp[4 * r + c])
5465                         continue;
5466 
5467                      if (acp[4 * r + c]->src[0].file == PROGRAM_OUTPUT)
5468                         acp[4 * r + c] = NULL;
5469                   }
5470                }
5471             } else if (inst->dst[d].file == PROGRAM_TEMPORARY ||
5472                        inst->dst[d].file == PROGRAM_OUTPUT) {
5473                /* Clear where it's used as dst. */
5474                if (inst->dst[d].file == PROGRAM_TEMPORARY) {
5475                   for (int c = 0; c < 4; c++) {
5476                      if (inst->dst[d].writemask & (1 << c))
5477                         acp[4 * inst->dst[d].index + c] = NULL;
5478                   }
5479                }
5480 
5481                /* Clear where it's used as src. */
5482                for (int r = 0; r < this->next_temp; r++) {
5483                   for (int c = 0; c < 4; c++) {
5484                      if (!acp[4 * r + c])
5485                         continue;
5486 
5487                      int src_chan = GET_SWZ(acp[4 * r + c]->src[0].swizzle, c);
5488 
5489                      if (acp[4 * r + c]->src[0].file == inst->dst[d].file &&
5490                          acp[4 * r + c]->src[0].index == inst->dst[d].index &&
5491                          inst->dst[d].writemask & (1 << src_chan)) {
5492                         acp[4 * r + c] = NULL;
5493                      }
5494                   }
5495                }
5496             }
5497          }
5498          break;
5499       }
5500 
5501       /* If this is a copy, add it to the ACP. */
5502       if (inst->op == TGSI_OPCODE_MOV &&
5503           inst->dst[0].file == PROGRAM_TEMPORARY &&
5504           !(inst->dst[0].file == inst->src[0].file &&
5505              inst->dst[0].index == inst->src[0].index) &&
5506           !inst->dst[0].reladdr &&
5507           !inst->dst[0].reladdr2 &&
5508           !inst->saturate &&
5509           inst->src[0].file != PROGRAM_ARRAY &&
5510           (inst->src[0].file != PROGRAM_OUTPUT ||
5511            this->shader->Stage != MESA_SHADER_TESS_CTRL) &&
5512           !inst->src[0].reladdr &&
5513           !inst->src[0].reladdr2 &&
5514           !inst->src[0].negate &&
5515           !inst->src[0].abs) {
5516          for (int i = 0; i < 4; i++) {
5517             if (inst->dst[0].writemask & (1 << i)) {
5518                acp[4 * inst->dst[0].index + i] = inst;
5519                acp_level[4 * inst->dst[0].index + i] = level;
5520             }
5521          }
5522       }
5523    }
5524 
5525    ralloc_free(acp_level);
5526    ralloc_free(acp);
5527 }
5528 
5529 static void
dead_code_handle_reladdr(glsl_to_tgsi_instruction ** writes,st_src_reg * reladdr)5530 dead_code_handle_reladdr(glsl_to_tgsi_instruction **writes, st_src_reg *reladdr)
5531 {
5532    if (reladdr && reladdr->file == PROGRAM_TEMPORARY) {
5533       /* Clear where it's used as src. */
5534       int swz = GET_SWZ(reladdr->swizzle, 0);
5535       writes[4 * reladdr->index + swz] = NULL;
5536    }
5537 }
5538 
5539 /*
5540  * On a basic block basis, tracks available PROGRAM_TEMPORARY registers for dead
5541  * code elimination.
5542  *
5543  * The glsl_to_tgsi_visitor lazily produces code assuming that this pass
5544  * will occur.  As an example, a TXP production after copy propagation but
5545  * before this pass:
5546  *
5547  * 0: MOV TEMP[1], INPUT[4].xyyy;
5548  * 1: MOV TEMP[1].w, INPUT[4].wwww;
5549  * 2: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
5550  *
5551  * and after this pass:
5552  *
5553  * 0: TXP TEMP[2], INPUT[4].xyyw, texture[0], 2D;
5554  */
5555 int
eliminate_dead_code(void)5556 glsl_to_tgsi_visitor::eliminate_dead_code(void)
5557 {
5558    glsl_to_tgsi_instruction **writes = rzalloc_array(mem_ctx,
5559                                                      glsl_to_tgsi_instruction *,
5560                                                      this->next_temp * 4);
5561    int *write_level = rzalloc_array(mem_ctx, int, this->next_temp * 4);
5562    int level = 0;
5563    int removed = 0;
5564 
5565    foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
5566       assert(inst->dst[0].file != PROGRAM_TEMPORARY
5567              || inst->dst[0].index < this->next_temp);
5568 
5569       switch (inst->op) {
5570       case TGSI_OPCODE_BGNLOOP:
5571       case TGSI_OPCODE_ENDLOOP:
5572       case TGSI_OPCODE_CONT:
5573       case TGSI_OPCODE_BRK:
5574          /* End of a basic block, clear the write array entirely.
5575           *
5576           * This keeps us from killing dead code when the writes are
5577           * on either side of a loop, even when the register isn't touched
5578           * inside the loop.  However, glsl_to_tgsi_visitor doesn't seem to emit
5579           * dead code of this type, so it shouldn't make a difference as long as
5580           * the dead code elimination pass in the GLSL compiler does its job.
5581           */
5582          memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
5583          break;
5584 
5585       case TGSI_OPCODE_ENDIF:
5586       case TGSI_OPCODE_ELSE:
5587          /* Promote the recorded level of all channels written inside the
5588           * preceding if or else block to the level above the if/else block.
5589           */
5590          for (int r = 0; r < this->next_temp; r++) {
5591             for (int c = 0; c < 4; c++) {
5592                if (!writes[4 * r + c])
5593                   continue;
5594 
5595                if (write_level[4 * r + c] == level)
5596                   write_level[4 * r + c] = level-1;
5597             }
5598          }
5599          if (inst->op == TGSI_OPCODE_ENDIF)
5600             --level;
5601          break;
5602 
5603       case TGSI_OPCODE_IF:
5604       case TGSI_OPCODE_UIF:
5605          ++level;
5606          FALLTHROUGH; /* to mark the condition as read */
5607       default:
5608          /* Continuing the block, clear any channels from the write array that
5609           * are read by this instruction.
5610           */
5611          for (unsigned i = 0; i < ARRAY_SIZE(inst->src); i++) {
5612             if (inst->src[i].file == PROGRAM_TEMPORARY && inst->src[i].reladdr){
5613                /* Any temporary might be read, so no dead code elimination
5614                 * across this instruction.
5615                 */
5616                memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
5617             } else if (inst->src[i].file == PROGRAM_TEMPORARY) {
5618                /* Clear where it's used as src. */
5619                int src_chans = 1 << GET_SWZ(inst->src[i].swizzle, 0);
5620                src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 1);
5621                src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 2);
5622                src_chans |= 1 << GET_SWZ(inst->src[i].swizzle, 3);
5623 
5624                for (int c = 0; c < 4; c++) {
5625                   if (src_chans & (1 << c))
5626                      writes[4 * inst->src[i].index + c] = NULL;
5627                }
5628             }
5629             dead_code_handle_reladdr(writes, inst->src[i].reladdr);
5630             dead_code_handle_reladdr(writes, inst->src[i].reladdr2);
5631          }
5632          for (unsigned i = 0; i < inst->tex_offset_num_offset; i++) {
5633             if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY && inst->tex_offsets[i].reladdr){
5634                /* Any temporary might be read, so no dead code elimination
5635                 * across this instruction.
5636                 */
5637                memset(writes, 0, sizeof(*writes) * this->next_temp * 4);
5638             } else if (inst->tex_offsets[i].file == PROGRAM_TEMPORARY) {
5639                /* Clear where it's used as src. */
5640                int src_chans = 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 0);
5641                src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 1);
5642                src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 2);
5643                src_chans |= 1 << GET_SWZ(inst->tex_offsets[i].swizzle, 3);
5644 
5645                for (int c = 0; c < 4; c++) {
5646                   if (src_chans & (1 << c))
5647                      writes[4 * inst->tex_offsets[i].index + c] = NULL;
5648                }
5649             }
5650             dead_code_handle_reladdr(writes, inst->tex_offsets[i].reladdr);
5651             dead_code_handle_reladdr(writes, inst->tex_offsets[i].reladdr2);
5652          }
5653 
5654          if (inst->resource.file == PROGRAM_TEMPORARY) {
5655             int src_chans;
5656 
5657             src_chans  = 1 << GET_SWZ(inst->resource.swizzle, 0);
5658             src_chans |= 1 << GET_SWZ(inst->resource.swizzle, 1);
5659             src_chans |= 1 << GET_SWZ(inst->resource.swizzle, 2);
5660             src_chans |= 1 << GET_SWZ(inst->resource.swizzle, 3);
5661 
5662             for (int c = 0; c < 4; c++) {
5663                if (src_chans & (1 << c))
5664                   writes[4 * inst->resource.index + c] = NULL;
5665             }
5666          }
5667          dead_code_handle_reladdr(writes, inst->resource.reladdr);
5668          dead_code_handle_reladdr(writes, inst->resource.reladdr2);
5669 
5670          for (unsigned i = 0; i < ARRAY_SIZE(inst->dst); i++) {
5671             dead_code_handle_reladdr(writes, inst->dst[i].reladdr);
5672             dead_code_handle_reladdr(writes, inst->dst[i].reladdr2);
5673          }
5674          break;
5675       }
5676 
5677       /* If this instruction writes to a temporary, add it to the write array.
5678        * If there is already an instruction in the write array for one or more
5679        * of the channels, flag that channel write as dead.
5680        */
5681       for (unsigned i = 0; i < ARRAY_SIZE(inst->dst); i++) {
5682          if (inst->dst[i].file == PROGRAM_TEMPORARY &&
5683              !inst->dst[i].reladdr) {
5684             for (int c = 0; c < 4; c++) {
5685                if (inst->dst[i].writemask & (1 << c)) {
5686                   if (writes[4 * inst->dst[i].index + c]) {
5687                      if (write_level[4 * inst->dst[i].index + c] < level)
5688                         continue;
5689                      else
5690                         writes[4 * inst->dst[i].index + c]->dead_mask |= (1 << c);
5691                   }
5692                   writes[4 * inst->dst[i].index + c] = inst;
5693                   write_level[4 * inst->dst[i].index + c] = level;
5694                }
5695             }
5696          }
5697       }
5698    }
5699 
5700    /* Anything still in the write array at this point is dead code. */
5701    for (int r = 0; r < this->next_temp; r++) {
5702       for (int c = 0; c < 4; c++) {
5703          glsl_to_tgsi_instruction *inst = writes[4 * r + c];
5704          if (inst)
5705             inst->dead_mask |= (1 << c);
5706       }
5707    }
5708 
5709    /* Now actually remove the instructions that are completely dead and update
5710     * the writemask of other instructions with dead channels.
