1 /*
2  * Copyright © 2018 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 #include <math.h>
24 #include "nir.h"
25 #include "nir_builder.h"
26 #include "util/u_vector.h"
27 
28 /**
29  * Lower flrp instructions.
30  *
31  * Unlike the lowerings that are possible in nir_opt_algrbraic, this pass can
32  * examine more global information to determine a possibly more efficient
33  * lowering for each flrp.
34  */
35 
36 static void
append_flrp_to_dead_list(struct u_vector * dead_flrp,struct nir_alu_instr * alu)37 append_flrp_to_dead_list(struct u_vector *dead_flrp, struct nir_alu_instr *alu)
38 {
39    struct nir_alu_instr **tail = u_vector_add(dead_flrp);
40    *tail = alu;
41 }
42 
43 /**
44  * Replace flrp(a, b, c) with ffma(b, c, ffma(-a, c, a)).
45  */
46 static void
replace_with_strict_ffma(struct nir_builder * bld,struct u_vector * dead_flrp,struct nir_alu_instr * alu)47 replace_with_strict_ffma(struct nir_builder *bld, struct u_vector *dead_flrp,
48                          struct nir_alu_instr *alu)
49 {
50    nir_ssa_def *const a = nir_ssa_for_alu_src(bld, alu, 0);
51    nir_ssa_def *const b = nir_ssa_for_alu_src(bld, alu, 1);
52    nir_ssa_def *const c = nir_ssa_for_alu_src(bld, alu, 2);
53 
54    nir_ssa_def *const neg_a = nir_fneg(bld, a);
55    nir_instr_as_alu(neg_a->parent_instr)->exact = alu->exact;
56 
57    nir_ssa_def *const inner_ffma = nir_ffma(bld, neg_a, c, a);
58    nir_instr_as_alu(inner_ffma->parent_instr)->exact = alu->exact;
59 
60    nir_ssa_def *const outer_ffma = nir_ffma(bld, b, c, inner_ffma);
61    nir_instr_as_alu(outer_ffma->parent_instr)->exact = alu->exact;
62 
63    nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, outer_ffma);
64 
65    /* DO NOT REMOVE the original flrp yet.  Many of the lowering choices are
66     * based on other uses of the sources.  Removing the flrp may cause the
67     * last flrp in a sequence to make a different, incorrect choice.
68     */
69    append_flrp_to_dead_list(dead_flrp, alu);
70 }
71 
72 /**
73  * Replace flrp(a, b, c) with ffma(a, (1 - c), bc)
74  */
75 static void
replace_with_single_ffma(struct nir_builder * bld,struct u_vector * dead_flrp,struct nir_alu_instr * alu)76 replace_with_single_ffma(struct nir_builder *bld, struct u_vector *dead_flrp,
77                          struct nir_alu_instr *alu)
78 {
79    nir_ssa_def *const a = nir_ssa_for_alu_src(bld, alu, 0);
80    nir_ssa_def *const b = nir_ssa_for_alu_src(bld, alu, 1);
81    nir_ssa_def *const c = nir_ssa_for_alu_src(bld, alu, 2);
82 
83    nir_ssa_def *const neg_c = nir_fneg(bld, c);
84    nir_instr_as_alu(neg_c->parent_instr)->exact = alu->exact;
85 
86    nir_ssa_def *const one_minus_c =
87       nir_fadd(bld, nir_imm_floatN_t(bld, 1.0f, c->bit_size), neg_c);
88    nir_instr_as_alu(one_minus_c->parent_instr)->exact = alu->exact;
89 
90    nir_ssa_def *const b_times_c = nir_fmul(bld, b, c);
91    nir_instr_as_alu(b_times_c->parent_instr)->exact = alu->exact;
92 
93    nir_ssa_def *const final_ffma = nir_ffma(bld, a, one_minus_c, b_times_c);
94    nir_instr_as_alu(final_ffma->parent_instr)->exact = alu->exact;
95 
96    nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, final_ffma);
97 
98    /* DO NOT REMOVE the original flrp yet.  Many of the lowering choices are
99     * based on other uses of the sources.  Removing the flrp may cause the
100     * last flrp in a sequence to make a different, incorrect choice.
101     */
102    append_flrp_to_dead_list(dead_flrp, alu);
103 }
104 
105 /**
106  * Replace flrp(a, b, c) with a(1-c) + bc.
