1 ///////////////////////////////////////////////////////////////////////
2 // File:        unicharcompress.cpp
3 // Description: Unicode re-encoding using a sequence of smaller numbers in
4 //              place of a single large code for CJK, similarly for Indic,
5 //              and dissection of ligatures for other scripts.
6 // Author:      Ray Smith
7 //
8 // (C) Copyright 2015, Google Inc.
9 // Licensed under the Apache License, Version 2.0 (the "License");
10 // you may not use this file except in compliance with the License.
11 // You may obtain a copy of the License at
12 // http://www.apache.org/licenses/LICENSE-2.0
13 // Unless required by applicable law or agreed to in writing, software
14 // distributed under the License is distributed on an "AS IS" BASIS,
15 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 // See the License for the specific language governing permissions and
17 // limitations under the License.
18 //
19 ///////////////////////////////////////////////////////////////////////
20 
21 #include "unicharcompress.h"
22 #include <algorithm>
23 #include <memory>
24 #include "tprintf.h"
25 
26 namespace tesseract {
27 
28 // String used to represent the null_id in direct_set.
29 static const char *kNullChar = "<nul>";
30 // Radix to make unique values from the stored radical codes.
31 const int kRadicalRadix = 29;
32 
33 // "Hash" function for const std::vector<int> computes the sum of elements.
34 // Build a unique number for each code sequence that we can use as the index in
35 // a hash map of ints instead of trying to hash the vectors.
RadicalPreHash(const std::vector<int> & rs)36 static int RadicalPreHash(const std::vector<int> &rs) {
37   size_t result = 0;
38   for (int radical : rs) {
39     result *= kRadicalRadix;
40     result += radical;
41   }
42   return result;
43 }
44 
45 // A hash map to convert unicodes to radical encoding.
46 using RSMap = std::unordered_map<int, std::unique_ptr<std::vector<int>>>;
47 // A hash map to count occurrences of each radical encoding.
48 using RSCounts = std::unordered_map<int, int>;
49 
DecodeRadicalLine(std::string & radical_data_line,RSMap * radical_map)50 static bool DecodeRadicalLine(std::string &radical_data_line, RSMap *radical_map) {
51   if (radical_data_line.empty() || (radical_data_line)[0] == '#') {
52     return true;
53   }
54   std::vector<std::string> entries = split(radical_data_line, ' ');
55   if (entries.size() < 2) {
56     return false;
57   }
58   char *end = nullptr;
59   int unicode = strtol(&entries[0][0], &end, 10);
60   if (*end != '\0') {
61     return false;
62   }
63   std::unique_ptr<std::vector<int>> radicals(new std::vector<int>);
64   for (size_t i = 1; i < entries.size(); ++i) {
65     int radical = strtol(&entries[i][0], &end, 10);
66     if (*end != '\0') {
67       return false;
68     }
69     radicals->push_back(radical);
70   }
71   (*radical_map)[unicode] = std::move(radicals);
72   return true;
73 }
74 
75 // Helper function builds the RSMap from the radical-stroke file, which has
76 // already been read into a string. Returns false on error.
77 // The radical_stroke_table is non-const because it gets split and the caller
78 // is unlikely to want to use it again.
DecodeRadicalTable(std::string & radical_data,RSMap * radical_map)79 static bool DecodeRadicalTable(std::string &radical_data, RSMap *radical_map) {
80   std::vector<std::string> lines = split(radical_data, '\n');
81   for (unsigned i = 0; i < lines.size(); ++i) {
82     if (!DecodeRadicalLine(lines[i], radical_map)) {
83       tprintf("Invalid format in radical table at line %d: %s\n", i, lines[i].c_str());
84       return false;
85     }
86   }
87   return true;
88 }
89 
UnicharCompress()90 UnicharCompress::UnicharCompress() : code_range_(0) {}
UnicharCompress(const UnicharCompress & src)91 UnicharCompress::UnicharCompress(const UnicharCompress &src) {
92   *this = src;
93 }
~UnicharCompress()94 UnicharCompress::~UnicharCompress() {
95   Cleanup();
96 }
operator =(const UnicharCompress & src)97 UnicharCompress &UnicharCompress::operator=(const UnicharCompress &src) {
98   Cleanup();
99   encoder_ = src.encoder_;
100   code_range_ = src.code_range_;
101   SetupDecoder();
102   return *this;
103 }
104 
105 // Computes the encoding for the given unicharset. It is a requirement that
106 // the file training/langdata/radical-stroke.txt have been read into the
107 // input string radical_stroke_table.
108 // Returns false if the encoding cannot be constructed.
