1 /*
2  * Copyright © 2019 Valve Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include "aco_builder.h"
26 #include "aco_ir.h"
27 
28 #include "util/u_math.h"
29 
30 #include <set>
31 #include <vector>
32 
33 namespace aco {
34 
35 namespace {
36 
37 enum WQMState : uint8_t {
38    Unspecified = 0,
39    Exact = 1 << 0,
40    WQM = 1 << 1, /* with control flow applied */
41    Preserve_WQM = 1 << 2,
42    Exact_Branch = 1 << 3,
43 };
44 
45 enum mask_type : uint8_t {
46    mask_type_global = 1 << 0,
47    mask_type_exact = 1 << 1,
48    mask_type_wqm = 1 << 2,
49    mask_type_loop = 1 << 3, /* active lanes of a loop */
50 };
51 
52 struct wqm_ctx {
53    Program* program;
54    /* state for WQM propagation */
55    std::set<unsigned> worklist;
56    std::vector<uint16_t> defined_in;
57    std::vector<bool> needs_wqm;
58    std::vector<bool> branch_wqm; /* true if the branch condition in this block should be in wqm */
wqm_ctxaco::__anon031c11ce0111::wqm_ctx59    wqm_ctx(Program* program_)
60        : program(program_), defined_in(program->peekAllocationId(), 0xFFFF),
61          needs_wqm(program->peekAllocationId()), branch_wqm(program->blocks.size())
62    {
63       for (unsigned i = 0; i < program->blocks.size(); i++)
64          worklist.insert(i);
65    }
66 };
67 
68 struct loop_info {
69    Block* loop_header;
70    uint16_t num_exec_masks;
71    uint8_t needs;
72    bool has_divergent_break;
73    bool has_divergent_continue;
74    bool has_discard; /* has a discard or demote */
loop_infoaco::__anon031c11ce0111::loop_info75    loop_info(Block* b, uint16_t num, uint8_t needs_, bool breaks, bool cont, bool discard)
76        : loop_header(b), num_exec_masks(num), needs(needs_), has_divergent_break(breaks),
77          has_divergent_continue(cont), has_discard(discard)
78    {}
79 };
80 
81 struct block_info {
82    std::vector<std::pair<Operand, uint8_t>>
83       exec; /* Vector of exec masks. Either a temporary or const -1. */
84    std::vector<WQMState> instr_needs;
85    uint8_t block_needs;
86    uint8_t ever_again_needs;
87    bool logical_end_wqm;
88    /* more... */
89 };
90 
91 struct exec_ctx {
92    Program* program;
93    std::vector<block_info> info;
94    std::vector<loop_info> loop;
95    bool handle_wqm = false;
exec_ctxaco::__anon031c11ce0111::exec_ctx96    exec_ctx(Program* program_) : program(program_), info(program->blocks.size()) {}
97 };
98 
99 bool
needs_exact(aco_ptr<Instruction> & instr)100 needs_exact(aco_ptr<Instruction>& instr)
101 {
102    if (instr->isMUBUF()) {
103       return instr->mubuf().disable_wqm;
104    } else if (instr->isMTBUF()) {
105       return instr->mtbuf().disable_wqm;
106    } else if (instr->isMIMG()) {
107       return instr->mimg().disable_wqm;
108    } else if (instr->isFlatLike()) {
109       return instr->flatlike().disable_wqm;
110    } else {
111       return instr->isEXP();
112    }
113 }
114 
115 void
set_needs_wqm(wqm_ctx & ctx,Temp tmp)116 set_needs_wqm(wqm_ctx& ctx, Temp tmp)
117 {
118    if (!ctx.needs_wqm[tmp.id()]) {
119       ctx.needs_wqm[tmp.id()] = true;
120       if (ctx.defined_in[tmp.id()] != 0xFFFF)
121          ctx.worklist.insert(ctx.defined_in[tmp.id()]);
122    }
123 }
124 
125 void
mark_block_wqm(wqm_ctx & ctx,unsigned block_idx)126 mark_block_wqm(wqm_ctx& ctx, unsigned block_idx)
127 {
128    if (ctx.branch_wqm[block_idx])
129       return;
130 
131    ctx.branch_wqm[block_idx] = true;
132    ctx.worklist.insert(block_idx);
133 
134    Block& block = ctx.program->blocks[block_idx];
135 
136    /* TODO: this sets more branch conditions to WQM than it needs to
137     * it should be enough to stop at the "exec mask top level" */
138    if (block.kind & block_kind_top_level)
139       return;
140 
141    for (unsigned pred_idx : block.logical_preds)
142       mark_block_wqm(ctx, pred_idx);
143 }
144 
145 void
get_block_needs(wqm_ctx & ctx,exec_ctx & exec_ctx,Block * block)146 get_block_needs(wqm_ctx& ctx, exec_ctx& exec_ctx, Block* block)
147 {
148    block_info& info = exec_ctx.info[block->index];
149 
150    std::vector<WQMState> instr_needs(block->instructions.size());
151 
152    for (int i = block->instructions.size() - 1; i >= 0; --i) {
153       aco_ptr<Instruction>& instr = block->instructions[i];
154 
155       WQMState needs = needs_exact(instr) ? Exact : Unspecified;
156       bool propagate_wqm =
157          instr->opcode == aco_opcode::p_wqm || instr->opcode == aco_opcode::p_as_uniform;
158       bool preserve_wqm = instr->opcode == aco_opcode::p_discard_if;
159       bool pred_by_exec = needs_exec_mask(instr.get());
160       for (const Definition& definition : instr->definitions) {
161          if (!definition.isTemp())
162             continue;
163          const unsigned def = definition.tempId();
164          ctx.defined_in[def] = block->index;
165          if (needs == Unspecified && ctx.needs_wqm[def]) {
166             needs = pred_by_exec ? WQM : Unspecified;
167             propagate_wqm = true;
168          }
169       }
170 
171       if (instr->isBranch() && ctx.branch_wqm[block->index]) {
172          assert(!(info.block_needs & Exact_Branch));
173          needs = WQM;
174          propagate_wqm = true;
175       }
176 
177       if (propagate_wqm) {
178          for (const Operand& op : instr->operands) {
179             if (op.isTemp()) {
180                set_needs_wqm(ctx, op.getTemp());
181             }
182          }
183       } else if (preserve_wqm && info.block_needs & WQM) {
184          needs = Preserve_WQM;
185       }
186 
187       /* ensure the condition controlling the control flow for this phi is in WQM */
188       if (needs == WQM && instr->opcode == aco_opcode::p_phi) {
189          for (unsigned pred_idx : block->logical_preds) {
190             mark_block_wqm(ctx, pred_idx);
191             exec_ctx.info[pred_idx].logical_end_wqm = true;
192             ctx.worklist.insert(pred_idx);
193          }
194       }
195 
196       if ((instr->opcode == aco_opcode::p_logical_end && info.logical_end_wqm) ||
197           instr->opcode == aco_opcode::p_wqm) {
198          assert(needs != Exact);
199          needs = WQM;
200       }
201 
202       instr_needs[i] = needs;
203       info.block_needs |= needs;
204    }
205 
206    info.instr_needs = instr_needs;
207 
208    /* for "if (<cond>) <wqm code>" or "while (<cond>) <wqm code>",
209     * <cond> should be computed in WQM */
210    if (info.block_needs & WQM && !(block->kind & block_kind_top_level)) {
211       for (unsigned pred_idx : block->logical_preds)
212          mark_block_wqm(ctx, pred_idx);
213    }
214 }
215 
216 /* If an outer loop needs WQM but a nested loop does not, we have to ensure that
217  * the nested loop is done in WQM so that the exec is not empty upon entering
218  * the nested loop.