107  */
108 static void
replace_with_strict(struct nir_builder * bld,struct u_vector * dead_flrp,struct nir_alu_instr * alu)109 replace_with_strict(struct nir_builder *bld, struct u_vector *dead_flrp,
110                     struct nir_alu_instr *alu)
111 {
112    nir_ssa_def *const a = nir_ssa_for_alu_src(bld, alu, 0);
113    nir_ssa_def *const b = nir_ssa_for_alu_src(bld, alu, 1);
114    nir_ssa_def *const c = nir_ssa_for_alu_src(bld, alu, 2);
115 
116    nir_ssa_def *const neg_c = nir_fneg(bld, c);
117    nir_instr_as_alu(neg_c->parent_instr)->exact = alu->exact;
118 
119    nir_ssa_def *const one_minus_c =
120       nir_fadd(bld, nir_imm_floatN_t(bld, 1.0f, c->bit_size), neg_c);
121    nir_instr_as_alu(one_minus_c->parent_instr)->exact = alu->exact;
122 
123    nir_ssa_def *const first_product = nir_fmul(bld, a, one_minus_c);
124    nir_instr_as_alu(first_product->parent_instr)->exact = alu->exact;
125 
126    nir_ssa_def *const second_product = nir_fmul(bld, b, c);
127    nir_instr_as_alu(second_product->parent_instr)->exact = alu->exact;
128 
129    nir_ssa_def *const sum = nir_fadd(bld, first_product, second_product);
130    nir_instr_as_alu(sum->parent_instr)->exact = alu->exact;
131 
132    nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, sum);
133 
134    /* DO NOT REMOVE the original flrp yet.  Many of the lowering choices are
135     * based on other uses of the sources.  Removing the flrp may cause the
136     * last flrp in a sequence to make a different, incorrect choice.
137     */
138    append_flrp_to_dead_list(dead_flrp, alu);
139 }
140 
141 /**
142  * Replace flrp(a, b, c) with a + c(b-a).
143  */
144 static void
replace_with_fast(struct nir_builder * bld,struct u_vector * dead_flrp,struct nir_alu_instr * alu)145 replace_with_fast(struct nir_builder *bld, struct u_vector *dead_flrp,
146                   struct nir_alu_instr *alu)
147 {
148    nir_ssa_def *const a = nir_ssa_for_alu_src(bld, alu, 0);
149    nir_ssa_def *const b = nir_ssa_for_alu_src(bld, alu, 1);
150    nir_ssa_def *const c = nir_ssa_for_alu_src(bld, alu, 2);
151 
152    nir_ssa_def *const neg_a = nir_fneg(bld, a);
153    nir_instr_as_alu(neg_a->parent_instr)->exact = alu->exact;
154 
155    nir_ssa_def *const b_minus_a = nir_fadd(bld, b, neg_a);
156    nir_instr_as_alu(b_minus_a->parent_instr)->exact = alu->exact;
157 
158    nir_ssa_def *const product = nir_fmul(bld, c, b_minus_a);
159    nir_instr_as_alu(product->parent_instr)->exact = alu->exact;
160 
161    nir_ssa_def *const sum = nir_fadd(bld, a, product);
162    nir_instr_as_alu(sum->parent_instr)->exact = alu->exact;
163 
164    nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, sum);
165 
166    /* DO NOT REMOVE the original flrp yet.  Many of the lowering choices are
167     * based on other uses of the sources.  Removing the flrp may cause the
168     * last flrp in a sequence to make a different, incorrect choice.
169     */
170    append_flrp_to_dead_list(dead_flrp, alu);
171 }
172 
173 /**
174  * Replace flrp(a, b, c) with (b*c ± c) + a => b*c + (a ± c)
175  *
176  * \note: This only works if a = ±1.
