1 /*
2  * Copyright © 2018 Valve Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include "aco_builder.h"
26 #include "aco_ir.h"
27 
28 #include "common/sid.h"
29 
30 #include <map>
31 #include <vector>
32 
33 namespace aco {
34 
35 struct lower_context {
36    Program* program;
37    Block* block;
38    std::vector<aco_ptr<Instruction>> instructions;
39 };
40 
41 /* used by handle_operands() indirectly through Builder::copy */
42 uint8_t int8_mul_table[512] = {
43    0, 20,  1,  1,   1,  2,   1,  3,   1,  4,   1, 5,   1,  6,   1,  7,   1,  8,   1,  9,
44    1, 10,  1,  11,  1,  12,  1,  13,  1,  14,  1, 15,  1,  16,  1,  17,  1,  18,  1,  19,
45    1, 20,  1,  21,  1,  22,  1,  23,  1,  24,  1, 25,  1,  26,  1,  27,  1,  28,  1,  29,
46    1, 30,  1,  31,  1,  32,  1,  33,  1,  34,  1, 35,  1,  36,  1,  37,  1,  38,  1,  39,
47    1, 40,  1,  41,  1,  42,  1,  43,  1,  44,  1, 45,  1,  46,  1,  47,  1,  48,  1,  49,
48    1, 50,  1,  51,  1,  52,  1,  53,  1,  54,  1, 55,  1,  56,  1,  57,  1,  58,  1,  59,
49    1, 60,  1,  61,  1,  62,  1,  63,  1,  64,  5, 13,  2,  33,  17, 19,  2,  34,  3,  23,
50    2, 35,  11, 53,  2,  36,  7,  47,  2,  37,  3, 25,  2,  38,  7,  11,  2,  39,  53, 243,
51    2, 40,  3,  27,  2,  41,  17, 35,  2,  42,  5, 17,  2,  43,  3,  29,  2,  44,  15, 23,
52    2, 45,  7,  13,  2,  46,  3,  31,  2,  47,  5, 19,  2,  48,  19, 59,  2,  49,  3,  33,
53    2, 50,  7,  51,  2,  51,  15, 41,  2,  52,  3, 35,  2,  53,  11, 33,  2,  54,  23, 27,
54    2, 55,  3,  37,  2,  56,  9,  41,  2,  57,  5, 23,  2,  58,  3,  39,  2,  59,  7,  17,
55    2, 60,  9,  241, 2,  61,  3,  41,  2,  62,  5, 25,  2,  63,  35, 245, 2,  64,  3,  43,
56    5, 26,  9,  43,  3,  44,  7,  19,  10, 39,  3, 45,  4,  34,  11, 59,  3,  46,  9,  243,
57    4, 35,  3,  47,  22, 53,  7,  57,  3,  48,  5, 29,  10, 245, 3,  49,  4,  37,  9,  45,
58    3, 50,  7,  241, 4,  38,  3,  51,  7,  22,  5, 31,  3,  52,  7,  59,  7,  242, 3,  53,
59    4, 40,  7,  23,  3,  54,  15, 45,  4,  41,  3, 55,  6,  241, 9,  47,  3,  56,  13, 13,
60    5, 34,  3,  57,  4,  43,  11, 39,  3,  58,  5, 35,  4,  44,  3,  59,  6,  243, 7,  245,
61    3, 60,  5,  241, 7,  26,  3,  61,  4,  46,  5, 37,  3,  62,  11, 17,  4,  47,  3,  63,
62    5, 38,  5,  243, 3,  64,  7,  247, 9,  50,  5, 39,  4,  241, 33, 37,  6,  33,  13, 35,
63    4, 242, 5,  245, 6,  247, 7,  29,  4,  51,  5, 41,  5,  246, 7,  249, 3,  240, 11, 19,
64    5, 42,  3,  241, 4,  245, 25, 29,  3,  242, 5, 43,  4,  246, 3,  243, 17, 58,  17, 43,
65    3, 244, 5,  249, 6,  37,  3,  245, 2,  240, 5, 45,  2,  241, 21, 23,  2,  242, 3,  247,
66    2, 243, 5,  251, 2,  244, 29, 61,  2,  245, 3, 249, 2,  246, 17, 29,  2,  247, 9,  55,
67    1, 240, 1,  241, 1,  242, 1,  243, 1,  244, 1, 245, 1,  246, 1,  247, 1,  248, 1,  249,
68    1, 250, 1,  251, 1,  252, 1,  253, 1,  254, 1, 255};
69 
70 aco_opcode
get_reduce_opcode(chip_class chip,ReduceOp op)71 get_reduce_opcode(chip_class chip, ReduceOp op)
72 {
73    /* Because some 16-bit instructions are already VOP3 on GFX10, we use the
74     * 32-bit opcodes (VOP2) which allows to remove the tempory VGPR and to use
75     * DPP with the arithmetic instructions. This requires to sign-extend.
76     */
77    switch (op) {
78    case iadd8:
79    case iadd16:
80       if (chip >= GFX10) {
81          return aco_opcode::v_add_u32;
82       } else if (chip >= GFX8) {
83          return aco_opcode::v_add_u16;
84       } else {
85          return aco_opcode::v_add_co_u32;
86       }
87       break;
88    case imul8:
89    case imul16:
90       if (chip >= GFX10) {
91          return aco_opcode::v_mul_lo_u16_e64;
92       } else if (chip >= GFX8) {
93          return aco_opcode::v_mul_lo_u16;
94       } else {
95          return aco_opcode::v_mul_u32_u24;
96       }
97       break;
98    case fadd16: return aco_opcode::v_add_f16;
99    case fmul16: return aco_opcode::v_mul_f16;
100    case imax8:
101    case imax16:
102       if (chip >= GFX10) {
103          return aco_opcode::v_max_i32;
104       } else if (chip >= GFX8) {
105          return aco_opcode::v_max_i16;
106       } else {
107          return aco_opcode::v_max_i32;
108       }
109       break;
110    case imin8:
111    case imin16:
112       if (chip >= GFX10) {
113          return aco_opcode::v_min_i32;
114       } else if (chip >= GFX8) {
115          return aco_opcode::v_min_i16;
116       } else {
117          return aco_opcode::v_min_i32;
118       }
119       break;
120    case umin8:
121    case umin16:
122       if (chip >= GFX10) {
123          return aco_opcode::v_min_u32;
124       } else if (chip >= GFX8) {
125          return aco_opcode::v_min_u16;
126       } else {
127          return aco_opcode::v_min_u32;
128       }
129       break;
130    case umax8:
131    case umax16:
132       if (chip >= GFX10) {
133          return aco_opcode::v_max_u32;
134       } else if (chip >= GFX8) {
135          return aco_opcode::v_max_u16;
136       } else {
137          return aco_opcode::v_max_u32;
138       }
139       break;
140    case fmin16: return aco_opcode::v_min_f16;
141    case fmax16: return aco_opcode::v_max_f16;
142    case iadd32: return chip >= GFX9 ? aco_opcode::v_add_u32 : aco_opcode::v_add_co_u32;
143    case imul32: return aco_opcode::v_mul_lo_u32;
144    case fadd32: return aco_opcode::v_add_f32;
145    case fmul32: return aco_opcode::v_mul_f32;
146    case imax32: return aco_opcode::v_max_i32;
147    case imin32: return aco_opcode::v_min_i32;
148    case umin32: return aco_opcode::v_min_u32;
149    case umax32: return aco_opcode::v_max_u32;
150    case fmin32: return aco_opcode::v_min_f32;
151    case fmax32: return aco_opcode::v_max_f32;
152    case iand8:
153    case iand16:
154    case iand32: return aco_opcode::v_and_b32;
155    case ixor8:
156    case ixor16:
157    case ixor32: return aco_opcode::v_xor_b32;
158    case ior8:
159    case ior16:
160    case ior32: return aco_opcode::v_or_b32;
161    case iadd64: return aco_opcode::num_opcodes;
162    case imul64: return aco_opcode::num_opcodes;
163    case fadd64: return aco_opcode::v_add_f64;
164    case fmul64: return aco_opcode::v_mul_f64;
165    case imin64: return aco_opcode::num_opcodes;
166    case imax64: return aco_opcode::num_opcodes;
167    case umin64: return aco_opcode::num_opcodes;
168    case umax64: return aco_opcode::num_opcodes;
169    case fmin64: return aco_opcode::v_min_f64;
170    case fmax64: return aco_opcode::v_max_f64;
171    case iand64: return aco_opcode::num_opcodes;
172    case ior64: return aco_opcode::num_opcodes;
173    case ixor64: return aco_opcode::num_opcodes;
174    default: return aco_opcode::num_opcodes;
175    }
176 }
177 
178 bool
is_vop3_reduce_opcode(aco_opcode opcode)179 is_vop3_reduce_opcode(aco_opcode opcode)
180 {
181    /* 64-bit reductions are VOP3. */
182    if (opcode == aco_opcode::num_opcodes)
183       return true;
184 
185    return instr_info.format[(int)opcode] == Format::VOP3;
186 }
187 
188 void
emit_vadd32(Builder & bld,Definition def,Operand src0,Operand src1)189 emit_vadd32(Builder& bld, Definition def, Operand src0, Operand src1)
190 {
191    Instruction* instr = bld.vadd32(def, src0, src1, false, Operand(s2), true);
192    if (instr->definitions.size() >= 2) {
193       assert(instr->definitions[1].regClass() == bld.lm);
194       instr->definitions[1].setFixed(vcc);
195    }
196 }
197 
198 void
emit_int64_dpp_op(lower_context * ctx,PhysReg dst_reg,PhysReg src0_reg,PhysReg src1_reg,PhysReg vtmp_reg,ReduceOp op,unsigned dpp_ctrl,unsigned row_mask,unsigned bank_mask,bool bound_ctrl,Operand * identity=NULL)199 emit_int64_dpp_op(lower_context* ctx, PhysReg dst_reg, PhysReg src0_reg, PhysReg src1_reg,
200                   PhysReg vtmp_reg, ReduceOp op, unsigned dpp_ctrl, unsigned row_mask,
201                   unsigned bank_mask, bool bound_ctrl, Operand* identity = NULL)
202 {
203    Builder bld(ctx->program, &ctx->instructions);
204    Definition dst[] = {Definition(dst_reg, v1), Definition(PhysReg{dst_reg + 1}, v1)};
205    Definition vtmp_def[] = {Definition(vtmp_reg, v1), Definition(PhysReg{vtmp_reg + 1}, v1)};
206    Operand src0[] = {Operand(src0_reg, v1), Operand(PhysReg{src0_reg + 1}, v1)};
207    Operand src1[] = {Operand(src1_reg, v1), Operand(PhysReg{src1_reg + 1}, v1)};
208    Operand src1_64 = Operand(src1_reg, v2);
209    Operand vtmp_op[] = {Operand(vtmp_reg, v1), Operand(PhysReg{vtmp_reg + 1}, v1)};
210    Operand vtmp_op64 = Operand(vtmp_reg, v2);
211    if (op == iadd64) {
212       if (ctx->program->chip_class >= GFX10) {
213          if (identity)
214             bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]);
215          bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0], dpp_ctrl, row_mask, bank_mask,
216                       bound_ctrl);
217          bld.vop3(aco_opcode::v_add_co_u32_e64, dst[0], bld.def(bld.lm, vcc), vtmp_op[0], src1[0]);
218       } else {
219          bld.vop2_dpp(aco_opcode::v_add_co_u32, dst[0], bld.def(bld.lm, vcc), src0[0], src1[0],
220                       dpp_ctrl, row_mask, bank_mask, bound_ctrl);
221       }
222       bld.vop2_dpp(aco_opcode::v_addc_co_u32, dst[1], bld.def(bld.lm, vcc), src0[1], src1[1],
223                    Operand(vcc, bld.lm), dpp_ctrl, row_mask, bank_mask, bound_ctrl);
224    } else if (op == iand64) {
225       bld.vop2_dpp(aco_opcode::v_and_b32, dst[0], src0[0], src1[0], dpp_ctrl, row_mask, bank_mask,
226                    bound_ctrl);
227       bld.vop2_dpp(aco_opcode::v_and_b32, dst[1], src0[1], src1[1], dpp_ctrl, row_mask, bank_mask,
228                    bound_ctrl);
229    } else if (op == ior64) {
230       bld.vop2_dpp(aco_opcode::v_or_b32, dst[0], src0[0], src1[0], dpp_ctrl, row_mask, bank_mask,
231                    bound_ctrl);
232       bld.vop2_dpp(aco_opcode::v_or_b32, dst[1], src0[1], src1[1], dpp_ctrl, row_mask, bank_mask,
233                    bound_ctrl);
234    } else if (op == ixor64) {
235       bld.vop2_dpp(aco_opcode::v_xor_b32, dst[0], src0[0], src1[0], dpp_ctrl, row_mask, bank_mask,
236                    bound_ctrl);
237       bld.vop2_dpp(aco_opcode::v_xor_b32, dst[1], src0[1], src1[1], dpp_ctrl, row_mask, bank_mask,
238                    bound_ctrl);
239    } else if (op == umin64 || op == umax64 || op == imin64 || op == imax64) {
240       aco_opcode cmp = aco_opcode::num_opcodes;
241       switch (op) {
242       case umin64: cmp = aco_opcode::v_cmp_gt_u64; break;
243       case umax64: cmp = aco_opcode::v_cmp_lt_u64; break;
244       case imin64: cmp = aco_opcode::v_cmp_gt_i64; break;
245       case imax64: cmp = aco_opcode::v_cmp_lt_i64; break;
246       default: break;
247       }
248 
249       if (identity) {
250          bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]);
251          bld.vop1(aco_opcode::v_mov_b32, vtmp_def[1], identity[1]);
252       }
253       bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0], dpp_ctrl, row_mask, bank_mask,
254                    bound_ctrl);
255       bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[1], src0[1], dpp_ctrl, row_mask, bank_mask,
256                    bound_ctrl);
257 
258       bld.vopc(cmp, bld.def(bld.lm, vcc), vtmp_op64, src1_64);
259       bld.vop2(aco_opcode::v_cndmask_b32, dst[0], vtmp_op[0], src1[0], Operand(vcc, bld.lm));
260       bld.vop2(aco_opcode::v_cndmask_b32, dst[1], vtmp_op[1], src1[1], Operand(vcc, bld.lm));
261    } else if (op == imul64) {
262       /* t4 = dpp(x_hi)
263        * t1 = umul_lo(t4, y_lo)
264        * t3 = dpp(x_lo)
265        * t0 = umul_lo(t3, y_hi)
266        * t2 = iadd(t0, t1)
267        * t5 = umul_hi(t3, y_lo)
268        * res_hi = iadd(t2, t5)
269        * res_lo = umul_lo(t3, y_lo)
270        * Requires that res_hi != src0[0] and res_hi != src1[0]
271        * and that vtmp[0] != res_hi.
