1 /*
2  [auto_generated]
3  boost/numeric/odeint/stepper/base/explicit_error_stepper_fsal_base.hpp
4 
5  [begin_description]
6  Base class for all explicit first-same-as-last Runge Kutta steppers.
7  [end_description]
8 
9  Copyright 2010-2013 Karsten Ahnert
10  Copyright 2010-2012 Mario Mulansky
11  Copyright 2012 Christoph Koke
12 
13  Distributed under the Boost Software License, Version 1.0.
14  (See accompanying file LICENSE_1_0.txt or
15  copy at http://www.boost.org/LICENSE_1_0.txt)
16  */
17 
18 
19 #ifndef BOOST_NUMERIC_ODEINT_STEPPER_BASE_EXPLICIT_ERROR_STEPPER_FSAL_BASE_HPP_INCLUDED
20 #define BOOST_NUMERIC_ODEINT_STEPPER_BASE_EXPLICIT_ERROR_STEPPER_FSAL_BASE_HPP_INCLUDED
21 
22 #include <boost/utility/enable_if.hpp>
23 #include <boost/type_traits/is_same.hpp>
24 
25 
26 #include <boost/numeric/odeint/util/bind.hpp>
27 #include <boost/numeric/odeint/util/unwrap_reference.hpp>
28 #include <boost/numeric/odeint/util/state_wrapper.hpp>
29 #include <boost/numeric/odeint/util/is_resizeable.hpp>
30 #include <boost/numeric/odeint/util/resizer.hpp>
31 #include <boost/numeric/odeint/util/copy.hpp>
32 
33 #include <boost/numeric/odeint/stepper/stepper_categories.hpp>
34 
35 #include <boost/numeric/odeint/stepper/base/algebra_stepper_base.hpp>
36 
37 namespace boost {
38 namespace numeric {
39 namespace odeint {
40 
41 /*
42  * base class for explicit stepper and error steppers with the fsal property
43  * models the stepper AND the error stepper fsal concept
44  *
45  * this class provides the following do_step overloads
46     * do_step( sys , x , t , dt )
47     * do_step( sys , x , dxdt , t , dt )
48     * do_step( sys , in , t , out , dt )
49     * do_step( sys , in , dxdt_in , t , out , dxdt_out , dt )
50     * do_step( sys , x , t , dt , xerr )
51     * do_step( sys , x , dxdt , t , dt , xerr )
52     * do_step( sys , in , t , out , dt , xerr )
53     * do_step( sys , in , dxdt_in , t , out , dxdt_out , dt , xerr )
54  */
55 template<
56 class Stepper ,
57 unsigned short Order ,
58 unsigned short StepperOrder ,
59 unsigned short ErrorOrder ,
60 class State ,
61 class Value ,
62 class Deriv ,
63 class Time ,
64 class Algebra ,
65 class Operations ,
66 class Resizer
67 >
68 class explicit_error_stepper_fsal_base : public algebra_stepper_base< Algebra , Operations >
69 {
70 public:
71 
72     typedef algebra_stepper_base< Algebra , Operations > algebra_stepper_base_type;
73     typedef typename algebra_stepper_base_type::algebra_type algebra_type;
74 
75     typedef State state_type;
76     typedef Value value_type;
77     typedef Deriv deriv_type;
78     typedef Time time_type;
79     typedef Resizer resizer_type;
80     typedef Stepper stepper_type;
81     typedef explicit_error_stepper_fsal_tag stepper_category;
82 
83     #ifndef DOXYGEN_SKIP
84     typedef state_wrapper< state_type > wrapped_state_type;
85     typedef state_wrapper< deriv_type > wrapped_deriv_type;
86     typedef explicit_error_stepper_fsal_base< Stepper , Order , StepperOrder , ErrorOrder ,
87             State , Value , Deriv , Time , Algebra , Operations , Resizer > internal_stepper_base_type;
88     #endif
89 
90 
91     typedef unsigned short order_type;
92     static const order_type order_value = Order;
93     static const order_type stepper_order_value = StepperOrder;
