1 import java.util.ArrayList;
2 import java.util.List;
3 import java.util.Random;
4 
5 import org.opencv.core.Core;
6 import org.opencv.core.CvType;
7 import org.opencv.core.Mat;
8 import org.opencv.core.MatOfPoint;
9 import org.opencv.core.Point;
10 import org.opencv.core.Scalar;
11 import org.opencv.highgui.HighGui;
12 import org.opencv.imgcodecs.Imgcodecs;
13 import org.opencv.imgproc.Imgproc;
14 
15 /**
16  *
17  * @brief Sample code showing how to segment overlapping objects using Laplacian filtering, in addition to Watershed
18  * and Distance Transformation
19  *
20  */
21 class ImageSegmentation {
run(String[] args)22     public void run(String[] args) {
23         //! [load_image]
24         // Load the image
25         String filename = args.length > 0 ? args[0] : "../data/cards.png";
26         Mat srcOriginal = Imgcodecs.imread(filename);
27         if (srcOriginal.empty()) {
28             System.err.println("Cannot read image: " + filename);
29             System.exit(0);
30         }
31 
32         // Show source image
33         HighGui.imshow("Source Image", srcOriginal);
34         //! [load_image]
35 
36         //! [black_bg]
37         // Change the background from white to black, since that will help later to
38         // extract
39         // better results during the use of Distance Transform
40         Mat src = srcOriginal.clone();
41         byte[] srcData = new byte[(int) (src.total() * src.channels())];
42         src.get(0, 0, srcData);
43         for (int i = 0; i < src.rows(); i++) {
44             for (int j = 0; j < src.cols(); j++) {
45                 if (srcData[(i * src.cols() + j) * 3] == (byte) 255 && srcData[(i * src.cols() + j) * 3 + 1] == (byte) 255
46                         && srcData[(i * src.cols() + j) * 3 + 2] == (byte) 255) {
47                     srcData[(i * src.cols() + j) * 3] = 0;
48                     srcData[(i * src.cols() + j) * 3 + 1] = 0;
49                     srcData[(i * src.cols() + j) * 3 + 2] = 0;
50                 }
51             }
52         }
53         src.put(0, 0, srcData);
54 
55         // Show output image
56         HighGui.imshow("Black Background Image", src);
57         //! [black_bg]
58 
59         //! [sharp]
60         // Create a kernel that we will use to sharpen our image
61         Mat kernel = new Mat(3, 3, CvType.CV_32F);
62         // an approximation of second derivative, a quite strong kernel
63         float[] kernelData = new float[(int) (kernel.total() * kernel.channels())];
64         kernelData[0] = 1; kernelData[1] = 1; kernelData[2] = 1;
65         kernelData[3] = 1; kernelData[4] = -8; kernelData[5] = 1;
66         kernelData[6] = 1; kernelData[7] = 1; kernelData[8] = 1;
67         kernel.put(0, 0, kernelData);
68 
69         // do the laplacian filtering as it is
70         // well, we need to convert everything in something more deeper then CV_8U
71         // because the kernel has some negative values,
72         // and we can expect in general to have a Laplacian image with negative values
73         // BUT a 8bits unsigned int (the one we are working with) can contain values
74         // from 0 to 255
75         // so the possible negative number will be truncated
76         Mat imgLaplacian = new Mat();
77         Imgproc.filter2D(src, imgLaplacian, CvType.CV_32F, kernel);
78         Mat sharp = new Mat();
79         src.convertTo(sharp, CvType.CV_32F);
80         Mat imgResult = new Mat();
81         Core.subtract(sharp, imgLaplacian, imgResult);
82 
83         // convert back to 8bits gray scale
84         imgResult.convertTo(imgResult, CvType.CV_8UC3);
85         imgLaplacian.convertTo(imgLaplacian, CvType.CV_8UC3);
86 
87         // imshow( "Laplace Filtered Image", imgLaplacian );
88         HighGui.imshow("New Sharped Image", imgResult);
89         //! [sharp]
90 
91         //! [bin]
92         // Create binary image from source image
93         Mat bw = new Mat();
94         Imgproc.cvtColor(imgResult, bw, Imgproc.COLOR_BGR2GRAY);
95         Imgproc.threshold(bw, bw, 40, 255, Imgproc.THRESH_BINARY | Imgproc.THRESH_OTSU);
96         HighGui.imshow("Binary Image", bw);
97         //! [bin]
98 
99         //! [dist]
100         // Perform the distance transform algorithm
101         Mat dist = new Mat();
102         Imgproc.distanceTransform(bw, dist, Imgproc.DIST_L2, 3);
103 
104         // Normalize the distance image for range = {0.0, 1.0}
105         // so we can visualize and threshold it
106         Core.normalize(dist, dist, 0.0, 1.0, Core.NORM_MINMAX);
107         Mat distDisplayScaled = new Mat();
108         Core.multiply(dist, new Scalar(255), distDisplayScaled);
109         Mat distDisplay = new Mat();
110         distDisplayScaled.convertTo(distDisplay, CvType.CV_8U);