5711     */
5712    foreach_in_list_safe(glsl_to_tgsi_instruction, inst, &this->instructions) {
5713       if (!inst->dead_mask || !inst->dst[0].writemask)
5714          continue;
5715       /* No amount of dead masks should remove memory stores */
5716       if (inst->info->is_store)
5717          continue;
5718 
5719       if ((inst->dst[0].writemask & ~inst->dead_mask) == 0) {
5720          inst->remove();
5721          delete inst;
5722          removed++;
5723       } else {
5724          if (glsl_base_type_is_64bit(inst->dst[0].type)) {
5725             if (inst->dead_mask == WRITEMASK_XY ||
5726                 inst->dead_mask == WRITEMASK_ZW)
5727                inst->dst[0].writemask &= ~(inst->dead_mask);
5728          } else
5729             inst->dst[0].writemask &= ~(inst->dead_mask);
5730       }
5731    }
5732 
5733    ralloc_free(write_level);
5734    ralloc_free(writes);
5735 
5736    return removed;
5737 }
5738 
5739 /* merge DFRACEXP instructions into one. */
5740 void
merge_two_dsts(void)5741 glsl_to_tgsi_visitor::merge_two_dsts(void)
5742 {
5743    /* We never delete inst, but we may delete its successor. */
5744    foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
5745       glsl_to_tgsi_instruction *inst2;
5746       unsigned defined;
5747 
5748       if (num_inst_dst_regs(inst) != 2)
5749          continue;
5750 
5751       if (inst->dst[0].file != PROGRAM_UNDEFINED &&
5752           inst->dst[1].file != PROGRAM_UNDEFINED)
5753          continue;
5754 
5755       assert(inst->dst[0].file != PROGRAM_UNDEFINED ||
5756              inst->dst[1].file != PROGRAM_UNDEFINED);
5757 
5758       if (inst->dst[0].file == PROGRAM_UNDEFINED)
5759          defined = 1;
5760       else
5761          defined = 0;
5762 
5763       inst2 = (glsl_to_tgsi_instruction *) inst->next;
5764       while (!inst2->is_tail_sentinel()) {
5765          if (inst->op == inst2->op &&
5766              inst2->dst[defined].file == PROGRAM_UNDEFINED &&
5767              inst->src[0].file == inst2->src[0].file &&
5768              inst->src[0].index == inst2->src[0].index &&
5769              inst->src[0].type == inst2->src[0].type &&
5770              inst->src[0].swizzle == inst2->src[0].swizzle)
5771             break;
5772          inst2 = (glsl_to_tgsi_instruction *) inst2->next;
5773       }
5774 
5775       if (inst2->is_tail_sentinel()) {
5776          /* Undefined destinations are not allowed, substitute with an unused
5777           * temporary register.
5778           */
5779          st_src_reg tmp = get_temp(glsl_type::vec4_type);
5780          inst->dst[defined ^ 1] = st_dst_reg(tmp);
5781          inst->dst[defined ^ 1].writemask = 0;
5782          continue;
5783       }
5784 
5785       inst->dst[defined ^ 1] = inst2->dst[defined ^ 1];
5786       inst2->remove();
5787       delete inst2;
5788    }
5789 }
5790 
5791 template <typename st_reg>
test_indirect_access(const st_reg & reg,bool * has_indirect_access)5792 void test_indirect_access(const st_reg& reg, bool *has_indirect_access)
5793 {
5794    if (reg.file == PROGRAM_ARRAY) {
5795       if (reg.reladdr || reg.reladdr2 || reg.has_index2) {
5796 	 has_indirect_access[reg.array_id] = true;
5797 	 if (reg.reladdr)
5798 	    test_indirect_access(*reg.reladdr, has_indirect_access);
5799 	 if (reg.reladdr2)
5800 	    test_indirect_access(*reg.reladdr2, has_indirect_access);
5801       }
5802    }
5803 }
5804 
5805 template <typename st_reg>
remap_array(st_reg & reg,const int * array_remap_info,const bool * has_indirect_access)5806 void remap_array(st_reg& reg, const int *array_remap_info,
5807 		 const bool *has_indirect_access)
5808 {
5809    if (reg.file == PROGRAM_ARRAY) {
5810       if (!has_indirect_access[reg.array_id]) {
5811 	 reg.file = PROGRAM_TEMPORARY;
5812 	 reg.index = reg.index + array_remap_info[reg.array_id];
5813 	 reg.array_id = 0;
5814       } else {
5815 	 reg.array_id = array_remap_info[reg.array_id];
5816       }
5817 
5818       if (reg.reladdr)
5819 	 remap_array(*reg.reladdr, array_remap_info, has_indirect_access);
5820 
5821       if (reg.reladdr2)
5822 	 remap_array(*reg.reladdr2, array_remap_info, has_indirect_access);
5823    }
5824 }
5825 
5826 /* One-dimensional arrays whose elements are only accessed directly are
5827  * replaced by an according set of temporary registers that then can become
5828  * subject to further optimization steps like copy propagation and
5829  * register merging.
5830  */
5831 void
split_arrays(void)5832 glsl_to_tgsi_visitor::split_arrays(void)
5833 {
5834    if (!next_array)
5835       return;
5836 
5837    bool *has_indirect_access = rzalloc_array(mem_ctx, bool, next_array + 1);
5838 
5839    foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
5840       for (unsigned j = 0; j < num_inst_src_regs(inst); j++)
5841 	 test_indirect_access(inst->src[j], has_indirect_access);
5842 
5843       for (unsigned j = 0; j < inst->tex_offset_num_offset; j++)
5844 	 test_indirect_access(inst->tex_offsets[j], has_indirect_access);
5845 
5846       for (unsigned j = 0; j < num_inst_dst_regs(inst); j++)
5847 	 test_indirect_access(inst->dst[j], has_indirect_access);
5848 
5849       test_indirect_access(inst->resource, has_indirect_access);
5850    }
5851 
5852    unsigned array_offset = 0;
5853    unsigned n_remaining_arrays = 0;
5854 
5855    /* Double use: For arrays that get split this value will contain
5856     * the base index of the temporary registers this array is replaced
5857     * with. For arrays that remain it contains the new array ID.
5858     */
5859    int *array_remap_info = rzalloc_array(has_indirect_access, int,
5860 					 next_array + 1);
5861 
5862    for (unsigned i = 1; i <= next_array; ++i) {
5863       if (!has_indirect_access[i]) {
5864 	 array_remap_info[i] = this->next_temp + array_offset;
5865 	 array_offset += array_sizes[i - 1];
5866       } else {
5867 	 array_sizes[n_remaining_arrays] = array_sizes[i-1];
5868 	 array_remap_info[i] = ++n_remaining_arrays;
5869       }
5870    }
5871 
5872    if (next_array !=  n_remaining_arrays) {
5873       foreach_in_list(glsl_to_tgsi_instruction, inst, &this->instructions) {
5874 	 for (unsigned j = 0; j < num_inst_src_regs(inst); j++)
5875 	    remap_array(inst->src[j], array_remap_info, has_indirect_access);
5876 
5877 	 for (unsigned j = 0; j < inst->tex_offset_num_offset; j++)
5878 	    remap_array(inst->tex_offsets[j], array_remap_info, has_indirect_access);
5879 
5880 	 for (unsigned j = 0; j < num_inst_dst_regs(inst); j++) {
5881 	    remap_array(inst->dst[j], array_remap_info, has_indirect_access);
5882 	 }
5883 	 remap_array(inst->resource, array_remap_info, has_indirect_access);
5884       }
5885    }
5886 
5887    ralloc_free(has_indirect_access);
5888    this->next_temp += array_offset;
5889    next_array = n_remaining_arrays;
5890 }
5891 
5892 /* Merges temporary registers together where possible to reduce the number of
5893  * registers needed to run a program.
5894  *
5895  * Produces optimal code only after copy propagation and dead code elimination
5896  * have been run. */
5897 void
merge_registers(void)5898 glsl_to_tgsi_visitor::merge_registers(void)
5899 {
5900    class array_live_range *arr_live_ranges = NULL;
5901 
5902    struct register_live_range *reg_live_ranges =
5903 	 rzalloc_array(mem_ctx, struct register_live_range, this->next_temp);
5904 
5905    if (this->next_array > 0) {
5906       arr_live_ranges = new array_live_range[this->next_array];
5907       for (unsigned i = 0; i < this->next_array; ++i)
5908          arr_live_ranges[i] = array_live_range(i+1, this->array_sizes[i]);
5909    }
5910 
5911 
5912    if (get_temp_registers_required_live_ranges(reg_live_ranges, &this->instructions,
5913 					       this->next_temp, reg_live_ranges,
5914 					       this->next_array, arr_live_ranges)) {
5915       struct rename_reg_pair *renames =
5916 	    rzalloc_array(reg_live_ranges, struct rename_reg_pair, this->next_temp);
5917       get_temp_registers_remapping(reg_live_ranges, this->next_temp,
5918 				   reg_live_ranges, renames);
5919       rename_temp_registers(renames);
5920 
5921       this->next_array =  merge_arrays(this->next_array, this->array_sizes,
5922 				       &this->instructions, arr_live_ranges);
5923    }
5924 
5925    if (arr_live_ranges)
5926       delete[] arr_live_ranges;
5927 
5928    ralloc_free(reg_live_ranges);
5929 }
5930 
5931 /* Reassign indices to temporary registers by reusing unused indices created
5932  * by optimization passes. */
5933 void
renumber_registers(void)5934 glsl_to_tgsi_visitor::renumber_registers(void)
5935 {
5936    int i = 0;
5937    int new_index = 0;
5938    int *first_writes = ralloc_array(mem_ctx, int, this->next_temp);
5939    struct rename_reg_pair *renames = rzalloc_array(mem_ctx, struct rename_reg_pair, this->next_temp);
5940 
5941    for (i = 0; i < this->next_temp; i++) {
5942       first_writes[i] = -1;
5943    }
5944    get_first_temp_write(first_writes);
5945 
5946    for (i = 0; i < this->next_temp; i++) {
5947       if (first_writes[i] < 0) continue;
5948       if (i != new_index) {
5949          renames[i].new_reg = new_index;
5950          renames[i].valid = true;
5951       }
5952       new_index++;
5953    }
5954 
5955    rename_temp_registers(renames);
5956    this->next_temp = new_index;
5957    ralloc_free(renames);
5958    ralloc_free(first_writes);
5959 }
5960 
5961 #ifndef NDEBUG
print_stats()5962 void glsl_to_tgsi_visitor::print_stats()
5963 {
5964    int narray_registers = 0;
5965    for (unsigned i = 0; i < this->next_array; ++i)
5966       narray_registers += this->array_sizes[i];
5967 
5968    int ninstructions = 0;
5969    foreach_in_list(glsl_to_tgsi_instruction, inst, &instructions) {
5970       ++ninstructions;
5971    }
5972 
5973    simple_mtx_lock(&print_stats_mutex);
5974    stats_log << next_array << ", "
5975 	     << next_temp << ", "
5976 	     << narray_registers << ", "
5977 	     << next_temp + narray_registers << ", "
5978 	     << ninstructions << "\n";
5979    simple_mtx_unlock(&print_stats_mutex);
5980 }
5981 #endif
5982 /* ------------------------- TGSI conversion stuff -------------------------- */
5983 
5984 /**
5985  * Intermediate state used during shader translation.
5986  */
5987 struct st_translate {
5988    struct ureg_program *ureg;
5989 
5990    unsigned temps_size;
5991    struct ureg_dst *temps;
5992 
5993    struct ureg_dst *arrays;
5994    unsigned num_temp_arrays;
5995    struct ureg_src *constants;
5996    int num_constants;
5997    struct ureg_src *immediates;
5998    int num_immediates;
5999    struct ureg_dst outputs[PIPE_MAX_SHADER_OUTPUTS];
6000    struct ureg_src inputs[PIPE_MAX_SHADER_INPUTS];
6001    struct ureg_dst address[3];
6002    struct ureg_src samplers[PIPE_MAX_SAMPLERS];
6003    struct ureg_src buffers[PIPE_MAX_SHADER_BUFFERS];
6004    struct ureg_src images[PIPE_MAX_SHADER_IMAGES];
6005    struct ureg_src systemValues[SYSTEM_VALUE_MAX];
6006    struct ureg_src hw_atomics[PIPE_MAX_HW_ATOMIC_BUFFERS];
6007    struct ureg_src shared_memory;
6008    unsigned *array_sizes;
6009    struct inout_decl *input_decls;
6010    unsigned num_input_decls;
6011    struct inout_decl *output_decls;
6012    unsigned num_output_decls;
6013 
6014    const ubyte *inputMapping;
6015    const ubyte *outputMapping;
6016 
6017    enum pipe_shader_type procType;  /**< PIPE_SHADER_VERTEX/FRAGMENT */
6018    bool tg4_component_in_swizzle;
6019 };
6020 
6021 /**
6022  * Map a glsl_to_tgsi constant/immediate to a TGSI immediate.