177  */
178 static void
replace_with_expanded_ffma_and_add(struct nir_builder * bld,struct u_vector * dead_flrp,struct nir_alu_instr * alu,bool subtract_c)179 replace_with_expanded_ffma_and_add(struct nir_builder *bld,
180                                    struct u_vector *dead_flrp,
181                                    struct nir_alu_instr *alu, bool subtract_c)
182 {
183    nir_ssa_def *const a = nir_ssa_for_alu_src(bld, alu, 0);
184    nir_ssa_def *const b = nir_ssa_for_alu_src(bld, alu, 1);
185    nir_ssa_def *const c = nir_ssa_for_alu_src(bld, alu, 2);
186 
187    nir_ssa_def *const b_times_c = nir_fmul(bld, b, c);
188    nir_instr_as_alu(b_times_c->parent_instr)->exact = alu->exact;
189 
190    nir_ssa_def *inner_sum;
191 
192    if (subtract_c) {
193       nir_ssa_def *const neg_c = nir_fneg(bld, c);
194       nir_instr_as_alu(neg_c->parent_instr)->exact = alu->exact;
195 
196       inner_sum = nir_fadd(bld, a, neg_c);
197    } else {
198       inner_sum = nir_fadd(bld, a, c);
199    }
200 
201    nir_instr_as_alu(inner_sum->parent_instr)->exact = alu->exact;
202 
203    nir_ssa_def *const outer_sum = nir_fadd(bld, inner_sum, b_times_c);
204    nir_instr_as_alu(outer_sum->parent_instr)->exact = alu->exact;
205 
206    nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, outer_sum);
207 
208    /* DO NOT REMOVE the original flrp yet.  Many of the lowering choices are
209     * based on other uses of the sources.  Removing the flrp may cause the
210     * last flrp in a sequence to make a different, incorrect choice.
211     */
212    append_flrp_to_dead_list(dead_flrp, alu);
213 }
214 
215 /**
216  * Determines whether a swizzled source is constant w/ all components the same.
217  *
218  * The value of the constant is stored in \c result.
219  *
220  * \return
221  * True if all components of the swizzled source are the same constant.
222  * Otherwise false is returned.
223  */
224 static bool
all_same_constant(const nir_alu_instr * instr,unsigned src,double * result)225 all_same_constant(const nir_alu_instr *instr, unsigned src, double *result)
226 {
227    nir_const_value *val = nir_src_as_const_value(instr->src[src].src);
228 
229    if (!val)
230       return false;
231 
232    const uint8_t *const swizzle = instr->src[src].swizzle;
233    const unsigned num_components = nir_dest_num_components(instr->dest.dest);
234 
235    if (instr->dest.dest.ssa.bit_size == 32) {
236       const float first = val[swizzle[0]].f32;
237 
238       for (unsigned i = 1; i < num_components; i++) {
239          if (val[swizzle[i]].f32 != first)
240             return false;
241       }
242 
243       *result = first;
244    } else {
245       const double first = val[swizzle[0]].f64;
246 
247       for (unsigned i = 1; i < num_components; i++) {
248          if (val[swizzle[i]].f64 != first)
249             return false;
250       }
251 
252       *result = first;
253    }
254 
255    return true;
256 }
257 
258 static bool
sources_are_constants_with_similar_magnitudes(const nir_alu_instr * instr)259 sources_are_constants_with_similar_magnitudes(const nir_alu_instr *instr)
260 {
261    nir_const_value *val0 = nir_src_as_const_value(instr->src[0].src);
262    nir_const_value *val1 = nir_src_as_const_value(instr->src[1].src);
263 
264    if (val0 == NULL || val1 == NULL)
265       return false;
266 
267    const uint8_t *const swizzle0 = instr->src[0].swizzle;
268    const uint8_t *const swizzle1 = instr->src[1].swizzle;
269    const unsigned num_components = nir_dest_num_components(instr->dest.dest);
270 
271    if (instr->dest.dest.ssa.bit_size == 32) {
272       for (unsigned i = 0; i < num_components; i++) {
273          int exp0;
274          int exp1;
275 
276          frexpf(val0[swizzle0[i]].f32, &exp0);
277          frexpf(val1[swizzle1[i]].f32, &exp1);
278 
279          /* If the difference between exponents is >= 24, then A+B will always
280           * have the value whichever between A and B has the largest absolute
281           * value.  So, [0, 23] is the valid range.  The smaller the limit
282           * value, the more precision will be maintained at a potential
283           * performance cost.  Somewhat arbitrarilly split the range in half.
284           */
285          if (abs(exp0 - exp1) > (23 / 2))
286             return false;
287       }
288    } else {
289       for (unsigned i = 0; i < num_components; i++) {
290          int exp0;
291          int exp1;
292 
293          frexp(val0[swizzle0[i]].f64, &exp0);
294          frexp(val1[swizzle1[i]].f64, &exp1);
295 
296          /* If the difference between exponents is >= 53, then A+B will always
297           * have the value whichever between A and B has the largest absolute
298           * value.  So, [0, 52] is the valid range.  The smaller the limit
299           * value, the more precision will be maintained at a potential
300           * performance cost.  Somewhat arbitrarilly split the range in half.
