1 /*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Jason Ekstrand (jason@jlekstrand.net)
25 */
26
27 #include "nir.h"
28 #include "nir_worklist.h"
29 #include "nir_vla.h"
30
31 /*
32 * Basic liveness analysis. This works only in SSA form.
33 *
34 * This liveness pass treats phi nodes as being melded to the space between
35 * blocks so that the destinations of a phi are in the livein of the block
36 * in which it resides and the sources are in the liveout of the
37 * corresponding block. By formulating the liveness information in this
38 * way, we ensure that the definition of any variable dominates its entire
39 * live range. This is true because the only way that the definition of an
40 * SSA value may not dominate a use is if the use is in a phi node and the
41 * uses in phi no are in the live-out of the corresponding predecessor
42 * block but not in the live-in of the block containing the phi node.
43 */
44
45 struct live_ssa_defs_state {
46 unsigned bitset_words;
47
48 /* Used in propagate_across_edge() */
49 BITSET_WORD *tmp_live;
50
51 nir_block_worklist worklist;
52 };
53
54 /* Initialize the liveness data to zero and add the given block to the
55 * worklist.
56 */
57 static void
init_liveness_block(nir_block * block,struct live_ssa_defs_state * state)58 init_liveness_block(nir_block *block,
59 struct live_ssa_defs_state *state)
60 {
61 block->live_in = reralloc(block, block->live_in, BITSET_WORD,
62 state->bitset_words);
63 memset(block->live_in, 0, state->bitset_words * sizeof(BITSET_WORD));
64
65 block->live_out = reralloc(block, block->live_out, BITSET_WORD,
66 state->bitset_words);
67 memset(block->live_out, 0, state->bitset_words * sizeof(BITSET_WORD));
68
69 nir_block_worklist_push_head(&state->worklist, block);
70 }
71
72 static bool
set_src_live(nir_src * src,void * void_live)73 set_src_live(nir_src *src, void *void_live)
74 {
75 BITSET_WORD *live = void_live;
76
77 if (!src->is_ssa)
78 return true;
79
80 if (nir_src_is_undef(*src))
81 return true; /* undefined variables are never live */
82
83 BITSET_SET(live, src->ssa->index);
84
85 return true;
86 }
87
88 static bool
set_ssa_def_dead(nir_ssa_def * def,void * void_live)89 set_ssa_def_dead(nir_ssa_def *def, void *void_live)
90 {
91 BITSET_WORD *live = void_live;
92
93 BITSET_CLEAR(live, def->index);
94
95 return true;
96 }
97
98 /** Propagates the live in of succ across the edge to the live out of pred
99 *
100 * Phi nodes exist "between" blocks and all the phi nodes at the start of a
101 * block act "in parallel". When we propagate from the live_in of one
102 * block to the live out of the other, we have to kill any writes from phis
103 * and make live any sources.
104 *
105 * Returns true if updating live out of pred added anything
106 */
107 static bool
propagate_across_edge(nir_block * pred,nir_block * succ,struct live_ssa_defs_state * state)108 propagate_across_edge(nir_block *pred, nir_block *succ,
109 struct live_ssa_defs_state *state)
110 {
111 BITSET_WORD *live = state->tmp_live;
112 memcpy(live, succ->live_in, state->bitset_words * sizeof *live);
113
114 nir_foreach_instr(instr, succ) {
115 if (instr->type != nir_instr_type_phi)
116 break;
117 nir_phi_instr *phi = nir_instr_as_phi(instr);
118
119 assert(phi->dest.is_ssa);
120 set_ssa_def_dead(&phi->dest.ssa, live);
121 }
122
123 nir_foreach_instr(instr, succ) {
124 if (instr->type != nir_instr_type_phi)
125 break;
126 nir_phi_instr *phi = nir_instr_as_phi(instr);
127
128 nir_foreach_phi_src(src, phi) {
129 if (src->pred == pred) {
130 set_src_live(&src->src, live);
131 break;
132 }
133 }
134 }
135
136 BITSET_WORD progress = 0;
137 for (unsigned i = 0; i < state->bitset_words; ++i) {
138 progress |= live[i] & ~pred->live_out[i];
139 pred->live_out[i] |= live[i];
140 }
141 return progress != 0;
142 }
143
144 void
nir_live_ssa_defs_impl(nir_function_impl * impl)145 nir_live_ssa_defs_impl(nir_function_impl *impl)
146 {
147 struct live_ssa_defs_state state = {
148 .bitset_words = BITSET_WORDS(impl->ssa_alloc),
149 };
150 state.tmp_live = rzalloc_array(impl, BITSET_WORD, state.bitset_words),
151
152 /* Number the instructions so we can do cheap interference tests using the
153 * instruction index.
154 */
155 nir_metadata_require(impl, nir_metadata_instr_index);
156
157 nir_block_worklist_init(&state.worklist, impl->num_blocks, NULL);
158
159 /* Allocate live_in and live_out sets and add all of the blocks to the
160 * worklist.