219  *
220  * TODO: This could be fixed with slightly better code (for loops with divergent
221  * breaks, which might benefit from being in exact) by adding Exact_Branch to a
222  * divergent branch surrounding the nested loop, if such a branch exists.
223  */
224 void
handle_wqm_loops(wqm_ctx & ctx,exec_ctx & exec_ctx,unsigned preheader)225 handle_wqm_loops(wqm_ctx& ctx, exec_ctx& exec_ctx, unsigned preheader)
226 {
227    for (unsigned idx = preheader + 1; idx < exec_ctx.program->blocks.size(); idx++) {
228       Block& block = exec_ctx.program->blocks[idx];
229       if (block.kind & block_kind_break)
230          mark_block_wqm(ctx, idx);
231 
232       if ((block.kind & block_kind_loop_exit) && block.loop_nest_depth == 0)
233          break;
234    }
235 }
236 
237 /* If an outer loop and it's nested loops does not need WQM,
238  * add_branch_code() will ensure that it enters in Exact. We have to
239  * ensure that the exact exec mask is not empty by adding Exact_Branch to
240  * the outer divergent branch.
241  */
242 void
handle_exact_loops(wqm_ctx & ctx,exec_ctx & exec_ctx,unsigned preheader)243 handle_exact_loops(wqm_ctx& ctx, exec_ctx& exec_ctx, unsigned preheader)
244 {
245    assert(exec_ctx.program->blocks[preheader + 1].kind & block_kind_loop_header);
246 
247    int parent_branch = preheader;
248    unsigned rel_branch_depth = 0;
249    for (; parent_branch >= 0; parent_branch--) {
250       Block& branch = exec_ctx.program->blocks[parent_branch];
251       if (branch.kind & block_kind_branch) {
252          if (rel_branch_depth == 0)
253             break;
254          rel_branch_depth--;
255       }
256 
257       /* top-level blocks should never have empty exact exec masks */
258       if (branch.kind & block_kind_top_level)
259          return;
260 
261       if (branch.kind & block_kind_merge)
262          rel_branch_depth++;
263    }
264    assert(parent_branch >= 0);
265 
266    ASSERTED Block& branch = exec_ctx.program->blocks[parent_branch];
267    assert(branch.kind & block_kind_branch);
268    if (ctx.branch_wqm[parent_branch]) {
269       /* The branch can't be done in Exact because some other blocks in it
270        * are in WQM. So instead, ensure that the loop is done in WQM. */
271       handle_wqm_loops(ctx, exec_ctx, preheader);
272    } else {
273       exec_ctx.info[parent_branch].block_needs |= Exact_Branch;
274    }
275 }
276 
277 void
calculate_wqm_needs(exec_ctx & exec_ctx)278 calculate_wqm_needs(exec_ctx& exec_ctx)
279 {
280    wqm_ctx ctx(exec_ctx.program);
281 
282    while (!ctx.worklist.empty()) {
283       unsigned block_index = *std::prev(ctx.worklist.end());
284       ctx.worklist.erase(std::prev(ctx.worklist.end()));
285 
286       Block& block = exec_ctx.program->blocks[block_index];
287       get_block_needs(ctx, exec_ctx, &block);
288 
289       /* handle_exact_loops() needs information on outer branches, so don't
290        * handle loops until a top-level block.
291        */
292       if (block.kind & block_kind_top_level && block.index != exec_ctx.program->blocks.size() - 1) {
293          unsigned preheader = block.index;
294          do {
295             Block& preheader_block = exec_ctx.program->blocks[preheader];
296             if ((preheader_block.kind & block_kind_loop_preheader) &&
297                 preheader_block.loop_nest_depth == 0) {
298                /* If the loop or a nested loop needs WQM, branch_wqm will be true for the
299                 * preheader.