94     static const order_type error_order_value = ErrorOrder;
95 
explicit_error_stepper_fsal_base(const algebra_type & algebra=algebra_type ())96     explicit_error_stepper_fsal_base( const algebra_type &algebra = algebra_type() )
97     : algebra_stepper_base_type( algebra ) , m_first_call( true )
98     { }
99 
order(void) const100     order_type order( void ) const
101     {
102         return order_value;
103     }
104 
stepper_order(void) const105     order_type stepper_order( void ) const
106     {
107         return stepper_order_value;
108     }
109 
error_order(void) const110     order_type error_order( void ) const
111     {
112         return error_order_value;
113     }
114 
115 
116     /*
117      * version 1 : do_step( sys , x , t , dt )
118      *
119      * the two overloads are needed in order to solve the forwarding problem
120      */
121     template< class System , class StateInOut >
do_step(System system,StateInOut & x,time_type t,time_type dt)122     void do_step( System system , StateInOut &x , time_type t , time_type dt )
123     {
124         do_step_v1( system , x , t , dt );
125     }
126 
127     /**
128      * \brief Second version to solve the forwarding problem, can be called with Boost.Range as StateInOut.
129      */
130     template< class System , class StateInOut >
do_step(System system,const StateInOut & x,time_type t,time_type dt)131     void do_step( System system , const StateInOut &x , time_type t , time_type dt )
132     {
133         do_step_v1( system , x , t , dt );
134     }
135 
136 
137     /*
138      * version 2 : do_step( sys , x , dxdt , t , dt )
139      *
140      * this version does not solve the forwarding problem, boost.range can not be used
141      *
142      * the disable is needed to avoid ambiguous overloads if state_type = time_type
143      */
144     template< class System , class StateInOut , class DerivInOut >
145     typename boost::disable_if< boost::is_same< StateInOut , time_type > , void >::type
do_step(System system,StateInOut & x,DerivInOut & dxdt,time_type t,time_type dt)146     do_step( System system , StateInOut &x , DerivInOut &dxdt , time_type t , time_type dt )
147     {
148         m_first_call = true;
149         this->stepper().do_step_impl( system , x , dxdt , t , x , dxdt , dt );
150     }
151 
152 
153     /*
154      * named Version 2: do_step_dxdt_impl( sys , in , dxdt , t , dt )
155      *
156      * this version is needed when this stepper is used for initializing
157      * multistep stepper like adams-bashforth. Hence we provide an explicitely
158      * named version that is not disabled. Meant for internal use only.
159      */
160     template< class System , class StateInOut , class DerivInOut >
do_step_dxdt_impl(System system,StateInOut & x,DerivInOut & dxdt,time_type t,time_type dt)161     void do_step_dxdt_impl( System system , StateInOut &x , DerivInOut &dxdt , time_type t , time_type dt )
162     {
163         m_first_call = true;
164         this->stepper().do_step_impl( system , x , dxdt , t , x , dxdt , dt );
165     }
166 
167     /*
168      * version 3 : do_step( sys , in , t , out , dt )
169      *
170      * this version does not solve the forwarding problem, boost.range can not
171      * be used.