301           */
302          if (abs(exp0 - exp1) > (52 / 2))
303             return false;
304       }
305    }
306 
307    return true;
308 }
309 
310 /**
311  * Counts of similar types of nir_op_flrp instructions
312  *
313  * If a similar instruction fits into more than one category, it will only be
314  * counted once.  The assumption is that no other instruction will have all
315  * sources the same, or CSE would have removed one of the instructions.
316  */
317 struct similar_flrp_stats {
318    unsigned src2;
319    unsigned src0_and_src2;
320    unsigned src1_and_src2;
321 };
322 
323 /**
324  * Collection counts of similar FLRP instructions.
325  *
326  * This function only cares about similar instructions that have src2 in
327  * common.
328  */
329 static void
get_similar_flrp_stats(nir_alu_instr * alu,struct similar_flrp_stats * st)330 get_similar_flrp_stats(nir_alu_instr *alu, struct similar_flrp_stats *st)
331 {
332    memset(st, 0, sizeof(*st));
333 
334    nir_foreach_use(other_use, alu->src[2].src.ssa) {
335       /* Is the use also a flrp? */
336       nir_instr *const other_instr = other_use->parent_instr;
337       if (other_instr->type != nir_instr_type_alu)
338          continue;
339 
340       /* Eh-hem... don't match the instruction with itself. */
341       if (other_instr == &alu->instr)
342          continue;
343 
344       nir_alu_instr *const other_alu = nir_instr_as_alu(other_instr);
345       if (other_alu->op != nir_op_flrp)
346          continue;
347 
348       /* Does the other flrp use source 2 from the first flrp as its source 2
349        * as well?
350        */
351       if (!nir_alu_srcs_equal(alu, other_alu, 2, 2))
352          continue;
353 
354       if (nir_alu_srcs_equal(alu, other_alu, 0, 0))
355          st->src0_and_src2++;
356       else if (nir_alu_srcs_equal(alu, other_alu, 1, 1))
357          st->src1_and_src2++;
358       else
359          st->src2++;
360    }
361 }
362 
363 static void
convert_flrp_instruction(nir_builder * bld,struct u_vector * dead_flrp,nir_alu_instr * alu,bool always_precise)364 convert_flrp_instruction(nir_builder *bld,
365                          struct u_vector *dead_flrp,
366                          nir_alu_instr *alu,
367                          bool always_precise)
368 {
369    bool have_ffma = false;
370    unsigned bit_size = nir_dest_bit_size(alu->dest.dest);
371 
372    if (bit_size == 16)
373       have_ffma = !bld->shader->options->lower_ffma16;
374    else if (bit_size == 32)
375       have_ffma = !bld->shader->options->lower_ffma32;
376    else if (bit_size == 64)
377       have_ffma = !bld->shader->options->lower_ffma64;
378    else
379       unreachable("invalid bit_size");
380 
381    bld->cursor = nir_before_instr(&alu->instr);
382 
383    /* There are two methods to implement flrp(x, y, t).  The strictly correct
384     * implementation according to the GLSL spec is:
385     *
386     *    x(1 - t) + yt
387     *
388     * This can also be implemented using two chained FMAs
389     *
390     *    fma(y, t, fma(-x, t, x))
391     *
392     * This method, using either formulation, has better precision when the
393     * difference between x and y is very large.  It guarantess that flrp(x, y,
394     * 1) = y.  For example, flrp(1e38, 1.0, 1.0) is 1.0.  This is correct.
395     *
396     * The other possible implementation is:
397     *
398     *    x + t(y - x)
399     *
400     * This can also be formuated as an FMA:
401     *
402     *    fma(y - x, t, x)
403     *
404     * For this implementation, flrp(1e38, 1.0, 1.0) is 0.0.  Since 1.0 was
405     * expected, that's a pretty significant error.
406     *
407     * The choice made for lowering depends on a number of factors.
408     *
409     * - If the flrp is marked precise and FMA is supported:
410     *
411     *        fma(y, t, fma(-x, t, x))
412     *
413     *   This is strictly correct (maybe?), and the cost is two FMA
414     *   instructions.  It at least maintains the flrp(x, y, 1.0) == y
415     *   condition.