6023  */
6024 static struct ureg_src
emit_immediate(struct st_translate * t,gl_constant_value values[4],GLenum type,int size)6025 emit_immediate(struct st_translate *t,
6026                gl_constant_value values[4],
6027                GLenum type, int size)
6028 {
6029    struct ureg_program *ureg = t->ureg;
6030 
6031    switch (type) {
6032    case GL_FLOAT:
6033       return ureg_DECL_immediate(ureg, &values[0].f, size);
6034    case GL_DOUBLE:
6035       return ureg_DECL_immediate_f64(ureg, (double *)&values[0].f, size);
6036    case GL_INT64_ARB:
6037       return ureg_DECL_immediate_int64(ureg, (int64_t *)&values[0].f, size);
6038    case GL_UNSIGNED_INT64_ARB:
6039       return ureg_DECL_immediate_uint64(ureg, (uint64_t *)&values[0].f, size);
6040    case GL_INT:
6041       return ureg_DECL_immediate_int(ureg, &values[0].i, size);
6042    case GL_UNSIGNED_INT:
6043    case GL_BOOL:
6044       return ureg_DECL_immediate_uint(ureg, &values[0].u, size);
6045    default:
6046       assert(!"should not get here - type must be float, int, uint, or bool");
6047       return ureg_src_undef();
6048    }
6049 }
6050 
6051 /**
6052  * Map a glsl_to_tgsi dst register to a TGSI ureg_dst register.
6053  */
6054 static struct ureg_dst
dst_register(struct st_translate * t,gl_register_file file,unsigned index,unsigned array_id)6055 dst_register(struct st_translate *t, gl_register_file file, unsigned index,
6056              unsigned array_id)
6057 {
6058    unsigned array;
6059 
6060    switch (file) {
6061    case PROGRAM_UNDEFINED:
6062       return ureg_dst_undef();
6063 
6064    case PROGRAM_TEMPORARY:
6065       /* Allocate space for temporaries on demand. */
6066       if (index >= t->temps_size) {
6067          const int inc = align(index - t->temps_size + 1, 4096);
6068 
6069          t->temps = (struct ureg_dst*)
6070                     realloc(t->temps,
6071                             (t->temps_size + inc) * sizeof(struct ureg_dst));
6072          if (!t->temps)
6073             return ureg_dst_undef();
6074 
6075          memset(t->temps + t->temps_size, 0, inc * sizeof(struct ureg_dst));
6076          t->temps_size += inc;
6077       }
6078 
6079       if (ureg_dst_is_undef(t->temps[index]))
6080          t->temps[index] = ureg_DECL_local_temporary(t->ureg);
6081 
6082       return t->temps[index];
6083 
6084    case PROGRAM_ARRAY:
6085       assert(array_id && array_id <= t->num_temp_arrays);
6086       array = array_id - 1;
6087 
6088       if (ureg_dst_is_undef(t->arrays[array]))
6089          t->arrays[array] = ureg_DECL_array_temporary(
6090             t->ureg, t->array_sizes[array], TRUE);
6091 
6092       return ureg_dst_array_offset(t->arrays[array], index);
6093 
6094    case PROGRAM_OUTPUT:
6095       if (!array_id) {
6096          if (t->procType == PIPE_SHADER_FRAGMENT)
6097             assert(index < 2 * FRAG_RESULT_MAX);
6098          else if (t->procType == PIPE_SHADER_TESS_CTRL ||
6099                   t->procType == PIPE_SHADER_TESS_EVAL)
6100             assert(index < VARYING_SLOT_TESS_MAX);
6101          else
6102             assert(index < VARYING_SLOT_MAX);
6103 
6104          assert(t->outputMapping[index] < ARRAY_SIZE(t->outputs));
6105          assert(t->outputs[t->outputMapping[index]].File != TGSI_FILE_NULL);
6106          return t->outputs[t->outputMapping[index]];
6107       }
6108       else {
6109          struct inout_decl *decl =
6110             find_inout_array(t->output_decls,
6111                              t->num_output_decls, array_id);
6112          unsigned mesa_index = decl->mesa_index;
6113          ubyte slot = t->outputMapping[mesa_index];
6114 
6115          assert(slot != 0xff && t->outputs[slot].File == TGSI_FILE_OUTPUT);
6116 
6117          struct ureg_dst dst = t->outputs[slot];
6118          dst.ArrayID = array_id;
6119          return ureg_dst_array_offset(dst, index - mesa_index);
6120       }
6121 
6122    case PROGRAM_ADDRESS:
6123       return t->address[index];
6124 
6125    default:
6126       assert(!"unknown dst register file");
6127       return ureg_dst_undef();
6128    }
6129 }
6130 
6131 static struct ureg_src
6132 translate_src(struct st_translate *t, const st_src_reg *src_reg);
6133 
6134 static struct ureg_src
translate_addr(struct st_translate * t,const st_src_reg * reladdr,unsigned addr_index)6135 translate_addr(struct st_translate *t, const st_src_reg *reladdr,
6136                unsigned addr_index)
6137 {
6138    return ureg_src(t->address[addr_index]);
6139 }
6140 
6141 /**
6142  * Create a TGSI ureg_dst register from an st_dst_reg.
6143  */
6144 static struct ureg_dst
translate_dst(struct st_translate * t,const st_dst_reg * dst_reg,bool saturate)6145 translate_dst(struct st_translate *t,
6146               const st_dst_reg *dst_reg,
6147               bool saturate)
6148 {
6149    struct ureg_dst dst = dst_register(t, dst_reg->file, dst_reg->index,
6150                                       dst_reg->array_id);
6151 
6152    if (dst.File == TGSI_FILE_NULL)
6153       return dst;
6154 
6155    dst = ureg_writemask(dst, dst_reg->writemask);
6156 
6157    if (saturate)
6158       dst = ureg_saturate(dst);
6159 
6160    if (dst_reg->reladdr != NULL) {
6161       assert(dst_reg->file != PROGRAM_TEMPORARY);
6162       dst = ureg_dst_indirect(dst, translate_addr(t, dst_reg->reladdr, 0));
6163    }
6164 
6165    if (dst_reg->has_index2) {
6166       if (dst_reg->reladdr2)
6167          dst = ureg_dst_dimension_indirect(dst,
6168                                            translate_addr(t, dst_reg->reladdr2, 1),
6169                                            dst_reg->index2D);
6170       else
6171          dst = ureg_dst_dimension(dst, dst_reg->index2D);
6172    }
6173 
6174    return dst;
6175 }
6176 
6177 /**
6178  * Create a TGSI ureg_src register from an st_src_reg.
6179  */
6180 static struct ureg_src
translate_src(struct st_translate * t,const st_src_reg * src_reg)6181 translate_src(struct st_translate *t, const st_src_reg *src_reg)
6182 {
6183    struct ureg_src src;
6184    int index = src_reg->index;
6185    int double_reg2 = src_reg->double_reg2 ? 1 : 0;
6186 
6187    switch (src_reg->file) {
6188    case PROGRAM_UNDEFINED:
6189       src = ureg_imm4f(t->ureg, 0, 0, 0, 0);
6190       break;
6191 
6192    case PROGRAM_TEMPORARY:
6193    case PROGRAM_ARRAY:
6194       src = ureg_src(dst_register(t, src_reg->file, src_reg->index,
6195                                   src_reg->array_id));
6196       break;
6197 
6198    case PROGRAM_OUTPUT: {
6199       struct ureg_dst dst = dst_register(t, src_reg->file, src_reg->index,
6200                                          src_reg->array_id);
6201       assert(dst.WriteMask != 0);
6202       unsigned shift = ffs(dst.WriteMask) - 1;
6203       src = ureg_swizzle(ureg_src(dst),
6204                          shift,
6205                          MIN2(shift + 1, 3),
6206                          MIN2(shift + 2, 3),
6207                          MIN2(shift + 3, 3));
6208       break;
6209    }
6210 
6211    case PROGRAM_UNIFORM:
6212       assert(src_reg->index >= 0);
6213       src = src_reg->index < t->num_constants ?
6214                t->constants[src_reg->index] : ureg_imm4f(t->ureg, 0, 0, 0, 0);
6215       break;
6216    case PROGRAM_STATE_VAR:
6217    case PROGRAM_CONSTANT:       /* ie, immediate */
6218       if (src_reg->has_index2)
6219          src = ureg_src_register(TGSI_FILE_CONSTANT, src_reg->index);
6220       else
6221          src = src_reg->index >= 0 && src_reg->index < t->num_constants ?
6222                   t->constants[src_reg->index] : ureg_imm4f(t->ureg, 0, 0, 0, 0);
6223       break;
6224 
6225    case PROGRAM_IMMEDIATE:
6226       assert(src_reg->index >= 0 && src_reg->index < t->num_immediates);
6227       src = t->immediates[src_reg->index];
6228       break;
6229 
6230    case PROGRAM_INPUT:
6231       /* GLSL inputs are 64-bit containers, so we have to
6232        * map back to the original index and add the offset after
6233        * mapping. */
6234       index -= double_reg2;
6235       if (!src_reg->array_id) {
6236          assert(t->inputMapping[index] < ARRAY_SIZE(t->inputs));
6237          assert(t->inputs[t->inputMapping[index]].File != TGSI_FILE_NULL);
6238          src = t->inputs[t->inputMapping[index] + double_reg2];
6239       }
6240       else {
6241          struct inout_decl *decl = find_inout_array(t->input_decls,
6242                                                     t->num_input_decls,
6243                                                     src_reg->array_id);
6244          unsigned mesa_index = decl->mesa_index;
6245          ubyte slot = t->inputMapping[mesa_index];
6246 
6247          assert(slot != 0xff && t->inputs[slot].File == TGSI_FILE_INPUT);
6248 
6249          src = t->inputs[slot];
6250          src.ArrayID = src_reg->array_id;
6251          src = ureg_src_array_offset(src, index + double_reg2 - mesa_index);
6252       }
6253       break;
6254 
6255    case PROGRAM_ADDRESS:
6256       src = ureg_src(t->address[src_reg->index]);
6257       break;
6258 
6259    case PROGRAM_SYSTEM_VALUE:
6260       assert(src_reg->index < (int) ARRAY_SIZE(t->systemValues));
6261       src = t->systemValues[src_reg->index];
6262       break;
6263 
6264    case PROGRAM_HW_ATOMIC:
6265       src = ureg_src_array_register(TGSI_FILE_HW_ATOMIC, src_reg->index,
6266                                     src_reg->array_id);
6267       break;
6268 
6269    default:
6270       assert(!"unknown src register file");
6271       return ureg_src_undef();
6272    }
6273 
6274    if (src_reg->has_index2) {
6275       /* 2D indexes occur with geometry shader inputs (attrib, vertex)
6276        * and UBO constant buffers (buffer, position).