161 */
162 nir_foreach_block(block, impl) {
163 init_liveness_block(block, &state);
164 }
165
166
167 /* We're now ready to work through the worklist and update the liveness
168 * sets of each of the blocks. By the time we get to this point, every
169 * block in the function implementation has been pushed onto the
170 * worklist in reverse order. As long as we keep the worklist
171 * up-to-date as we go, everything will get covered.
172 */
173 while (!nir_block_worklist_is_empty(&state.worklist)) {
174 /* We pop them off in the reverse order we pushed them on. This way
175 * the first walk of the instructions is backwards so we only walk
176 * once in the case of no control flow.
177 */
178 nir_block *block = nir_block_worklist_pop_head(&state.worklist);
179
180 memcpy(block->live_in, block->live_out,
181 state.bitset_words * sizeof(BITSET_WORD));
182
183 nir_if *following_if = nir_block_get_following_if(block);
184 if (following_if)
185 set_src_live(&following_if->condition, block->live_in);
186
187 nir_foreach_instr_reverse(instr, block) {
188 /* Phi nodes are handled seperately so we want to skip them. Since
189 * we are going backwards and they are at the beginning, we can just
190 * break as soon as we see one.
191 */
192 if (instr->type == nir_instr_type_phi)
193 break;
194
195 nir_foreach_ssa_def(instr, set_ssa_def_dead, block->live_in);
196 nir_foreach_src(instr, set_src_live, block->live_in);
197 }
198
199 /* Walk over all of the predecessors of the current block updating
200 * their live in with the live out of this one. If anything has
201 * changed, add the predecessor to the work list so that we ensure
202 * that the new information is used.
203 */
204 set_foreach(block->predecessors, entry) {
205 nir_block *pred = (nir_block *)entry->key;
206 if (propagate_across_edge(pred, block, &state))
207 nir_block_worklist_push_tail(&state.worklist, pred);
208 }
209 }
210
211 ralloc_free(state.tmp_live);
212 nir_block_worklist_fini(&state.worklist);
213 }
214
215 /** Return the live set at a cursor
216 *
217 * Note: The bitset returned may be the live_in or live_out from the block in
218 * which the instruction lives. Do not ralloc_free() it directly;
219 * instead, provide a mem_ctx and free that.
220 */
221 const BITSET_WORD *
nir_get_live_ssa_defs(nir_cursor cursor,void * mem_ctx)222 nir_get_live_ssa_defs(nir_cursor cursor, void *mem_ctx)
223 {
224 nir_block *block = nir_cursor_current_block(cursor);
225 nir_function_impl *impl = nir_cf_node_get_function(&block->cf_node);
226 assert(impl->valid_metadata & nir_metadata_live_ssa_defs);
227
228 switch (cursor.option) {
229 case nir_cursor_before_block:
230 return cursor.block->live_in;
231
232 case nir_cursor_after_block:
233 return cursor.block->live_out;
234
235 case nir_cursor_before_instr:
236 if (cursor.instr == nir_block_first_instr(cursor.instr->block))
237 return cursor.instr->block->live_in;
238 break;
239
240 case nir_cursor_after_instr:
241 if (cursor.instr == nir_block_last_instr(cursor.instr->block))
242 return cursor.instr->block->live_out;
243 break;
244 }
245
246 /* If we got here, we're an instruction cursor mid-block */
247 const unsigned bitset_words = BITSET_WORDS(impl->ssa_alloc);
248 BITSET_WORD *live = ralloc_array(mem_ctx, BITSET_WORD, bitset_words);
249 memcpy(live, block->live_out, bitset_words * sizeof(BITSET_WORD));
250
251 nir_foreach_instr_reverse(instr, block) {
252 if (cursor.option == nir_cursor_after_instr && instr == cursor.instr)
253 break;
254
255 /* If someone asked for liveness in the middle of a bunch of phis,
256 * that's an error. Since we are going backwards and they are at the
257 * beginning, we can just blow up as soon as we see one.
258 */
259 assert(instr->type != nir_instr_type_phi);
260 if (instr->type == nir_instr_type_phi)
261 break;
262
263 nir_foreach_ssa_def(instr, set_ssa_def_dead, live);
264 nir_foreach_src(instr, set_src_live, live);
265
266 if (cursor.option == nir_cursor_before_instr && instr == cursor.instr)
267 break;
268 }
269
270 return live;
271 }
272
273 static bool
src_does_not_use_def(nir_src * src,void * def)274 src_does_not_use_def(nir_src *src, void *def)
275 {
276 return !src->is_ssa || src->ssa != (nir_ssa_def *)def;
277 }
278
279 static bool
search_for_use_after_instr(nir_instr * start,nir_ssa_def * def)280 search_for_use_after_instr(nir_instr *start, nir_ssa_def *def)
281 {
282 /* Only look for a use strictly after the given instruction */
283 struct exec_node *node = start->node.next;
284 while (!exec_node_is_tail_sentinel(node)) {
285 nir_instr *instr = exec_node_data(nir_instr, node, node);
286 if (!nir_foreach_src(instr, src_does_not_use_def, def))
287 return true;
288 node = node->next;
289 }
290
291 /* If uses are considered to be in the block immediately preceding the if
292 * so we need to also check the following if condition, if any.