416     *
417     * - If the flrp is marked precise and FMA is not supported:
418     *
419     *        x(1 - t) + yt
420     *
421     *   This is strictly correct, and the cost is 4 instructions.  If FMA is
422     *   supported, this may or may not be reduced to 3 instructions (a
423     *   subtract, a multiply, and an FMA)... but in that case the other
424     *   formulation should have been used.
425     */
426    if (alu->exact) {
427       if (have_ffma)
428          replace_with_strict_ffma(bld, dead_flrp, alu);
429       else
430          replace_with_strict(bld, dead_flrp, alu);
431 
432       return;
433    }
434 
435    /*
436     * - If x and y are both immediates and the relative magnitude of the
437     *   values is similar (such that x-y does not lose too much precision):
438     *
439     *        x + t(x - y)
440     *
441     *   We rely on constant folding to eliminate x-y, and we rely on
442     *   nir_opt_algebraic to possibly generate an FMA.  The cost is either one
443     *   FMA or two instructions.
444     */
445    if (sources_are_constants_with_similar_magnitudes(alu)) {
446       replace_with_fast(bld, dead_flrp, alu);
447       return;
448    }
449 
450    /*
451     * - If x = 1:
452     *
453     *        (yt + -t) + 1
454     *
455     * - If x = -1:
456     *
457     *        (yt + t) - 1
458     *
459     *   In both cases, x is used in place of ±1 for simplicity.  Both forms
460     *   lend to ffma generation on platforms that support ffma.
461     */
462    double src0_as_constant;
463    if (all_same_constant(alu, 0, &src0_as_constant)) {
464       if (src0_as_constant == 1.0) {
465          replace_with_expanded_ffma_and_add(bld, dead_flrp, alu,
466                                             true /* subtract t */);
467          return;
468       } else if (src0_as_constant == -1.0) {
469          replace_with_expanded_ffma_and_add(bld, dead_flrp, alu,
470                                             false /* add t */);
471          return;
472       }
473    }
474 
475    /*
476     * - If y = ±1:
477     *
478     *        x(1 - t) + yt
479     *
480     *   In this case either the multiply in yt will be eliminated by
481     *   nir_opt_algebraic.  If FMA is supported, this results in fma(x, (1 -
482     *   t), ±t) for two instructions.  If FMA is not supported, then the cost
483     *   is 3 instructions.  We rely on nir_opt_algebraic to generate the FMA
484     *   instructions as well.
485     *
486     *   Another possible replacement is
487     *
488     *        -xt + x ± t
489     *
490     *   Some groupings of this may be better on some platforms in some
491     *   circumstances, bit it is probably dependent on scheduling.  Futher
492     *   investigation may be required.
493     */
494    double src1_as_constant;
495    if ((all_same_constant(alu, 1, &src1_as_constant) &&
496         (src1_as_constant == -1.0 || src1_as_constant == 1.0))) {
497       replace_with_strict(bld, dead_flrp, alu);
498       return;
499    }
500 
501    if (have_ffma) {
502       if (always_precise) {
503          replace_with_strict_ffma(bld, dead_flrp, alu);
504          return;
505       }
506 
507       /*
508        * - If FMA is supported and other flrp(x, _, t) exists:
509        *
510        *        fma(y, t, fma(-x, t, x))
511        *
512        *   The hope is that the inner FMA calculation will be shared with the
513        *   other lowered flrp.  This results in two FMA instructions for the
514        *   first flrp and one FMA instruction for each additional flrp.  It
515        *   also means that the live range for x might be complete after the
516        *   inner ffma instead of after the last flrp.
517        */
518       struct similar_flrp_stats st;
519 
520       get_similar_flrp_stats(alu, &st);
521       if (st.src0_and_src2 > 0) {
522          replace_with_strict_ffma(bld, dead_flrp, alu);
523          return;
524       }
525 
526       /*
527        * - If FMA is supported and another flrp(_, y, t) exists:
528        *
529        *        fma(x, (1 - t), yt)
530        *
531        *   The hope is that the (1 - t) and the yt will be shared with the
532        *   other lowered flrp.  This results in 3 insructions for the first
533        *   flrp and 1 for each additional flrp.