300                 */
301                if (ctx.branch_wqm[preheader])
302                   handle_wqm_loops(ctx, exec_ctx, preheader);
303                else
304                   handle_exact_loops(ctx, exec_ctx, preheader);
305             }
306             preheader++;
307          } while (!(exec_ctx.program->blocks[preheader].kind & block_kind_top_level));
308       }
309    }
310 
311    uint8_t ever_again_needs = 0;
312    for (int i = exec_ctx.program->blocks.size() - 1; i >= 0; i--) {
313       exec_ctx.info[i].ever_again_needs = ever_again_needs;
314       Block& block = exec_ctx.program->blocks[i];
315 
316       if (block.kind & block_kind_needs_lowering)
317          exec_ctx.info[i].block_needs |= Exact;
318 
319       /* if discard is used somewhere in nested CF, we need to preserve the WQM mask */
320       if ((block.kind & block_kind_discard || block.kind & block_kind_uses_discard_if) &&
321           ever_again_needs & WQM)
322          exec_ctx.info[i].block_needs |= Preserve_WQM;
323 
324       ever_again_needs |= exec_ctx.info[i].block_needs & ~Exact_Branch;
325       if (block.kind & block_kind_discard || block.kind & block_kind_uses_discard_if ||
326           block.kind & block_kind_uses_demote)
327          ever_again_needs |= Exact;
328 
329       /* don't propagate WQM preservation further than the next top_level block */
330       if (block.kind & block_kind_top_level)
331          ever_again_needs &= ~Preserve_WQM;
332       else
333          exec_ctx.info[i].block_needs &= ~Preserve_WQM;
334    }
335    exec_ctx.handle_wqm = true;
336 }
337 
338 Operand
get_exec_op(Operand t)339 get_exec_op(Operand t)
340 {
341    if (t.isUndefined())
342       return Operand(exec, t.regClass());
343    else
344       return t;
345 }
346 
347 void
transition_to_WQM(exec_ctx & ctx,Builder bld,unsigned idx)348 transition_to_WQM(exec_ctx& ctx, Builder bld, unsigned idx)
349 {
350    if (ctx.info[idx].exec.back().second & mask_type_wqm)
351       return;
352    if (ctx.info[idx].exec.back().second & mask_type_global) {
353       Operand exec_mask = ctx.info[idx].exec.back().first;
354       if (exec_mask.isUndefined()) {
355          exec_mask = bld.pseudo(aco_opcode::p_parallelcopy, bld.def(bld.lm), Operand(exec, bld.lm));
356          ctx.info[idx].exec.back().first = exec_mask;
357       }
358 
359       exec_mask = bld.sop1(Builder::s_wqm, Definition(exec, bld.lm), bld.def(s1, scc),
360                            get_exec_op(exec_mask));
361       ctx.info[idx].exec.emplace_back(exec_mask, mask_type_global | mask_type_wqm);
362       return;
363    }
364    /* otherwise, the WQM mask should be one below the current mask */
365    ctx.info[idx].exec.pop_back();
366    assert(ctx.info[idx].exec.back().second & mask_type_wqm);
367    assert(ctx.info[idx].exec.back().first.size() == bld.lm.size());
368    assert(ctx.info[idx].exec.back().first.isTemp());
369    ctx.info[idx].exec.back().first = bld.pseudo(
370       aco_opcode::p_parallelcopy, Definition(exec, bld.lm), ctx.info[idx].exec.back().first);
371 }
372 
373 void
transition_to_Exact(exec_ctx & ctx,Builder bld,unsigned idx)374 transition_to_Exact(exec_ctx& ctx, Builder bld, unsigned idx)
375 {
376    if (ctx.info[idx].exec.back().second & mask_type_exact)
377       return;
378    /* We can't remove the loop exec mask, because that can cause exec.size() to
379     * be less than num_exec_masks. The loop exec mask also needs to be kept
380     * around for various uses. */
381    if ((ctx.info[idx].exec.back().second & mask_type_global) &&
382        !(ctx.info[idx].exec.back().second & mask_type_loop)) {
383       ctx.info[idx].exec.pop_back();
384       assert(ctx.info[idx].exec.back().second & mask_type_exact);
385       assert(ctx.info[idx].exec.back().first.size() == bld.lm.size());
386       assert(ctx.info[idx].exec.back().first.isTemp());
387       ctx.info[idx].exec.back().first = bld.pseudo(
388          aco_opcode::p_parallelcopy, Definition(exec, bld.lm), ctx.info[idx].exec.back().first);
389       return;
390    }
391    /* otherwise, we create an exact mask and push to the stack */
392    Operand wqm = ctx.info[idx].exec.back().first;
393    if (wqm.isUndefined()) {
394       wqm = bld.sop1(Builder::s_and_saveexec, bld.def(bld.lm), bld.def(s1, scc),
395                      Definition(exec, bld.lm), ctx.info[idx].exec[0].first, Operand(exec, bld.lm));
396    } else {
397       bld.sop2(Builder::s_and, Definition(exec, bld.lm), bld.def(s1, scc),
398                ctx.info[idx].exec[0].first, wqm);
399    }
400    ctx.info[idx].exec.back().first = Operand(wqm);
401    ctx.info[idx].exec.emplace_back(Operand(bld.lm), mask_type_exact);
402 }
403 
404 unsigned
add_coupling_code(exec_ctx & ctx,Block * block,std::vector<aco_ptr<Instruction>> & instructions)405 add_coupling_code(exec_ctx& ctx, Block* block, std::vector<aco_ptr<Instruction>>& instructions)
406 {
407    unsigned idx = block->index;
408    Builder bld(ctx.program, &instructions);
409    std::vector<unsigned>& preds = block->linear_preds;
410 
411    /* start block */
412    if (idx == 0) {
413       aco_ptr<Instruction>& startpgm = block->instructions[0];
414       assert(startpgm->opcode == aco_opcode::p_startpgm);
415       bld.insert(std::move(startpgm));
416 
417       Operand start_exec(bld.lm);
418 
419       /* exec seems to need to be manually initialized with combined shaders */
420       if (ctx.program->stage.num_sw_stages() > 1 || ctx.program->stage.hw == HWStage::NGG) {
421          start_exec = Operand::c32_or_c64(-1u, bld.lm == s2);
422          bld.copy(Definition(exec, bld.lm), start_exec);
423       }
424 
425       if (ctx.handle_wqm) {
426          ctx.info[0].exec.emplace_back(start_exec, mask_type_global | mask_type_exact);
427          /* if this block only needs WQM, initialize already */
428          if (ctx.info[0].block_needs == WQM)
429             transition_to_WQM(ctx, bld, 0);
430       } else {
431          uint8_t mask = mask_type_global;
432          if (ctx.program->needs_wqm) {
433             bld.sop1(Builder::s_wqm, Definition(exec, bld.lm), bld.def(s1, scc),
434                      Operand(exec, bld.lm));
435             mask |= mask_type_wqm;
436          } else {
437             mask |= mask_type_exact;
438          }
439          ctx.info[0].exec.emplace_back(start_exec, mask);
440       }
441 
442       return 1;
443    }
444 
445    /* loop entry block */