111         HighGui.imshow("Distance Transform Image", distDisplay);
112         //! [dist]
113 
114         //! [peaks]
115         // Threshold to obtain the peaks
116         // This will be the markers for the foreground objects
117         Imgproc.threshold(dist, dist, 0.4, 1.0, Imgproc.THRESH_BINARY);
118 
119         // Dilate a bit the dist image
120         Mat kernel1 = Mat.ones(3, 3, CvType.CV_8U);
121         Imgproc.dilate(dist, dist, kernel1);
122         Mat distDisplay2 = new Mat();
123         dist.convertTo(distDisplay2, CvType.CV_8U);
124         Core.multiply(distDisplay2, new Scalar(255), distDisplay2);
125         HighGui.imshow("Peaks", distDisplay2);
126         //! [peaks]
127 
128         //! [seeds]
129         // Create the CV_8U version of the distance image
130         // It is needed for findContours()
131         Mat dist_8u = new Mat();
132         dist.convertTo(dist_8u, CvType.CV_8U);
133 
134         // Find total markers
135         List<MatOfPoint> contours = new ArrayList<>();
136         Mat hierarchy = new Mat();
137         Imgproc.findContours(dist_8u, contours, hierarchy, Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE);
138 
139         // Create the marker image for the watershed algorithm
140         Mat markers = Mat.zeros(dist.size(), CvType.CV_32S);
141 
142         // Draw the foreground markers
143         for (int i = 0; i < contours.size(); i++) {
144             Imgproc.drawContours(markers, contours, i, new Scalar(i + 1), -1);
145         }
146 
147         // Draw the background marker
148         Mat markersScaled = new Mat();
149         markers.convertTo(markersScaled, CvType.CV_32F);
150         Core.normalize(markersScaled, markersScaled, 0.0, 255.0, Core.NORM_MINMAX);
151         Imgproc.circle(markersScaled, new Point(5, 5), 3, new Scalar(255, 255, 255), -1);
152         Mat markersDisplay = new Mat();
153         markersScaled.convertTo(markersDisplay, CvType.CV_8U);
154         HighGui.imshow("Markers", markersDisplay);
155         Imgproc.circle(markers, new Point(5, 5), 3, new Scalar(255, 255, 255), -1);
156         //! [seeds]
157 
158         //! [watershed]
159         // Perform the watershed algorithm
160         Imgproc.watershed(imgResult, markers);
161 
162         Mat mark = Mat.zeros(markers.size(), CvType.CV_8U);
163         markers.convertTo(mark, CvType.CV_8UC1);
164         Core.bitwise_not(mark, mark);
165         // imshow("Markers_v2", mark); // uncomment this if you want to see how the mark
166         // image looks like at that point
167 
168         // Generate random colors
169         Random rng = new Random(12345);
170         List<Scalar> colors = new ArrayList<>(contours.size());
171         for (int i = 0; i < contours.size(); i++) {
172             int b = rng.nextInt(256);
173             int g = rng.nextInt(256);
174             int r = rng.nextInt(256);
175 
176             colors.add(new Scalar(b, g, r));
177         }
178 
179         // Create the result image
180         Mat dst = Mat.zeros(markers.size(), CvType.CV_8UC3);
181         byte[] dstData = new byte[(int) (dst.total() * dst.channels())];
182         dst.get(0, 0, dstData);
183 
184         // Fill labeled objects with random colors
185         int[] markersData = new int[(int) (markers.total() * markers.channels())];
186         markers.get(0, 0, markersData);
187         for (int i = 0; i < markers.rows(); i++) {
188             for (int j = 0; j < markers.cols(); j++) {
189                 int index = markersData[i * markers.cols() + j];
190                 if (index > 0 && index <= contours.size()) {
191                     dstData[(i * dst.cols() + j) * 3 + 0] = (byte) colors.get(index - 1).val[0];
192                     dstData[(i * dst.cols() + j) * 3 + 1] = (byte) colors.get(index - 1).val[1];
193                     dstData[(i * dst.cols() + j) * 3 + 2] = (byte) colors.get(index - 1).val[2];
194                 } else {
195                     dstData[(i * dst.cols() + j) * 3 + 0] = 0;
196                     dstData[(i * dst.cols() + j) * 3 + 1] = 0;
197                     dstData[(i * dst.cols() + j) * 3 + 2] = 0;
198                 }
199             }
200         }
201         dst.put(0, 0, dstData);
202 
203         // Visualize the final image
204         HighGui.imshow("Final Result", dst);
205         //! [watershed]
206 
207         HighGui.waitKey();
208         System.exit(0);
209     }
210 }
211 
212 public class ImageSegmentationDemo {
main(String[] args)213     public static void main(String[] args) {
214         // Load the native OpenCV library
215         System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
216 
217         new ImageSegmentation().run(args);
218     }
219 }
220