272        */
273       if (identity)
274          bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[1]);
275       bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[1], dpp_ctrl, row_mask, bank_mask,
276                    bound_ctrl);
277       bld.vop3(aco_opcode::v_mul_lo_u32, vtmp_def[1], vtmp_op[0], src1[0]);
278       if (identity)
279          bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]);
280       bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0], dpp_ctrl, row_mask, bank_mask,
281                    bound_ctrl);
282       bld.vop3(aco_opcode::v_mul_lo_u32, vtmp_def[0], vtmp_op[0], src1[1]);
283       emit_vadd32(bld, vtmp_def[1], vtmp_op[0], vtmp_op[1]);
284       if (identity)
285          bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]);
286       bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0], dpp_ctrl, row_mask, bank_mask,
287                    bound_ctrl);
288       bld.vop3(aco_opcode::v_mul_hi_u32, vtmp_def[0], vtmp_op[0], src1[0]);
289       emit_vadd32(bld, dst[1], vtmp_op[1], vtmp_op[0]);
290       if (identity)
291          bld.vop1(aco_opcode::v_mov_b32, vtmp_def[0], identity[0]);
292       bld.vop1_dpp(aco_opcode::v_mov_b32, vtmp_def[0], src0[0], dpp_ctrl, row_mask, bank_mask,
293                    bound_ctrl);
294       bld.vop3(aco_opcode::v_mul_lo_u32, dst[0], vtmp_op[0], src1[0]);
295    }
296 }
297 
298 void
emit_int64_op(lower_context * ctx,PhysReg dst_reg,PhysReg src0_reg,PhysReg src1_reg,PhysReg vtmp,ReduceOp op)299 emit_int64_op(lower_context* ctx, PhysReg dst_reg, PhysReg src0_reg, PhysReg src1_reg, PhysReg vtmp,
300               ReduceOp op)
301 {
302    Builder bld(ctx->program, &ctx->instructions);
303    Definition dst[] = {Definition(dst_reg, v1), Definition(PhysReg{dst_reg + 1}, v1)};
304    RegClass src0_rc = src0_reg.reg() >= 256 ? v1 : s1;
305    Operand src0[] = {Operand(src0_reg, src0_rc), Operand(PhysReg{src0_reg + 1}, src0_rc)};
306    Operand src1[] = {Operand(src1_reg, v1), Operand(PhysReg{src1_reg + 1}, v1)};
307    Operand src0_64 = Operand(src0_reg, src0_reg.reg() >= 256 ? v2 : s2);
308    Operand src1_64 = Operand(src1_reg, v2);
309 
310    if (src0_rc == s1 &&
311        (op == imul64 || op == umin64 || op == umax64 || op == imin64 || op == imax64)) {
312       assert(vtmp.reg() != 0);
313       bld.vop1(aco_opcode::v_mov_b32, Definition(vtmp, v1), src0[0]);
314       bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp + 1}, v1), src0[1]);
315       src0_reg = vtmp;
316       src0[0] = Operand(vtmp, v1);
317       src0[1] = Operand(PhysReg{vtmp + 1}, v1);
318       src0_64 = Operand(vtmp, v2);
319    } else if (src0_rc == s1 && op == iadd64) {
320       assert(vtmp.reg() != 0);
321       bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp + 1}, v1), src0[1]);
322       src0[1] = Operand(PhysReg{vtmp + 1}, v1);
323    }
324 
325    if (op == iadd64) {
326       if (ctx->program->chip_class >= GFX10) {
327          bld.vop3(aco_opcode::v_add_co_u32_e64, dst[0], bld.def(bld.lm, vcc), src0[0], src1[0]);
328       } else {
329          bld.vop2(aco_opcode::v_add_co_u32, dst[0], bld.def(bld.lm, vcc), src0[0], src1[0]);
330       }
331       bld.vop2(aco_opcode::v_addc_co_u32, dst[1], bld.def(bld.lm, vcc), src0[1], src1[1],
332                Operand(vcc, bld.lm));
333    } else if (op == iand64) {
334       bld.vop2(aco_opcode::v_and_b32, dst[0], src0[0], src1[0]);
335       bld.vop2(aco_opcode::v_and_b32, dst[1], src0[1], src1[1]);
336    } else if (op == ior64) {
337       bld.vop2(aco_opcode::v_or_b32, dst[0], src0[0], src1[0]);
338       bld.vop2(aco_opcode::v_or_b32, dst[1], src0[1], src1[1]);
339    } else if (op == ixor64) {
340       bld.vop2(aco_opcode::v_xor_b32, dst[0], src0[0], src1[0]);
341       bld.vop2(aco_opcode::v_xor_b32, dst[1], src0[1], src1[1]);
342    } else if (op == umin64 || op == umax64 || op == imin64 || op == imax64) {
343       aco_opcode cmp = aco_opcode::num_opcodes;
344       switch (op) {
345       case umin64: cmp = aco_opcode::v_cmp_gt_u64; break;
346       case umax64: cmp = aco_opcode::v_cmp_lt_u64; break;
347       case imin64: cmp = aco_opcode::v_cmp_gt_i64; break;
348       case imax64: cmp = aco_opcode::v_cmp_lt_i64; break;
349       default: break;
350       }
351 
352       bld.vopc(cmp, bld.def(bld.lm, vcc), src0_64, src1_64);
353       bld.vop2(aco_opcode::v_cndmask_b32, dst[0], src0[0], src1[0], Operand(vcc, bld.lm));
354       bld.vop2(aco_opcode::v_cndmask_b32, dst[1], src0[1], src1[1], Operand(vcc, bld.lm));
355    } else if (op == imul64) {
356       if (src1_reg == dst_reg) {
357          /* it's fine if src0==dst but not if src1==dst */
358          std::swap(src0_reg, src1_reg);
359          std::swap(src0[0], src1[0]);
360          std::swap(src0[1], src1[1]);
361          std::swap(src0_64, src1_64);
362       }
363       assert(!(src0_reg == src1_reg));
364       /* t1 = umul_lo(x_hi, y_lo)
365        * t0 = umul_lo(x_lo, y_hi)
366        * t2 = iadd(t0, t1)
367        * t5 = umul_hi(x_lo, y_lo)
368        * res_hi = iadd(t2, t5)
369        * res_lo = umul_lo(x_lo, y_lo)
370        * assumes that it's ok to modify x_hi/y_hi, since we might not have vtmp
371        */
372       Definition tmp0_def(PhysReg{src0_reg + 1}, v1);
373       Definition tmp1_def(PhysReg{src1_reg + 1}, v1);
374       Operand tmp0_op = src0[1];
375       Operand tmp1_op = src1[1];
376       bld.vop3(aco_opcode::v_mul_lo_u32, tmp0_def, src0[1], src1[0]);
377       bld.vop3(aco_opcode::v_mul_lo_u32, tmp1_def, src0[0], src1[1]);
378       emit_vadd32(bld, tmp0_def, tmp1_op, tmp0_op);
379       bld.vop3(aco_opcode::v_mul_hi_u32, tmp1_def, src0[0], src1[0]);
380       emit_vadd32(bld, dst[1], tmp0_op, tmp1_op);
381       bld.vop3(aco_opcode::v_mul_lo_u32, dst[0], src0[0], src1[0]);
382    }
383 }
384 
385 void
emit_dpp_op(lower_context * ctx,PhysReg dst_reg,PhysReg src0_reg,PhysReg src1_reg,PhysReg vtmp,ReduceOp op,unsigned size,unsigned dpp_ctrl,unsigned row_mask,unsigned bank_mask,bool bound_ctrl,Operand * identity=NULL)386 emit_dpp_op(lower_context* ctx, PhysReg dst_reg, PhysReg src0_reg, PhysReg src1_reg, PhysReg vtmp,
387             ReduceOp op, unsigned size, unsigned dpp_ctrl, unsigned row_mask, unsigned bank_mask,
388             bool bound_ctrl, Operand* identity = NULL) /* for VOP3 with sparse writes */
389 {
390    Builder bld(ctx->program, &ctx->instructions);
391    RegClass rc = RegClass(RegType::vgpr, size);
392    Definition dst(dst_reg, rc);
393    Operand src0(src0_reg, rc);
394    Operand src1(src1_reg, rc);
395 
396    aco_opcode opcode = get_reduce_opcode(ctx->program->chip_class, op);
397    bool vop3 = is_vop3_reduce_opcode(opcode);
398 
399    if (!vop3) {
400       if (opcode == aco_opcode::v_add_co_u32)
401          bld.vop2_dpp(opcode, dst, bld.def(bld.lm, vcc), src0, src1, dpp_ctrl, row_mask, bank_mask,
402                       bound_ctrl);
403       else
404          bld.vop2_dpp(opcode, dst, src0, src1, dpp_ctrl, row_mask, bank_mask, bound_ctrl);
405       return;
406    }
407 
408    if (opcode == aco_opcode::num_opcodes) {
409       emit_int64_dpp_op(ctx, dst_reg, src0_reg, src1_reg, vtmp, op, dpp_ctrl, row_mask, bank_mask,
410                         bound_ctrl, identity);
411       return;
412    }
413 
414    if (identity)
415       bld.vop1(aco_opcode::v_mov_b32, Definition(vtmp, v1), identity[0]);
416    if (identity && size >= 2)
417       bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp + 1}, v1), identity[1]);
418 
419    for (unsigned i = 0; i < size; i++)
420       bld.vop1_dpp(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp + i}, v1),
421                    Operand(PhysReg{src0_reg + i}, v1), dpp_ctrl, row_mask, bank_mask, bound_ctrl);
422 
423    bld.vop3(opcode, dst, Operand(vtmp, rc), src1);
424 }
425 
426 void
emit_op(lower_context * ctx,PhysReg dst_reg,PhysReg src0_reg,PhysReg src1_reg,PhysReg vtmp,ReduceOp op,unsigned size)427 emit_op(lower_context* ctx, PhysReg dst_reg, PhysReg src0_reg, PhysReg src1_reg, PhysReg vtmp,
428         ReduceOp op, unsigned size)
429 {
430    Builder bld(ctx->program, &ctx->instructions);
431    RegClass rc = RegClass(RegType::vgpr, size);
432    Definition dst(dst_reg, rc);
433    Operand src0(src0_reg, RegClass(src0_reg.reg() >= 256 ? RegType::vgpr : RegType::sgpr, size));
434    Operand src1(src1_reg, rc);
435 
436    aco_opcode opcode = get_reduce_opcode(ctx->program->chip_class, op);
437    bool vop3 = is_vop3_reduce_opcode(opcode);
438 
439    if (opcode == aco_opcode::num_opcodes) {
440       emit_int64_op(ctx, dst_reg, src0_reg, src1_reg, vtmp, op);
441       return;
442    }
443 
444    if (vop3) {
445       bld.vop3(opcode, dst, src0, src1);
446    } else if (opcode == aco_opcode::v_add_co_u32) {
447       bld.vop2(opcode, dst, bld.def(bld.lm, vcc), src0, src1);
448    } else {
449       bld.vop2(opcode, dst, src0, src1);
450    }
451 }
452 
453 void
emit_dpp_mov(lower_context * ctx,PhysReg dst,PhysReg src0,unsigned size,unsigned dpp_ctrl,unsigned row_mask,unsigned bank_mask,bool bound_ctrl)454 emit_dpp_mov(lower_context* ctx, PhysReg dst, PhysReg src0, unsigned size, unsigned dpp_ctrl,
455              unsigned row_mask, unsigned bank_mask, bool bound_ctrl)
456 {
457    Builder bld(ctx->program, &ctx->instructions);
458    for (unsigned i = 0; i < size; i++) {
459       bld.vop1_dpp(aco_opcode::v_mov_b32, Definition(PhysReg{dst + i}, v1),
460                    Operand(PhysReg{src0 + i}, v1), dpp_ctrl, row_mask, bank_mask, bound_ctrl);
461    }
462 }
463 
464 void
emit_ds_swizzle(Builder bld,PhysReg dst,PhysReg src,unsigned size,unsigned ds_pattern)465 emit_ds_swizzle(Builder bld, PhysReg dst, PhysReg src, unsigned size, unsigned ds_pattern)
466 {
467    for (unsigned i = 0; i < size; i++) {
468       bld.ds(aco_opcode::ds_swizzle_b32, Definition(PhysReg{dst + i}, v1),
469              Operand(PhysReg{src + i}, v1), ds_pattern);
470    }
471 }
472 
473 void
emit_reduction(lower_context * ctx,aco_opcode op,ReduceOp reduce_op,unsigned cluster_size,PhysReg tmp,PhysReg stmp,PhysReg vtmp,PhysReg sitmp,Operand src,Definition dst)474 emit_reduction(lower_context* ctx, aco_opcode op, ReduceOp reduce_op, unsigned cluster_size,
475                PhysReg tmp, PhysReg stmp, PhysReg vtmp, PhysReg sitmp, Operand src, Definition dst)
476 {
477    assert(cluster_size == ctx->program->wave_size || op == aco_opcode::p_reduce);
478    assert(cluster_size <= ctx->program->wave_size);
479 
480    Builder bld(ctx->program, &ctx->instructions);
481 
482    Operand identity[2];
483    identity[0] = Operand::c32(get_reduction_identity(reduce_op, 0));
484    identity[1] = Operand::c32(get_reduction_identity(reduce_op, 1));
485    Operand vcndmask_identity[2] = {identity[0], identity[1]};
486 
487    /* First, copy the source to tmp and set inactive lanes to the identity */
488    bld.sop1(Builder::s_or_saveexec, Definition(stmp, bld.lm), Definition(scc, s1),
489             Definition(exec, bld.lm), Operand::c64(UINT64_MAX), Operand(exec, bld.lm));
490 
491    for (unsigned i = 0; i < src.size(); i++) {
492       /* p_exclusive_scan needs it to be a sgpr or inline constant for the v_writelane_b32
493        * except on GFX10, where v_writelane_b32 can take a literal. */
494       if (identity[i].isLiteral() && op == aco_opcode::p_exclusive_scan &&
495           ctx->program->chip_class < GFX10) {
496          bld.sop1(aco_opcode::s_mov_b32, Definition(PhysReg{sitmp + i}, s1), identity[i]);
497          identity[i] = Operand(PhysReg{sitmp + i}, s1);
498 
499          bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{tmp + i}, v1), identity[i]);
500          vcndmask_identity[i] = Operand(PhysReg{tmp + i}, v1);
501       } else if (identity[i].isLiteral()) {
502          bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{tmp + i}, v1), identity[i]);
503          vcndmask_identity[i] = Operand(PhysReg{tmp + i}, v1);
504       }
505    }
506 
507    for (unsigned i = 0; i < src.size(); i++) {
508       bld.vop2_e64(aco_opcode::v_cndmask_b32, Definition(PhysReg{tmp + i}, v1),
509                    vcndmask_identity[i], Operand(PhysReg{src.physReg() + i}, v1),
510                    Operand(stmp, bld.lm));
511    }
512 
513    if (src.regClass() == v1b) {
514       if (ctx->program->chip_class >= GFX8) {
515          aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(
516             aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
517          sdwa->operands[0] = Operand(PhysReg{tmp}, v1);
518          sdwa->definitions[0] = Definition(PhysReg{tmp}, v1);
519          bool sext = reduce_op == imin8 || reduce_op == imax8;
520          sdwa->sel[0] = SubdwordSel(1, 0, sext);
521          sdwa->dst_sel = SubdwordSel::dword;
522          bld.insert(std::move(sdwa));
523       } else {
524          aco_opcode opcode;
525 
526          if (reduce_op == imin8 || reduce_op == imax8)
527             opcode = aco_opcode::v_bfe_i32;
528          else
529             opcode = aco_opcode::v_bfe_u32;
530 
531          bld.vop3(opcode, Definition(PhysReg{tmp}, v1), Operand(PhysReg{tmp}, v1), Operand::zero(),
532                   Operand::c32(8u));
533       }
534    } else if (src.regClass() == v2b) {
535       if (ctx->program->chip_class >= GFX10 &&
536           (reduce_op == iadd16 || reduce_op == imax16 || reduce_op == imin16 ||
537            reduce_op == umin16 || reduce_op == umax16)) {
538          aco_ptr<SDWA_instruction> sdwa{create_instruction<SDWA_instruction>(
539             aco_opcode::v_mov_b32, asSDWA(Format::VOP1), 1, 1)};
540          sdwa->operands[0] = Operand(PhysReg{tmp}, v1);
541          sdwa->definitions[0] = Definition(PhysReg{tmp}, v1);
542          bool sext = reduce_op == imin16 || reduce_op == imax16 || reduce_op == iadd16;
543          sdwa->sel[0] = SubdwordSel(2, 0, sext);
544          sdwa->dst_sel = SubdwordSel::dword;
545          bld.insert(std::move(sdwa));
546       } else if (ctx->program->chip_class == GFX6 || ctx->program->chip_class == GFX7) {
547          aco_opcode opcode;
548 
549          if (reduce_op == imin16 || reduce_op == imax16 || reduce_op == iadd16)
550             opcode = aco_opcode::v_bfe_i32;
551          else
552             opcode = aco_opcode::v_bfe_u32;
553 
554          bld.vop3(opcode, Definition(PhysReg{tmp}, v1), Operand(PhysReg{tmp}, v1), Operand::zero(),
555                   Operand::c32(16u));
556       }
557    }
558 
559    bool reduction_needs_last_op = false;
560    switch (op) {
561    case aco_opcode::p_reduce:
562       if (cluster_size == 1)
563          break;
564 
565       if (ctx->program->chip_class <= GFX7) {
566          reduction_needs_last_op = true;
567          emit_ds_swizzle(bld, vtmp, tmp, src.size(), (1 << 15) | dpp_quad_perm(1, 0, 3, 2));
568          if (cluster_size == 2)
569             break;
570          emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