446    if (block->kind & block_kind_loop_header) {
447       assert(preds[0] == idx - 1);
448       ctx.info[idx].exec = ctx.info[idx - 1].exec;
449       loop_info& info = ctx.loop.back();
450       while (ctx.info[idx].exec.size() > info.num_exec_masks)
451          ctx.info[idx].exec.pop_back();
452 
453       /* create ssa names for outer exec masks */
454       if (info.has_discard) {
455          aco_ptr<Pseudo_instruction> phi;
456          for (int i = 0; i < info.num_exec_masks - 1; i++) {
457             phi.reset(create_instruction<Pseudo_instruction>(aco_opcode::p_linear_phi,
458                                                              Format::PSEUDO, preds.size(), 1));
459             phi->definitions[0] = bld.def(bld.lm);
460             phi->operands[0] = get_exec_op(ctx.info[preds[0]].exec[i].first);
461             ctx.info[idx].exec[i].first = bld.insert(std::move(phi));
462          }
463       }
464 
465       /* create ssa name for restore mask */
466       if (info.has_divergent_break) {
467          /* this phi might be trivial but ensures a parallelcopy on the loop header */
468          aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>(
469             aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)};
470          phi->definitions[0] = bld.def(bld.lm);
471          phi->operands[0] = get_exec_op(ctx.info[preds[0]].exec[info.num_exec_masks - 1].first);
472          ctx.info[idx].exec.back().first = bld.insert(std::move(phi));
473       }
474 
475       /* create ssa name for loop active mask */
476       aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>(
477          aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)};
478       if (info.has_divergent_continue)
479          phi->definitions[0] = bld.def(bld.lm);
480       else
481          phi->definitions[0] = Definition(exec, bld.lm);
482       phi->operands[0] = get_exec_op(ctx.info[preds[0]].exec.back().first);
483       Temp loop_active = bld.insert(std::move(phi));
484 
485       if (info.has_divergent_break) {
486          uint8_t mask_type =
487             (ctx.info[idx].exec.back().second & (mask_type_wqm | mask_type_exact)) | mask_type_loop;
488          ctx.info[idx].exec.emplace_back(loop_active, mask_type);
489       } else {
490          ctx.info[idx].exec.back().first = Operand(loop_active);
491          ctx.info[idx].exec.back().second |= mask_type_loop;
492       }
493 
494       /* create a parallelcopy to move the active mask to exec */
495       unsigned i = 0;
496       if (info.has_divergent_continue) {
497          while (block->instructions[i]->opcode != aco_opcode::p_logical_start) {
498             bld.insert(std::move(block->instructions[i]));
499             i++;
500          }
501          uint8_t mask_type = ctx.info[idx].exec.back().second & (mask_type_wqm | mask_type_exact);
502          assert(ctx.info[idx].exec.back().first.size() == bld.lm.size());
503          ctx.info[idx].exec.emplace_back(
504             bld.pseudo(aco_opcode::p_parallelcopy, Definition(exec, bld.lm),
505                        ctx.info[idx].exec.back().first),
506             mask_type);
507       }
508 
509       return i;
510    }
511 
512    /* loop exit block */
513    if (block->kind & block_kind_loop_exit) {
514       Block* header = ctx.loop.back().loop_header;
515       loop_info& info = ctx.loop.back();
516 
517       for (ASSERTED unsigned pred : preds)
518          assert(ctx.info[pred].exec.size() >= info.num_exec_masks);
519 
520       /* fill the loop header phis */
521       std::vector<unsigned>& header_preds = header->linear_preds;
522       int instr_idx = 0;
523       if (info.has_discard) {
524          while (instr_idx < info.num_exec_masks - 1) {
525             aco_ptr<Instruction>& phi = header->instructions[instr_idx];
526             assert(phi->opcode == aco_opcode::p_linear_phi);
527             for (unsigned i = 1; i < phi->operands.size(); i++)
528                phi->operands[i] = get_exec_op(ctx.info[header_preds[i]].exec[instr_idx].first);
529             instr_idx++;
530          }
531       }
532 
533       {
534          aco_ptr<Instruction>& phi = header->instructions[instr_idx++];
535          assert(phi->opcode == aco_opcode::p_linear_phi);
536          for (unsigned i = 1; i < phi->operands.size(); i++)
537             phi->operands[i] =
538                get_exec_op(ctx.info[header_preds[i]].exec[info.num_exec_masks - 1].first);
539       }
540 
541       if (info.has_divergent_break) {
542          aco_ptr<Instruction>& phi = header->instructions[instr_idx];
543          assert(phi->opcode == aco_opcode::p_linear_phi);
544          for (unsigned i = 1; i < phi->operands.size(); i++)
545             phi->operands[i] =
546                get_exec_op(ctx.info[header_preds[i]].exec[info.num_exec_masks].first);
547       }
548 
549       assert(!(block->kind & block_kind_top_level) || info.num_exec_masks <= 2);
550 
551       /* create the loop exit phis if not trivial */
552       for (unsigned exec_idx = 0; exec_idx < info.num_exec_masks; exec_idx++) {
553          Operand same = ctx.info[preds[0]].exec[exec_idx].first;
554          uint8_t type = ctx.info[header_preds[0]].exec[exec_idx].second;
555          bool trivial = true;
556 
557          for (unsigned i = 1; i < preds.size() && trivial; i++) {
558             if (ctx.info[preds[i]].exec[exec_idx].first != same)
559                trivial = false;
560          }
561 
562          if (trivial) {
563             ctx.info[idx].exec.emplace_back(same, type);
564          } else {
565             /* create phi for loop footer */
566             aco_ptr<Pseudo_instruction> phi{create_instruction<Pseudo_instruction>(
567                aco_opcode::p_linear_phi, Format::PSEUDO, preds.size(), 1)};
568             phi->definitions[0] = bld.def(bld.lm);
569             if (exec_idx == info.num_exec_masks - 1u) {
570                phi->definitions[0] = Definition(exec, bld.lm);
571             }
572             for (unsigned i = 0; i < phi->operands.size(); i++)
573                phi->operands[i] = get_exec_op(ctx.info[preds[i]].exec[exec_idx].first);
574             ctx.info[idx].exec.emplace_back(bld.insert(std::move(phi)), type);
575          }
576       }
577       assert(ctx.info[idx].exec.size() == info.num_exec_masks);
578 
579       /* create a parallelcopy to move the live mask to exec */
580       unsigned i = 0;
581       while (block->instructions[i]->opcode != aco_opcode::p_logical_start) {