172      *
173      * the disable is needed to avoid ambiguous overloads if
174      * state_type = time_type
175      */
176     template< class System , class StateIn , class StateOut >
177     typename boost::disable_if< boost::is_same< StateIn , time_type > , void >::type
do_step(System system,const StateIn & in,time_type t,StateOut & out,time_type dt)178     do_step( System system , const StateIn &in , time_type t , StateOut &out , time_type dt )
179     {
180         if( m_resizer.adjust_size( in , detail::bind( &internal_stepper_base_type::template resize_impl< StateIn > , detail::ref( *this ) , detail::_1 ) ) || m_first_call )
181         {
182             initialize( system , in , t );
183         }
184         this->stepper().do_step_impl( system , in , m_dxdt.m_v , t , out , m_dxdt.m_v , dt );
185     }
186 
187 
188     /*
189      * version 4 : do_step( sys , in , dxdt_in , t , out , dxdt_out , dt )
190      *
191      * this version does not solve the forwarding problem, boost.range can not be used
192      */
193     template< class System, class StateIn, class DerivIn, class StateOut,
194                class DerivOut >
do_step(System system,const StateIn & in,const DerivIn & dxdt_in,time_type t,StateOut & out,DerivOut & dxdt_out,time_type dt)195     void do_step( System system, const StateIn &in, const DerivIn &dxdt_in,
196                   time_type t, StateOut &out, DerivOut &dxdt_out, time_type dt )
197     {
198         m_first_call = true;
199         this->stepper().do_step_impl( system, in, dxdt_in, t, out, dxdt_out,
200                                       dt );
201     }
202 
203 
204 
205 
206 
207     /*
208      * version 5 : do_step( sys , x , t , dt , xerr )
209      *
210      * the two overloads are needed in order to solve the forwarding problem
211      */
212     template< class System , class StateInOut , class Err >
do_step(System system,StateInOut & x,time_type t,time_type dt,Err & xerr)213     void do_step( System system , StateInOut &x , time_type t , time_type dt , Err &xerr )
214     {
215         do_step_v5( system , x , t , dt , xerr );
216     }
217 
218     /**
219      * \brief Second version to solve the forwarding problem, can be called with Boost.Range as StateInOut.
220      */
221     template< class System , class StateInOut , class Err >
do_step(System system,const StateInOut & x,time_type t,time_type dt,Err & xerr)222     void do_step( System system , const StateInOut &x , time_type t , time_type dt , Err &xerr )
223     {
224         do_step_v5( system , x , t , dt , xerr );
225     }
226 
227 
228     /*
229      * version 6 : do_step( sys , x , dxdt , t , dt , xerr )
230      *
231      * this version does not solve the forwarding problem, boost.range can not be used
232      *
233      * the disable is needed to avoid ambiguous overloads if state_type = time_type
234      */
235     template< class System , class StateInOut , class DerivInOut , class Err >
236     typename boost::disable_if< boost::is_same< StateInOut , time_type > , void >::type
do_step(System system,StateInOut & x,DerivInOut & dxdt,time_type t,time_type dt,Err & xerr)237     do_step( System system , StateInOut &x , DerivInOut &dxdt , time_type t , time_type dt , Err &xerr )
238     {
239         m_first_call = true;
240         this->stepper().do_step_impl( system , x , dxdt , t , x , dxdt , dt , xerr );
241     }
242 
243 
244 
245 
246     /*
247      * version 7 : do_step( sys , in , t , out , dt , xerr )
248      *
249      * this version does not solve the forwarding problem, boost.range can not be used
250      */
251     template< class System , class StateIn , class StateOut , class Err >
do_step(System system,const StateIn & in,time_type t,StateOut & out,time_type dt,Err & xerr)252     void do_step( System system , const StateIn &in , time_type t , StateOut &out , time_type dt , Err &xerr )
253     {
254         if( m_resizer.adjust_size( in , detail::bind( &internal_stepper_base_type::template resize_impl< StateIn > , detail::ref( *this ) , detail::_1 ) ) || m_first_call )
255         {
256             initialize( system , in , t );