571          emit_ds_swizzle(bld, vtmp, tmp, src.size(), (1 << 15) | dpp_quad_perm(2, 3, 0, 1));
572          if (cluster_size == 4)
573             break;
574          emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
575          emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1f, 0, 0x04));
576          if (cluster_size == 8)
577             break;
578          emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
579          emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1f, 0, 0x08));
580          if (cluster_size == 16)
581             break;
582          emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
583          emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1f, 0, 0x10));
584          if (cluster_size == 32)
585             break;
586          emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
587          for (unsigned i = 0; i < src.size(); i++)
588             bld.readlane(Definition(PhysReg{dst.physReg() + i}, s1), Operand(PhysReg{tmp + i}, v1),
589                          Operand::zero());
590          // TODO: it would be more effective to do the last reduction step on SALU
591          emit_op(ctx, tmp, dst.physReg(), tmp, vtmp, reduce_op, src.size());
592          reduction_needs_last_op = false;
593          break;
594       }
595 
596       emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_quad_perm(1, 0, 3, 2), 0xf,
597                   0xf, false);
598       if (cluster_size == 2)
599          break;
600       emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_quad_perm(2, 3, 0, 1), 0xf,
601                   0xf, false);
602       if (cluster_size == 4)
603          break;
604       emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_half_mirror, 0xf, 0xf,
605                   false);
606       if (cluster_size == 8)
607          break;
608       emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_mirror, 0xf, 0xf, false);
609       if (cluster_size == 16)
610          break;
611 
612       if (ctx->program->chip_class >= GFX10) {
613          /* GFX10+ doesn't support row_bcast15 and row_bcast31 */
614          for (unsigned i = 0; i < src.size(); i++)
615             bld.vop3(aco_opcode::v_permlanex16_b32, Definition(PhysReg{vtmp + i}, v1),
616                      Operand(PhysReg{tmp + i}, v1), Operand::zero(), Operand::zero());
617 
618          if (cluster_size == 32) {
619             reduction_needs_last_op = true;
620             break;
621          }
622 
623          emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
624          for (unsigned i = 0; i < src.size(); i++)
625             bld.readlane(Definition(PhysReg{dst.physReg() + i}, s1), Operand(PhysReg{tmp + i}, v1),
626                          Operand::zero());
627          // TODO: it would be more effective to do the last reduction step on SALU
628          emit_op(ctx, tmp, dst.physReg(), tmp, vtmp, reduce_op, src.size());
629          break;
630       }
631 
632       if (cluster_size == 32) {
633          emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1f, 0, 0x10));
634          reduction_needs_last_op = true;
635          break;
636       }
637       assert(cluster_size == 64);
638       emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_bcast15, 0xa, 0xf,
639                   false);
640       emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_bcast31, 0xc, 0xf,
641                   false);
642       break;
643    case aco_opcode::p_exclusive_scan:
644       if (ctx->program->chip_class >= GFX10) { /* gfx10 doesn't support wf_sr1, so emulate it */
645          /* shift rows right */
646          emit_dpp_mov(ctx, vtmp, tmp, src.size(), dpp_row_sr(1), 0xf, 0xf, true);
647 
648          /* fill in the gaps in rows 1 and 3 */
649          bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand::c32(0x10000u));
650          bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand::c32(0x10000u));
651          for (unsigned i = 0; i < src.size(); i++) {
652             Instruction* perm =
653                bld.vop3(aco_opcode::v_permlanex16_b32, Definition(PhysReg{vtmp + i}, v1),
654                         Operand(PhysReg{tmp + i}, v1), Operand::c32(0xffffffffu),
655                         Operand::c32(0xffffffffu))
656                   .instr;
657             perm->vop3().opsel = 1; /* FI (Fetch Inactive) */
658          }
659          bld.sop1(Builder::s_mov, Definition(exec, bld.lm), Operand::c64(UINT64_MAX));
660 
661          if (ctx->program->wave_size == 64) {
662             /* fill in the gap in row 2 */
663             for (unsigned i = 0; i < src.size(); i++) {
664                bld.readlane(Definition(PhysReg{sitmp + i}, s1), Operand(PhysReg{tmp + i}, v1),
665                             Operand::c32(31u));
666                bld.writelane(Definition(PhysReg{vtmp + i}, v1), Operand(PhysReg{sitmp + i}, s1),
667                              Operand::c32(32u), Operand(PhysReg{vtmp + i}, v1));
668             }
669          }
670          std::swap(tmp, vtmp);
671       } else if (ctx->program->chip_class >= GFX8) {
672          emit_dpp_mov(ctx, tmp, tmp, src.size(), dpp_wf_sr1, 0xf, 0xf, true);
673       } else {
674          // TODO: use LDS on CS with a single write and shifted read
675          /* wavefront shift_right by 1 on SI/CI */
676          emit_ds_swizzle(bld, vtmp, tmp, src.size(), (1 << 15) | dpp_quad_perm(0, 0, 1, 2));
677          emit_ds_swizzle(bld, tmp, tmp, src.size(),
678                          ds_pattern_bitmode(0x1F, 0x00, 0x07)); /* mirror(8) */
679          bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand::c32(0x10101010u));
680          bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
681          for (unsigned i = 0; i < src.size(); i++)
682             bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp + i}, v1),
683                      Operand(PhysReg{tmp + i}, v1));
684 
685          bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand::c64(UINT64_MAX));
686          emit_ds_swizzle(bld, tmp, tmp, src.size(),
687                          ds_pattern_bitmode(0x1F, 0x00, 0x08)); /* swap(8) */
688          bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand::c32(0x01000100u));
689          bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
690          for (unsigned i = 0; i < src.size(); i++)
691             bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp + i}, v1),
692                      Operand(PhysReg{tmp + i}, v1));
693 
694          bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand::c64(UINT64_MAX));
695          emit_ds_swizzle(bld, tmp, tmp, src.size(),
696                          ds_pattern_bitmode(0x1F, 0x00, 0x10)); /* swap(16) */
697          bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_lo, s1), Operand::c32(1u),
698                   Operand::c32(16u));
699          bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_hi, s1), Operand::c32(1u),
700                   Operand::c32(16u));
701          for (unsigned i = 0; i < src.size(); i++)
702             bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{vtmp + i}, v1),
703                      Operand(PhysReg{tmp + i}, v1));
704 
705          bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand::c64(UINT64_MAX));
706          for (unsigned i = 0; i < src.size(); i++) {
707             bld.writelane(Definition(PhysReg{vtmp + i}, v1), identity[i], Operand::zero(),
708                           Operand(PhysReg{vtmp + i}, v1));
709             bld.readlane(Definition(PhysReg{sitmp + i}, s1), Operand(PhysReg{tmp + i}, v1),
710                          Operand::zero());
711             bld.writelane(Definition(PhysReg{vtmp + i}, v1), Operand(PhysReg{sitmp + i}, s1),
712                           Operand::c32(32u), Operand(PhysReg{vtmp + i}, v1));
713             identity[i] = Operand::zero(); /* prevent further uses of identity */
714          }
715          std::swap(tmp, vtmp);
716       }
717 
718       for (unsigned i = 0; i < src.size(); i++) {
719          if (!identity[i].isConstant() ||
720              identity[i].constantValue()) { /* bound_ctrl should take care of this overwise */
721             if (ctx->program->chip_class < GFX10)
722                assert((identity[i].isConstant() && !identity[i].isLiteral()) ||
723                       identity[i].physReg() == PhysReg{sitmp + i});
724             bld.writelane(Definition(PhysReg{tmp + i}, v1), identity[i], Operand::zero(),
725                           Operand(PhysReg{tmp + i}, v1));
726          }
727       }
728       FALLTHROUGH;
729    case aco_opcode::p_inclusive_scan:
730       assert(cluster_size == ctx->program->wave_size);
731       if (ctx->program->chip_class <= GFX7) {
732          emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1e, 0x00, 0x00));
733          bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand::c32(0xAAAAAAAAu));
734          bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
735          emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
736 
737          bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand::c64(UINT64_MAX));
738          emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x1c, 0x01, 0x00));
739          bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand::c32(0xCCCCCCCCu));
740          bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
741          emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
742 
743          bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand::c64(UINT64_MAX));
744          emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x18, 0x03, 0x00));
745          bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand::c32(0xF0F0F0F0u));
746          bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
747          emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
748 
749          bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand::c64(UINT64_MAX));
750          emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x10, 0x07, 0x00));
751          bld.sop1(aco_opcode::s_mov_b32, Definition(exec_lo, s1), Operand::c32(0xFF00FF00u));
752          bld.sop1(aco_opcode::s_mov_b32, Definition(exec_hi, s1), Operand(exec_lo, s1));
753          emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
754 
755          bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand::c64(UINT64_MAX));
756          emit_ds_swizzle(bld, vtmp, tmp, src.size(), ds_pattern_bitmode(0x00, 0x0f, 0x00));
757          bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_lo, s1), Operand::c32(16u),
758                   Operand::c32(16u));
759          bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_hi, s1), Operand::c32(16u),
760                   Operand::c32(16u));
761          emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
762 
763          for (unsigned i = 0; i < src.size(); i++)
764             bld.readlane(Definition(PhysReg{sitmp + i}, s1), Operand(PhysReg{tmp + i}, v1),
765                          Operand::c32(31u));
766          bld.sop2(aco_opcode::s_bfm_b64, Definition(exec, s2), Operand::c32(32u),
767                   Operand::c32(32u));
768          emit_op(ctx, tmp, sitmp, tmp, vtmp, reduce_op, src.size());
769          break;
770       }
771 
772       emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_sr(1), 0xf, 0xf, false,
773                   identity);
774       emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_sr(2), 0xf, 0xf, false,
775                   identity);
776       emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_sr(4), 0xf, 0xf, false,
777                   identity);
778       emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_sr(8), 0xf, 0xf, false,
779                   identity);
780       if (ctx->program->chip_class >= GFX10) {
781          bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_lo, s1), Operand::c32(16u),
782                   Operand::c32(16u));
783          bld.sop2(aco_opcode::s_bfm_b32, Definition(exec_hi, s1), Operand::c32(16u),
784                   Operand::c32(16u));
785          for (unsigned i = 0; i < src.size(); i++) {
786             Instruction* perm =
787                bld.vop3(aco_opcode::v_permlanex16_b32, Definition(PhysReg{vtmp + i}, v1),
788                         Operand(PhysReg{tmp + i}, v1), Operand::c32(0xffffffffu),
789                         Operand::c32(0xffffffffu))
790                   .instr;
791             perm->vop3().opsel = 1; /* FI (Fetch Inactive) */
792          }
793          emit_op(ctx, tmp, tmp, vtmp, PhysReg{0}, reduce_op, src.size());
794 
795          if (ctx->program->wave_size == 64) {
796             bld.sop2(aco_opcode::s_bfm_b64, Definition(exec, s2), Operand::c32(32u),
797                      Operand::c32(32u));
798             for (unsigned i = 0; i < src.size(); i++)
799                bld.readlane(Definition(PhysReg{sitmp + i}, s1), Operand(PhysReg{tmp + i}, v1),
800                             Operand::c32(31u));
801             emit_op(ctx, tmp, sitmp, tmp, vtmp, reduce_op, src.size());
802          }
803       } else {
804          emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_bcast15, 0xa, 0xf,
805                      false, identity);
806          emit_dpp_op(ctx, tmp, tmp, tmp, vtmp, reduce_op, src.size(), dpp_row_bcast31, 0xc, 0xf,
807                      false, identity);
808       }
809       break;
810    default: unreachable("Invalid reduction mode");
811    }
812 
813    if (op == aco_opcode::p_reduce) {
814       if (reduction_needs_last_op && dst.regClass().type() == RegType::vgpr) {
815          bld.sop1(Builder::s_mov, Definition(exec, bld.lm), Operand(stmp, bld.lm));
816          emit_op(ctx, dst.physReg(), tmp, vtmp, PhysReg{0}, reduce_op, src.size());
817          return;
818       }
819 
820       if (reduction_needs_last_op)
821          emit_op(ctx, tmp, vtmp, tmp, PhysReg{0}, reduce_op, src.size());
822    }
823 
824    /* restore exec */
825    bld.sop1(Builder::s_mov, Definition(exec, bld.lm), Operand(stmp, bld.lm));
826 
827    if (dst.regClass().type() == RegType::sgpr) {
828       for (unsigned k = 0; k < src.size(); k++) {
829          bld.readlane(Definition(PhysReg{dst.physReg() + k}, s1), Operand(PhysReg{tmp + k}, v1),
830                       Operand::c32(ctx->program->wave_size - 1));
831       }
832    } else if (dst.physReg() != tmp) {
833       for (unsigned k = 0; k < src.size(); k++) {
834          bld.vop1(aco_opcode::v_mov_b32, Definition(PhysReg{dst.physReg() + k}, v1),
835                   Operand(PhysReg{tmp + k}, v1));
836       }
837    }
838 }
839 
840 void
emit_gfx10_wave64_bpermute(Program * program,aco_ptr<Instruction> & instr,Builder & bld)841 emit_gfx10_wave64_bpermute(Program* program, aco_ptr<Instruction>& instr, Builder& bld)
842 {
843    /* Emulates proper bpermute on GFX10 in wave64 mode.