ComputeEncoding(const UNICHARSET & unicharset,int null_id,std::string * radical_stroke_table)109 bool UnicharCompress::ComputeEncoding(const UNICHARSET &unicharset, int null_id,
110                                       std::string *radical_stroke_table) {
111   RSMap radical_map;
112   if (radical_stroke_table != nullptr && !DecodeRadicalTable(*radical_stroke_table, &radical_map)) {
113     return false;
114   }
115   encoder_.clear();
116   UNICHARSET direct_set;
117   // To avoid unused codes, clear the special codes from the direct_set.
118   direct_set.clear();
119   // Always keep space as 0;
120   direct_set.unichar_insert(" ", OldUncleanUnichars::kTrue);
121   // Null char is next if we have one.
122   if (null_id >= 0) {
123     direct_set.unichar_insert(kNullChar);
124   }
125   RSCounts radical_counts;
126   // In the initial map, codes [0, unicharset.size()) are
127   // reserved for non-han/hangul sequences of 1 or more unicodes.
128   int hangul_offset = unicharset.size();
129   // Hangul takes the next range [hangul_offset, hangul_offset + kTotalJamos).
130   const int kTotalJamos = kLCount + kVCount + kTCount;
131   // Han takes the codes beyond hangul_offset + kTotalJamos. Since it is hard
132   // to measure the number of radicals and strokes, initially we use the same
133   // code range for all 3 Han code positions, and fix them after.
134   int han_offset = hangul_offset + kTotalJamos;
135   for (unsigned u = 0; u <= unicharset.size(); ++u) {
136     // We special-case allow null_id to be equal to unicharset.size() in case
137     // there is no space in unicharset for it.
138     if (u == unicharset.size() && static_cast<int>(u) != null_id) {
139       break; // Finished
140     }
141     RecodedCharID code;
142     // Convert to unicodes.
143     std::vector<char32> unicodes;
144     std::string cleaned;
145     if (u < unicharset.size()) {
146       cleaned = UNICHARSET::CleanupString(unicharset.id_to_unichar(u));
147     }
148     if (u < unicharset.size() && (unicodes = UNICHAR::UTF8ToUTF32(cleaned.c_str())).size() == 1) {
149       // Check single unicodes for Hangul/Han and encode if so.
150       int unicode = unicodes[0];
151       int leading, vowel, trailing;
152       auto it = radical_map.find(unicode);
153       if (it != radical_map.end()) {
154         // This is Han. Use the radical codes directly.
155         int num_radicals = it->second->size();
156         for (int c = 0; c < num_radicals; ++c) {
157           code.Set(c, han_offset + (*it->second)[c]);
158         }
159         int pre_hash = RadicalPreHash(*it->second);
160         int num_samples = radical_counts[pre_hash]++;
161         if (num_samples > 0) {
162           code.Set(num_radicals, han_offset + num_samples + kRadicalRadix);
163         }
164       } else if (DecomposeHangul(unicode, &leading, &vowel, &trailing)) {
165         // This is Hangul. Since we know the exact size of each part at compile
166         // time, it gets the bottom set of codes.
167         code.Set3(leading + hangul_offset, vowel + kLCount + hangul_offset,
168                   trailing + kLCount + kVCount + hangul_offset);
169       }
170     }
171     // If the code is still empty, it wasn't Han or Hangul.
172     if (code.empty()) {
173       // Special cases.
174       if (u == UNICHAR_SPACE) {
175         code.Set(0, 0); // Space.
176       } else if (static_cast<int>(u) == null_id ||
177                  (unicharset.has_special_codes() && u < SPECIAL_UNICHAR_CODES_COUNT)) {
178         code.Set(0, direct_set.unichar_to_id(kNullChar));
179       } else {
180         // Add the direct_set unichar-ids of the unicodes in sequence to the
181         // code.
182         for (int uni : unicodes) {
183           int position = code.length();
184           if (position >= RecodedCharID::kMaxCodeLen) {
185             tprintf("Unichar %d=%s is too long to encode!!\n", u, unicharset.id_to_unichar(u));
186             return false;
187           }
188           UNICHAR unichar(uni);
189           char *utf8 = unichar.utf8_str();
190           if (!direct_set.contains_unichar(utf8)) {
191             direct_set.unichar_insert(utf8);
192           }
193           code.Set(position, direct_set.unichar_to_id(utf8));
194           delete[] utf8;
195           if (direct_set.size() > unicharset.size() + !unicharset.has_special_codes()) {
196             // Code space got bigger!
197             tprintf("Code space expanded from original unicharset!!\n");
198             return false;
199           }
200         }
201       }
202     }
203     encoder_.push_back(code);
204   }
205   // Now renumber Han to make all codes unique. We already added han_offset to
206   // all Han. Now separate out the radical, stroke, and count codes for Han.