582          bld.insert(std::move(block->instructions[i]));
583          i++;
584       }
585 
586       if (ctx.handle_wqm) {
587          if (block->kind & block_kind_top_level && ctx.info[idx].exec.size() == 2) {
588             if ((ctx.info[idx].block_needs | ctx.info[idx].ever_again_needs) == 0 ||
589                 (ctx.info[idx].block_needs | ctx.info[idx].ever_again_needs) == Exact) {
590                ctx.info[idx].exec.back().second |= mask_type_global;
591                transition_to_Exact(ctx, bld, idx);
592                ctx.handle_wqm = false;
593             }
594          }
595          if (ctx.info[idx].block_needs == WQM)
596             transition_to_WQM(ctx, bld, idx);
597          else if (ctx.info[idx].block_needs == Exact)
598             transition_to_Exact(ctx, bld, idx);
599       }
600 
601       assert(ctx.info[idx].exec.back().first.size() == bld.lm.size());
602       if (get_exec_op(ctx.info[idx].exec.back().first).isTemp()) {
603          /* move current exec mask into exec register */
604          ctx.info[idx].exec.back().first = bld.pseudo(
605             aco_opcode::p_parallelcopy, Definition(exec, bld.lm), ctx.info[idx].exec.back().first);
606       }
607 
608       ctx.loop.pop_back();
609       return i;
610    }
611 
612    if (preds.size() == 1) {
613       ctx.info[idx].exec = ctx.info[preds[0]].exec;
614    } else {
615       assert(preds.size() == 2);
616       /* if one of the predecessors ends in exact mask, we pop it from stack */
617       unsigned num_exec_masks =
618          std::min(ctx.info[preds[0]].exec.size(), ctx.info[preds[1]].exec.size());
619 
620       if (block->kind & block_kind_merge)
621          num_exec_masks--;
622       if (block->kind & block_kind_top_level)
623          num_exec_masks = std::min(num_exec_masks, 2u);
624 
625       /* create phis for diverged exec masks */
626       for (unsigned i = 0; i < num_exec_masks; i++) {
627          /* skip trivial phis */
628          if (ctx.info[preds[0]].exec[i].first == ctx.info[preds[1]].exec[i].first) {
629             Operand t = ctx.info[preds[0]].exec[i].first;
630             /* discard/demote can change the state of the current exec mask */
631             assert(!t.isTemp() ||
632                    ctx.info[preds[0]].exec[i].second == ctx.info[preds[1]].exec[i].second);
633             uint8_t mask = ctx.info[preds[0]].exec[i].second & ctx.info[preds[1]].exec[i].second;
634             ctx.info[idx].exec.emplace_back(t, mask);
635             continue;
636          }
637 
638          bool in_exec = i == num_exec_masks - 1 && !(block->kind & block_kind_merge);
639          Temp phi = bld.pseudo(aco_opcode::p_linear_phi,
640                                in_exec ? Definition(exec, bld.lm) : bld.def(bld.lm),
641                                get_exec_op(ctx.info[preds[0]].exec[i].first),
642                                get_exec_op(ctx.info[preds[1]].exec[i].first));
643          uint8_t mask_type = ctx.info[preds[0]].exec[i].second & ctx.info[preds[1]].exec[i].second;
644          ctx.info[idx].exec.emplace_back(phi, mask_type);
645       }
646    }
647 
648    unsigned i = 0;
649    while (block->instructions[i]->opcode == aco_opcode::p_phi ||
650           block->instructions[i]->opcode == aco_opcode::p_linear_phi) {
651       bld.insert(std::move(block->instructions[i]));
652       i++;
653    }
654 
655    /* try to satisfy the block's needs */
656    if (ctx.handle_wqm) {
657       if (block->kind & block_kind_top_level && ctx.info[idx].exec.size() == 2) {
658          if ((ctx.info[idx].block_needs | ctx.info[idx].ever_again_needs) == 0 ||
659              (ctx.info[idx].block_needs | ctx.info[idx].ever_again_needs) == Exact) {
660             ctx.info[idx].exec.back().second |= mask_type_global;
661             transition_to_Exact(ctx, bld, idx);
662             ctx.handle_wqm = false;
663          }
664       }
665       if (ctx.info[idx].block_needs == WQM)
666          transition_to_WQM(ctx, bld, idx);
667       else if (ctx.info[idx].block_needs == Exact)
668          transition_to_Exact(ctx, bld, idx);
669    }
670 
671    if (block->kind & block_kind_merge && !ctx.info[idx].exec.back().first.isUndefined()) {
672       Operand restore = ctx.info[idx].exec.back().first;
673       assert(restore.size() == bld.lm.size());
674       bld.pseudo(aco_opcode::p_parallelcopy, Definition(exec, bld.lm), restore);
675       if (!restore.isConstant())
676          ctx.info[idx].exec.back().first = Operand(bld.lm);
677    }
678 
679    return i;
680 }
681 
682 void
process_instructions(exec_ctx & ctx,Block * block,std::vector<aco_ptr<Instruction>> & instructions,unsigned idx)683 process_instructions(exec_ctx& ctx, Block* block, std::vector<aco_ptr<Instruction>>& instructions,
684                      unsigned idx)
685 {
686    WQMState state;
687    if (ctx.info[block->index].exec.back().second & mask_type_wqm)
688       state = WQM;
689    else {
690       assert(!ctx.handle_wqm || ctx.info[block->index].exec.back().second & mask_type_exact);
691       state = Exact;
692    }
693 
694    /* if the block doesn't need both, WQM and Exact, we can skip processing the instructions */
695    bool process = (ctx.handle_wqm && (ctx.info[block->index].block_needs & state) !=
696                                         (ctx.info[block->index].block_needs & (WQM | Exact))) ||
697                   block->kind & block_kind_uses_discard_if ||
698                   block->kind & block_kind_uses_demote || block->kind & block_kind_needs_lowering;
699    if (!process) {
700       std::vector<aco_ptr<Instruction>>::iterator it = std::next(block->instructions.begin(), idx);
701       instructions.insert(instructions.end(),
702                           std::move_iterator<std::vector<aco_ptr<Instruction>>::iterator>(it),
703                           std::move_iterator<std::vector<aco_ptr<Instruction>>::iterator>(
704                              block->instructions.end()));
705       return;
706    }
707 
708    Builder bld(ctx.program, &instructions);
709 
710    for (; idx < block->instructions.size(); idx++) {
711       aco_ptr<Instruction> instr = std::move(block->instructions[idx]);
712 
713       WQMState needs = ctx.handle_wqm ? ctx.info[block->index].instr_needs[idx] : Unspecified;
714 
715       if (instr->opcode == aco_opcode::p_discard_if) {
716          if (ctx.info[block->index].block_needs & Preserve_WQM) {