534        */
535       if (st.src1_and_src2 > 0) {
536          replace_with_single_ffma(bld, dead_flrp, alu);
537          return;
538       }
539    } else {
540       if (always_precise) {
541          replace_with_strict(bld, dead_flrp, alu);
542          return;
543       }
544 
545       /*
546        * - If FMA is not supported and another flrp(x, _, t) exists:
547        *
548        *        x(1 - t) + yt
549        *
550        *   The hope is that the x(1 - t) will be shared with the other lowered
551        *   flrp.  This results in 4 insructions for the first flrp and 2 for
552        *   each additional flrp.
553        *
554        * - If FMA is not supported and another flrp(_, y, t) exists:
555        *
556        *        x(1 - t) + yt
557        *
558        *   The hope is that the (1 - t) and the yt will be shared with the
559        *   other lowered flrp.  This results in 4 insructions for the first
560        *   flrp and 2 for each additional flrp.
561        */
562       struct similar_flrp_stats st;
563 
564       get_similar_flrp_stats(alu, &st);
565       if (st.src0_and_src2 > 0 || st.src1_and_src2 > 0) {
566          replace_with_strict(bld, dead_flrp, alu);
567          return;
568       }
569    }
570 
571    /*
572     * - If t is constant:
573     *
574     *        x(1 - t) + yt
575     *
576     *   The cost is three instructions without FMA or two instructions with
577     *   FMA.  This is the same cost as the imprecise lowering, but it gives
578     *   the instruction scheduler a little more freedom.
579     *
580     *   There is no need to handle t = 0.5 specially.  nir_opt_algebraic
581     *   already has optimizations to convert 0.5x + 0.5y to 0.5(x + y).
582     */
583    if (alu->src[2].src.ssa->parent_instr->type == nir_instr_type_load_const) {
584       replace_with_strict(bld, dead_flrp, alu);
585       return;
586    }
587 
588    /*
589     * - Otherwise
590     *
591     *        x + t(x - y)
592     */
593    replace_with_fast(bld, dead_flrp, alu);
594 }
595 
596 static void
lower_flrp_impl(nir_function_impl * impl,struct u_vector * dead_flrp,unsigned lowering_mask,bool always_precise)597 lower_flrp_impl(nir_function_impl *impl,
598                 struct u_vector *dead_flrp,
599                 unsigned lowering_mask,
600                 bool always_precise)
601 {
602    nir_builder b;
603    nir_builder_init(&b, impl);
604 
605    nir_foreach_block(block, impl) {
606       nir_foreach_instr_safe(instr, block) {
607          if (instr->type == nir_instr_type_alu) {
608             nir_alu_instr *const alu = nir_instr_as_alu(instr);
609 
610             if (alu->op == nir_op_flrp &&
611                 (alu->dest.dest.ssa.bit_size & lowering_mask)) {
612                convert_flrp_instruction(&b, dead_flrp, alu, always_precise);
613             }
614          }
615       }
616    }
617 
618    nir_metadata_preserve(impl, nir_metadata_block_index |
619                                nir_metadata_dominance);
620 }
621 
622 /**
623  * \param lowering_mask - Bitwise-or of the bit sizes that need to be lowered
624  *                        (e.g., 16 | 64 if only 16-bit and 64-bit flrp need
625  *                        lowering).
626  * \param always_precise - Always require precise lowering for flrp.  This
627  *                        will always lower flrp to (a * (1 - c)) + (b * c).
628  * \param have_ffma - Set to true if the GPU has an FFMA instruction that
629  *                    should be used.
630  */
631 bool
nir_lower_flrp(nir_shader * shader,unsigned lowering_mask,bool always_precise)632 nir_lower_flrp(nir_shader *shader,
633                unsigned lowering_mask,
634                bool always_precise)
635 {
636    struct u_vector dead_flrp;
637 
638    if (!u_vector_init_pow2(&dead_flrp, 8, sizeof(struct nir_alu_instr *)))
639       return false;
640 
641    nir_foreach_function(function, shader) {
642       if (function->impl) {
643          lower_flrp_impl(function->impl, &dead_flrp, lowering_mask,
644                          always_precise);
645       }
646    }
647 
648    /* Progress was made if the dead list is not empty.  Remove all the
649     * instructions from the dead list.
650     */
651    const bool progress = u_vector_length(&dead_flrp) != 0;
652 
653    struct nir_alu_instr **instr;
654    u_vector_foreach(instr, &dead_flrp)
655       nir_instr_remove(&(*instr)->instr);
656 
657    u_vector_finish(&dead_flrp);
658 
659    return progress;
660 }
661