207   int code_offset = 0;
208   for (int i = 0; i < RecodedCharID::kMaxCodeLen; ++i) {
209     int max_offset = 0;
210     for (unsigned u = 0; u < unicharset.size(); ++u) {
211       RecodedCharID *code = &encoder_[u];
212       if (code->length() <= i) {
213         continue;
214       }
215       max_offset = std::max(max_offset, (*code)(i)-han_offset);
216       code->Set(i, (*code)(i) + code_offset);
217     }
218     if (max_offset == 0) {
219       break;
220     }
221     code_offset += max_offset + 1;
222   }
223   DefragmentCodeValues(null_id >= 0 ? 1 : -1);
224   SetupDecoder();
225   return true;
226 }
227 
228 // Sets up an encoder that doesn't change the unichars at all, so it just
229 // passes them through unchanged.
SetupPassThrough(const UNICHARSET & unicharset)230 void UnicharCompress::SetupPassThrough(const UNICHARSET &unicharset) {
231   std::vector<RecodedCharID> codes;
232   for (unsigned u = 0; u < unicharset.size(); ++u) {
233     RecodedCharID code;
234     code.Set(0, u);
235     codes.push_back(code);
236   }
237   if (!unicharset.has_special_codes()) {
238     RecodedCharID code;
239     code.Set(0, unicharset.size());
240     codes.push_back(code);
241   }
242   SetupDirect(codes);
243 }
244 
245 // Sets up an encoder directly using the given encoding vector, which maps
246 // unichar_ids to the given codes.
SetupDirect(const std::vector<RecodedCharID> & codes)247 void UnicharCompress::SetupDirect(const std::vector<RecodedCharID> &codes) {
248   encoder_ = codes;
249   ComputeCodeRange();
250   SetupDecoder();
251 }
252 
253 // Renumbers codes to eliminate unused values.
DefragmentCodeValues(int encoded_null)254 void UnicharCompress::DefragmentCodeValues(int encoded_null) {
255   // There may not be any Hangul, but even if there is, it is possible that not
256   // all codes are used. Likewise with the Han encoding, it is possible that not
257   // all numbers of strokes are used.
258   ComputeCodeRange();
259   std::vector<int> offsets(code_range_);
260   // Find which codes are used
261   for (auto &code : encoder_) {
262     for (int i = 0; i < code.length(); ++i) {
263       offsets[code(i)] = 1;
264     }
265   }
266   // Compute offsets based on code use.
267   int offset = 0;
268   for (unsigned i = 0; i < offsets.size(); ++i) {
269     // If not used, decrement everything above here.
270     // We are moving encoded_null to the end, so it is not "used".
271     if (offsets[i] == 0 || i == static_cast<unsigned>(encoded_null)) {
272       --offset;
273     } else {
274       offsets[i] = offset;
275     }
276   }
277   if (encoded_null >= 0) {
278     // The encoded_null is moving to the end, for the benefit of TensorFlow,
279     // which is offsets.size() + offsets.back().
280     offsets[encoded_null] = offsets.size() + offsets.back() - encoded_null;
281   }
282   // Now apply the offsets.
283   for (auto &c : encoder_) {
284     RecodedCharID *code = &c;
285     for (int i = 0; i < code->length(); ++i) {
286       int value = (*code)(i);
287       code->Set(i, value + offsets[value]);
288     }
289   }
290   ComputeCodeRange();
291 }
292 
293 // Encodes a single unichar_id. Returns the length of the code, or zero if
294 // invalid input, and the encoding itself
EncodeUnichar(unsigned unichar_id,RecodedCharID * code) const295 int UnicharCompress::EncodeUnichar(unsigned unichar_id, RecodedCharID *code) const {
296   if (unichar_id >= encoder_.size()) {
297     return 0;
298   }
299   *code = encoder_[unichar_id];
300   return code->length();
301 }
302 
303 // Decodes code, returning the original unichar-id, or
304 // INVALID_UNICHAR_ID if the input is invalid.
DecodeUnichar(const RecodedCharID & code) const305 int UnicharCompress::DecodeUnichar(const RecodedCharID &code) const {
306   int len = code.length();
307   if (len <= 0 || len > RecodedCharID::kMaxCodeLen) {
308     return INVALID_UNICHAR_ID;
309   }
310   auto it = decoder_.find(code);
311   if (it == decoder_.end()) {
312     return INVALID_UNICHAR_ID;
313   }
314   return it->second;
315 }
316 
317 // Writes to the given file. Returns false in case of error.
Serialize(TFile * fp) const318 bool UnicharCompress::Serialize(TFile *fp) const {
319   return fp->Serialize(encoder_);
320 }
321 
322 // Reads from the given file. Returns false in case of error.