844     *
845     * This is necessary because on GFX10 the bpermute instruction only works
846     * on half waves (you can think of it as having a cluster size of 32), so we
847     * manually swap the data between the two halves using two shared VGPRs.
848     */
849 
850    assert(program->chip_class >= GFX10);
851    assert(program->wave_size == 64);
852 
853    unsigned shared_vgpr_reg_0 = align(program->config->num_vgprs, 4) + 256;
854    Definition dst = instr->definitions[0];
855    Definition tmp_exec = instr->definitions[1];
856    Definition clobber_scc = instr->definitions[2];
857    Operand index_x4 = instr->operands[0];
858    Operand input_data = instr->operands[1];
859    Operand same_half = instr->operands[2];
860 
861    assert(dst.regClass() == v1);
862    assert(tmp_exec.regClass() == bld.lm);
863    assert(clobber_scc.isFixed() && clobber_scc.physReg() == scc);
864    assert(same_half.regClass() == bld.lm);
865    assert(index_x4.regClass() == v1);
866    assert(input_data.regClass().type() == RegType::vgpr);
867    assert(input_data.bytes() <= 4);
868    assert(dst.physReg() != index_x4.physReg());
869    assert(dst.physReg() != input_data.physReg());
870    assert(tmp_exec.physReg() != same_half.physReg());
871 
872    PhysReg shared_vgpr_lo(shared_vgpr_reg_0);
873    PhysReg shared_vgpr_hi(shared_vgpr_reg_0 + 1);
874 
875    /* Permute the input within the same half-wave */
876    bld.ds(aco_opcode::ds_bpermute_b32, dst, index_x4, input_data);
877 
878    /* HI: Copy data from high lanes 32-63 to shared vgpr */
879    bld.vop1_dpp(aco_opcode::v_mov_b32, Definition(shared_vgpr_hi, v1), input_data,
880                 dpp_quad_perm(0, 1, 2, 3), 0xc, 0xf, false);
881    /* Save EXEC */
882    bld.sop1(aco_opcode::s_mov_b64, tmp_exec, Operand(exec, s2));
883    /* Set EXEC to enable LO lanes only */
884    bld.sop2(aco_opcode::s_bfm_b64, Definition(exec, s2), Operand::c32(32u), Operand::zero());
885    /* LO: Copy data from low lanes 0-31 to shared vgpr */
886    bld.vop1(aco_opcode::v_mov_b32, Definition(shared_vgpr_lo, v1), input_data);
887    /* LO: bpermute shared vgpr (high lanes' data) */
888    bld.ds(aco_opcode::ds_bpermute_b32, Definition(shared_vgpr_hi, v1), index_x4,
889           Operand(shared_vgpr_hi, v1));
890    /* Set EXEC to enable HI lanes only */
891    bld.sop2(aco_opcode::s_bfm_b64, Definition(exec, s2), Operand::c32(32u), Operand::c32(32u));
892    /* HI: bpermute shared vgpr (low lanes' data) */
893    bld.ds(aco_opcode::ds_bpermute_b32, Definition(shared_vgpr_lo, v1), index_x4,
894           Operand(shared_vgpr_lo, v1));
895 
896    /* Only enable lanes which use the other half's data */
897    bld.sop2(aco_opcode::s_andn2_b64, Definition(exec, s2), clobber_scc,
898             Operand(tmp_exec.physReg(), s2), same_half);
899    /* LO: Copy shared vgpr (high lanes' bpermuted data) to output vgpr */
900    bld.vop1_dpp(aco_opcode::v_mov_b32, dst, Operand(shared_vgpr_hi, v1), dpp_quad_perm(0, 1, 2, 3),
901                 0x3, 0xf, false);
902    /* HI: Copy shared vgpr (low lanes' bpermuted data) to output vgpr */
903    bld.vop1_dpp(aco_opcode::v_mov_b32, dst, Operand(shared_vgpr_lo, v1), dpp_quad_perm(0, 1, 2, 3),
904                 0xc, 0xf, false);
905 
906    /* Restore saved EXEC */
907    bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(tmp_exec.physReg(), s2));
908 
909    /* RA assumes that the result is always in the low part of the register, so we have to shift, if
910     * it's not there already */
911    if (input_data.physReg().byte()) {
912       unsigned right_shift = input_data.physReg().byte() * 8;
913       bld.vop2(aco_opcode::v_lshrrev_b32, dst, Operand::c32(right_shift),
914                Operand(dst.physReg(), v1));
915    }
916 }
917 
918 void
emit_gfx6_bpermute(Program * program,aco_ptr<Instruction> & instr,Builder & bld)919 emit_gfx6_bpermute(Program* program, aco_ptr<Instruction>& instr, Builder& bld)
920 {
921    /* Emulates bpermute using readlane instructions */
922 
923    Operand index = instr->operands[0];
924    Operand input = instr->operands[1];
925    Definition dst = instr->definitions[0];
926    Definition temp_exec = instr->definitions[1];
927    Definition clobber_vcc = instr->definitions[2];
928 
929    assert(dst.regClass() == v1);
930    assert(temp_exec.regClass() == bld.lm);
931    assert(clobber_vcc.regClass() == bld.lm);
932    assert(clobber_vcc.physReg() == vcc);
933    assert(index.regClass() == v1);
934    assert(index.physReg() != dst.physReg());
935    assert(input.regClass().type() == RegType::vgpr);
936    assert(input.bytes() <= 4);
937    assert(input.physReg() != dst.physReg());
938 
939    /* Save original EXEC */
940    bld.sop1(aco_opcode::s_mov_b64, temp_exec, Operand(exec, s2));
941 
942    /* An "unrolled loop" that is executed per each lane.
943     * This takes only a few instructions per lane, as opposed to a "real" loop
944     * with branching, where the branch instruction alone would take 16+ cycles.
945     */
946    for (unsigned n = 0; n < program->wave_size; ++n) {
947       /* Activate the lane which has N for its source index */
948       bld.vopc(aco_opcode::v_cmpx_eq_u32, Definition(exec, bld.lm), clobber_vcc, Operand::c32(n),
949                index);
950       /* Read the data from lane N */
951       bld.readlane(Definition(vcc, s1), input, Operand::c32(n));
952       /* On the active lane, move the data we read from lane N to the destination VGPR */
953       bld.vop1(aco_opcode::v_mov_b32, dst, Operand(vcc, s1));
954       /* Restore original EXEC */
955       bld.sop1(aco_opcode::s_mov_b64, Definition(exec, s2), Operand(temp_exec.physReg(), s2));
956    }
957 }
958 
959 struct copy_operation {
960    Operand op;
961    Definition def;
962    unsigned bytes;
963    union {
964       uint8_t uses[8];
965       uint64_t is_used = 0;
966    };
967 };
968 
969 void
split_copy(lower_context * ctx,unsigned offset,Definition * def,Operand * op,const copy_operation & src,bool ignore_uses,unsigned max_size)970 split_copy(lower_context* ctx, unsigned offset, Definition* def, Operand* op,
971            const copy_operation& src, bool ignore_uses, unsigned max_size)
972 {
973    PhysReg def_reg = src.def.physReg();
974    PhysReg op_reg = src.op.physReg();
975    def_reg.reg_b += offset;
976    op_reg.reg_b += offset;
977 
978    /* 64-bit VGPR copies (implemented with v_lshrrev_b64) are slow before GFX10 */
979    if (ctx->program->chip_class < GFX10 && src.def.regClass().type() == RegType::vgpr)
980       max_size = MIN2(max_size, 4);
981    unsigned max_align = src.def.regClass().type() == RegType::vgpr ? 4 : 16;
982 
983    /* make sure the size is a power of two and reg % bytes == 0 */
984    unsigned bytes = 1;
985    for (; bytes <= max_size; bytes *= 2) {
986       unsigned next = bytes * 2u;
987       bool can_increase = def_reg.reg_b % MIN2(next, max_align) == 0 &&
988                           offset + next <= src.bytes && next <= max_size;
989       if (!src.op.isConstant() && can_increase)
990          can_increase = op_reg.reg_b % MIN2(next, max_align) == 0;
991       for (unsigned i = 0; !ignore_uses && can_increase && (i < bytes); i++)
992          can_increase = (src.uses[offset + bytes + i] == 0) == (src.uses[offset] == 0);
993       if (!can_increase)
994          break;
995    }
996 
997    *def = Definition(src.def.tempId(), def_reg, src.def.regClass().resize(bytes));
998    if (src.op.isConstant()) {
999       assert(bytes >= 1 && bytes <= 8);
1000       uint64_t val = src.op.constantValue64() >> (offset * 8u);
1001       *op = Operand::get_const(ctx->program->chip_class, val, bytes);
1002    } else {
1003       RegClass op_cls = src.op.regClass().resize(bytes);
1004       *op = Operand(op_reg, op_cls);
1005       op->setTemp(Temp(src.op.tempId(), op_cls));
1006    }
1007 }
1008 
1009 uint32_t
get_intersection_mask(int a_start,int a_size,int b_start,int b_size)1010 get_intersection_mask(int a_start, int a_size, int b_start, int b_size)
1011 {
1012    int intersection_start = MAX2(b_start - a_start, 0);
1013    int intersection_end = MAX2(b_start + b_size - a_start, 0);
1014    if (intersection_start >= a_size || intersection_end == 0)
1015       return 0;
1016 
1017    uint32_t mask = u_bit_consecutive(0, a_size);
1018    return u_bit_consecutive(intersection_start, intersection_end - intersection_start) & mask;
1019 }
1020 
1021 void
copy_constant(lower_context * ctx,Builder & bld,Definition dst,Operand op)1022 copy_constant(lower_context* ctx, Builder& bld, Definition dst, Operand op)
1023 {
1024    assert(op.bytes() == dst.bytes());
1025 
1026    if (dst.bytes() == 4 && op.isLiteral()) {
1027       uint32_t imm = op.constantValue();
1028       if (dst.regClass() == s1 && (imm >= 0xffff8000 || imm <= 0x7fff)) {
1029          bld.sopk(aco_opcode::s_movk_i32, dst, imm & 0xFFFFu);
1030          return;
1031       } else if (util_bitreverse(imm) <= 64 || util_bitreverse(imm) >= 0xFFFFFFF0) {
1032          uint32_t rev = util_bitreverse(imm);
1033          if (dst.regClass() == s1)
1034             bld.sop1(aco_opcode::s_brev_b32, dst, Operand::c32(rev));
1035          else
1036             bld.vop1(aco_opcode::v_bfrev_b32, dst, Operand::c32(rev));
1037          return;
1038       } else if (dst.regClass() == s1 && imm != 0) {
1039          unsigned start = (ffs(imm) - 1) & 0x1f;
1040          unsigned size = util_bitcount(imm) & 0x1f;
1041          if ((((1u << size) - 1u) << start) == imm) {
1042             bld.sop2(aco_opcode::s_bfm_b32, dst, Operand::c32(size), Operand::c32(start));
1043             return;
1044          }
1045       }
1046    }
1047 
1048    if (op.bytes() == 4 && op.constantEquals(0x3e22f983) && ctx->program->chip_class >= GFX8)
1049       op.setFixed(PhysReg{248}); /* it can be an inline constant on GFX8+ */
1050 
1051    if (dst.regClass() == s1) {
1052       bld.sop1(aco_opcode::s_mov_b32, dst, op);
1053    } else if (dst.regClass() == s2) {
1054       /* s_ashr_i64 writes SCC, so we can't use it */
1055       assert(Operand::is_constant_representable(op.constantValue64(), 8, true, false));
1056       bld.sop1(aco_opcode::s_mov_b64, dst, op);
1057    } else if (dst.regClass() == v2) {
1058       if (Operand::is_constant_representable(op.constantValue64(), 8, true, false)) {
1059          bld.vop3(aco_opcode::v_lshrrev_b64, dst, Operand::zero(), op);
1060       } else {
1061          assert(Operand::is_constant_representable(op.constantValue64(), 8, false, true));
1062          bld.vop3(aco_opcode::v_ashrrev_i64, dst, Operand::zero(), op);
1063       }
1064    } else if (dst.regClass() == v1) {
1065       bld.vop1(aco_opcode::v_mov_b32, dst, op);
1066    } else {
1067       assert(dst.regClass() == v1b || dst.regClass() == v2b);
1068 
1069       if (dst.regClass() == v1b && ctx->program->chip_class >= GFX9) {
1070          uint8_t val = op.constantValue();
1071          Operand op32 = Operand::c32((uint32_t)val | (val & 0x80u ? 0xffffff00u : 0u));
1072          if (op32.isLiteral()) {
1073             uint32_t a = (uint32_t)int8_mul_table[val * 2];
1074             uint32_t b = (uint32_t)int8_mul_table[val * 2 + 1];
1075             bld.vop2_sdwa(aco_opcode::v_mul_u32_u24, dst,
1076                           Operand::c32(a | (a & 0x80u ? 0xffffff00u : 0x0u)),
1077                           Operand::c32(b | (b & 0x80u ? 0xffffff00u : 0x0u)));
1078          } else {
1079             bld.vop1_sdwa(aco_opcode::v_mov_b32, dst, op32);
1080          }
1081       } else if (dst.regClass() == v2b && ctx->program->chip_class >= GFX9 && !op.isLiteral()) {
1082          if (op.constantValue() >= 0xfff0 || op.constantValue() <= 64) {
1083             /* use v_mov_b32 to avoid possible issues with denormal flushing or
1084              * NaN. v_add_f16 is still needed for float constants. */
1085             uint32_t val32 = (int32_t)(int16_t)op.constantValue();
1086             bld.vop1_sdwa(aco_opcode::v_mov_b32, dst, Operand::c32(val32));
1087          } else {
1088             bld.vop2_sdwa(aco_opcode::v_add_f16, dst, op, Operand::zero());
1089          }
1090       } else if (dst.regClass() == v2b && ctx->program->chip_class >= GFX10 &&
1091                  (ctx->block->fp_mode.denorm16_64 & fp_denorm_keep_in)) {
1092          if (dst.physReg().byte() == 2) {
1093             Operand def_lo(dst.physReg().advance(-2), v2b);
1094             Instruction* instr = bld.vop3(aco_opcode::v_pack_b32_f16, dst, def_lo, op);
1095             instr->vop3().opsel = 0;
1096          } else {
1097             assert(dst.physReg().byte() == 0);
1098             Operand def_hi(dst.physReg().advance(2), v2b);
1099             Instruction* instr = bld.vop3(aco_opcode::v_pack_b32_f16, dst, op, def_hi);
1100             instr->vop3().opsel = 2;
1101          }
1102       } else {
1103          uint32_t offset = dst.physReg().byte() * 8u;
1104          uint32_t mask = ((1u << (dst.bytes() * 8)) - 1) << offset;
1105          uint32_t val = (op.constantValue() << offset) & mask;
1106          dst = Definition(PhysReg(dst.physReg().reg()), v1);
1107          Operand def_op(dst.physReg(), v1);
1108          if (val != mask)
1109             bld.vop2(aco_opcode::v_and_b32, dst, Operand::c32(~mask), def_op);
1110          if (val != 0)
1111             bld.vop2(aco_opcode::v_or_b32, dst, Operand::c32(val), def_op);
1112       }
1113    }
1114 }
1115 
1116 void