257         }
258         this->stepper().do_step_impl( system , in , m_dxdt.m_v , t , out , m_dxdt.m_v , dt , xerr );
259     }
260 
261 
262     /*
263      * version 8 : do_step( sys , in , dxdt_in , t , out , dxdt_out , dt , xerr )
264      *
265      * this version does not solve the forwarding problem, boost.range can not be used
266      */
267     template< class System , class StateIn , class DerivIn , class StateOut , class DerivOut , class Err >
do_step(System system,const StateIn & in,const DerivIn & dxdt_in,time_type t,StateOut & out,DerivOut & dxdt_out,time_type dt,Err & xerr)268     void do_step( System system , const StateIn &in , const DerivIn &dxdt_in , time_type t ,
269             StateOut &out , DerivOut &dxdt_out , time_type dt , Err &xerr )
270     {
271         m_first_call = true;
272         this->stepper().do_step_impl( system , in , dxdt_in , t , out , dxdt_out , dt , xerr );
273     }
274 
275     template< class StateIn >
adjust_size(const StateIn & x)276     void adjust_size( const StateIn &x )
277     {
278         resize_impl( x );
279     }
280 
reset(void)281     void reset( void )
282     {
283         m_first_call = true;
284     }
285 
286     template< class DerivIn >
initialize(const DerivIn & deriv)287     void initialize( const DerivIn &deriv )
288     {
289         boost::numeric::odeint::copy( deriv , m_dxdt.m_v );
290         m_first_call = false;
291     }
292 
293     template< class System , class StateIn >
initialize(System system,const StateIn & x,time_type t)294     void initialize( System system , const StateIn &x , time_type t )
295     {
296         typename odeint::unwrap_reference< System >::type &sys = system;
297         sys( x , m_dxdt.m_v , t );
298         m_first_call = false;
299     }
300 
is_initialized(void) const301     bool is_initialized( void ) const
302     {
303         return ! m_first_call;
304     }
305 
306 
307 
308 private:
309 
310     template< class System , class StateInOut >
do_step_v1(System system,StateInOut & x,time_type t,time_type dt)311     void do_step_v1( System system , StateInOut &x , time_type t , time_type dt )
312     {
313         if( m_resizer.adjust_size( x , detail::bind( &internal_stepper_base_type::template resize_impl< StateInOut > , detail::ref( *this ) , detail::_1 ) ) || m_first_call )
314         {
315             initialize( system , x , t );
316         }
317         this->stepper().do_step_impl( system , x , m_dxdt.m_v , t , x , m_dxdt.m_v , dt );
318     }
319 
320     template< class System , class StateInOut , class Err >
do_step_v5(System system,StateInOut & x,time_type t,time_type dt,Err & xerr)321     void do_step_v5( System system , StateInOut &x , time_type t , time_type dt , Err &xerr )
322     {
323         if( m_resizer.adjust_size( x , detail::bind( &internal_stepper_base_type::template resize_impl< StateInOut > , detail::ref( *this ) , detail::_1 ) ) || m_first_call )
324         {
325             initialize( system , x , t );
326         }
327         this->stepper().do_step_impl( system , x , m_dxdt.m_v , t , x , m_dxdt.m_v , dt , xerr );
328     }
329 
330     template< class StateIn >
resize_impl(const StateIn & x)331     bool resize_impl( const StateIn &x )
332     {
333         return adjust_size_by_resizeability( m_dxdt , x , typename is_resizeable<deriv_type>::type() );
334     }
335 
336 
stepper(void)337     stepper_type& stepper( void )
338     {
339         return *static_cast< stepper_type* >( this );
340     }
341 
stepper(void) const342     const stepper_type& stepper( void ) const
343     {
344         return *static_cast< const stepper_type* >( this );
345     }
346 
347 
348     resizer_type m_resizer;
349     bool m_first_call;
350 
351 protected:
352 
353 
354     wrapped_deriv_type m_dxdt;
355 };
356 
357 
358 /******* DOXYGEN *******/
359 
360 /**
361  * \class explicit_error_stepper_fsal_base
362  * \brief Base class for explicit steppers with error estimation and stepper fulfilling the FSAL (first-same-as-last)
363  * property. This class can be used with controlled steppers for step size control.