6277        */
6278       if (src_reg->reladdr2)
6279          src = ureg_src_dimension_indirect(src,
6280                                            translate_addr(t, src_reg->reladdr2, 1),
6281                                            src_reg->index2D);
6282       else
6283          src = ureg_src_dimension(src, src_reg->index2D);
6284    }
6285 
6286    src = ureg_swizzle(src,
6287                       GET_SWZ(src_reg->swizzle, 0) & 0x3,
6288                       GET_SWZ(src_reg->swizzle, 1) & 0x3,
6289                       GET_SWZ(src_reg->swizzle, 2) & 0x3,
6290                       GET_SWZ(src_reg->swizzle, 3) & 0x3);
6291 
6292    if (src_reg->abs)
6293       src = ureg_abs(src);
6294 
6295    if ((src_reg->negate & 0xf) == NEGATE_XYZW)
6296       src = ureg_negate(src);
6297 
6298    if (src_reg->reladdr != NULL) {
6299       assert(src_reg->file != PROGRAM_TEMPORARY);
6300       src = ureg_src_indirect(src, translate_addr(t, src_reg->reladdr, 0));
6301    }
6302 
6303    return src;
6304 }
6305 
6306 static struct tgsi_texture_offset
translate_tex_offset(struct st_translate * t,const st_src_reg * in_offset)6307 translate_tex_offset(struct st_translate *t,
6308                      const st_src_reg *in_offset)
6309 {
6310    struct tgsi_texture_offset offset;
6311    struct ureg_src src = translate_src(t, in_offset);
6312 
6313    offset.File = src.File;
6314    offset.Index = src.Index;
6315    offset.SwizzleX = src.SwizzleX;
6316    offset.SwizzleY = src.SwizzleY;
6317    offset.SwizzleZ = src.SwizzleZ;
6318    offset.Padding = 0;
6319 
6320    assert(!src.Indirect);
6321    assert(!src.DimIndirect);
6322    assert(!src.Dimension);
6323    assert(!src.Absolute); /* those shouldn't be used with integers anyway */
6324    assert(!src.Negate);
6325 
6326    return offset;
6327 }
6328 
6329 static void
compile_tgsi_instruction(struct st_translate * t,const glsl_to_tgsi_instruction * inst)6330 compile_tgsi_instruction(struct st_translate *t,
6331                          const glsl_to_tgsi_instruction *inst)
6332 {
6333    struct ureg_program *ureg = t->ureg;
6334    int i;
6335    struct ureg_dst dst[2];
6336    struct ureg_src src[4];
6337    struct tgsi_texture_offset texoffsets[MAX_GLSL_TEXTURE_OFFSET];
6338 
6339    int num_dst;
6340    int num_src;
6341    enum tgsi_texture_type tex_target = TGSI_TEXTURE_BUFFER;
6342 
6343    num_dst = num_inst_dst_regs(inst);
6344    num_src = num_inst_src_regs(inst);
6345 
6346    for (i = 0; i < num_dst; i++)
6347       dst[i] = translate_dst(t,
6348                              &inst->dst[i],
6349                              inst->saturate);
6350 
6351    for (i = 0; i < num_src; i++)
6352       src[i] = translate_src(t, &inst->src[i]);
6353 
6354    switch (inst->op) {
6355    case TGSI_OPCODE_BGNLOOP:
6356    case TGSI_OPCODE_ELSE:
6357    case TGSI_OPCODE_ENDLOOP:
6358    case TGSI_OPCODE_IF:
6359    case TGSI_OPCODE_UIF:
6360       assert(num_dst == 0);
6361       ureg_insn(ureg, inst->op, NULL, 0, src, num_src, inst->precise);
6362       return;
6363 
6364    case TGSI_OPCODE_TEX:
6365    case TGSI_OPCODE_TEX_LZ:
6366    case TGSI_OPCODE_TXB:
6367    case TGSI_OPCODE_TXD:
6368    case TGSI_OPCODE_TXL:
6369    case TGSI_OPCODE_TXP:
6370    case TGSI_OPCODE_TXQ:
6371    case TGSI_OPCODE_TXQS:
6372    case TGSI_OPCODE_TXF:
6373    case TGSI_OPCODE_TXF_LZ:
6374    case TGSI_OPCODE_TEX2:
6375    case TGSI_OPCODE_TXB2:
6376    case TGSI_OPCODE_TXL2:
6377    case TGSI_OPCODE_TG4:
6378    case TGSI_OPCODE_LODQ:
6379    case TGSI_OPCODE_SAMP2HND:
6380       if (inst->resource.file == PROGRAM_SAMPLER) {
6381          src[num_src] = t->samplers[inst->resource.index];
6382          if (t->tg4_component_in_swizzle && inst->op == TGSI_OPCODE_TG4)
6383             src[num_src].SwizzleX = inst->gather_component;
6384       } else {
6385          /* Bindless samplers. */
6386          src[num_src] = translate_src(t, &inst->resource);
6387       }
6388       assert(src[num_src].File != TGSI_FILE_NULL);
6389       if (inst->resource.reladdr)
6390          src[num_src] =
6391             ureg_src_indirect(src[num_src],
6392                               translate_addr(t, inst->resource.reladdr, 2));
6393       num_src++;
6394       for (i = 0; i < (int)inst->tex_offset_num_offset; i++) {
6395          texoffsets[i] = translate_tex_offset(t, &inst->tex_offsets[i]);
6396       }
6397       tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
6398 
6399       ureg_tex_insn(ureg,
6400                     inst->op,
6401                     dst, num_dst,
6402                     tex_target,
6403                     st_translate_texture_type(inst->tex_type),
6404                     texoffsets, inst->tex_offset_num_offset,
6405                     src, num_src);
6406       return;
6407 
6408    case TGSI_OPCODE_RESQ:
6409    case TGSI_OPCODE_LOAD:
6410    case TGSI_OPCODE_ATOMUADD:
6411    case TGSI_OPCODE_ATOMXCHG:
6412    case TGSI_OPCODE_ATOMCAS:
6413    case TGSI_OPCODE_ATOMAND:
6414    case TGSI_OPCODE_ATOMOR:
6415    case TGSI_OPCODE_ATOMXOR:
6416    case TGSI_OPCODE_ATOMUMIN:
6417    case TGSI_OPCODE_ATOMUMAX:
6418    case TGSI_OPCODE_ATOMIMIN:
6419    case TGSI_OPCODE_ATOMIMAX:
6420    case TGSI_OPCODE_ATOMFADD:
6421    case TGSI_OPCODE_IMG2HND:
6422    case TGSI_OPCODE_ATOMINC_WRAP:
6423    case TGSI_OPCODE_ATOMDEC_WRAP:
6424       for (i = num_src - 1; i >= 0; i--)
6425          src[i + 1] = src[i];
6426       num_src++;
6427       if (inst->resource.file == PROGRAM_MEMORY) {
6428          src[0] = t->shared_memory;
6429       } else if (inst->resource.file == PROGRAM_BUFFER) {
6430          src[0] = t->buffers[inst->resource.index];
6431       } else if (inst->resource.file == PROGRAM_HW_ATOMIC) {
6432          src[0] = translate_src(t, &inst->resource);
6433       } else if (inst->resource.file == PROGRAM_CONSTANT) {
6434          assert(inst->resource.has_index2);
6435          src[0] = ureg_src_register(TGSI_FILE_CONSTBUF, inst->resource.index);
6436       } else {
6437          assert(inst->resource.file != PROGRAM_UNDEFINED);
6438          if (inst->resource.file == PROGRAM_IMAGE) {
6439             src[0] = t->images[inst->resource.index];
6440          } else {
6441             /* Bindless images. */
6442             src[0] = translate_src(t, &inst->resource);
6443          }
6444          tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
6445       }
6446       if (inst->resource.reladdr)
6447          src[0] = ureg_src_indirect(src[0],
6448                                     translate_addr(t, inst->resource.reladdr, 2));
6449       assert(src[0].File != TGSI_FILE_NULL);
6450       ureg_memory_insn(ureg, inst->op, dst, num_dst, src, num_src,
6451                        inst->buffer_access,
6452                        tex_target, inst->image_format);
6453       break;
6454 
6455    case TGSI_OPCODE_STORE:
6456       if (inst->resource.file == PROGRAM_MEMORY) {
6457          dst[0] = ureg_dst(t->shared_memory);
6458       } else if (inst->resource.file == PROGRAM_BUFFER) {
6459          dst[0] = ureg_dst(t->buffers[inst->resource.index]);
6460       } else {
6461          if (inst->resource.file == PROGRAM_IMAGE) {
6462             dst[0] = ureg_dst(t->images[inst->resource.index]);
6463          } else {
6464             /* Bindless images. */
6465             dst[0] = ureg_dst(translate_src(t, &inst->resource));
6466          }
6467          tex_target = st_translate_texture_target(inst->tex_target, inst->tex_shadow);
6468       }
6469       dst[0] = ureg_writemask(dst[0], inst->dst[0].writemask);
6470       if (inst->resource.reladdr)
6471          dst[0] = ureg_dst_indirect(dst[0],
6472                                     translate_addr(t, inst->resource.reladdr, 2));
6473       assert(dst[0].File != TGSI_FILE_NULL);
6474       ureg_memory_insn(ureg, inst->op, dst, num_dst, src, num_src,
6475                        inst->buffer_access,
6476                        tex_target, inst->image_format);
6477       break;
6478 
6479    default:
6480       ureg_insn(ureg,
6481                 inst->op,
6482                 dst, num_dst,
6483                 src, num_src, inst->precise);
6484       break;
6485    }
6486 }
6487 
6488 /* Invert SamplePos.y when rendering to the default framebuffer. */
6489 static void
emit_samplepos_adjustment(struct st_translate * t,int wpos_y_transform)6490 emit_samplepos_adjustment(struct st_translate *t, int wpos_y_transform)
6491 {
6492    struct ureg_program *ureg = t->ureg;
6493 
6494    assert(wpos_y_transform >= 0);
6495    struct ureg_src trans_const = ureg_DECL_constant(ureg, wpos_y_transform);
6496    struct ureg_src samplepos_sysval = t->systemValues[SYSTEM_VALUE_SAMPLE_POS];
6497    struct ureg_dst samplepos_flipped = ureg_DECL_temporary(ureg);
6498    struct ureg_dst is_fbo = ureg_DECL_temporary(ureg);
6499 
6500    ureg_ADD(ureg, ureg_writemask(samplepos_flipped, TGSI_WRITEMASK_Y),
6501             ureg_imm1f(ureg, 1), ureg_negate(samplepos_sysval));
6502 
6503    /* If trans.x == 1, use samplepos.y, else use 1 - samplepos.y. */
6504    ureg_FSEQ(ureg, ureg_writemask(is_fbo, TGSI_WRITEMASK_Y),
6505              ureg_scalar(trans_const, TGSI_SWIZZLE_X), ureg_imm1f(ureg, 1));
6506    ureg_UCMP(ureg, ureg_writemask(samplepos_flipped, TGSI_WRITEMASK_Y),
6507              ureg_src(is_fbo), samplepos_sysval, ureg_src(samplepos_flipped));
6508    ureg_MOV(ureg, ureg_writemask(samplepos_flipped, TGSI_WRITEMASK_X),
6509             samplepos_sysval);
6510 
6511    /* Use the result in place of the system value. */
6512    t->systemValues[SYSTEM_VALUE_SAMPLE_POS] = ureg_src(samplepos_flipped);
6513 }
6514 
6515 
6516 /**
6517  * Emit the TGSI instructions for inverting and adjusting WPOS.
6518  * This code is unavoidable because it also depends on whether
6519  * a FBO is bound (STATE_FB_WPOS_Y_TRANSFORM).