copy_linear_vgpr(Builder & bld,Definition def,Operand op,bool preserve_scc,PhysReg scratch_sgpr)1117 copy_linear_vgpr(Builder& bld, Definition def, Operand op, bool preserve_scc, PhysReg scratch_sgpr)
1118 {
1119    if (preserve_scc)
1120       bld.sop1(aco_opcode::s_mov_b32, Definition(scratch_sgpr, s1), Operand(scc, s1));
1121 
1122    for (unsigned i = 0; i < 2; i++) {
1123       if (def.size() == 2)
1124          bld.vop3(aco_opcode::v_lshrrev_b64, def, Operand::zero(), op);
1125       else
1126          bld.vop1(aco_opcode::v_mov_b32, def, op);
1127 
1128       bld.sop1(Builder::s_not, Definition(exec, bld.lm), Definition(scc, s1),
1129                Operand(exec, bld.lm));
1130    }
1131 
1132    if (preserve_scc)
1133       bld.sopc(aco_opcode::s_cmp_lg_i32, Definition(scc, s1), Operand(scratch_sgpr, s1),
1134                Operand::zero());
1135 }
1136 
1137 void
swap_linear_vgpr(Builder & bld,Definition def,Operand op,bool preserve_scc,PhysReg scratch_sgpr)1138 swap_linear_vgpr(Builder& bld, Definition def, Operand op, bool preserve_scc, PhysReg scratch_sgpr)
1139 {
1140    if (preserve_scc)
1141       bld.sop1(aco_opcode::s_mov_b32, Definition(scratch_sgpr, s1), Operand(scc, s1));
1142 
1143    Operand def_as_op = Operand(def.physReg(), def.regClass());
1144    Definition op_as_def = Definition(op.physReg(), op.regClass());
1145 
1146    for (unsigned i = 0; i < 2; i++) {
1147       if (bld.program->chip_class >= GFX9) {
1148          bld.vop1(aco_opcode::v_swap_b32, def, op_as_def, op, def_as_op);
1149       } else {
1150          bld.vop2(aco_opcode::v_xor_b32, op_as_def, op, def_as_op);
1151          bld.vop2(aco_opcode::v_xor_b32, def, op, def_as_op);
1152          bld.vop2(aco_opcode::v_xor_b32, op_as_def, op, def_as_op);
1153       }
1154 
1155       bld.sop1(Builder::s_not, Definition(exec, bld.lm), Definition(scc, s1),
1156                Operand(exec, bld.lm));
1157    }
1158 
1159    if (preserve_scc)
1160       bld.sopc(aco_opcode::s_cmp_lg_i32, Definition(scc, s1), Operand(scratch_sgpr, s1),
1161                Operand::zero());
1162 }
1163 
1164 bool
do_copy(lower_context * ctx,Builder & bld,const copy_operation & copy,bool * preserve_scc,PhysReg scratch_sgpr)1165 do_copy(lower_context* ctx, Builder& bld, const copy_operation& copy, bool* preserve_scc,
1166         PhysReg scratch_sgpr)
1167 {
1168    bool did_copy = false;
1169    for (unsigned offset = 0; offset < copy.bytes;) {
1170       if (copy.uses[offset]) {
1171          offset++;
1172          continue;
1173       }
1174 
1175       Definition def;
1176       Operand op;
1177       split_copy(ctx, offset, &def, &op, copy, false, 8);
1178 
1179       if (def.physReg() == scc) {
1180          bld.sopc(aco_opcode::s_cmp_lg_i32, def, op, Operand::zero());
1181          *preserve_scc = true;
1182       } else if (op.isConstant()) {
1183          copy_constant(ctx, bld, def, op);
1184       } else if (def.regClass().is_linear_vgpr()) {
1185          copy_linear_vgpr(bld, def, op, *preserve_scc, scratch_sgpr);
1186       } else if (def.regClass() == v1) {
1187          bld.vop1(aco_opcode::v_mov_b32, def, op);
1188       } else if (def.regClass() == v2) {
1189          bld.vop3(aco_opcode::v_lshrrev_b64, def, Operand::zero(), op);
1190       } else if (def.regClass() == s1) {
1191          bld.sop1(aco_opcode::s_mov_b32, def, op);
1192       } else if (def.regClass() == s2) {
1193          bld.sop1(aco_opcode::s_mov_b64, def, op);
1194       } else if (def.regClass().is_subdword() && ctx->program->chip_class < GFX8) {
1195          if (op.physReg().byte()) {
1196             assert(def.physReg().byte() == 0);
1197             bld.vop2(aco_opcode::v_lshrrev_b32, def, Operand::c32(op.physReg().byte() * 8), op);
1198          } else if (def.physReg().byte()) {
1199             assert(op.physReg().byte() == 0);
1200             /* preserve the target's lower half */
1201             uint32_t bits = def.physReg().byte() * 8;
1202             PhysReg lo_reg = PhysReg(def.physReg().reg());
1203             Definition lo_half =
1204                Definition(lo_reg, RegClass::get(RegType::vgpr, def.physReg().byte()));
1205             Definition dst =
1206                Definition(lo_reg, RegClass::get(RegType::vgpr, lo_half.bytes() + op.bytes()));
1207 
1208             if (def.physReg().reg() == op.physReg().reg()) {
1209                bld.vop2(aco_opcode::v_and_b32, lo_half, Operand::c32((1 << bits) - 1u),
1210                         Operand(lo_reg, lo_half.regClass()));
1211                if (def.physReg().byte() == 1) {
1212                   bld.vop2(aco_opcode::v_mul_u32_u24, dst, Operand::c32((1 << bits) + 1u), op);
1213                } else if (def.physReg().byte() == 2) {
1214                   bld.vop2(aco_opcode::v_cvt_pk_u16_u32, dst, Operand(lo_reg, v2b), op);
1215                } else if (def.physReg().byte() == 3) {
1216                   bld.sop1(aco_opcode::s_mov_b32, Definition(scratch_sgpr, s1),
1217                            Operand::c32((1 << bits) + 1u));
1218                   bld.vop3(aco_opcode::v_mul_lo_u32, dst, Operand(scratch_sgpr, s1), op);
1219                }
1220             } else {
1221                lo_half.setFixed(lo_half.physReg().advance(4 - def.physReg().byte()));
1222                bld.vop2(aco_opcode::v_lshlrev_b32, lo_half, Operand::c32(32 - bits),
1223                         Operand(lo_reg, lo_half.regClass()));
1224                bld.vop3(aco_opcode::v_alignbyte_b32, dst, op,
1225                         Operand(lo_half.physReg(), lo_half.regClass()),
1226                         Operand::c32(4 - def.physReg().byte()));
1227             }
1228          } else {
1229             bld.vop1(aco_opcode::v_mov_b32, def, op);
1230          }
1231       } else if (def.regClass().is_subdword()) {
1232          bld.vop1_sdwa(aco_opcode::v_mov_b32, def, op);
1233       } else {
1234          unreachable("unsupported copy");
1235       }
1236 
1237       did_copy = true;
1238       offset += def.bytes();
1239    }
1240    return did_copy;
1241 }
1242 
1243 void
do_swap(lower_context * ctx,Builder & bld,const copy_operation & copy,bool preserve_scc,Pseudo_instruction * pi)1244 do_swap(lower_context* ctx, Builder& bld, const copy_operation& copy, bool preserve_scc,
1245         Pseudo_instruction* pi)
1246 {
1247    unsigned offset = 0;
1248 
1249    if (copy.bytes == 3 && (copy.def.physReg().reg_b % 4 <= 1) &&
1250        (copy.def.physReg().reg_b % 4) == (copy.op.physReg().reg_b % 4)) {
1251       /* instead of doing a 2-byte and 1-byte swap, do a 4-byte swap and then fixup with a 1-byte
1252        * swap */
1253       PhysReg op = copy.op.physReg();
1254       PhysReg def = copy.def.physReg();
1255       op.reg_b &= ~0x3;
1256       def.reg_b &= ~0x3;
1257 
1258       copy_operation tmp;
1259       tmp.op = Operand(op, v1);
1260       tmp.def = Definition(def, v1);
1261       tmp.bytes = 4;
1262       memset(tmp.uses, 1, 4);
1263       do_swap(ctx, bld, tmp, preserve_scc, pi);
1264 
1265       op.reg_b += copy.def.physReg().reg_b % 4 == 0 ? 3 : 0;
1266       def.reg_b += copy.def.physReg().reg_b % 4 == 0 ? 3 : 0;
1267       tmp.op = Operand(op, v1b);
1268       tmp.def = Definition(def, v1b);
1269       tmp.bytes = 1;
1270       tmp.uses[0] = 1;
1271       do_swap(ctx, bld, tmp, preserve_scc, pi);
1272 
1273       offset = copy.bytes;
1274    }
1275 
1276    for (; offset < copy.bytes;) {
1277       Definition def;
1278       Operand op;
1279       unsigned max_size = copy.def.regClass().type() == RegType::vgpr ? 4 : 8;
1280       split_copy(ctx, offset, &def, &op, copy, true, max_size);
1281 
1282       assert(op.regClass() == def.regClass());
1283       Operand def_as_op = Operand(def.physReg(), def.regClass());
1284       Definition op_as_def = Definition(op.physReg(), op.regClass());
1285       if (def.regClass().is_linear_vgpr()) {
1286          swap_linear_vgpr(bld, def, op, preserve_scc, pi->scratch_sgpr);
1287       } else if (ctx->program->chip_class >= GFX9 && def.regClass() == v1) {
1288          bld.vop1(aco_opcode::v_swap_b32, def, op_as_def, op, def_as_op);
1289       } else if (def.regClass() == v1) {
1290          assert(def.physReg().byte() == 0 && op.physReg().byte() == 0);
1291          bld.vop2(aco_opcode::v_xor_b32, op_as_def, op, def_as_op);
1292          bld.vop2(aco_opcode::v_xor_b32, def, op, def_as_op);
1293          bld.vop2(aco_opcode::v_xor_b32, op_as_def, op, def_as_op);
1294       } else if (op.physReg() == scc || def.physReg() == scc) {
1295          /* we need to swap scc and another sgpr */
1296          assert(!preserve_scc);
1297 
1298          PhysReg other = op.physReg() == scc ? def.physReg() : op.physReg();
1299 
1300          bld.sop1(aco_opcode::s_mov_b32, Definition(pi->scratch_sgpr, s1), Operand(scc, s1));
1301          bld.sopc(aco_opcode::s_cmp_lg_i32, Definition(scc, s1), Operand(other, s1),
1302                   Operand::zero());
1303          bld.sop1(aco_opcode::s_mov_b32, Definition(other, s1), Operand(pi->scratch_sgpr, s1));
1304       } else if (def.regClass() == s1) {
1305          if (preserve_scc) {
1306             bld.sop1(aco_opcode::s_mov_b32, Definition(pi->scratch_sgpr, s1), op);
1307             bld.sop1(aco_opcode::s_mov_b32, op_as_def, def_as_op);
1308             bld.sop1(aco_opcode::s_mov_b32, def, Operand(pi->scratch_sgpr, s1));
1309          } else {
1310             bld.sop2(aco_opcode::s_xor_b32, op_as_def, Definition(scc, s1), op, def_as_op);
1311             bld.sop2(aco_opcode::s_xor_b32, def, Definition(scc, s1), op, def_as_op);
1312             bld.sop2(aco_opcode::s_xor_b32, op_as_def, Definition(scc, s1), op, def_as_op);
1313          }
1314       } else if (def.regClass() == s2) {
1315          if (preserve_scc)
1316             bld.sop1(aco_opcode::s_mov_b32, Definition(pi->scratch_sgpr, s1), Operand(scc, s1));
1317          bld.sop2(aco_opcode::s_xor_b64, op_as_def, Definition(scc, s1), op, def_as_op);
1318          bld.sop2(aco_opcode::s_xor_b64, def, Definition(scc, s1), op, def_as_op);
1319          bld.sop2(aco_opcode::s_xor_b64, op_as_def, Definition(scc, s1), op, def_as_op);
1320          if (preserve_scc)
1321             bld.sopc(aco_opcode::s_cmp_lg_i32, Definition(scc, s1), Operand(pi->scratch_sgpr, s1),
1322                      Operand::zero());
1323       } else if (def.bytes() == 2 && def.physReg().reg() == op.physReg().reg()) {
1324          bld.vop3(aco_opcode::v_alignbyte_b32, Definition(def.physReg(), v1), def_as_op, op,
1325                   Operand::c32(2u));
1326       } else {
1327          assert(def.regClass().is_subdword());
1328          bld.vop2_sdwa(aco_opcode::v_xor_b32, op_as_def, op, def_as_op);
1329          bld.vop2_sdwa(aco_opcode::v_xor_b32, def, op, def_as_op);
1330          bld.vop2_sdwa(aco_opcode::v_xor_b32, op_as_def, op, def_as_op);
1331       }
1332 
1333       offset += def.bytes();
1334    }
1335 
1336    if (ctx->program->chip_class <= GFX7)
1337       return;
1338 
1339    /* fixup in case we swapped bytes we shouldn't have */
1340    copy_operation tmp_copy = copy;
1341    tmp_copy.op.setFixed(copy.def.physReg());
1342    tmp_copy.def.setFixed(copy.op.physReg());
1343    do_copy(ctx, bld, tmp_copy, &preserve_scc, pi->scratch_sgpr);
1344 }
1345 
1346 void
do_pack_2x16(lower_context * ctx,Builder & bld,Definition def,Operand lo,Operand hi)1347 do_pack_2x16(lower_context* ctx, Builder& bld, Definition def, Operand lo, Operand hi)
1348 {
1349    if (lo.isConstant() && hi.isConstant()) {
1350       copy_constant(ctx, bld, def, Operand::c32(lo.constantValue() | (hi.constantValue() << 16)));
1351       return;
1352    }
1353 
1354    bool can_use_pack = (ctx->block->fp_mode.denorm16_64 & fp_denorm_keep_in) &&
1355                        (ctx->program->chip_class >= GFX10 ||
1356                         (ctx->program->chip_class >= GFX9 && !lo.isLiteral() && !hi.isLiteral()));
1357 
1358    if (can_use_pack) {
1359       Instruction* instr = bld.vop3(aco_opcode::v_pack_b32_f16, def, lo, hi);
1360       /* opsel: 0 = select low half, 1 = select high half. [0] = src0, [1] = src1 */
1361       instr->vop3().opsel = hi.physReg().byte() | (lo.physReg().byte() >> 1);
1362       return;
1363    }
1364 
1365    /* a single alignbyte can be sufficient: hi can be a 32-bit integer constant */
1366    if (lo.physReg().byte() == 2 && hi.physReg().byte() == 0 &&
1367        (!hi.isConstant() || !Operand::c32(hi.constantValue()).isLiteral() ||
1368         ctx->program->chip_class >= GFX10)) {
1369       bld.vop3(aco_opcode::v_alignbyte_b32, def, hi, lo, Operand::c32(2u));
1370       return;
1371    }
1372 
1373    Definition def_lo = Definition(def.physReg(), v2b);
1374    Definition def_hi = Definition(def.physReg().advance(2), v2b);
1375 
1376    if (lo.isConstant()) {
1377       /* move hi and zero low bits */
1378       if (hi.physReg().byte() == 0)
1379          bld.vop2(aco_opcode::v_lshlrev_b32, def_hi, Operand::c32(16u), hi);
1380       else
1381          bld.vop2(aco_opcode::v_and_b32, def_hi, Operand::c32(~0xFFFFu), hi);
1382       bld.vop2(aco_opcode::v_or_b32, def, Operand::c32(lo.constantValue()),
1383                Operand(def.physReg(), v1));
1384       return;
1385    }
1386    if (hi.isConstant()) {
1387       /* move lo and zero high bits */
1388       if (lo.physReg().byte() == 2)
1389          bld.vop2(aco_opcode::v_lshrrev_b32, def_lo, Operand::c32(16u), lo);
1390       else
1391          bld.vop2(aco_opcode::v_and_b32, def_lo, Operand::c32(0xFFFFu), lo);