364  *
365  * This class serves as the base class for all explicit steppers with algebra and operations and which fulfill the FSAL
366  * property. In contrast to explicit_stepper_base it also estimates the error and can be used in a controlled stepper
367  * to provide step size control.
368  *
369  * The FSAL property means that the derivative of the system at t+dt is already used in the current step going from
370  * t to t +dt. Therefore, some more do_steps method can be introduced and the controlled steppers can explicitly make use
371  * of this property.
372  *
373  * \note This stepper provides `do_step` methods with and without error estimation. It has therefore three orders,
374  * one for the order of a step if the error is not estimated. The other two orders are the orders of the step and
375  * the error step if the error estimation is performed.
376  *
377  * explicit_error_stepper_fsal_base  is used as the interface in a CRTP (currently recurring template
378  * pattern). In order to work correctly the parent class needs to have a method
379  * `do_step_impl( system , in , dxdt_in , t , out , dxdt_out , dt , xerr )`.
380  * explicit_error_stepper_fsal_base derives from algebra_stepper_base.
381  *
382  * This class can have an intrinsic state depending on the explicit usage of the `do_step` method. This means that some
383  * `do_step` methods are expected to be called in order. For example the `do_step( sys , x , t , dt , xerr )` will keep track
384  * of the derivative of `x` which is the internal state. The first call of this method is recognized such that one
385  * does not explicitly initialize the internal state, so it is safe to use this method like
386  *
387  * \code
388  * stepper_type stepper;
389  * stepper.do_step( sys , x , t , dt , xerr );
390  * stepper.do_step( sys , x , t , dt , xerr );
391  * stepper.do_step( sys , x , t , dt , xerr );
392  * \endcode
393  *
394  * But it is unsafe to call this method with different system functions after each other. Do do so, one must initialize the
395  * internal state with the `initialize` method or reset the internal state with the `reset` method.
396  *
397  * explicit_error_stepper_fsal_base provides several overloaded `do_step` methods, see the list below. Only two of them are needed
398  * to fulfill the Error Stepper concept. The other ones are for convenience and for better performance. Some of them
399  * simply update the state out-of-place, while other expect that the first derivative at `t` is passed to the stepper.
400  *
401  * - `do_step( sys , x , t , dt )` - The classical `do_step` method needed to fulfill the Error Stepper concept. The
402  *      state is updated in-place. A type modelling a Boost.Range can be used for x.
403  * - `do_step( sys , x , dxdt , t , dt )` - This method updates the state x and the derivative dxdt in-place. It is expected
404  *     that dxdt has the value of the derivative of x at time t.
405  * - `do_step( sys , in , t , out , dt )` - This method updates the state out-of-place, hence the result of the step
406  *      is stored in `out`.
407  * - `do_step( sys , in , dxdt_in , t , out , dxdt_out , dt )` - This method updates the state and the derivative
408  *     out-of-place. It expects that the derivative at the point `t` is explicitly passed in `dxdt_in`.
409  * - `do_step( sys , x , t , dt , xerr )` - This `do_step` method is needed to fulfill the Error Stepper concept. The
410  *     state is updated in-place and an error estimate is calculated. A type modelling a Boost.Range can be used for x.
411  * - `do_step( sys , x , dxdt , t , dt , xerr )` - This method updates the state and the derivative in-place. It is assumed
412  *      that the dxdt has the value of the derivative of x at time t. An error estimate is calculated.
413  * - `do_step( sys , in , t , out , dt , xerr )` - This method updates the state out-of-place and estimates the error
414  *      during the step.
415  * - `do_step( sys , in , dxdt_in , t , out , dxdt_out , dt , xerr )` - This methods updates the state and the derivative
416  *      out-of-place and estimates the error during the step. It is assumed the dxdt_in is derivative of in at time t.