6520  */
6521 static void
emit_wpos_adjustment(struct gl_context * ctx,struct st_translate * t,int wpos_transform_const,boolean invert,GLfloat adjX,GLfloat adjY[2])6522 emit_wpos_adjustment(struct gl_context *ctx,
6523                      struct st_translate *t,
6524                      int wpos_transform_const,
6525                      boolean invert,
6526                      GLfloat adjX, GLfloat adjY[2])
6527 {
6528    struct ureg_program *ureg = t->ureg;
6529 
6530    assert(wpos_transform_const >= 0);
6531 
6532    /* Fragment program uses fragment position input.
6533     * Need to replace instances of INPUT[WPOS] with temp T
6534     * where T = INPUT[WPOS] is inverted by Y.
6535     */
6536    struct ureg_src wpostrans = ureg_DECL_constant(ureg, wpos_transform_const);
6537    struct ureg_dst wpos_temp = ureg_DECL_temporary(ureg);
6538    struct ureg_src *wpos =
6539       ctx->Const.GLSLFragCoordIsSysVal ?
6540          &t->systemValues[SYSTEM_VALUE_FRAG_COORD] :
6541          &t->inputs[t->inputMapping[VARYING_SLOT_POS]];
6542    struct ureg_src wpos_input = *wpos;
6543 
6544    /* First, apply the coordinate shift: */
6545    if (adjX || adjY[0] || adjY[1]) {
6546       if (adjY[0] != adjY[1]) {
6547          /* Adjust the y coordinate by adjY[1] or adjY[0] respectively
6548           * depending on whether inversion is actually going to be applied
6549           * or not, which is determined by testing against the inversion
6550           * state variable used below, which will be either +1 or -1.
6551           */
6552          struct ureg_dst adj_temp = ureg_DECL_local_temporary(ureg);
6553 
6554          ureg_CMP(ureg, adj_temp,
6555                   ureg_scalar(wpostrans, invert ? 2 : 0),
6556                   ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f),
6557                   ureg_imm4f(ureg, adjX, adjY[1], 0.0f, 0.0f));
6558          ureg_ADD(ureg, wpos_temp, wpos_input, ureg_src(adj_temp));
6559       } else {
6560          ureg_ADD(ureg, wpos_temp, wpos_input,
6561                   ureg_imm4f(ureg, adjX, adjY[0], 0.0f, 0.0f));
6562       }
6563       wpos_input = ureg_src(wpos_temp);
6564    } else {
6565       /* MOV wpos_temp, input[wpos]
6566        */
6567       ureg_MOV(ureg, wpos_temp, wpos_input);
6568    }
6569 
6570    /* Now the conditional y flip: STATE_FB_WPOS_Y_TRANSFORM.xy/zw will be
6571     * inversion/identity, or the other way around if we're drawing to an FBO.
6572     */
6573    if (invert) {
6574       /* MAD wpos_temp.y, wpos_input, wpostrans.xxxx, wpostrans.yyyy
6575        */
6576       ureg_MAD(ureg,
6577                ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y),
6578                wpos_input,
6579                ureg_scalar(wpostrans, 0),
6580                ureg_scalar(wpostrans, 1));
6581    } else {
6582       /* MAD wpos_temp.y, wpos_input, wpostrans.zzzz, wpostrans.wwww
6583        */
6584       ureg_MAD(ureg,
6585                ureg_writemask(wpos_temp, TGSI_WRITEMASK_Y),
6586                wpos_input,
6587                ureg_scalar(wpostrans, 2),
6588                ureg_scalar(wpostrans, 3));
6589    }
6590 
6591    /* Use wpos_temp as position input from here on:
6592     */
6593    *wpos = ureg_src(wpos_temp);
6594 }
6595 
6596 
6597 /**
6598  * Emit fragment position/ooordinate code.
6599  */
6600 static void
emit_wpos(struct st_context * st,struct st_translate * t,const struct gl_program * program,struct ureg_program * ureg,int wpos_transform_const)6601 emit_wpos(struct st_context *st,
6602           struct st_translate *t,
6603           const struct gl_program *program,
6604           struct ureg_program *ureg,
6605           int wpos_transform_const)
6606 {
6607    struct pipe_screen *pscreen = st->screen;
6608    GLfloat adjX = 0.0f;
6609    GLfloat adjY[2] = { 0.0f, 0.0f };
6610    boolean invert = FALSE;
6611 
6612    /* Query the pixel center conventions supported by the pipe driver and set
6613     * adjX, adjY to help out if it cannot handle the requested one internally.
6614     *
6615     * The bias of the y-coordinate depends on whether y-inversion takes place
6616     * (adjY[1]) or not (adjY[0]), which is in turn dependent on whether we are
6617     * drawing to an FBO (causes additional inversion), and whether the pipe
6618     * driver origin and the requested origin differ (the latter condition is
6619     * stored in the 'invert' variable).
6620     *
6621     * For height = 100 (i = integer, h = half-integer, l = lower, u = upper):
6622     *
6623     * center shift only:
6624     * i -> h: +0.5
6625     * h -> i: -0.5
6626     *
6627     * inversion only:
6628     * l,i -> u,i: ( 0.0 + 1.0) * -1 + 100 = 99
6629     * l,h -> u,h: ( 0.5 + 0.0) * -1 + 100 = 99.5
6630     * u,i -> l,i: (99.0 + 1.0) * -1 + 100 = 0
6631     * u,h -> l,h: (99.5 + 0.0) * -1 + 100 = 0.5
6632     *
6633     * inversion and center shift:
6634     * l,i -> u,h: ( 0.0 + 0.5) * -1 + 100 = 99.5
6635     * l,h -> u,i: ( 0.5 + 0.5) * -1 + 100 = 99
6636     * u,i -> l,h: (99.0 + 0.5) * -1 + 100 = 0.5
6637     * u,h -> l,i: (99.5 + 0.5) * -1 + 100 = 0
6638     */
6639    if (program->info.fs.origin_upper_left) {
6640       /* Fragment shader wants origin in upper-left */
6641       if (pscreen->get_param(pscreen, PIPE_CAP_FS_COORD_ORIGIN_UPPER_LEFT)) {
6642          /* the driver supports upper-left origin */
6643       }
6644       else if (pscreen->get_param(pscreen, PIPE_CAP_FS_COORD_ORIGIN_LOWER_LEFT)) {
6645          /* the driver supports lower-left origin, need to invert Y */
6646          ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
6647                        TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
6648          invert = TRUE;
6649       }
6650       else
6651          assert(0);
6652    }
6653    else {
6654       /* Fragment shader wants origin in lower-left */
6655       if (pscreen->get_param(pscreen, PIPE_CAP_FS_COORD_ORIGIN_LOWER_LEFT))
6656          /* the driver supports lower-left origin */
6657          ureg_property(ureg, TGSI_PROPERTY_FS_COORD_ORIGIN,
6658                        TGSI_FS_COORD_ORIGIN_LOWER_LEFT);
6659       else if (pscreen->get_param(pscreen, PIPE_CAP_FS_COORD_ORIGIN_UPPER_LEFT))
6660          /* the driver supports upper-left origin, need to invert Y */
6661          invert = TRUE;
6662       else
6663          assert(0);
6664    }
6665 
6666    if (program->info.fs.pixel_center_integer) {
6667       /* Fragment shader wants pixel center integer */
6668       if (pscreen->get_param(pscreen, PIPE_CAP_FS_COORD_PIXEL_CENTER_INTEGER)) {
6669          /* the driver supports pixel center integer */
6670          adjY[1] = 1.0f;
6671          ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
6672                        TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
6673       }
6674       else if (pscreen->get_param(pscreen, PIPE_CAP_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
6675          /* the driver supports pixel center half integer, need to bias X,Y */
6676          adjX = -0.5f;
6677          adjY[0] = -0.5f;
6678          adjY[1] = 0.5f;
6679       }
6680       else
6681          assert(0);
6682    }
6683    else {
6684       /* Fragment shader wants pixel center half integer */
6685       if (pscreen->get_param(pscreen, PIPE_CAP_FS_COORD_PIXEL_CENTER_HALF_INTEGER)) {
6686          /* the driver supports pixel center half integer */
6687       }
6688       else if (pscreen->get_param(pscreen, PIPE_CAP_FS_COORD_PIXEL_CENTER_INTEGER)) {
6689          /* the driver supports pixel center integer, need to bias X,Y */
6690          adjX = adjY[0] = adjY[1] = 0.5f;
6691          ureg_property(ureg, TGSI_PROPERTY_FS_COORD_PIXEL_CENTER,
6692                        TGSI_FS_COORD_PIXEL_CENTER_INTEGER);
6693       }
6694       else
6695          assert(0);
6696    }
6697 
6698    /* we invert after adjustment so that we avoid the MOV to temporary,
6699     * and reuse the adjustment ADD instead */
6700    emit_wpos_adjustment(st->ctx, t, wpos_transform_const, invert, adjX, adjY);
6701 }
6702 
6703 /**
6704  * OpenGL's fragment gl_FrontFace input is 1 for front-facing, 0 for back.
6705  * TGSI uses +1 for front, -1 for back.
6706  * This function converts the TGSI value to the GL value.  Simply clamping/
6707  * saturating the value to [0,1] does the job.
6708  */
6709 static void
emit_face_var(struct gl_context * ctx,struct st_translate * t)6710 emit_face_var(struct gl_context *ctx, struct st_translate *t)
6711 {
6712    struct ureg_program *ureg = t->ureg;
6713    struct ureg_dst face_temp = ureg_DECL_temporary(ureg);
6714    struct ureg_src face_input = t->inputs[t->inputMapping[VARYING_SLOT_FACE]];
6715 
6716    if (ctx->Const.NativeIntegers) {
6717       ureg_FSGE(ureg, face_temp, face_input, ureg_imm1f(ureg, 0));
6718    }
6719    else {
6720       /* MOV_SAT face_temp, input[face] */
6721       ureg_MOV(ureg, ureg_saturate(face_temp), face_input);
6722    }
6723 
6724    /* Use face_temp as face input from here on: */
6725    t->inputs[t->inputMapping[VARYING_SLOT_FACE]] = ureg_src(face_temp);
6726 }
6727 
6728 struct sort_inout_decls {
operator ()sort_inout_decls6729    bool operator()(const struct inout_decl &a, const struct inout_decl &b) const {
6730       return mapping[a.mesa_index] < mapping[b.mesa_index];
6731    }
6732 
6733    const ubyte *mapping;
6734 };
6735 
6736 /* Sort the given array of decls by the corresponding slot (TGSI file index).
6737  *
6738  * This is for the benefit of older drivers which are broken when the
6739  * declarations aren't sorted in this way.
6740  */
6741 static void
sort_inout_decls_by_slot(struct inout_decl * decls,unsigned count,const ubyte mapping[])6742 sort_inout_decls_by_slot(struct inout_decl *decls,
6743                          unsigned count,
6744                          const ubyte mapping[])
6745 {
6746    sort_inout_decls sorter;
6747    sorter.mapping = mapping;
6748    std::sort(decls, decls + count, sorter);
6749 }
6750 
6751 /**
6752  * Translate intermediate IR (glsl_to_tgsi_instruction) to TGSI format.