717             assert(block->kind & block_kind_top_level);
718             transition_to_WQM(ctx, bld, block->index);
719             ctx.info[block->index].exec.back().second &= ~mask_type_global;
720          }
721          int num = ctx.info[block->index].exec.size();
722          assert(num);
723 
724          /* discard from current exec */
725          const Operand cond = instr->operands[0];
726          Temp exit_cond = bld.sop2(Builder::s_andn2, Definition(exec, bld.lm), bld.def(s1, scc),
727                                    Operand(exec, bld.lm), cond)
728                              .def(1)
729                              .getTemp();
730 
731          /* discard from inner to outer exec mask on stack */
732          for (int i = num - 2; i >= 0; i--) {
733             Instruction* andn2 = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc),
734                                           ctx.info[block->index].exec[i].first, cond);
735             ctx.info[block->index].exec[i].first = Operand(andn2->definitions[0].getTemp());
736             exit_cond = andn2->definitions[1].getTemp();
737          }
738 
739          instr->opcode = aco_opcode::p_exit_early_if;
740          instr->operands[0] = bld.scc(exit_cond);
741          assert(!ctx.handle_wqm || (ctx.info[block->index].exec[0].second & mask_type_wqm) == 0);
742 
743       } else if (needs == WQM && state != WQM) {
744          transition_to_WQM(ctx, bld, block->index);
745          state = WQM;
746       } else if (needs == Exact && state != Exact) {
747          transition_to_Exact(ctx, bld, block->index);
748          state = Exact;
749       }
750 
751       if (instr->opcode == aco_opcode::p_is_helper) {
752          Definition dst = instr->definitions[0];
753          assert(dst.size() == bld.lm.size());
754          if (state == Exact) {
755             instr.reset(create_instruction<SOP1_instruction>(bld.w64or32(Builder::s_mov),
756                                                              Format::SOP1, 1, 1));
757             instr->operands[0] = Operand::zero();
758             instr->definitions[0] = dst;
759          } else {
760             std::pair<Operand, uint8_t>& exact_mask = ctx.info[block->index].exec[0];
761             assert(exact_mask.second & mask_type_exact);
762 
763             instr.reset(create_instruction<SOP2_instruction>(bld.w64or32(Builder::s_andn2),
764                                                              Format::SOP2, 2, 2));
765             instr->operands[0] = Operand(exec, bld.lm); /* current exec */
766             instr->operands[1] = Operand(exact_mask.first);
767             instr->definitions[0] = dst;
768             instr->definitions[1] = bld.def(s1, scc);
769          }
770       } else if (instr->opcode == aco_opcode::p_demote_to_helper) {
771          /* turn demote into discard_if with only exact masks */
772          assert((ctx.info[block->index].exec[0].second & (mask_type_exact | mask_type_global)) ==
773                 (mask_type_exact | mask_type_global));
774 
775          int num;
776          Temp cond, exit_cond;
777          if (instr->operands[0].isConstant()) {
778             assert(instr->operands[0].constantValue() == -1u);
779             /* transition to exact and set exec to zero */
780             exit_cond = bld.tmp(s1);
781             cond =
782                bld.sop1(Builder::s_and_saveexec, bld.def(bld.lm), bld.scc(Definition(exit_cond)),
783                         Definition(exec, bld.lm), Operand::zero(), Operand(exec, bld.lm));
784 
785             num = ctx.info[block->index].exec.size() - 2;
786             if (!(ctx.info[block->index].exec.back().second & mask_type_exact)) {
787                ctx.info[block->index].exec.back().first = Operand(cond);
788                ctx.info[block->index].exec.emplace_back(Operand(bld.lm), mask_type_exact);
789             }
790          } else {
791             /* demote_if: transition to exact */
792             transition_to_Exact(ctx, bld, block->index);
793             assert(instr->operands[0].isTemp());
794             cond = instr->operands[0].getTemp();
795             num = ctx.info[block->index].exec.size() - 1;
796          }
797 
798          for (int i = num; i >= 0; i--) {
799             if (ctx.info[block->index].exec[i].second & mask_type_exact) {
800                Instruction* andn2 = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc),
801                                              ctx.info[block->index].exec[i].first, cond);
802                if (i == (int)ctx.info[block->index].exec.size() - 1) {
803                   andn2->operands[0] = Operand(exec, bld.lm);
804                   andn2->definitions[0] = Definition(exec, bld.lm);
805                }
806 
807                ctx.info[block->index].exec[i].first = Operand(andn2->definitions[0].getTemp());
808                exit_cond = andn2->definitions[1].getTemp();
809             } else {
810                assert(i != 0);
811             }
812          }
813          instr->opcode = aco_opcode::p_exit_early_if;
814          instr->operands[0] = bld.scc(exit_cond);
815          state = Exact;
816 
817       } else if (instr->opcode == aco_opcode::p_elect) {
818          bool all_lanes_enabled = ctx.info[block->index].exec.back().first.constantEquals(-1u);
819          Definition dst = instr->definitions[0];
820 
821          if (all_lanes_enabled) {
822             bld.copy(Definition(dst), Operand::c32_or_c64(1u, dst.size() == 2));
823          } else {
824             Temp first_lane_idx = bld.sop1(Builder::s_ff1_i32, bld.def(s1), Operand(exec, bld.lm));
825             bld.sop2(Builder::s_lshl, Definition(dst), bld.def(s1, scc),
826                      Operand::c32_or_c64(1u, dst.size() == 2), Operand(first_lane_idx));
827          }
828          instr.reset();
829          continue;
830       }
831 
832       bld.insert(std::move(instr));
833    }
834 }
835 
836 void
add_branch_code(exec_ctx & ctx,Block * block)837 add_branch_code(exec_ctx& ctx, Block* block)
838 {
839    unsigned idx = block->index;
840    Builder bld(ctx.program, block);
841 
842    if (idx == ctx.program->blocks.size() - 1)
843       return;
844 
845    /* try to disable wqm handling */
846    if (ctx.handle_wqm && block->kind & block_kind_top_level) {
847       if (ctx.info[idx].exec.size() == 3) {
848          assert(ctx.info[idx].exec[1].second == mask_type_wqm);