417  *
418  * \note The system is always passed as value, which might result in poor performance if it contains data. In this
419  *      case it can be used with `boost::ref` or `std::ref`, for example `stepper.do_step( boost::ref( sys ) , x , t , dt );`
420  *
421  * \note The time `t` is not advanced by the stepper. This has to done manually, or by the appropriate `integrate`
422  *      routines or `iterator`s.
423  *
424  * \tparam Stepper The stepper on which this class should work. It is used via CRTP, hence explicit_stepper_base
425  * provides the interface for the Stepper.
426  * \tparam Order The order of a stepper if the stepper is used without error estimation.
427  * \tparam StepperOrder The order of a step if the stepper is used with error estimation. Usually Order and StepperOrder have
428  * the same value.
429  * \tparam ErrorOrder The order of the error step if the stepper is used with error estimation.
430  * \tparam State The state type for the stepper.
431  * \tparam Value The value type for the stepper. This should be a floating point type, like float,
432  * double, or a multiprecision type. It must not necessary be the value_type of the State. For example
433  * the State can be a `vector< complex< double > >` in this case the Value must be double.
434  * The default value is double.
435  * \tparam Deriv The type representing time derivatives of the state type. It is usually the same type as the
436  * state type, only if used with Boost.Units both types differ.
437  * \tparam Time The type representing the time. Usually the same type as the value type. When Boost.Units is
438  * used, this type has usually a unit.
439  * \tparam Algebra The algebra type which must fulfill the Algebra Concept.
440  * \tparam Operations The type for the operations which must fulfill the Operations Concept.
441  * \tparam Resizer The resizer policy class.
442  */
443 
444 
445 
446     /**
447      * \fn explicit_error_stepper_fsal_base::explicit_error_stepper_fsal_base( const algebra_type &algebra )
448      * \brief Constructs a explicit_stepper_fsal_base class. This constructor can be used as a default
449      * constructor if the algebra has a default constructor.
450      * \param algebra A copy of algebra is made and stored inside explicit_stepper_base.
451      */
452 
453 
454     /**
455      * \fn explicit_error_stepper_fsal_base::order( void ) const
456      * \return Returns the order of the stepper if it used without error estimation.
457      */
458 
459     /**
460      * \fn explicit_error_stepper_fsal_base::stepper_order( void ) const
461      * \return Returns the order of a step if the stepper is used without error estimation.
462      */
463 
464 
465     /**
466      * \fn explicit_error_stepper_fsal_base::error_order( void ) const
467      * \return Returns the order of an error step if the stepper is used without error estimation.
468      */
469 
470     /**
471      * \fn explicit_error_stepper_fsal_base::do_step( System system , StateInOut &x , time_type t , time_type dt )
472      * \brief This method performs one step. It transforms the result in-place.
473      *
474      * \note This method uses the internal state of the stepper.
475      *
476      * \param system The system function to solve, hence the r.h.s. of the ordinary differential equation. It must fulfill the
477      *               Simple System concept.
478      * \param x The state of the ODE which should be solved. After calling do_step the result is updated in x.
479      * \param t The value of the time, at which the step should be performed.
480      * \param dt The step size.
481      */
482 
483 
484     /**
485      * \fn explicit_error_stepper_fsal_base::do_step( System system , StateInOut &x , DerivInOut &dxdt , time_type t , time_type dt )
486      * \brief The method performs one step with the stepper passed by Stepper. Additionally to the other methods
487      * the derivative of x is also passed to this method. Therefore, dxdt must be evaluated initially:
488      *
489      * \code
490      * ode( x , dxdt , t );
491      * for( ... )
492      * {
493      *     stepper.do_step( ode , x , dxdt , t , dt );
494      *     t += dt;
495      * }
496      * \endcode
497      *
498      * \note This method does NOT use the initial state, since the first derivative is explicitly passed to this method.
499      *
500      * The result is updated in place in x as well as the derivative dxdt. This method is disabled if
501      * Time and StateInOut are of the same type. In this case the method could not be distinguished from other `do_step`
502      * versions.