DeSerialize(TFile * fp)323 bool UnicharCompress::DeSerialize(TFile *fp) {
324   if (!fp->DeSerialize(encoder_)) {
325     return false;
326   }
327   ComputeCodeRange();
328   SetupDecoder();
329   return true;
330 }
331 
332 // Returns a string containing a text file that describes the encoding thus:
333 // <index>[,<index>]*<tab><UTF8-str><newline>
334 // In words, a comma-separated list of one or more indices, followed by a tab
335 // and the UTF-8 string that the code represents per line. Most simple scripts
336 // will encode a single index to a UTF8-string, but Chinese, Japanese, Korean
337 // and the Indic scripts will contain a many-to-many mapping.
338 // See the class comment above for details.
GetEncodingAsString(const UNICHARSET & unicharset) const339 std::string UnicharCompress::GetEncodingAsString(const UNICHARSET &unicharset) const {
340   std::string encoding;
341   for (unsigned c = 0; c < encoder_.size(); ++c) {
342     const RecodedCharID &code = encoder_[c];
343     if (0 < c && c < SPECIAL_UNICHAR_CODES_COUNT && code == encoder_[c - 1]) {
344       // Don't show the duplicate entry.
345       continue;
346     }
347     encoding += std::to_string(code(0));
348     for (int i = 1; i < code.length(); ++i) {
349       encoding += "," + std::to_string(code(i));
350     }
351     encoding += "\t";
352     if (c >= unicharset.size() ||
353         (0 < c && c < SPECIAL_UNICHAR_CODES_COUNT && unicharset.has_special_codes())) {
354       encoding += kNullChar;
355     } else {
356       encoding += unicharset.id_to_unichar(c);
357     }
358     encoding += "\n";
359   }
360   return encoding;
361 }
362 
363 // Helper decomposes a Hangul unicode to 3 parts, leading, vowel, trailing.
364 // Note that the returned values are 0-based indices, NOT unicode Jamo.
365 // Returns false if the input is not in the Hangul unicode range.
366 /* static */
DecomposeHangul(int unicode,int * leading,int * vowel,int * trailing)367 bool UnicharCompress::DecomposeHangul(int unicode, int *leading, int *vowel, int *trailing) {
368   if (unicode < kFirstHangul) {
369     return false;
370   }
371   int offset = unicode - kFirstHangul;
372   if (offset >= kNumHangul) {
373     return false;
374   }
375   const int kNCount = kVCount * kTCount;
376   *leading = offset / kNCount;
377   *vowel = (offset % kNCount) / kTCount;
378   *trailing = offset % kTCount;
379   return true;
380 }
381 
382 // Computes the value of code_range_ from the encoder_.
ComputeCodeRange()383 void UnicharCompress::ComputeCodeRange() {
384   code_range_ = -1;
385   for (auto &code : encoder_) {
386     for (int i = 0; i < code.length(); ++i) {
387       if (code(i) > code_range_) {
388         code_range_ = code(i);
389       }
390     }
391   }
392   ++code_range_;
393 }
394 
395 // Initializes the decoding hash_map from the encoding array.
SetupDecoder()396 void UnicharCompress::SetupDecoder() {
397   Cleanup();
398   is_valid_start_.clear();
399   is_valid_start_.resize(code_range_);
400   for (unsigned c = 0; c < encoder_.size(); ++c) {
401     const RecodedCharID &code = encoder_[c];
402     decoder_[code] = c;
403     is_valid_start_[code(0)] = true;
404     RecodedCharID prefix = code;
405     int len = code.length() - 1;
406     prefix.Truncate(len);
407     auto final_it = final_codes_.find(prefix);
408     if (final_it == final_codes_.end()) {
409       auto *code_list = new std::vector<int>;
410       code_list->push_back(code(len));
411       final_codes_[prefix] = code_list;
412       while (--len >= 0) {
413         prefix.Truncate(len);
414         auto next_it = next_codes_.find(prefix);
415         if (next_it == next_codes_.end()) {
416           auto *code_list = new std::vector<int>;
417           code_list->push_back(code(len));
418           next_codes_[prefix] = code_list;
419         } else {
420           // We still have to search the list as we may get here via multiple
421           // lengths of code.
422           if (!contains(*next_it->second, code(len))) {
423             next_it->second->push_back(code(len));
424           }
425           break; // This prefix has been processed.
426         }
427       }
428     } else {
429       if (!contains(*final_it->second, code(len))) {
430         final_it->second->push_back(code(len));
431       }
432     }
433   }
434 }
435 
436 // Frees allocated memory.
Cleanup()437 void UnicharCompress::Cleanup() {
438   decoder_.clear();
439   is_valid_start_.clear();
440   for (auto &next_code : next_codes_) {
441     delete next_code.second;
442   }
443   for (auto &final_code : final_codes_) {
444     delete final_code.second;
445   }
446   next_codes_.clear();
447   final_codes_.clear();
448 }
449 
450 } // namespace tesseract.
451