1392       bld.vop2(aco_opcode::v_or_b32, def, Operand::c32(hi.constantValue() << 16u),
1393                Operand(def.physReg(), v1));
1394       return;
1395    }
1396 
1397    if (lo.physReg().reg() == def.physReg().reg()) {
1398       /* lo is in the high bits of def */
1399       assert(lo.physReg().byte() == 2);
1400       bld.vop2(aco_opcode::v_lshrrev_b32, def_lo, Operand::c32(16u), lo);
1401       lo.setFixed(def.physReg());
1402    } else if (hi.physReg() == def.physReg()) {
1403       /* hi is in the low bits of def */
1404       assert(hi.physReg().byte() == 0);
1405       bld.vop2(aco_opcode::v_lshlrev_b32, def_hi, Operand::c32(16u), hi);
1406       hi.setFixed(def.physReg().advance(2));
1407    } else if (ctx->program->chip_class >= GFX8) {
1408       /* either lo or hi can be placed with just a v_mov */
1409       assert(lo.physReg().byte() == 0 || hi.physReg().byte() == 2);
1410       Operand& op = lo.physReg().byte() == 0 ? lo : hi;
1411       PhysReg reg = def.physReg().advance(op.physReg().byte());
1412       bld.vop1(aco_opcode::v_mov_b32, Definition(reg, v2b), op);
1413       op.setFixed(reg);
1414    }
1415 
1416    if (ctx->program->chip_class >= GFX8) {
1417       /* either hi or lo are already placed correctly */
1418       if (lo.physReg().reg() == def.physReg().reg())
1419          bld.vop1_sdwa(aco_opcode::v_mov_b32, def_hi, hi);
1420       else
1421          bld.vop1_sdwa(aco_opcode::v_mov_b32, def_lo, lo);
1422       return;
1423    }
1424 
1425    /* alignbyte needs the operands in the following way:
1426     * | xx hi | lo xx | >> 2 byte */
1427    if (lo.physReg().byte() != hi.physReg().byte()) {
1428       /* | xx lo | hi xx | => | lo hi | lo hi | */
1429       assert(lo.physReg().byte() == 0 && hi.physReg().byte() == 2);
1430       bld.vop3(aco_opcode::v_alignbyte_b32, def, lo, hi, Operand::c32(2u));
1431       lo = Operand(def_hi.physReg(), v2b);
1432       hi = Operand(def_lo.physReg(), v2b);
1433    } else if (lo.physReg().byte() == 0) {
1434       /* | xx hi | xx lo | => | xx hi | lo 00 | */
1435       bld.vop2(aco_opcode::v_lshlrev_b32, def_hi, Operand::c32(16u), lo);
1436       lo = Operand(def_hi.physReg(), v2b);
1437    } else {
1438       /* | hi xx | lo xx | => | 00 hi | lo xx | */
1439       assert(hi.physReg().byte() == 2);
1440       bld.vop2(aco_opcode::v_lshrrev_b32, def_lo, Operand::c32(16u), hi);
1441       hi = Operand(def_lo.physReg(), v2b);
1442    }
1443    /* perform the alignbyte */
1444    bld.vop3(aco_opcode::v_alignbyte_b32, def, hi, lo, Operand::c32(2u));
1445 }
1446 
1447 void
try_coalesce_copies(lower_context * ctx,std::map<PhysReg,copy_operation> & copy_map,copy_operation & copy)1448 try_coalesce_copies(lower_context* ctx, std::map<PhysReg, copy_operation>& copy_map,
1449                     copy_operation& copy)
1450 {
1451    // TODO try more relaxed alignment for subdword copies
1452    unsigned next_def_align = util_next_power_of_two(copy.bytes + 1);
1453    unsigned next_op_align = next_def_align;
1454    if (copy.def.regClass().type() == RegType::vgpr)
1455       next_def_align = MIN2(next_def_align, 4);
1456    if (copy.op.regClass().type() == RegType::vgpr)
1457       next_op_align = MIN2(next_op_align, 4);
1458 
1459    if (copy.bytes >= 8 || copy.def.physReg().reg_b % next_def_align ||
1460        (!copy.op.isConstant() && copy.op.physReg().reg_b % next_op_align))
1461       return;
1462 
1463    auto other = copy_map.find(copy.def.physReg().advance(copy.bytes));
1464    if (other == copy_map.end() || copy.bytes + other->second.bytes > 8 ||
1465        copy.op.isConstant() != other->second.op.isConstant())
1466       return;
1467 
1468    /* don't create 64-bit copies before GFX10 */
1469    if (copy.bytes >= 4 && copy.def.regClass().type() == RegType::vgpr &&
1470        ctx->program->chip_class < GFX10)
1471       return;
1472 
1473    unsigned new_size = copy.bytes + other->second.bytes;
1474    if (copy.op.isConstant()) {
1475       uint64_t val =
1476          copy.op.constantValue64() | (other->second.op.constantValue64() << (copy.bytes * 8u));
1477       if (!util_is_power_of_two_or_zero(new_size))
1478          return;
1479       if (!Operand::is_constant_representable(val, new_size, true,
1480                                               copy.def.regClass().type() == RegType::vgpr))
1481          return;
1482       copy.op = Operand::get_const(ctx->program->chip_class, val, new_size);
1483    } else {
1484       if (other->second.op.physReg() != copy.op.physReg().advance(copy.bytes))
1485          return;
1486       copy.op = Operand(copy.op.physReg(), copy.op.regClass().resize(new_size));
1487    }
1488 
1489    copy.bytes = new_size;
1490    copy.def = Definition(copy.def.physReg(), copy.def.regClass().resize(copy.bytes));
1491    copy_map.erase(other);
1492 }
1493 
1494 void
handle_operands(std::map<PhysReg,copy_operation> & copy_map,lower_context * ctx,chip_class chip_class,Pseudo_instruction * pi)1495 handle_operands(std::map<PhysReg, copy_operation>& copy_map, lower_context* ctx,
1496                 chip_class chip_class, Pseudo_instruction* pi)
1497 {
1498    Builder bld(ctx->program, &ctx->instructions);
1499    unsigned num_instructions_before = ctx->instructions.size();
1500    aco_ptr<Instruction> mov;
1501    bool writes_scc = false;
1502 
1503    /* count the number of uses for each dst reg */
1504    for (auto it = copy_map.begin(); it != copy_map.end();) {
1505 
1506       if (it->second.def.physReg() == scc)
1507          writes_scc = true;
1508 
1509       assert(!pi->tmp_in_scc || !(it->second.def.physReg() == pi->scratch_sgpr));
1510 
1511       /* if src and dst reg are the same, remove operation */
1512       if (it->first == it->second.op.physReg()) {
1513          it = copy_map.erase(it);
1514          continue;
1515       }
1516 
1517       /* split large copies */
1518       if (it->second.bytes > 8) {
1519          assert(!it->second.op.isConstant());
1520          assert(!it->second.def.regClass().is_subdword());
1521          RegClass rc = RegClass(it->second.def.regClass().type(), it->second.def.size() - 2);
1522          Definition hi_def = Definition(PhysReg{it->first + 2}, rc);
1523          rc = RegClass(it->second.op.regClass().type(), it->second.op.size() - 2);
1524          Operand hi_op = Operand(PhysReg{it->second.op.physReg() + 2}, rc);
1525          copy_operation copy = {hi_op, hi_def, it->second.bytes - 8};
1526          copy_map[hi_def.physReg()] = copy;
1527          assert(it->second.op.physReg().byte() == 0 && it->second.def.physReg().byte() == 0);
1528          it->second.op = Operand(it->second.op.physReg(),
1529                                  it->second.op.regClass().type() == RegType::sgpr ? s2 : v2);
1530          it->second.def = Definition(it->second.def.physReg(),
1531                                      it->second.def.regClass().type() == RegType::sgpr ? s2 : v2);
1532          it->second.bytes = 8;
1533       }
1534 
1535       try_coalesce_copies(ctx, copy_map, it->second);
1536 
1537       /* check if the definition reg is used by another copy operation */
1538       for (std::pair<const PhysReg, copy_operation>& copy : copy_map) {
1539          if (copy.second.op.isConstant())
1540             continue;
1541          for (uint16_t i = 0; i < it->second.bytes; i++) {
1542             /* distance might underflow */
1543             unsigned distance = it->first.reg_b + i - copy.second.op.physReg().reg_b;
1544             if (distance < copy.second.bytes)
1545                it->second.uses[i] += 1;
1546          }
1547       }
1548 
1549       ++it;
1550    }
1551 
1552    /* first, handle paths in the location transfer graph */
1553    bool preserve_scc = pi->tmp_in_scc && !writes_scc;
1554    bool skip_partial_copies = true;
1555    for (auto it = copy_map.begin();;) {
1556       if (copy_map.empty()) {
1557          ctx->program->statistics[statistic_copies] +=
1558             ctx->instructions.size() - num_instructions_before;
1559          return;
1560       }
1561       if (it == copy_map.end()) {
1562          if (!skip_partial_copies)
1563             break;
1564          skip_partial_copies = false;
1565          it = copy_map.begin();
1566       }
1567 
1568       /* check if we can pack one register at once */
1569       if (it->first.byte() == 0 && it->second.bytes == 2) {
1570          PhysReg reg_hi = it->first.advance(2);
1571          std::map<PhysReg, copy_operation>::iterator other = copy_map.find(reg_hi);
1572          if (other != copy_map.end() && other->second.bytes == 2) {
1573             /* check if the target register is otherwise unused */
1574             bool unused_lo = !it->second.is_used || (it->second.is_used == 0x0101 &&
1575                                                      other->second.op.physReg() == it->first);
1576             bool unused_hi = !other->second.is_used ||
1577                              (other->second.is_used == 0x0101 && it->second.op.physReg() == reg_hi);
1578             if (unused_lo && unused_hi) {
1579                Operand lo = it->second.op;
1580                Operand hi = other->second.op;
1581                do_pack_2x16(ctx, bld, Definition(it->first, v1), lo, hi);
1582                copy_map.erase(it);
1583                copy_map.erase(other);
1584 
1585                for (std::pair<const PhysReg, copy_operation>& other2 : copy_map) {
1586                   for (uint16_t i = 0; i < other2.second.bytes; i++) {
1587                      /* distance might underflow */
1588                      unsigned distance_lo = other2.first.reg_b + i - lo.physReg().reg_b;
1589                      unsigned distance_hi = other2.first.reg_b + i - hi.physReg().reg_b;
1590                      if (distance_lo < 2 || distance_hi < 2)
1591                         other2.second.uses[i] -= 1;
1592                   }
1593                }
1594                it = copy_map.begin();
1595                continue;
1596             }
1597          }
1598       }
1599 
1600       /* on GFX6/7, we need some small workarounds as there is no
1601        * SDWA instruction to do partial register writes */
1602       if (ctx->program->chip_class < GFX8 && it->second.bytes < 4) {
1603          if (it->first.byte() == 0 && it->second.op.physReg().byte() == 0 && !it->second.is_used &&
1604              pi->opcode == aco_opcode::p_split_vector) {
1605             /* Other operations might overwrite the high bits, so change all users
1606              * of the high bits to the new target where they are still available.
1607              * This mechanism depends on also emitting dead definitions. */
1608             PhysReg reg_hi = it->second.op.physReg().advance(it->second.bytes);
1609             while (reg_hi != PhysReg(it->second.op.physReg().reg() + 1)) {
1610                std::map<PhysReg, copy_operation>::iterator other = copy_map.begin();
1611                for (other = copy_map.begin(); other != copy_map.end(); other++) {
1612                   /* on GFX6/7, if the high bits are used as operand, they cannot be a target */
1613                   if (other->second.op.physReg() == reg_hi) {
1614                      other->second.op.setFixed(it->first.advance(reg_hi.byte()));
1615                      break; /* break because an operand can only be used once */
1616                   }
1617                }
1618                reg_hi = reg_hi.advance(it->second.bytes);
1619             }
1620          } else if (it->first.byte()) {
1621             assert(pi->opcode == aco_opcode::p_create_vector);
1622             /* on GFX6/7, if we target an upper half where the lower half hasn't yet been handled,
1623              * move to the target operand's high bits. This is save to do as it cannot be an operand
1624              */
1625             PhysReg lo = PhysReg(it->first.reg());
1626             std::map<PhysReg, copy_operation>::iterator other = copy_map.find(lo);
1627             if (other != copy_map.end()) {
1628                assert(other->second.bytes == it->first.byte());
1629                PhysReg new_reg_hi = other->second.op.physReg().advance(it->first.byte());
1630                it->second.def = Definition(new_reg_hi, it->second.def.regClass());
1631                it->second.is_used = 0;
1632                other->second.bytes += it->second.bytes;
1633                other->second.def.setTemp(Temp(other->second.def.tempId(),
1634                                               RegClass::get(RegType::vgpr, other->second.bytes)));
1635                other->second.op.setTemp(Temp(other->second.op.tempId(),
1636                                              RegClass::get(RegType::vgpr, other->second.bytes)));
1637                /* if the new target's high bits are also a target, change uses */
1638                std::map<PhysReg, copy_operation>::iterator target = copy_map.find(new_reg_hi);
1639                if (target != copy_map.end()) {
1640                   for (unsigned i = 0; i < it->second.bytes; i++)
1641                      target->second.uses[i]++;
1642                }
1643             }
1644          }
1645       }
1646 
1647       /* find portions where the target reg is not used as operand for any other copy */
1648       if (it->second.is_used) {
1649          if (it->second.op.isConstant() || skip_partial_copies) {
1650             /* we have to skip constants until is_used=0.