503      *
504      * \note This method does not solve the forwarding problem.
505      *
506      * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
507      *               Simple System concept.
508      * \param x The state of the ODE which should be solved. After calling do_step the result is updated in x.
509      * \param dxdt The derivative of x at t. After calling `do_step` dxdt is updated to the new value.
510      * \param t The value of the time, at which the step should be performed.
511      * \param dt The step size.
512      */
513 
514     /**
515      * \fn explicit_error_stepper_fsal_base::do_step( System system , const StateIn &in , time_type t , StateOut &out , time_type dt )
516      * \brief The method performs one step with the stepper passed by Stepper. The state of the ODE is updated out-of-place.
517      * This method is disabled if StateIn and Time are the same type. In this case the method can not be distinguished from
518      * other `do_step` variants.
519      *
520      * \note This method uses the internal state of the stepper.
521      *
522      * \note This method does not solve the forwarding problem.
523      *
524      * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
525      *               Simple System concept.
526      * \param in The state of the ODE which should be solved. in is not modified in this method
527      * \param t The value of the time, at which the step should be performed.
528      * \param out The result of the step is written in out.
529      * \param dt The step size.
530      */
531 
532     /**
533      * \fn explicit_error_stepper_fsal_base::do_step( System system , const StateIn &in , const DerivIn &dxdt_in , time_type t , StateOut &out , DerivOut &dxdt_out , time_type dt )
534      * \brief The method performs one step with the stepper passed by Stepper. The state of the ODE is updated out-of-place.
535      * Furthermore, the derivative of x at t is passed to the stepper and updated by the stepper to its new value at
536      * t+dt.
537      *
538      * \note This method does not solve the forwarding problem.
539      *
540      * \note This method does NOT use the internal state of the stepper.
541      *
542      * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
543      *               Simple System concept.
544      * \param in The state of the ODE which should be solved. in is not modified in this method
545      * \param dxdt_in The derivative of x at t.
546      * \param t The value of the time, at which the step should be performed.
547      * \param out The result of the step is written in out.
548      * \param dxdt_out The updated derivative of `out` at `t+dt`.
549      * \param dt The step size.
550      */
551 
552     /**
553      * \fn explicit_error_stepper_fsal_base::do_step( System system , StateInOut &x , time_type t , time_type dt , Err &xerr )
554      * \brief The method performs one step with the stepper passed by Stepper and estimates the error. The state of the ODE
555      * is updated in-place.
556      *
557      *
558      * \note This method uses the internal state of the stepper.
559      *
560      * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
561      *               Simple System concept.
562      * \param x The state of the ODE which should be solved. x is updated by this method.
563      * \param t The value of the time, at which the step should be performed.
564      * \param dt The step size.
565      * \param xerr The estimation of the error is stored in xerr.
566      */
567 
568     /**
569      * \fn explicit_error_stepper_fsal_base::do_step( System system , StateInOut &x , DerivInOut &dxdt , time_type t , time_type dt , Err &xerr )
570      * \brief The method performs one step with the stepper passed by Stepper. Additionally to the other method
571      * the derivative of x is also passed to this method and updated by this method.
572      *
573      * \note This method does NOT use the internal state of the stepper.
574      *
575      * The result is updated in place in x. This method is disabled if Time and Deriv are of the same type. In this
576      * case the method could not be distinguished from other `do_step` versions. This method is disabled if StateInOut and
577      * Time are of the same type.
578      *
579      * \note This method does NOT use the internal state of the stepper.
580      *
581      * \note This method does not solve the forwarding problem.
582      *
583      * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
584      *               Simple System concept.
585      * \param x The state of the ODE which should be solved. After calling do_step the result is updated in x.
586      * \param dxdt The derivative of x at t. After calling `do_step` this value is updated to the new value at `t+dt`.