6753  * \param program  the program to translate
6754  * \param numInputs  number of input registers used
6755  * \param inputMapping  maps Mesa fragment program inputs to TGSI generic
6756  *                      input indexes
6757  * \param inputSemanticName  the TGSI_SEMANTIC flag for each input
6758  * \param inputSemanticIndex  the semantic index (ex: which texcoord) for
6759  *                            each input
6760  * \param interpMode  the TGSI_INTERPOLATE_LINEAR/PERSP mode for each input
6761  * \param numOutputs  number of output registers used
6762  * \param outputMapping  maps Mesa fragment program outputs to TGSI
6763  *                       generic outputs
6764  * \param outputSemanticName  the TGSI_SEMANTIC flag for each output
6765  * \param outputSemanticIndex  the semantic index (ex: which texcoord) for
6766  *                             each output
6767  *
6768  * \return  PIPE_OK or PIPE_ERROR_OUT_OF_MEMORY
6769  */
6770 extern "C" enum pipe_error
st_translate_program(struct gl_context * ctx,enum pipe_shader_type procType,struct ureg_program * ureg,glsl_to_tgsi_visitor * program,const struct gl_program * proginfo,GLuint numInputs,const ubyte attrToIndex[],const ubyte inputSlotToAttr[],const ubyte inputSemanticName[],const ubyte inputSemanticIndex[],const ubyte interpMode[],GLuint numOutputs,const ubyte outputMapping[],const ubyte outputSemanticName[],const ubyte outputSemanticIndex[])6771 st_translate_program(
6772    struct gl_context *ctx,
6773    enum pipe_shader_type procType,
6774    struct ureg_program *ureg,
6775    glsl_to_tgsi_visitor *program,
6776    const struct gl_program *proginfo,
6777    GLuint numInputs,
6778    const ubyte attrToIndex[],
6779    const ubyte inputSlotToAttr[],
6780    const ubyte inputSemanticName[],
6781    const ubyte inputSemanticIndex[],
6782    const ubyte interpMode[],
6783    GLuint numOutputs,
6784    const ubyte outputMapping[],
6785    const ubyte outputSemanticName[],
6786    const ubyte outputSemanticIndex[])
6787 {
6788    struct pipe_screen *screen = st_context(ctx)->screen;
6789    struct st_translate *t;
6790    unsigned i;
6791    struct gl_program_constants *prog_const =
6792       &ctx->Const.Program[program->shader->Stage];
6793    enum pipe_error ret = PIPE_OK;
6794    uint8_t inputMapping[VARYING_SLOT_TESS_MAX] = {0};
6795 
6796    assert(numInputs <= ARRAY_SIZE(t->inputs));
6797    assert(numOutputs <= ARRAY_SIZE(t->outputs));
6798 
6799    ASSERT_BITFIELD_SIZE(st_src_reg, type, GLSL_TYPE_ERROR);
6800    ASSERT_BITFIELD_SIZE(st_src_reg, file, PROGRAM_FILE_MAX);
6801    ASSERT_BITFIELD_SIZE(st_dst_reg, type, GLSL_TYPE_ERROR);
6802    ASSERT_BITFIELD_SIZE(st_dst_reg, file, PROGRAM_FILE_MAX);
6803    ASSERT_BITFIELD_SIZE(glsl_to_tgsi_instruction, tex_type, GLSL_TYPE_ERROR);
6804    ASSERT_BITFIELD_SIZE(glsl_to_tgsi_instruction, image_format, PIPE_FORMAT_COUNT);
6805    ASSERT_BITFIELD_SIZE(glsl_to_tgsi_instruction, tex_target,
6806                         (gl_texture_index) (NUM_TEXTURE_TARGETS - 1));
6807    ASSERT_BITFIELD_SIZE(glsl_to_tgsi_instruction, image_format,
6808                         (enum pipe_format) (PIPE_FORMAT_COUNT - 1));
6809    ASSERT_BITFIELD_SIZE(glsl_to_tgsi_instruction, op,
6810                         (enum tgsi_opcode) (TGSI_OPCODE_LAST - 1));
6811 
6812    if (proginfo->DualSlotInputs != 0) {
6813       /* adjust attrToIndex to include placeholder for second
6814        * part of a double attribute.
6815        * Following code is basically matching behavior of
6816        * util_lower_uint64_vertex_elements
6817        */
6818       numInputs = 0;
6819       for (unsigned attr = 0; attr < VERT_ATTRIB_MAX; attr++) {
6820          if ((proginfo->info.inputs_read & BITFIELD64_BIT(attr)) != 0) {
6821             inputMapping[attr] = numInputs++;
6822 
6823             if ((proginfo->DualSlotInputs & BITFIELD64_BIT(attr)) != 0) {
6824                /* add placeholder for second part of a double attribute */
6825                numInputs++;
6826             }
6827          }
6828       }
6829       inputMapping[VERT_ATTRIB_EDGEFLAG] = numInputs;
6830    }
6831    else {
6832       memcpy(inputMapping, attrToIndex, sizeof(inputMapping));
6833    }
6834 
6835    t = CALLOC_STRUCT(st_translate);
6836    if (!t) {
6837       ret = PIPE_ERROR_OUT_OF_MEMORY;
6838       goto out;
6839    }
6840 
6841    t->procType = procType;
6842    t->tg4_component_in_swizzle = screen->get_param(screen, PIPE_CAP_TGSI_TG4_COMPONENT_IN_SWIZZLE);
6843    t->inputMapping = inputMapping;
6844    t->outputMapping = outputMapping;
6845    t->ureg = ureg;
6846    t->num_temp_arrays = program->next_array;
6847    if (t->num_temp_arrays)
6848       t->arrays = (struct ureg_dst*)
6849                   calloc(t->num_temp_arrays, sizeof(t->arrays[0]));
6850 
6851    /*
6852     * Declare input attributes.
6853     */
6854    switch (procType) {
6855    case PIPE_SHADER_FRAGMENT:
6856    case PIPE_SHADER_GEOMETRY:
6857    case PIPE_SHADER_TESS_EVAL:
6858    case PIPE_SHADER_TESS_CTRL:
6859       sort_inout_decls_by_slot(program->inputs, program->num_inputs, inputMapping);
6860 
6861       for (i = 0; i < program->num_inputs; ++i) {
6862          struct inout_decl *decl = &program->inputs[i];
6863          unsigned slot = inputMapping[decl->mesa_index];
6864          struct ureg_src src;
6865          ubyte tgsi_usage_mask = decl->usage_mask;
6866 
6867          if (glsl_base_type_is_64bit(decl->base_type)) {
6868             if (tgsi_usage_mask == 1)
6869                tgsi_usage_mask = TGSI_WRITEMASK_XY;
6870             else if (tgsi_usage_mask == 2)
6871                tgsi_usage_mask = TGSI_WRITEMASK_ZW;
6872             else
6873                tgsi_usage_mask = TGSI_WRITEMASK_XYZW;
6874          }
6875 
6876          enum tgsi_interpolate_mode interp_mode = TGSI_INTERPOLATE_CONSTANT;
6877          enum tgsi_interpolate_loc interp_location = TGSI_INTERPOLATE_LOC_CENTER;
6878          if (procType == PIPE_SHADER_FRAGMENT) {
6879             assert(interpMode);
6880             interp_mode = interpMode[slot] != TGSI_INTERPOLATE_COUNT ?
6881                (enum tgsi_interpolate_mode) interpMode[slot] :
6882                tgsi_get_interp_mode(decl->interp,
6883                                     inputSlotToAttr[slot] == VARYING_SLOT_COL0 ||
6884                                     inputSlotToAttr[slot] == VARYING_SLOT_COL1);
6885 
6886             interp_location = (enum tgsi_interpolate_loc) decl->interp_loc;
6887          }
6888 
6889          src = ureg_DECL_fs_input_centroid_layout(ureg,
6890                   (enum tgsi_semantic) inputSemanticName[slot],
6891                   inputSemanticIndex[slot],
6892                   interp_mode, interp_location, slot, tgsi_usage_mask,
6893                   decl->array_id, decl->size);
6894 
6895          for (unsigned j = 0; j < decl->size; ++j) {
6896             if (t->inputs[slot + j].File != TGSI_FILE_INPUT) {
6897                /* The ArrayID is set up in dst_register */
6898                t->inputs[slot + j] = src;
6899                t->inputs[slot + j].ArrayID = 0;
6900                t->inputs[slot + j].Index += j;
6901             }
6902          }
6903       }
6904       break;
6905    case PIPE_SHADER_VERTEX:
6906       for (i = 0; i < numInputs; i++) {
6907          t->inputs[i] = ureg_DECL_vs_input(ureg, i);
6908       }
6909       break;
6910    case PIPE_SHADER_COMPUTE:
6911       break;
6912    default:
6913       assert(0);
6914    }
6915 
6916    /*
6917     * Declare output attributes.
6918     */
6919    switch (procType) {
6920    case PIPE_SHADER_FRAGMENT:
6921    case PIPE_SHADER_COMPUTE:
6922       break;
6923    case PIPE_SHADER_GEOMETRY:
6924    case PIPE_SHADER_TESS_EVAL:
6925    case PIPE_SHADER_TESS_CTRL:
6926    case PIPE_SHADER_VERTEX:
6927       sort_inout_decls_by_slot(program->outputs, program->num_outputs, outputMapping);
6928 
6929       for (i = 0; i < program->num_outputs; ++i) {
6930          struct inout_decl *decl = &program->outputs[i];
6931          unsigned slot = outputMapping[decl->mesa_index];
6932          struct ureg_dst dst;
6933          ubyte tgsi_usage_mask = decl->usage_mask;
6934 
6935          if (glsl_base_type_is_64bit(decl->base_type)) {
6936             if (tgsi_usage_mask == 1)
6937                tgsi_usage_mask = TGSI_WRITEMASK_XY;
6938             else if (tgsi_usage_mask == 2)
6939                tgsi_usage_mask = TGSI_WRITEMASK_ZW;
6940             else
6941                tgsi_usage_mask = TGSI_WRITEMASK_XYZW;
6942          }
6943 
6944          dst = ureg_DECL_output_layout(ureg,
6945                      (enum tgsi_semantic) outputSemanticName[slot],
6946                      outputSemanticIndex[slot],
6947                      decl->gs_out_streams,
6948                      slot, tgsi_usage_mask, decl->array_id, decl->size, decl->invariant);
6949          dst.Invariant = decl->invariant;
6950          for (unsigned j = 0; j < decl->size; ++j) {
6951             if (t->outputs[slot + j].File != TGSI_FILE_OUTPUT) {
6952                /* The ArrayID is set up in dst_register */
6953                t->outputs[slot + j] = dst;
6954                t->outputs[slot + j].ArrayID = 0;
6955                t->outputs[slot + j].Index += j;
6956                t->outputs[slot + j].Invariant = decl->invariant;
6957             }
6958          }
6959       }
6960       break;
6961    default:
6962       assert(0);
6963    }
6964 
6965    if (procType == PIPE_SHADER_FRAGMENT) {
6966       if (proginfo->info.inputs_read & VARYING_BIT_POS) {
6967           /* Must do this after setting up t->inputs. */
6968           emit_wpos(st_context(ctx), t, proginfo, ureg,
6969                     program->wpos_transform_const);
6970       }
6971 
6972       if (proginfo->info.inputs_read & VARYING_BIT_FACE)
6973          emit_face_var(ctx, t);
6974 
6975       for (i = 0; i < numOutputs; i++) {
6976          switch (outputSemanticName[i]) {
6977          case TGSI_SEMANTIC_POSITION:
6978             t->outputs[i] = ureg_DECL_output(ureg,
6979                                              TGSI_SEMANTIC_POSITION, /* Z/Depth */
6980                                              outputSemanticIndex[i]);
6981             t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Z);
6982             break;
6983          case TGSI_SEMANTIC_STENCIL:
6984             t->outputs[i] = ureg_DECL_output(ureg,
6985                                              TGSI_SEMANTIC_STENCIL, /* Stencil */
6986                                              outputSemanticIndex[i]);
6987             t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_Y);
6988             break;
6989          case TGSI_SEMANTIC_COLOR:
6990             t->outputs[i] = ureg_DECL_output(ureg,
6991                                              TGSI_SEMANTIC_COLOR,
6992                                              outputSemanticIndex[i]);
6993             break;
6994          case TGSI_SEMANTIC_SAMPLEMASK:
6995             t->outputs[i] = ureg_DECL_output(ureg,
6996                                              TGSI_SEMANTIC_SAMPLEMASK,
6997                                              outputSemanticIndex[i]);
6998             /* TODO: If we ever support more than 32 samples, this will have
6999              * to become an array.