849          ctx.info[idx].exec.pop_back();
850       }
851       assert(ctx.info[idx].exec.size() <= 2);
852 
853       if (ctx.info[idx].ever_again_needs == 0 || ctx.info[idx].ever_again_needs == Exact) {
854          /* transition to Exact */
855          aco_ptr<Instruction> branch = std::move(block->instructions.back());
856          block->instructions.pop_back();
857          ctx.info[idx].exec.back().second |= mask_type_global;
858          transition_to_Exact(ctx, bld, idx);
859          bld.insert(std::move(branch));
860          ctx.handle_wqm = false;
861 
862       } else if (ctx.info[idx].block_needs & Preserve_WQM) {
863          /* transition to WQM and remove global flag */
864          aco_ptr<Instruction> branch = std::move(block->instructions.back());
865          block->instructions.pop_back();
866          transition_to_WQM(ctx, bld, idx);
867          ctx.info[idx].exec.back().second &= ~mask_type_global;
868          bld.insert(std::move(branch));
869       }
870    }
871 
872    if (block->kind & block_kind_loop_preheader) {
873       /* collect information about the succeeding loop */
874       bool has_divergent_break = false;
875       bool has_divergent_continue = false;
876       bool has_discard = false;
877       uint8_t needs = 0;
878       unsigned loop_nest_depth = ctx.program->blocks[idx + 1].loop_nest_depth;
879 
880       for (unsigned i = idx + 1; ctx.program->blocks[i].loop_nest_depth >= loop_nest_depth; i++) {
881          Block& loop_block = ctx.program->blocks[i];
882          needs |= ctx.info[i].block_needs;
883 
884          if (loop_block.kind & block_kind_uses_discard_if || loop_block.kind & block_kind_discard ||
885              loop_block.kind & block_kind_uses_demote)
886             has_discard = true;
887          if (loop_block.loop_nest_depth != loop_nest_depth)
888             continue;
889 
890          if (loop_block.kind & block_kind_uniform)
891             continue;
892          else if (loop_block.kind & block_kind_break)
893             has_divergent_break = true;
894          else if (loop_block.kind & block_kind_continue)
895             has_divergent_continue = true;
896       }
897 
898       if (ctx.handle_wqm) {
899          if (needs & WQM) {
900             aco_ptr<Instruction> branch = std::move(block->instructions.back());
901             block->instructions.pop_back();
902             transition_to_WQM(ctx, bld, idx);
903             bld.insert(std::move(branch));
904          } else {
905             aco_ptr<Instruction> branch = std::move(block->instructions.back());
906             block->instructions.pop_back();
907             transition_to_Exact(ctx, bld, idx);
908             bld.insert(std::move(branch));
909          }
910       }
911 
912       unsigned num_exec_masks = ctx.info[idx].exec.size();
913       if (block->kind & block_kind_top_level)
914          num_exec_masks = std::min(num_exec_masks, 2u);
915 
916       ctx.loop.emplace_back(&ctx.program->blocks[block->linear_succs[0]], num_exec_masks, needs,
917                             has_divergent_break, has_divergent_continue, has_discard);
918    }
919 
920    /* For normal breaks, this is the exec mask. For discard+break, it's the
921     * old exec mask before it was zero'd.
922     */
923    Operand break_cond = Operand(exec, bld.lm);
924 
925    if (block->kind & block_kind_discard) {
926 
927       assert(block->instructions.back()->isBranch());
928       aco_ptr<Instruction> branch = std::move(block->instructions.back());
929       block->instructions.pop_back();
930 
931       /* create a discard_if() instruction with the exec mask as condition */
932       unsigned num = 0;
933       if (ctx.loop.size()) {
934          /* if we're in a loop, only discard from the outer exec masks */
935          num = ctx.loop.back().num_exec_masks;
936       } else {
937          num = ctx.info[idx].exec.size() - 1;
938       }
939 
940       Temp cond = bld.sop1(Builder::s_and_saveexec, bld.def(bld.lm), bld.def(s1, scc),
941                            Definition(exec, bld.lm), Operand::zero(), Operand(exec, bld.lm));
942 
943       for (int i = num - 1; i >= 0; i--) {
944          Instruction* andn2 = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.def(s1, scc),
945                                        get_exec_op(ctx.info[block->index].exec[i].first), cond);
946          if (i == (int)ctx.info[idx].exec.size() - 1)
947             andn2->definitions[0] = Definition(exec, bld.lm);
948          if (i == 0)
949             bld.pseudo(aco_opcode::p_exit_early_if, bld.scc(andn2->definitions[1].getTemp()));
950          ctx.info[block->index].exec[i].first = Operand(andn2->definitions[0].getTemp());
951       }
952       assert(!ctx.handle_wqm || (ctx.info[block->index].exec[0].second & mask_type_wqm) == 0);
953 
954       break_cond = Operand(cond);
955       bld.insert(std::move(branch));
956       /* no return here as it can be followed by a divergent break */
957    }
958 
959    if (block->kind & block_kind_continue_or_break) {
960       assert(ctx.program->blocks[ctx.program->blocks[block->linear_succs[1]].linear_succs[0]].kind &
961              block_kind_loop_header);
962       assert(ctx.program->blocks[ctx.program->blocks[block->linear_succs[0]].linear_succs[0]].kind &
963              block_kind_loop_exit);
964       assert(block->instructions.back()->opcode == aco_opcode::p_branch);
965       block->instructions.pop_back();
966 
967       bool need_parallelcopy = false;
968       while (!(ctx.info[idx].exec.back().second & mask_type_loop)) {
969          ctx.info[idx].exec.pop_back();
970          need_parallelcopy = true;
971       }
972 
973       if (need_parallelcopy)
974          ctx.info[idx].exec.back().first = bld.pseudo(
975             aco_opcode::p_parallelcopy, Definition(exec, bld.lm), ctx.info[idx].exec.back().first);
976       bld.branch(aco_opcode::p_cbranch_nz, bld.hint_vcc(bld.def(s2)), Operand(exec, bld.lm),
977                  block->linear_succs[1], block->linear_succs[0]);
978       return;
979    }
980 
981    if (block->kind & block_kind_uniform) {
982       Pseudo_branch_instruction& branch = block->instructions.back()->branch();
983       if (branch.opcode == aco_opcode::p_branch) {
984          branch.target[0] = block->linear_succs[0];
985       } else {
986          branch.target[0] = block->linear_succs[1];
987          branch.target[1] = block->linear_succs[0];
988       }