587      * \param t The value of the time, at which the step should be performed.
588      * \param dt The step size.
589      * \param xerr The error estimate is stored in xerr.
590      */
591 
592 
593     /**
594      * \fn explicit_error_stepper_fsal_base::do_step( System system , const StateIn &in , time_type t , StateOut &out , time_type dt , Err &xerr )
595      * \brief The method performs one step with the stepper passed by Stepper. The state of the ODE is updated out-of-place.
596      * Furthermore, the error is estimated.
597      *
598      * \note This method uses the internal state of the stepper.
599      *
600      * \note This method does not solve the forwarding problem.
601      *
602      * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
603      *               Simple System concept.
604      * \param in The state of the ODE which should be solved. in is not modified in this method
605      * \param t The value of the time, at which the step should be performed.
606      * \param out The result of the step is written in out.
607      * \param dt The step size.
608      * \param xerr The error estimate.
609      */
610 
611     /**
612      * \fn explicit_error_stepper_fsal_base::do_step( System system , const StateIn &in , const DerivIn &dxdt_in , time_type t , StateOut &out , DerivOut &dxdt_out , time_type dt , Err &xerr )
613      * \brief The method performs one step with the stepper passed by Stepper. The state of the ODE is updated out-of-place.
614      * Furthermore, the derivative of x at t is passed to the stepper and the error is estimated.
615      *
616      * \note This method does NOT use the internal state of the stepper.
617      *
618      * \note This method does not solve the forwarding problem.
619      *
620      * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
621      *               Simple System concept.
622      * \param in The state of the ODE which should be solved. in is not modified in this method
623      * \param dxdt_in The derivative of x at t.
624      * \param t The value of the time, at which the step should be performed.
625      * \param out The result of the step is written in out.
626      * \param dxdt_out The new derivative at `t+dt` is written into this variable.
627      * \param dt The step size.
628      * \param xerr The error estimate.
629      */
630 
631     /**
632      * \fn explicit_error_stepper_fsal_base::adjust_size( const StateIn &x )
633      * \brief Adjust the size of all temporaries in the stepper manually.
634      * \param x A state from which the size of the temporaries to be resized is deduced.
635      */
636 
637     /**
638      * \fn explicit_error_stepper_fsal_base::reset( void )
639      * \brief Resets the internal state of this stepper. After calling this method it is safe to use all
640      * `do_step` method without explicitly initializing the stepper.
641      */
642 
643     /**
644      * \fn explicit_error_stepper_fsal_base::initialize( const DerivIn &deriv )
645      * \brief Initializes the internal state of the stepper.
646      * \param deriv The derivative of x. The next call of `do_step` expects that the derivative of `x` passed to `do_step`
647      *              has the value of `deriv`.
648      */
649 
650     /**
651      * \fn explicit_error_stepper_fsal_base::initialize( System system , const StateIn &x , time_type t )
652      * \brief Initializes the internal state of the stepper.
653      *
654      * This method is equivalent to
655      * \code
656      * Deriv dxdt;
657      * system( x , dxdt , t );
658      * stepper.initialize( dxdt );
659      * \endcode
660      *
661      * \param system The system function for the next calls of `do_step`.
662      * \param x The current state of the ODE.
663      * \param t The current time of the ODE.
664      */
665 
666     /**
667      * \fn explicit_error_stepper_fsal_base::is_initialized( void ) const
668      * \brief Returns if the stepper is already initialized. If the stepper is not initialized, the first
669      * call of `do_step` will initialize the state of the stepper. If the stepper is already initialized
670      * the system function can not be safely exchanged between consecutive `do_step` calls.
671      */
672 
673 } // odeint
674 } // numeric
675 } // boost
676 
677 #endif // BOOST_NUMERIC_ODEINT_STEPPER_BASE_EXPLICIT_ERROR_STEPPER_FSAL_BASE_HPP_INCLUDED
678