7000              */
7001             t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
7002             break;
7003          default:
7004             assert(!"fragment shader outputs must be POSITION/STENCIL/COLOR");
7005             ret = PIPE_ERROR_BAD_INPUT;
7006             goto out;
7007          }
7008       }
7009    }
7010    else if (procType == PIPE_SHADER_VERTEX) {
7011       for (i = 0; i < numOutputs; i++) {
7012          if (outputSemanticName[i] == TGSI_SEMANTIC_FOG) {
7013             /* force register to contain a fog coordinate in the form (F, 0, 0, 1). */
7014             ureg_MOV(ureg,
7015                      ureg_writemask(t->outputs[i], TGSI_WRITEMASK_YZW),
7016                      ureg_imm4f(ureg, 0.0f, 0.0f, 0.0f, 1.0f));
7017             t->outputs[i] = ureg_writemask(t->outputs[i], TGSI_WRITEMASK_X);
7018          }
7019       }
7020    }
7021 
7022    /* Declare address register.
7023     */
7024    if (program->num_address_regs > 0) {
7025       assert(program->num_address_regs <= 3);
7026       for (int i = 0; i < program->num_address_regs; i++)
7027          t->address[i] = ureg_DECL_address(ureg);
7028    }
7029 
7030    /* Declare misc input registers
7031     */
7032    BITSET_FOREACH_SET(i, proginfo->info.system_values_read, SYSTEM_VALUE_MAX) {
7033       enum tgsi_semantic semName = tgsi_get_sysval_semantic(i);
7034 
7035       t->systemValues[i] = ureg_DECL_system_value(ureg, semName, 0);
7036 
7037       if (semName == TGSI_SEMANTIC_INSTANCEID ||
7038           semName == TGSI_SEMANTIC_VERTEXID) {
7039          /* From Gallium perspective, these system values are always
7040           * integer, and require native integer support.  However, if
7041           * native integer is supported on the vertex stage but not the
7042           * pixel stage (e.g, i915g + draw), Mesa will generate IR that
7043           * assumes these system values are floats. To resolve the
7044           * inconsistency, we insert a U2F.
7045           */
7046          struct st_context *st = st_context(ctx);
7047          struct pipe_screen *pscreen = st->screen;
7048          assert(procType == PIPE_SHADER_VERTEX);
7049          assert(pscreen->get_shader_param(pscreen, PIPE_SHADER_VERTEX, PIPE_SHADER_CAP_INTEGERS));
7050          (void) pscreen;
7051          if (!ctx->Const.NativeIntegers) {
7052             struct ureg_dst temp = ureg_DECL_local_temporary(t->ureg);
7053             ureg_U2F(t->ureg, ureg_writemask(temp, TGSI_WRITEMASK_X),
7054                      t->systemValues[i]);
7055             t->systemValues[i] = ureg_scalar(ureg_src(temp), 0);
7056          }
7057       }
7058 
7059       if (procType == PIPE_SHADER_FRAGMENT &&
7060           semName == TGSI_SEMANTIC_POSITION)
7061          emit_wpos(st_context(ctx), t, proginfo, ureg,
7062                    program->wpos_transform_const);
7063 
7064       if (procType == PIPE_SHADER_FRAGMENT &&
7065           semName == TGSI_SEMANTIC_SAMPLEPOS)
7066          emit_samplepos_adjustment(t, program->wpos_transform_const);
7067    }
7068 
7069    t->array_sizes = program->array_sizes;
7070    t->input_decls = program->inputs;
7071    t->num_input_decls = program->num_inputs;
7072    t->output_decls = program->outputs;
7073    t->num_output_decls = program->num_outputs;
7074 
7075    /* Emit constants and uniforms.  TGSI uses a single index space for these,
7076     * so we put all the translated regs in t->constants.
7077     */
7078    if (proginfo->Parameters) {
7079       t->constants = (struct ureg_src *)
7080          calloc(proginfo->Parameters->NumParameters, sizeof(t->constants[0]));
7081       if (t->constants == NULL) {
7082          ret = PIPE_ERROR_OUT_OF_MEMORY;
7083          goto out;
7084       }
7085       t->num_constants = proginfo->Parameters->NumParameters;
7086 
7087       for (i = 0; i < proginfo->Parameters->NumParameters; i++) {
7088          unsigned pvo = proginfo->Parameters->Parameters[i].ValueOffset;
7089 
7090          switch (proginfo->Parameters->Parameters[i].Type) {
7091          case PROGRAM_STATE_VAR:
7092          case PROGRAM_UNIFORM:
7093             t->constants[i] = ureg_DECL_constant(ureg, i);
7094             break;
7095 
7096          /* Emit immediates for PROGRAM_CONSTANT only when there's no indirect
7097           * addressing of the const buffer.
7098           * FIXME: Be smarter and recognize param arrays:
7099           * indirect addressing is only valid within the referenced
7100           * array.
7101           */
7102          case PROGRAM_CONSTANT:
7103             if (program->indirect_addr_consts)
7104                t->constants[i] = ureg_DECL_constant(ureg, i);
7105             else
7106                t->constants[i] = emit_immediate(t,
7107                                                 proginfo->Parameters->ParameterValues + pvo,
7108                                                 proginfo->Parameters->Parameters[i].DataType,
7109                                                 4);
7110             break;
7111          default:
7112             break;
7113          }
7114       }
7115    }
7116 
7117    for (i = 0; i < proginfo->info.num_ubos; i++) {
7118       unsigned size = proginfo->sh.UniformBlocks[i]->UniformBufferSize;
7119       unsigned num_const_vecs = (size + 15) / 16;
7120       unsigned first, last;
7121       assert(num_const_vecs > 0);
7122       first = 0;
7123       last = num_const_vecs > 0 ? num_const_vecs - 1 : 0;
7124       ureg_DECL_constant2D(t->ureg, first, last, i + 1);
7125    }
7126 
7127    /* Emit immediate values.
7128     */
7129    t->immediates = (struct ureg_src *)
7130       calloc(program->num_immediates, sizeof(struct ureg_src));
7131    if (t->immediates == NULL) {
7132       ret = PIPE_ERROR_OUT_OF_MEMORY;
7133       goto out;
7134    }
7135    t->num_immediates = program->num_immediates;
7136 
7137    i = 0;
7138    foreach_in_list(immediate_storage, imm, &program->immediates) {
7139       assert(i < program->num_immediates);
7140       t->immediates[i++] = emit_immediate(t, imm->values, imm->type, imm->size32);
7141    }
7142    assert(i == program->num_immediates);
7143 
7144    /* texture samplers */
7145    for (i = 0; i < prog_const->MaxTextureImageUnits; i++) {
7146       if (program->samplers_used & (1u << i)) {
7147          enum tgsi_return_type type =
7148             st_translate_texture_type(program->sampler_types[i]);
7149 
7150          t->samplers[i] = ureg_DECL_sampler(ureg, i);
7151 
7152          ureg_DECL_sampler_view(ureg, i, program->sampler_targets[i],
7153                                 type, type, type, type);
7154       }
7155    }
7156 
7157    /* Declare atomic and shader storage buffers. */
7158    {
7159       struct gl_program *prog = program->prog;
7160 
7161       if (!st_context(ctx)->has_hw_atomics) {
7162          for (i = 0; i < prog->info.num_abos; i++) {
7163             unsigned index = (prog->info.num_ssbos +
7164                               prog->sh.AtomicBuffers[i]->Binding);
7165             assert(prog->sh.AtomicBuffers[i]->Binding <
7166                    prog_const->MaxAtomicBuffers);
7167             t->buffers[index] = ureg_DECL_buffer(ureg, index, true);
7168          }
7169       } else {
7170          for (i = 0; i < program->num_atomics; i++) {
7171             struct hwatomic_decl *ainfo = &program->atomic_info[i];
7172             gl_uniform_storage *uni_storage = &prog->sh.data->UniformStorage[ainfo->location];
7173             int base = uni_storage->offset / ATOMIC_COUNTER_SIZE;
7174             ureg_DECL_hw_atomic(ureg, base, base + ainfo->size - 1, ainfo->binding,
7175                                 ainfo->array_id);
7176          }
7177       }
7178 
7179       assert(prog->info.num_ssbos <= prog_const->MaxShaderStorageBlocks);
7180       for (i = 0; i < prog->info.num_ssbos; i++) {
7181          t->buffers[i] = ureg_DECL_buffer(ureg, i, false);
7182       }
7183    }
7184 
7185    if (program->use_shared_memory)
7186       t->shared_memory = ureg_DECL_memory(ureg, TGSI_MEMORY_TYPE_SHARED);
7187 
7188    for (i = 0; i < program->shader->Program->info.num_images; i++) {
7189       if (program->images_used & (1 << i)) {
7190          t->images[i] = ureg_DECL_image(ureg, i,
7191                                         program->image_targets[i],
7192                                         program->image_formats[i],
7193                                         program->image_wr[i],
7194                                         false);
7195       }
7196    }
7197 
7198    /* Emit each instruction in turn:
7199     */
7200    foreach_in_list(glsl_to_tgsi_instruction, inst, &program->instructions)
7201       compile_tgsi_instruction(t, inst);
7202 
7203 out:
7204    if (t) {
7205       free(t->arrays);
7206       free(t->temps);
7207       free(t->constants);
7208       t->num_constants = 0;
7209       free(t->immediates);
7210       t->num_immediates = 0;
7211       FREE(t);
7212    }
7213 
7214    return ret;
7215 }
7216 /* ----------------------------- End TGSI code ------------------------------ */
7217 
7218 
7219 /**
7220  * Convert a shader's GLSL IR into a Mesa gl_program, although without
7221  * generating Mesa IR.