989       return;
990    }
991 
992    if (block->kind & block_kind_branch) {
993 
994       if (ctx.handle_wqm && ctx.info[idx].exec.size() >= 2 &&
995           ctx.info[idx].exec.back().second == mask_type_exact &&
996           !(ctx.info[idx].block_needs & Exact_Branch) &&
997           ctx.info[idx].exec[ctx.info[idx].exec.size() - 2].second & mask_type_wqm) {
998          /* return to wqm before branching */
999          ctx.info[idx].exec.pop_back();
1000       }
1001 
1002       // orig = s_and_saveexec_b64
1003       assert(block->linear_succs.size() == 2);
1004       assert(block->instructions.back()->opcode == aco_opcode::p_cbranch_z);
1005       Temp cond = block->instructions.back()->operands[0].getTemp();
1006       block->instructions.pop_back();
1007 
1008       if (ctx.info[idx].block_needs & Exact_Branch)
1009          transition_to_Exact(ctx, bld, idx);
1010 
1011       uint8_t mask_type = ctx.info[idx].exec.back().second & (mask_type_wqm | mask_type_exact);
1012       if (ctx.info[idx].exec.back().first.constantEquals(-1u)) {
1013          bld.pseudo(aco_opcode::p_parallelcopy, Definition(exec, bld.lm), cond);
1014       } else {
1015          Temp old_exec = bld.sop1(Builder::s_and_saveexec, bld.def(bld.lm), bld.def(s1, scc),
1016                                   Definition(exec, bld.lm), cond, Operand(exec, bld.lm));
1017 
1018          ctx.info[idx].exec.back().first = Operand(old_exec);
1019       }
1020 
1021       /* add next current exec to the stack */
1022       ctx.info[idx].exec.emplace_back(Operand(bld.lm), mask_type);
1023 
1024       bld.branch(aco_opcode::p_cbranch_z, bld.hint_vcc(bld.def(s2)), Operand(exec, bld.lm),
1025                  block->linear_succs[1], block->linear_succs[0]);
1026       return;
1027    }
1028 
1029    if (block->kind & block_kind_invert) {
1030       // exec = s_andn2_b64 (original_exec, exec)
1031       assert(block->instructions.back()->opcode == aco_opcode::p_branch);
1032       block->instructions.pop_back();
1033       assert(ctx.info[idx].exec.size() >= 2);
1034       Operand orig_exec = ctx.info[idx].exec[ctx.info[idx].exec.size() - 2].first;
1035       bld.sop2(Builder::s_andn2, Definition(exec, bld.lm), bld.def(s1, scc), orig_exec,
1036                Operand(exec, bld.lm));
1037 
1038       bld.branch(aco_opcode::p_cbranch_z, bld.hint_vcc(bld.def(s2)), Operand(exec, bld.lm),
1039                  block->linear_succs[1], block->linear_succs[0]);
1040       return;
1041    }
1042 
1043    if (block->kind & block_kind_break) {
1044       // loop_mask = s_andn2_b64 (loop_mask, exec)
1045       assert(block->instructions.back()->opcode == aco_opcode::p_branch);
1046       block->instructions.pop_back();
1047 
1048       Temp cond = Temp();
1049       for (int exec_idx = ctx.info[idx].exec.size() - 2; exec_idx >= 0; exec_idx--) {
1050          cond = bld.tmp(s1);
1051          Operand exec_mask = ctx.info[idx].exec[exec_idx].first;
1052          exec_mask = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.scc(Definition(cond)),
1053                               exec_mask, break_cond);
1054          ctx.info[idx].exec[exec_idx].first = exec_mask;
1055          if (ctx.info[idx].exec[exec_idx].second & mask_type_loop)
1056             break;
1057       }
1058 
1059       /* check if the successor is the merge block, otherwise set exec to 0 */
1060       // TODO: this could be done better by directly branching to the merge block
1061       unsigned succ_idx = ctx.program->blocks[block->linear_succs[1]].linear_succs[0];
1062       Block& succ = ctx.program->blocks[succ_idx];
1063       if (!(succ.kind & block_kind_invert || succ.kind & block_kind_merge)) {
1064          bld.copy(Definition(exec, bld.lm), Operand::zero(bld.lm.bytes()));
1065       }
1066 
1067       bld.branch(aco_opcode::p_cbranch_nz, bld.hint_vcc(bld.def(s2)), bld.scc(cond),
1068                  block->linear_succs[1], block->linear_succs[0]);
1069       return;
1070    }
1071 
1072    if (block->kind & block_kind_continue) {
1073       assert(block->instructions.back()->opcode == aco_opcode::p_branch);
1074       block->instructions.pop_back();
1075 
1076       Temp cond = Temp();
1077       for (int exec_idx = ctx.info[idx].exec.size() - 2; exec_idx >= 0; exec_idx--) {
1078          if (ctx.info[idx].exec[exec_idx].second & mask_type_loop)
1079             break;
1080          cond = bld.tmp(s1);
1081          Operand exec_mask = ctx.info[idx].exec[exec_idx].first;
1082          exec_mask = bld.sop2(Builder::s_andn2, bld.def(bld.lm), bld.scc(Definition(cond)),
1083                               exec_mask, Operand(exec, bld.lm));
1084          ctx.info[idx].exec[exec_idx].first = exec_mask;
1085       }
1086       assert(cond != Temp());
1087 
1088       /* check if the successor is the merge block, otherwise set exec to 0 */
1089       // TODO: this could be done better by directly branching to the merge block
1090       unsigned succ_idx = ctx.program->blocks[block->linear_succs[1]].linear_succs[0];
1091       Block& succ = ctx.program->blocks[succ_idx];
1092       if (!(succ.kind & block_kind_invert || succ.kind & block_kind_merge)) {
1093          bld.copy(Definition(exec, bld.lm), Operand::zero(bld.lm.bytes()));
1094       }
1095 
1096       bld.branch(aco_opcode::p_cbranch_nz, bld.hint_vcc(bld.def(s2)), bld.scc(cond),
1097                  block->linear_succs[1], block->linear_succs[0]);
1098       return;
1099    }
1100 }
1101 
1102 void
process_block(exec_ctx & ctx,Block * block)1103 process_block(exec_ctx& ctx, Block* block)
1104 {
1105    std::vector<aco_ptr<Instruction>> instructions;
1106    instructions.reserve(block->instructions.size());
1107 
1108    unsigned idx = add_coupling_code(ctx, block, instructions);
1109 
1110    assert(block->index != ctx.program->blocks.size() - 1 ||
1111           ctx.info[block->index].exec.size() <= 2);
1112 
1113    process_instructions(ctx, block, instructions, idx);
1114 
1115    block->instructions = std::move(instructions);
1116 
1117    add_branch_code(ctx, block);
1118 }
1119 
1120 } /* end namespace */
1121 
1122 void
insert_exec_mask(Program * program)1123 insert_exec_mask(Program* program)
1124 {
1125    exec_ctx ctx(program);
1126 
1127    if (program->needs_wqm && program->needs_exact)
1128       calculate_wqm_needs(ctx);
1129 
1130    for (Block& block : program->blocks)
1131       process_block(ctx, &block);
1132 }
1133 
1134 } // namespace aco
1135