1651              * we also skip partial copies at the beginning to help coalescing */
1652             ++it;
1653             continue;
1654          }
1655 
1656          unsigned has_zero_use_bytes = 0;
1657          for (unsigned i = 0; i < it->second.bytes; i++)
1658             has_zero_use_bytes |= (it->second.uses[i] == 0) << i;
1659 
1660          if (has_zero_use_bytes) {
1661             /* Skipping partial copying and doing a v_swap_b32 and then fixup
1662              * copies is usually beneficial for sub-dword copies, but if doing
1663              * a partial copy allows further copies, it should be done instead. */
1664             bool partial_copy = (has_zero_use_bytes == 0xf) || (has_zero_use_bytes == 0xf0);
1665             for (std::pair<const PhysReg, copy_operation>& copy : copy_map) {
1666                /* on GFX6/7, we can only do copies with full registers */
1667                if (partial_copy || ctx->program->chip_class <= GFX7)
1668                   break;
1669                for (uint16_t i = 0; i < copy.second.bytes; i++) {
1670                   /* distance might underflow */
1671                   unsigned distance = copy.first.reg_b + i - it->second.op.physReg().reg_b;
1672                   if (distance < it->second.bytes && copy.second.uses[i] == 1 &&
1673                       !it->second.uses[distance])
1674                      partial_copy = true;
1675                }
1676             }
1677 
1678             if (!partial_copy) {
1679                ++it;
1680                continue;
1681             }
1682          } else {
1683             /* full target reg is used: register swapping needed */
1684             ++it;
1685             continue;
1686          }
1687       }
1688 
1689       bool did_copy = do_copy(ctx, bld, it->second, &preserve_scc, pi->scratch_sgpr);
1690       skip_partial_copies = did_copy;
1691       std::pair<PhysReg, copy_operation> copy = *it;
1692 
1693       if (it->second.is_used == 0) {
1694          /* the target reg is not used as operand for any other copy, so we
1695           * copied to all of it */
1696          copy_map.erase(it);
1697          it = copy_map.begin();
1698       } else {
1699          /* we only performed some portions of this copy, so split it to only
1700           * leave the portions that still need to be done */
1701          copy_operation original = it->second; /* the map insertion below can overwrite this */
1702          copy_map.erase(it);
1703          for (unsigned offset = 0; offset < original.bytes;) {
1704             if (original.uses[offset] == 0) {
1705                offset++;
1706                continue;
1707             }
1708             Definition def;
1709             Operand op;
1710             split_copy(ctx, offset, &def, &op, original, false, 8);
1711 
1712             copy_operation new_copy = {op, def, def.bytes()};
1713             for (unsigned i = 0; i < new_copy.bytes; i++)
1714                new_copy.uses[i] = original.uses[i + offset];
1715             copy_map[def.physReg()] = new_copy;
1716 
1717             offset += def.bytes();
1718          }
1719 
1720          it = copy_map.begin();
1721       }
1722 
1723       /* Reduce the number of uses of the operand reg by one. Do this after
1724        * splitting the copy or removing it in case the copy writes to it's own
1725        * operand (for example, v[7:8] = v[8:9]) */
1726       if (did_copy && !copy.second.op.isConstant()) {
1727          for (std::pair<const PhysReg, copy_operation>& other : copy_map) {
1728             for (uint16_t i = 0; i < other.second.bytes; i++) {
1729                /* distance might underflow */
1730                unsigned distance = other.first.reg_b + i - copy.second.op.physReg().reg_b;
1731                if (distance < copy.second.bytes && !copy.second.uses[distance])
1732                   other.second.uses[i] -= 1;
1733             }
1734          }
1735       }
1736    }
1737 
1738    /* all target regs are needed as operand somewhere which means, all entries are part of a cycle */
1739    unsigned largest = 0;
1740    for (const std::pair<const PhysReg, copy_operation>& op : copy_map)
1741       largest = MAX2(largest, op.second.bytes);
1742 
1743    while (!copy_map.empty()) {
1744 
1745       /* Perform larger swaps first, because larger swaps swaps can make other
1746        * swaps unnecessary. */
1747       auto it = copy_map.begin();
1748       for (auto it2 = copy_map.begin(); it2 != copy_map.end(); ++it2) {
1749          if (it2->second.bytes > it->second.bytes) {
1750             it = it2;
1751             if (it->second.bytes == largest)
1752                break;
1753          }
1754       }
1755 
1756       /* should already be done */
1757       assert(!it->second.op.isConstant());
1758 
1759       assert(it->second.op.isFixed());
1760       assert(it->second.def.regClass() == it->second.op.regClass());
1761 
1762       if (it->first == it->second.op.physReg()) {
1763          copy_map.erase(it);
1764          continue;
1765       }
1766 
1767       if (preserve_scc && it->second.def.getTemp().type() == RegType::sgpr)
1768          assert(!(it->second.def.physReg() == pi->scratch_sgpr));
1769 
1770       /* to resolve the cycle, we have to swap the src reg with the dst reg */
1771       copy_operation swap = it->second;
1772 
1773       /* if this is self-intersecting, we have to split it because
1774        * self-intersecting swaps don't make sense */
1775       PhysReg src = swap.op.physReg(), dst = swap.def.physReg();
1776       if (abs((int)src.reg_b - (int)dst.reg_b) < (int)swap.bytes) {
1777          unsigned offset = abs((int)src.reg_b - (int)dst.reg_b);
1778 
1779          copy_operation remaining;
1780          src.reg_b += offset;
1781          dst.reg_b += offset;
1782          remaining.bytes = swap.bytes - offset;
1783          memcpy(remaining.uses, swap.uses + offset, remaining.bytes);
1784          remaining.op = Operand(src, swap.def.regClass().resize(remaining.bytes));
1785          remaining.def = Definition(dst, swap.def.regClass().resize(remaining.bytes));
1786          copy_map[dst] = remaining;
1787 
1788          memset(swap.uses + offset, 0, swap.bytes - offset);
1789          swap.bytes = offset;
1790       }
1791 
1792       /* GFX6-7 can only swap full registers */
1793       if (ctx->program->chip_class <= GFX7)
1794          swap.bytes = align(swap.bytes, 4);
1795 
1796       do_swap(ctx, bld, swap, preserve_scc, pi);
1797 
1798       /* remove from map */
1799       copy_map.erase(it);
1800 
1801       /* change the operand reg of the target's uses and split uses if needed */
1802       uint32_t bytes_left = u_bit_consecutive(0, swap.bytes);
1803       for (auto target = copy_map.begin(); target != copy_map.end(); ++target) {
1804          if (target->second.op.physReg() == swap.def.physReg() &&
1805              swap.bytes == target->second.bytes) {
1806             target->second.op.setFixed(swap.op.physReg());
1807             break;
1808          }
1809 
1810          uint32_t imask =
1811             get_intersection_mask(swap.def.physReg().reg_b, swap.bytes,
1812                                   target->second.op.physReg().reg_b, target->second.bytes);
1813 
1814          if (!imask)
1815             continue;
1816 
1817          int offset = (int)target->second.op.physReg().reg_b - (int)swap.def.physReg().reg_b;
1818 
1819          /* split and update the middle (the portion that reads the swap's
1820           * definition) to read the swap's operand instead */
1821          int target_op_end = target->second.op.physReg().reg_b + target->second.bytes;
1822          int swap_def_end = swap.def.physReg().reg_b + swap.bytes;
1823          int before_bytes = MAX2(-offset, 0);
1824          int after_bytes = MAX2(target_op_end - swap_def_end, 0);
1825          int middle_bytes = target->second.bytes - before_bytes - after_bytes;
1826 
1827          if (after_bytes) {
1828             unsigned after_offset = before_bytes + middle_bytes;
1829             assert(after_offset > 0);
1830             copy_operation copy;
1831             copy.bytes = after_bytes;
1832             memcpy(copy.uses, target->second.uses + after_offset, copy.bytes);
1833             RegClass rc = target->second.op.regClass().resize(after_bytes);
1834             copy.op = Operand(target->second.op.physReg().advance(after_offset), rc);
1835             copy.def = Definition(target->second.def.physReg().advance(after_offset), rc);
1836             copy_map[copy.def.physReg()] = copy;
1837          }
1838 
1839          if (middle_bytes) {
1840             copy_operation copy;
1841             copy.bytes = middle_bytes;
1842             memcpy(copy.uses, target->second.uses + before_bytes, copy.bytes);
1843             RegClass rc = target->second.op.regClass().resize(middle_bytes);
1844             copy.op = Operand(swap.op.physReg().advance(MAX2(offset, 0)), rc);
1845             copy.def = Definition(target->second.def.physReg().advance(before_bytes), rc);
1846             copy_map[copy.def.physReg()] = copy;
1847          }
1848 
1849          if (before_bytes) {
1850             copy_operation copy;
1851             target->second.bytes = before_bytes;
1852             RegClass rc = target->second.op.regClass().resize(before_bytes);
1853             target->second.op = Operand(target->second.op.physReg(), rc);
1854             target->second.def = Definition(target->second.def.physReg(), rc);
1855             memset(target->second.uses + target->second.bytes, 0, 8 - target->second.bytes);
1856          }
1857 
1858          /* break early since we know each byte of the swap's definition is used
1859           * at most once */
1860          bytes_left &= ~imask;
1861          if (!bytes_left)
1862             break;
1863       }
1864    }
1865    ctx->program->statistics[statistic_copies] += ctx->instructions.size() - num_instructions_before;
1866 }
1867 
1868 void
emit_set_mode(Builder & bld,float_mode new_mode,bool set_round,bool set_denorm)1869 emit_set_mode(Builder& bld, float_mode new_mode, bool set_round, bool set_denorm)
1870 {
1871    if (bld.program->chip_class >= GFX10) {
1872       if (set_round)
1873          bld.sopp(aco_opcode::s_round_mode, -1, new_mode.round);
1874       if (set_denorm)
1875          bld.sopp(aco_opcode::s_denorm_mode, -1, new_mode.denorm);
1876    } else if (set_round || set_denorm) {
1877       /* "((size - 1) << 11) | register" (MODE is encoded as register 1) */
1878       Instruction* instr =
1879          bld.sopk(aco_opcode::s_setreg_imm32_b32, Operand::c8(new_mode.val), (7 << 11) | 1).instr;
1880       /* has to be a literal */
1881       instr->operands[0].setFixed(PhysReg{255});
1882    }
1883 }
1884 
1885 void
emit_set_mode_from_block(Builder & bld,Program & program,Block * block,bool always_set)1886 emit_set_mode_from_block(Builder& bld, Program& program, Block* block, bool always_set)
1887 {
1888    float_mode config_mode;
1889    config_mode.val = program.config->float_mode;
1890 
1891    bool set_round = always_set && block->fp_mode.round != config_mode.round;
1892    bool set_denorm = always_set && block->fp_mode.denorm != config_mode.denorm;
1893    if (block->kind & block_kind_top_level) {
1894       for (unsigned pred : block->linear_preds) {
1895          if (program.blocks[pred].fp_mode.round != block->fp_mode.round)
1896             set_round = true;
1897          if (program.blocks[pred].fp_mode.denorm != block->fp_mode.denorm)
1898             set_denorm = true;
1899       }
1900    }
1901    /* only allow changing modes at top-level blocks so this doesn't break
1902     * the "jump over empty blocks" optimization */
1903    assert((!set_round && !set_denorm) || (block->kind & block_kind_top_level));
1904    emit_set_mode(bld, block->fp_mode, set_round, set_denorm);
1905 }
1906 
1907 void
lower_to_hw_instr(Program * program)1908 lower_to_hw_instr(Program* program)
1909 {
1910    Block* discard_block = NULL;
1911 
1912    for (int block_idx = program->blocks.size() - 1; block_idx >= 0; block_idx--) {
1913       Block* block = &program->blocks[block_idx];
1914       lower_context ctx;
1915       ctx.program = program;
1916       ctx.block = block;
1917       Builder bld(program, &ctx.instructions);
1918 
1919       emit_set_mode_from_block(bld, *program, block, (block_idx == 0));
1920 
1921       for (size_t instr_idx = 0; instr_idx < block->instructions.size(); instr_idx++) {
1922          aco_ptr<Instruction>& instr = block->instructions[instr_idx];
1923          aco_ptr<Instruction> mov;
1924          if (instr->isPseudo() && instr->opcode != aco_opcode::p_unit_test) {
1925             Pseudo_instruction* pi = &instr->pseudo();
1926 
1927             switch (instr->opcode) {
1928             case aco_opcode::p_extract_vector: {
1929                PhysReg reg = instr->operands[0].physReg();
1930                Definition& def = instr->definitions[0];
1931                reg.reg_b += instr->operands[1].constantValue() * def.bytes();
1932 
1933                if (reg == def.physReg())
1934                   break;
1935 
1936                RegClass op_rc = def.regClass().is_subdword()
1937                                    ? def.regClass()
1938                                    : RegClass(instr->operands[0].getTemp().type(), def.size());
1939                std::map<PhysReg, copy_operation> copy_operations;
1940                copy_operations[def.physReg()] = {Operand(reg, op_rc), def, def.bytes()};
1941                handle_operands(copy_operations, &ctx, program->chip_class, pi);
1942                break;
1943             }
1944             case aco_opcode::p_create_vector: {
1945                std::map<PhysReg, copy_operation> copy_operations;
1946                PhysReg reg = instr->definitions[0].physReg();
1947 
1948                for (const Operand& op : instr->operands) {
1949                   if (op.isConstant()) {
1950                      const Definition def = Definition(
1951                         reg, instr->definitions[0].getTemp().regClass().resize(op.bytes()));
1952                      copy_operations[reg] = {op, def, op.bytes()};
1953                      reg.reg_b += op.bytes();
1954                      continue;
1955                   }
1956                   if (op.isUndefined()) {
1957                      // TODO: coalesce subdword copies if dst byte is 0
1958                      reg.reg_b += op.bytes();
1959                      continue;
1960                   }
1961 
1962                   RegClass rc_def =
1963                      op.regClass().is_subdword()
1964                         ? op.regClass()
1965                         : instr->definitions[0].getTemp().regClass().resize(op.bytes());
1966                   const Definition def = Definition(reg, rc_def);
1967                   copy_operations[def.physReg()] = {op, def, op.bytes()};
1968                   reg.reg_b += op.bytes();
1969                }
1970                handle_operands(copy_operations, &ctx, program->chip_class, pi);
1971                break;
1972             }
1973             case aco_opcode::p_split_vector: {
1974                std::map<PhysReg, copy_operation> copy_operations;
1975                PhysReg reg = instr->operands[0].physReg();
1976 
1977                for (const Definition& def : instr->definitions) {
1978                   RegClass rc_op = def.regClass().is_subdword()
1979                                       ? def.regClass()
1980                                       : instr->operands[0].getTemp().regClass().resize(def.bytes());
1981                   const Operand op = Operand(reg, rc_op);
1982                   copy_operations[def.physReg()] = {op, def, def.bytes()};
1983                   reg.reg_b += def.bytes();
1984                }
1985                handle_operands(copy_operations, &ctx, program->chip_class, pi);
1986                break;
1987             }
1988             case aco_opcode::p_parallelcopy:
1989             case aco_opcode::p_wqm: {
1990                std::map<PhysReg, copy_operation> copy_operations;
1991                for (unsigned j = 0; j < instr->operands.size(); j++) {
1992                   assert(instr->definitions[j].bytes() == instr->operands[j].bytes());
1993                   copy_operations[instr->definitions[j].physReg()] = {
1994                      instr->operands[j], instr->definitions[j], instr->operands[j].bytes()};
1995                }
1996                handle_operands(copy_operations, &ctx, program->chip_class, pi);
1997                break;
1998             }
1999             case aco_opcode::p_exit_early_if: {
2000                /* don't bother with an early exit near the end of the program */
2001                if ((block->instructions.size() - 1 - instr_idx) <= 4 &&
2002                    block->instructions.back()->opcode == aco_opcode::s_endpgm) {
2003                   unsigned null_exp_dest =