7222  */
7223 static struct gl_program *
get_mesa_program_tgsi(struct gl_context * ctx,struct gl_shader_program * shader_program,struct gl_linked_shader * shader)7224 get_mesa_program_tgsi(struct gl_context *ctx,
7225                       struct gl_shader_program *shader_program,
7226                       struct gl_linked_shader *shader)
7227 {
7228    glsl_to_tgsi_visitor* v;
7229    struct gl_program *prog;
7230    struct gl_shader_compiler_options *options =
7231          &ctx->Const.ShaderCompilerOptions[shader->Stage];
7232    struct pipe_screen *pscreen = st_context(ctx)->screen;
7233    enum pipe_shader_type ptarget = pipe_shader_type_from_mesa(shader->Stage);
7234    unsigned skip_merge_registers;
7235 
7236    validate_ir_tree(shader->ir);
7237 
7238    prog = shader->Program;
7239 
7240    prog->Parameters = _mesa_new_parameter_list();
7241    v = new glsl_to_tgsi_visitor();
7242    v->ctx = ctx;
7243    v->prog = prog;
7244    v->shader_program = shader_program;
7245    v->shader = shader;
7246    v->options = options;
7247    v->native_integers = ctx->Const.NativeIntegers;
7248 
7249    v->have_sqrt = pscreen->get_shader_param(pscreen, ptarget,
7250                                             PIPE_SHADER_CAP_TGSI_SQRT_SUPPORTED);
7251    v->have_fma = pscreen->get_shader_param(pscreen, ptarget,
7252                                            PIPE_SHADER_CAP_TGSI_FMA_SUPPORTED);
7253    v->has_tex_txf_lz = pscreen->get_param(pscreen,
7254                                           PIPE_CAP_TGSI_TEX_TXF_LZ);
7255 
7256    v->tg4_component_in_swizzle = pscreen->get_param(pscreen, PIPE_CAP_TGSI_TG4_COMPONENT_IN_SWIZZLE);
7257    v->variables = _mesa_hash_table_create(v->mem_ctx, _mesa_hash_pointer,
7258                                           _mesa_key_pointer_equal);
7259    skip_merge_registers =
7260       pscreen->get_shader_param(pscreen, ptarget,
7261                                 PIPE_SHADER_CAP_TGSI_SKIP_MERGE_REGISTERS);
7262 
7263    generate_parameters_list_for_uniforms(ctx, shader_program, shader,
7264                                          prog->Parameters);
7265 
7266    /* Remove reads from output registers. */
7267    if (!pscreen->get_param(pscreen, PIPE_CAP_SHADER_CAN_READ_OUTPUTS))
7268       lower_output_reads(shader->Stage, shader->ir);
7269 
7270    /* Emit intermediate IR for main(). */
7271    visit_exec_list(shader->ir, v);
7272 
7273 #if 0
7274    /* Print out some information (for debugging purposes) used by the
7275     * optimization passes. */
7276    {
7277       int i;
7278       int *first_writes = ralloc_array(v->mem_ctx, int, v->next_temp);
7279       int *first_reads = ralloc_array(v->mem_ctx, int, v->next_temp);
7280       int *last_writes = ralloc_array(v->mem_ctx, int, v->next_temp);
7281       int *last_reads = ralloc_array(v->mem_ctx, int, v->next_temp);
7282 
7283       for (i = 0; i < v->next_temp; i++) {
7284          first_writes[i] = -1;
7285          first_reads[i] = -1;
7286          last_writes[i] = -1;
7287          last_reads[i] = -1;
7288       }
7289       v->get_first_temp_read(first_reads);
7290       v->get_last_temp_read_first_temp_write(last_reads, first_writes);
7291       v->get_last_temp_write(last_writes);
7292       for (i = 0; i < v->next_temp; i++)
7293          printf("Temp %d: FR=%3d FW=%3d LR=%3d LW=%3d\n", i, first_reads[i],
7294                 first_writes[i],
7295                 last_reads[i],
7296                 last_writes[i]);
7297       ralloc_free(first_writes);
7298       ralloc_free(first_reads);
7299       ralloc_free(last_writes);
7300       ralloc_free(last_reads);
7301    }
7302 #endif
7303 
7304    /* Perform optimizations on the instructions in the glsl_to_tgsi_visitor. */
7305    v->simplify_cmp();
7306    v->copy_propagate();
7307 
7308    while (v->eliminate_dead_code());
7309 
7310    v->merge_two_dsts();
7311 
7312    if (!skip_merge_registers) {
7313       v->split_arrays();
7314       v->copy_propagate();
7315       while (v->eliminate_dead_code());
7316 
7317       v->merge_registers();
7318       v->copy_propagate();
7319       while (v->eliminate_dead_code());
7320    }
7321 
7322    v->renumber_registers();
7323 
7324    /* Write the END instruction. */
7325    v->emit_asm(NULL, TGSI_OPCODE_END);
7326 
7327    if (ctx->_Shader->Flags & GLSL_DUMP) {
7328       _mesa_log("\n");
7329       _mesa_log("GLSL IR for linked %s program %d:\n",
7330              _mesa_shader_stage_to_string(shader->Stage),
7331              shader_program->Name);
7332       _mesa_print_ir(_mesa_get_log_file(), shader->ir, NULL);
7333       _mesa_log("\n\n");
7334    }
7335 
7336    do_set_program_inouts(shader->ir, prog, shader->Stage);
7337 
7338    _mesa_copy_linked_program_data(shader_program, shader);
7339 
7340    if (pscreen->get_param(pscreen, PIPE_CAP_TGSI_SKIP_SHRINK_IO_ARRAYS)) {
7341       mark_array_io(v->inputs, v->num_inputs,
7342                     &prog->info.inputs_read,
7343                     prog->DualSlotInputs,
7344                     &prog->info.patch_inputs_read);
7345 
7346       mark_array_io(v->outputs, v->num_outputs,
7347                     &prog->info.outputs_written, 0ULL,
7348                     &prog->info.patch_outputs_written);
7349    } else  {
7350       shrink_array_declarations(v->inputs, v->num_inputs,
7351                                 &prog->info.inputs_read,
7352                                 prog->DualSlotInputs,
7353                                 &prog->info.patch_inputs_read);
7354       shrink_array_declarations(v->outputs, v->num_outputs,
7355                                 &prog->info.outputs_written, 0ULL,
7356                                 &prog->info.patch_outputs_written);
7357    }
7358 
7359    count_resources(v, prog);
7360 
7361    /* The GLSL IR won't be needed anymore. */
7362    ralloc_free(shader->ir);
7363    shader->ir = NULL;
7364 
7365    /* This must be done before the uniform storage is associated. */
7366    if (shader->Stage == MESA_SHADER_FRAGMENT &&
7367        (prog->info.inputs_read & VARYING_BIT_POS ||
7368         BITSET_TEST(prog->info.system_values_read, SYSTEM_VALUE_FRAG_COORD) ||
7369         BITSET_TEST(prog->info.system_values_read, SYSTEM_VALUE_SAMPLE_POS))) {
7370       static const gl_state_index16 wposTransformState[STATE_LENGTH] = {
7371          STATE_FB_WPOS_Y_TRANSFORM
7372       };
7373 
7374       v->wpos_transform_const = _mesa_add_state_reference(prog->Parameters,
7375                                                           wposTransformState);
7376    }
7377 
7378    /* Avoid reallocation of the program parameter list, because the uniform
7379     * storage is only associated with the original parameter list.
7380     * This should be enough for Bitmap and DrawPixels constants.
7381     */
7382    _mesa_ensure_and_associate_uniform_storage(ctx, shader_program, prog, 8);
7383    if (!shader_program->data->LinkStatus) {
7384       free_glsl_to_tgsi_visitor(v);
7385       _mesa_reference_program(ctx, &shader->Program, NULL);
7386       return NULL;
7387    }
7388 
7389 
7390    prog->glsl_to_tgsi = v;
7391 
7392    PRINT_STATS(v->print_stats());
7393 
7394    return prog;
7395 }
7396 
7397 /* See if there are unsupported control flow statements. */
7398 class ir_control_flow_info_visitor : public ir_hierarchical_visitor {
7399 private:
7400    const struct gl_shader_compiler_options *options;
7401 public:
ir_control_flow_info_visitor(const struct gl_shader_compiler_options * options)7402    ir_control_flow_info_visitor(const struct gl_shader_compiler_options *options)
7403       : options(options),
7404         unsupported(false)
7405    {
7406    }
7407 
visit_enter(ir_function * ir)7408    virtual ir_visitor_status visit_enter(ir_function *ir)
7409    {
7410       /* Other functions are skipped (same as glsl_to_tgsi). */
7411       if (strcmp(ir->name, "main") == 0)
7412          return visit_continue;
7413 
7414       return visit_continue_with_parent;
7415    }
7416 
visit_enter(ir_call * ir)7417    virtual ir_visitor_status visit_enter(ir_call *ir)
7418    {
7419       if (!ir->callee->is_intrinsic()) {
7420          unsupported = true; /* it's a function call */
7421          return visit_stop;
7422       }
7423       return visit_continue;
7424    }
7425 
visit_enter(ir_return * ir)7426    virtual ir_visitor_status visit_enter(ir_return *ir)
7427    {
7428       if (options->EmitNoMainReturn) {
7429          unsupported = true;
7430          return visit_stop;
7431       }
7432       return visit_continue;
7433    }
7434 
7435    bool unsupported;
7436 };
7437 
7438 static bool
has_unsupported_control_flow(exec_list * ir,const struct gl_shader_compiler_options * options)7439 has_unsupported_control_flow(exec_list *ir,
7440                              const struct gl_shader_compiler_options *options)
7441 {
7442    ir_control_flow_info_visitor visitor(options);
7443    visit_list_elements(&visitor, ir);
7444    return visitor.unsupported;
7445 }
7446 
7447 /**
7448  * Link a shader.
7449  * This actually involves converting GLSL IR into an intermediate TGSI-like IR
7450  * with code lowering and other optimizations.
7451  */
7452 GLboolean
st_link_tgsi(struct gl_context * ctx,struct gl_shader_program * prog)7453 st_link_tgsi(struct gl_context *ctx, struct gl_shader_program *prog)
7454 {
7455    struct pipe_screen *pscreen = st_context(ctx)->screen;
7456 
7457    for (unsigned i = 0; i < MESA_SHADER_STAGES; i++) {
7458       struct gl_linked_shader *shader = prog->_LinkedShaders[i];
7459       if (shader == NULL)
7460          continue;
7461 
7462       exec_list *ir = shader->ir;
7463       gl_shader_stage stage = shader->Stage;
7464       enum pipe_shader_type ptarget = pipe_shader_type_from_mesa(stage);
7465       const struct gl_shader_compiler_options *options =
7466             &ctx->Const.ShaderCompilerOptions[stage];
7467 
7468       unsigned if_threshold = pscreen->get_shader_param(pscreen, ptarget,
7469                                                         PIPE_SHADER_CAP_LOWER_IF_THRESHOLD);
7470       if (ctx->Const.GLSLOptimizeConservatively) {
7471          /* Do it once and repeat only if there's unsupported control flow. */
7472          do {
7473             do_common_optimization(ir, true, true, options,
7474                                    ctx->Const.NativeIntegers);
7475             lower_if_to_cond_assign((gl_shader_stage)i, ir,
7476                                     options->MaxIfDepth, if_threshold);
7477          } while (has_unsupported_control_flow(ir, options));
7478       } else {
7479          /* Repeat it until it stops making changes. */
7480          bool progress;
7481          do {
7482             progress = do_common_optimization(ir, true, true, options,
7483                                               ctx->Const.NativeIntegers);
7484             progress |= lower_if_to_cond_assign((gl_shader_stage)i, ir,
7485                                                 options->MaxIfDepth, if_threshold);
7486          } while (progress);
7487       }
7488 
7489       /* Do this again to lower ir_binop_vector_extract introduced
7490        * by optimization passes.
7491        */
7492       do_vec_index_to_cond_assign(ir);
7493 
7494       validate_ir_tree(ir);
7495 
7496       struct gl_program *linked_prog =
7497          get_mesa_program_tgsi(ctx, prog, shader);
7498       st_set_prog_affected_state_flags(linked_prog);
7499 
7500       if (linked_prog) {
7501          /* This is really conservative: */
7502          linked_prog->info.writes_memory =
7503             linked_prog->info.num_ssbos ||
7504             linked_prog->info.num_images ||
7505             ctx->Extensions.ARB_bindless_texture ||
7506             (linked_prog->sh.LinkedTransformFeedback &&
7507              linked_prog->sh.LinkedTransformFeedback->NumVarying);
7508 
7509          if (!st_program_string_notify(ctx,
7510                                        _mesa_shader_stage_to_program(i),
7511                                        linked_prog)) {
7512             _mesa_reference_program(ctx, &shader->Program, NULL);
7513             return GL_FALSE;
7514          }
7515       }
7516    }
7517 
7518    return GL_TRUE;
7519 }
7520