293 */
294 nir_if *following_if = nir_block_get_following_if(start->block);
295 if (following_if && following_if->condition.is_ssa &&
296 following_if->condition.ssa == def)
297 return true;
298
299 return false;
300 }
301
302 /* Returns true if def is live at instr assuming that def comes before
303 * instr in a pre DFS search of the dominance tree.
304 */
305 static bool
nir_ssa_def_is_live_at(nir_ssa_def * def,nir_instr * instr)306 nir_ssa_def_is_live_at(nir_ssa_def *def, nir_instr *instr)
307 {
308 if (BITSET_TEST(instr->block->live_out, def->index)) {
309 /* Since def dominates instr, if def is in the liveout of the block,
310 * it's live at instr
311 */
312 return true;
313 } else {
314 if (BITSET_TEST(instr->block->live_in, def->index) ||
315 def->parent_instr->block == instr->block) {
316 /* In this case it is either live coming into instr's block or it
317 * is defined in the same block. In this case, we simply need to
318 * see if it is used after instr.
319 */
320 return search_for_use_after_instr(instr, def);
321 } else {
322 return false;
323 }
324 }
325 }
326
327 bool
nir_ssa_defs_interfere(nir_ssa_def * a,nir_ssa_def * b)328 nir_ssa_defs_interfere(nir_ssa_def *a, nir_ssa_def *b)
329 {
330 if (a->parent_instr == b->parent_instr) {
331 /* Two variables defined at the same time interfere assuming at
332 * least one isn't dead.
333 */
334 return true;
335 } else if (a->parent_instr->type == nir_instr_type_ssa_undef ||
336 b->parent_instr->type == nir_instr_type_ssa_undef) {
337 /* If either variable is an ssa_undef, then there's no interference */
338 return false;
339 } else if (a->parent_instr->index < b->parent_instr->index) {
340 return nir_ssa_def_is_live_at(a, b->parent_instr);
341 } else {
342 return nir_ssa_def_is_live_at(b, a->parent_instr);
343 }
344 }
345
346 /* Takes an SSA def's defs and uses and expands the live interval to cover
347 * that range. Control flow effects are handled separately.
348 */
def_cb(nir_ssa_def * def,void * state)349 static bool def_cb(nir_ssa_def *def, void *state)
350 {
351 nir_instr_liveness *liveness = state;
352 nir_instr *instr = def->parent_instr;
353 int index = def->index;
354
355 liveness->defs[index].start = MIN2(liveness->defs[index].start, instr->index);
356
357 nir_foreach_use(src, def) {
358 liveness->defs[index].end = MAX2(liveness->defs[index].end,
359 src->parent_instr->index);
360 }
361
362 return true;
363 }
364
365 nir_instr_liveness *
nir_live_ssa_defs_per_instr(nir_function_impl * impl)366 nir_live_ssa_defs_per_instr(nir_function_impl *impl)
367 {
368 /* We'll use block-level live_ssa_defs to expand our per-instr ranges for
369 * control flow.
370 */
371 nir_metadata_require(impl,
372 nir_metadata_block_index |
373 nir_metadata_instr_index |
374 nir_metadata_live_ssa_defs);
375
376 /* Make our struct. */
377 nir_instr_liveness *liveness = ralloc(NULL, nir_instr_liveness);
378 liveness->defs = rzalloc_array(liveness, nir_liveness_bounds,
379 impl->ssa_alloc);
380
381 /* Set our starts so we can use MIN2() as we accumulate bounds. */
382 for (int i = 0; i < impl->ssa_alloc; i++)
383 liveness->defs->start = ~0;
384
385 nir_foreach_block(block, impl) {
386 unsigned index;
387 BITSET_FOREACH_SET(index, block->live_in, impl->ssa_alloc) {
388 liveness->defs[index].start = MIN2(liveness->defs[index].start,
389 block->start_ip);
390 }
391
392 nir_foreach_instr(instr, block) {
393 nir_foreach_ssa_def(instr, def_cb, liveness);
394 };
395
396 /* track an if src's use. We need to make sure that our value is live
397 * across the if reference, where we don't have an instr->index
398 * representing the use. Mark it as live through the end of the block.
399 */
400 nir_if *nif = nir_block_get_following_if(block);
401 if (nif) {
402 if (nif->condition.is_ssa) {
403 liveness->defs[nif->condition.ssa->index].end = MAX2(
404 liveness->defs[nif->condition.ssa->index].end, block->end_ip);
405 }
406 }
407
408 BITSET_FOREACH_SET(index, block->live_out, impl->ssa_alloc) {
409 liveness->defs[index].end = MAX2(liveness->defs[index].end,
410 block->end_ip);
411 }
412 }
413
414 return liveness;
415 }
416