2004                      (ctx.program->stage.hw == HWStage::FS) ? 9 /* NULL */ : V_008DFC_SQ_EXP_POS;
2005                   bool ignore_early_exit = true;
2006 
2007                   for (unsigned k = instr_idx + 1; k < block->instructions.size(); ++k) {
2008                      const aco_ptr<Instruction>& instr2 = block->instructions[k];
2009                      if (instr2->opcode == aco_opcode::s_endpgm ||
2010                          instr2->opcode == aco_opcode::p_logical_end)
2011                         continue;
2012                      else if (instr2->opcode == aco_opcode::exp &&
2013                               instr2->exp().dest == null_exp_dest)
2014                         continue;
2015                      else if (instr2->opcode == aco_opcode::p_parallelcopy &&
2016                               instr2->definitions[0].isFixed() &&
2017                               instr2->definitions[0].physReg() == exec)
2018                         continue;
2019 
2020                      ignore_early_exit = false;
2021                   }
2022 
2023                   if (ignore_early_exit)
2024                      break;
2025                }
2026 
2027                if (!discard_block) {
2028                   discard_block = program->create_and_insert_block();
2029                   block = &program->blocks[block_idx];
2030 
2031                   bld.reset(discard_block);
2032                   bld.exp(aco_opcode::exp, Operand(v1), Operand(v1), Operand(v1), Operand(v1), 0,
2033                           V_008DFC_SQ_EXP_NULL, false, true, true);
2034                   bld.sopp(aco_opcode::s_endpgm);
2035 
2036                   bld.reset(&ctx.instructions);
2037                }
2038 
2039                // TODO: exec can be zero here with block_kind_discard
2040 
2041                assert(instr->operands[0].physReg() == scc);
2042                bld.sopp(aco_opcode::s_cbranch_scc0, Definition(exec, s2), instr->operands[0],
2043                         discard_block->index);
2044 
2045                discard_block->linear_preds.push_back(block->index);
2046                block->linear_succs.push_back(discard_block->index);
2047                break;
2048             }
2049             case aco_opcode::p_spill: {
2050                assert(instr->operands[0].regClass() == v1.as_linear());
2051                for (unsigned i = 0; i < instr->operands[2].size(); i++) {
2052                   Operand src =
2053                      instr->operands[2].isConstant()
2054                         ? Operand::c32(uint32_t(instr->operands[2].constantValue64() >> (32 * i)))
2055                         : Operand(PhysReg{instr->operands[2].physReg() + i}, s1);
2056                   bld.writelane(bld.def(v1, instr->operands[0].physReg()), src,
2057                                 Operand::c32(instr->operands[1].constantValue() + i),
2058                                 instr->operands[0]);
2059                }
2060                break;
2061             }
2062             case aco_opcode::p_reload: {
2063                assert(instr->operands[0].regClass() == v1.as_linear());
2064                for (unsigned i = 0; i < instr->definitions[0].size(); i++)
2065                   bld.readlane(bld.def(s1, PhysReg{instr->definitions[0].physReg() + i}),
2066                                instr->operands[0],
2067                                Operand::c32(instr->operands[1].constantValue() + i));
2068                break;
2069             }
2070             case aco_opcode::p_as_uniform: {
2071                if (instr->operands[0].isConstant() ||
2072                    instr->operands[0].regClass().type() == RegType::sgpr) {
2073                   std::map<PhysReg, copy_operation> copy_operations;
2074                   copy_operations[instr->definitions[0].physReg()] = {
2075                      instr->operands[0], instr->definitions[0], instr->definitions[0].bytes()};
2076                   handle_operands(copy_operations, &ctx, program->chip_class, pi);
2077                } else {
2078                   assert(instr->operands[0].regClass().type() == RegType::vgpr);
2079                   assert(instr->definitions[0].regClass().type() == RegType::sgpr);
2080                   assert(instr->operands[0].size() == instr->definitions[0].size());
2081                   for (unsigned i = 0; i < instr->definitions[0].size(); i++) {
2082                      bld.vop1(aco_opcode::v_readfirstlane_b32,
2083                               bld.def(s1, PhysReg{instr->definitions[0].physReg() + i}),
2084                               Operand(PhysReg{instr->operands[0].physReg() + i}, v1));
2085                   }
2086                }
2087                break;
2088             }
2089             case aco_opcode::p_bpermute: {
2090                if (ctx.program->chip_class <= GFX7)
2091                   emit_gfx6_bpermute(program, instr, bld);
2092                else if (ctx.program->chip_class >= GFX10 && ctx.program->wave_size == 64)
2093                   emit_gfx10_wave64_bpermute(program, instr, bld);
2094                else
2095                   unreachable("Current hardware supports ds_bpermute, don't emit p_bpermute.");
2096                break;
2097             }
2098             case aco_opcode::p_constaddr: {
2099                unsigned id = instr->definitions[0].tempId();
2100                PhysReg reg = instr->definitions[0].physReg();
2101                bld.sop1(aco_opcode::p_constaddr_getpc, instr->definitions[0], Operand::c32(id));
2102                bld.sop2(aco_opcode::p_constaddr_addlo, Definition(reg, s1), bld.def(s1, scc),
2103                         Operand(reg, s1), Operand::c32(id));
2104                bld.sop2(aco_opcode::s_addc_u32, Definition(reg.advance(4), s1), bld.def(s1, scc),
2105                         Operand(reg.advance(4), s1), Operand::zero(), Operand(scc, s1));
2106                break;
2107             }
2108             case aco_opcode::p_extract: {
2109                assert(instr->operands[1].isConstant());
2110                assert(instr->operands[2].isConstant());
2111                assert(instr->operands[3].isConstant());
2112                if (instr->definitions[0].regClass() == s1)
2113                   assert(instr->definitions.size() >= 2 && instr->definitions[1].physReg() == scc);
2114                Definition dst = instr->definitions[0];
2115                Operand op = instr->operands[0];
2116                unsigned bits = instr->operands[2].constantValue();
2117                unsigned index = instr->operands[1].constantValue();
2118                unsigned offset = index * bits;
2119                bool signext = !instr->operands[3].constantEquals(0);
2120 
2121                if (dst.regClass() == s1) {
2122                   if (offset == (32 - bits)) {
2123                      bld.sop2(signext ? aco_opcode::s_ashr_i32 : aco_opcode::s_lshr_b32, dst,
2124                               bld.def(s1, scc), op, Operand::c32(offset));
2125                   } else if (offset == 0 && signext && (bits == 8 || bits == 16)) {
2126                      bld.sop1(bits == 8 ? aco_opcode::s_sext_i32_i8 : aco_opcode::s_sext_i32_i16,
2127                               dst, op);
2128                   } else {
2129                      bld.sop2(signext ? aco_opcode::s_bfe_i32 : aco_opcode::s_bfe_u32, dst,
2130                               bld.def(s1, scc), op, Operand::c32((bits << 16) | offset));
2131                   }
2132                } else if ((dst.regClass() == v1 && op.regClass() == v1) ||
2133                           ctx.program->chip_class <= GFX7) {
2134                   assert(op.physReg().byte() == 0 && dst.physReg().byte() == 0);
2135                   if (offset == (32 - bits) && op.regClass() != s1) {
2136                      bld.vop2(signext ? aco_opcode::v_ashrrev_i32 : aco_opcode::v_lshrrev_b32, dst,
2137                               Operand::c32(offset), op);
2138                   } else {
2139                      bld.vop3(signext ? aco_opcode::v_bfe_i32 : aco_opcode::v_bfe_u32, dst, op,
2140                               Operand::c32(offset), Operand::c32(bits));
2141                   }
2142                } else {
2143                   assert(dst.regClass() == v2b || dst.regClass() == v1b || op.regClass() == v2b ||
2144                          op.regClass() == v1b);
2145                   SDWA_instruction& sdwa =
2146                      bld.vop1_sdwa(aco_opcode::v_mov_b32, dst, op).instr->sdwa();
2147                   sdwa.sel[0] = SubdwordSel(bits / 8, offset / 8, signext);
2148                }
2149                break;
2150             }
2151             case aco_opcode::p_insert: {
2152                assert(instr->operands[1].isConstant());
2153                assert(instr->operands[2].isConstant());
2154                if (instr->definitions[0].regClass() == s1)
2155                   assert(instr->definitions.size() >= 2 && instr->definitions[1].physReg() == scc);
2156                Definition dst = instr->definitions[0];
2157                Operand op = instr->operands[0];
2158                unsigned bits = instr->operands[2].constantValue();
2159                unsigned index = instr->operands[1].constantValue();
2160                unsigned offset = index * bits;
2161 
2162                if (dst.regClass() == s1) {
2163                   if (offset == (32 - bits)) {
2164                      bld.sop2(aco_opcode::s_lshl_b32, dst, bld.def(s1, scc), op,
2165                               Operand::c32(offset));
2166                   } else if (offset == 0) {
2167                      bld.sop2(aco_opcode::s_bfe_u32, dst, bld.def(s1, scc), op,
2168                               Operand::c32(bits << 16));
2169                   } else {
2170                      bld.sop2(aco_opcode::s_bfe_u32, dst, bld.def(s1, scc), op,
2171                               Operand::c32(bits << 16));
2172                      bld.sop2(aco_opcode::s_lshl_b32, dst, bld.def(s1, scc),
2173                               Operand(dst.physReg(), s1), Operand::c32(offset));
2174                   }
2175                } else if (dst.regClass() == v1 || ctx.program->chip_class <= GFX7) {
2176                   if (offset == (dst.bytes() * 8u - bits)) {
2177                      bld.vop2(aco_opcode::v_lshlrev_b32, dst, Operand::c32(offset), op);
2178                   } else if (offset == 0) {
2179                      bld.vop3(aco_opcode::v_bfe_u32, dst, op, Operand::zero(), Operand::c32(bits));
2180                   } else if (program->chip_class >= GFX9 ||
2181                              (op.regClass() != s1 && program->chip_class >= GFX8)) {
2182                      bld.vop1_sdwa(aco_opcode::v_mov_b32, dst, op).instr->sdwa().dst_sel =
2183                         SubdwordSel(bits / 8, offset / 8, false);
2184                   } else {
2185                      bld.vop3(aco_opcode::v_bfe_u32, dst, op, Operand::zero(), Operand::c32(bits));
2186                      bld.vop2(aco_opcode::v_lshlrev_b32, dst, Operand::c32(offset),
2187                               Operand(dst.physReg(), v1));
2188                   }
2189                } else {
2190                   assert(dst.regClass() == v2b);
2191                   bld.vop2_sdwa(aco_opcode::v_lshlrev_b32, dst, Operand::c32(offset), op)
2192                      .instr->sdwa()
2193                      .sel[1] = SubdwordSel::ubyte;
2194                }
2195                break;
2196             }
2197             default: break;
2198             }
2199          } else if (instr->isBranch()) {
2200             Pseudo_branch_instruction* branch = &instr->branch();
2201             uint32_t target = branch->target[0];
2202 
2203             /* check if all blocks from current to target are empty */
2204             /* In case there are <= 4 SALU or <= 2 VALU instructions, remove the branch */
2205             bool can_remove = block->index < target;
2206             unsigned num_scalar = 0;
2207             unsigned num_vector = 0;
2208             for (unsigned i = block->index + 1; can_remove && i < branch->target[0]; i++) {
2209                /* uniform branches must not be ignored if they
2210                 * are about to jump over actual instructions */
2211                if (!program->blocks[i].instructions.empty() &&
2212                    (branch->opcode != aco_opcode::p_cbranch_z ||
2213                     branch->operands[0].physReg() != exec)) {
2214                   can_remove = false;
2215                   break;
2216                }
2217 
2218                for (aco_ptr<Instruction>& inst : program->blocks[i].instructions) {
2219                   if (inst->isSOPP()) {
2220                      can_remove = false;
2221                   } else if (inst->isSALU()) {
2222                      num_scalar++;
2223                   } else if (inst->isVALU()) {
2224                      num_vector++;
2225                   } else {
2226                      can_remove = false;
2227                   }
2228 
2229                   if (num_scalar + num_vector * 2 > 4)
2230                      can_remove = false;
2231 
2232                   if (!can_remove)
2233                      break;
2234                }
2235             }
2236 
2237             if (can_remove)
2238                continue;
2239 
2240             switch (instr->opcode) {
2241             case aco_opcode::p_branch:
2242                assert(block->linear_succs[0] == target);
2243                bld.sopp(aco_opcode::s_branch, branch->definitions[0], target);
2244                break;
2245             case aco_opcode::p_cbranch_nz:
2246                assert(block->linear_succs[1] == target);
2247                if (branch->operands[0].physReg() == exec)
2248                   bld.sopp(aco_opcode::s_cbranch_execnz, branch->definitions[0], target);
2249                else if (branch->operands[0].physReg() == vcc)
2250                   bld.sopp(aco_opcode::s_cbranch_vccnz, branch->definitions[0], target);
2251                else {
2252                   assert(branch->operands[0].physReg() == scc);
2253                   bld.sopp(aco_opcode::s_cbranch_scc1, branch->definitions[0], target);
2254                }
2255                break;
2256             case aco_opcode::p_cbranch_z:
2257                assert(block->linear_succs[1] == target);
2258                if (branch->operands[0].physReg() == exec)
2259                   bld.sopp(aco_opcode::s_cbranch_execz, branch->definitions[0], target);
2260                else if (branch->operands[0].physReg() == vcc)
2261                   bld.sopp(aco_opcode::s_cbranch_vccz, branch->definitions[0], target);
2262                else {
2263                   assert(branch->operands[0].physReg() == scc);
2264                   bld.sopp(aco_opcode::s_cbranch_scc0, branch->definitions[0], target);
2265                }
2266                break;
2267             default: unreachable("Unknown Pseudo branch instruction!");
2268             }
2269 
2270          } else if (instr->isReduction()) {
2271             Pseudo_reduction_instruction& reduce = instr->reduction();
2272             emit_reduction(&ctx, reduce.opcode, reduce.reduce_op, reduce.cluster_size,
2273                            reduce.operands[1].physReg(),    // tmp
2274                            reduce.definitions[1].physReg(), // stmp
2275                            reduce.operands[2].physReg(),    // vtmp
2276                            reduce.definitions[2].physReg(), // sitmp
2277                            reduce.operands[0], reduce.definitions[0]);
2278          } else if (instr->isBarrier()) {
2279             Pseudo_barrier_instruction& barrier = instr->barrier();
2280 
2281             /* Anything larger than a workgroup isn't possible. Anything
2282              * smaller requires no instructions and this pseudo instruction
2283              * would only be included to control optimizations. */
2284             bool emit_s_barrier = barrier.exec_scope == scope_workgroup &&
2285                                   program->workgroup_size > program->wave_size;
2286 
2287             bld.insert(std::move(instr));
2288             if (emit_s_barrier)
2289                bld.sopp(aco_opcode::s_barrier);
2290          } else if (instr->opcode == aco_opcode::p_cvt_f16_f32_rtne) {
2291             float_mode new_mode = block->fp_mode;
2292             new_mode.round16_64 = fp_round_ne;
2293             bool set_round = new_mode.round != block->fp_mode.round;
2294 
2295             emit_set_mode(bld, new_mode, set_round, false);
2296 
2297             instr->opcode = aco_opcode::v_cvt_f16_f32;
2298             ctx.instructions.emplace_back(std::move(instr));
2299 
2300             emit_set_mode(bld, block->fp_mode, set_round, false);
2301          } else {
2302             ctx.instructions.emplace_back(std::move(instr));
2303          }
2304       }
2305       block->instructions.swap(ctx.instructions);
2306    }
2307 }
2308 
2309 } // namespace aco
2310