1 /*
2 * Copyright (c) 2006-2012 Erin Catto http://www.box2d.org
3 *
4 * This software is provided 'as-is', without any express or implied
5 * warranty.  In no event will the authors be held liable for any damages
6 * arising from the use of this software.
7 * Permission is granted to anyone to use this software for any purpose,
8 * including commercial applications, and to alter it and redistribute it
9 * freely, subject to the following restrictions:
10 * 1. The origin of this software must not be misrepresented; you must not
11 * claim that you wrote the original software. If you use this software
12 * in a product, an acknowledgment in the product documentation would be
13 * appreciated but is not required.
14 * 2. Altered source versions must be plainly marked as such, and must not be
15 * misrepresented as being the original software.
16 * 3. This notice may not be removed or altered from any source distribution.
17 */
18 
19 #include "Box2D/Dynamics/Joints/b2MotorJoint.h"
20 #include "Box2D/Dynamics/b2Body.h"
21 #include "Box2D/Dynamics/b2TimeStep.h"
22 
23 // Point-to-point constraint
24 // Cdot = v2 - v1
25 //      = v2 + cross(w2, r2) - v1 - cross(w1, r1)
26 // J = [-I -r1_skew I r2_skew ]
27 // Identity used:
28 // w k % (rx i + ry j) = w * (-ry i + rx j)
29 
30 // Angle constraint
31 // Cdot = w2 - w1
32 // J = [0 0 -1 0 0 1]
33 // K = invI1 + invI2
34 
Initialize(b2Body * bA,b2Body * bB)35 void b2MotorJointDef::Initialize(b2Body* bA, b2Body* bB)
36 {
37 	bodyA = bA;
38 	bodyB = bB;
39 	b2Vec2 xB = bodyB->GetPosition();
40 	linearOffset = bodyA->GetLocalPoint(xB);
41 
42 	float32 angleA = bodyA->GetAngle();
43 	float32 angleB = bodyB->GetAngle();
44 	angularOffset = angleB - angleA;
45 }
46 
b2MotorJoint(const b2MotorJointDef * def)47 b2MotorJoint::b2MotorJoint(const b2MotorJointDef* def)
48 : b2Joint(def)
49 {
50 	m_linearOffset = def->linearOffset;
51 	m_angularOffset = def->angularOffset;
52 
53 	m_linearImpulse.SetZero();
54 	m_angularImpulse = 0.0f;
55 
56 	m_maxForce = def->maxForce;
57 	m_maxTorque = def->maxTorque;
58 	m_correctionFactor = def->correctionFactor;
59 }
60 
InitVelocityConstraints(const b2SolverData & data)61 void b2MotorJoint::InitVelocityConstraints(const b2SolverData& data)
62 {
63 	m_indexA = m_bodyA->m_islandIndex;
64 	m_indexB = m_bodyB->m_islandIndex;
65 	m_localCenterA = m_bodyA->m_sweep.localCenter;
66 	m_localCenterB = m_bodyB->m_sweep.localCenter;
67 	m_invMassA = m_bodyA->m_invMass;
68 	m_invMassB = m_bodyB->m_invMass;
69 	m_invIA = m_bodyA->m_invI;
70 	m_invIB = m_bodyB->m_invI;
71 
72 	b2Vec2 cA = data.positions[m_indexA].c;
73 	float32 aA = data.positions[m_indexA].a;
74 	b2Vec2 vA = data.velocities[m_indexA].v;
75 	float32 wA = data.velocities[m_indexA].w;
76 
77 	b2Vec2 cB = data.positions[m_indexB].c;
78 	float32 aB = data.positions[m_indexB].a;
79 	b2Vec2 vB = data.velocities[m_indexB].v;
80 	float32 wB = data.velocities[m_indexB].w;
81 
82 	b2Rot qA(aA), qB(aB);
83 
84 	// Compute the effective mass matrix.
85 	m_rA = b2Mul(qA, -m_localCenterA);
86 	m_rB = b2Mul(qB, -m_localCenterB);
87 
88 	// J = [-I -r1_skew I r2_skew]
89 	//     [ 0       -1 0       1]
90 	// r_skew = [-ry; rx]
91 
92 	// Matlab
93 	// K = [ mA+r1y^2*iA+mB+r2y^2*iB,  -r1y*iA*r1x-r2y*iB*r2x,          -r1y*iA-r2y*iB]
94 	//     [  -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB,           r1x*iA+r2x*iB]
95 	//     [          -r1y*iA-r2y*iB,           r1x*iA+r2x*iB,                   iA+iB]
96 
97 	float32 mA = m_invMassA, mB = m_invMassB;
98 	float32 iA = m_invIA, iB = m_invIB;
99 
100 	b2Mat22 K;
101 	K.ex.x = mA + mB + iA * m_rA.y * m_rA.y + iB * m_rB.y * m_rB.y;
102 	K.ex.y = -iA * m_rA.x * m_rA.y - iB * m_rB.x * m_rB.y;
103 	K.ey.x = K.ex.y;
104 	K.ey.y = mA + mB + iA * m_rA.x * m_rA.x + iB * m_rB.x * m_rB.x;
105 
106 	m_linearMass = K.GetInverse();
107 
108 	m_angularMass = iA + iB;
109 	if (m_angularMass > 0.0f)
110 	{
111 		m_angularMass = 1.0f / m_angularMass;
112 	}
113 
114 	m_linearError = cB + m_rB - cA - m_rA - b2Mul(qA, m_linearOffset);
115 	m_angularError = aB - aA - m_angularOffset;
116 
117 	if (data.step.warmStarting)
118 	{
119 		// Scale impulses to support a variable time step.
120 		m_linearImpulse *= data.step.dtRatio;
121 		m_angularImpulse *= data.step.dtRatio;
122 
123 		b2Vec2 P(m_linearImpulse.x, m_linearImpulse.y);
124 		vA -= mA * P;
125 		wA -= iA * (b2Cross(m_rA, P) + m_angularImpulse);
126 		vB += mB * P;
127 		wB += iB * (b2Cross(m_rB, P) + m_angularImpulse);
128 	}
129 	else
130 	{
131 		m_linearImpulse.SetZero();
132 		m_angularImpulse = 0.0f;
133 	}
134 
135 	data.velocities[m_indexA].v = vA;
136 	data.velocities[m_indexA].w = wA;
137 	data.velocities[m_indexB].v = vB;
138 	data.velocities[m_indexB].w = wB;
139 }
140 
SolveVelocityConstraints(const b2SolverData & data)141 void b2MotorJoint::SolveVelocityConstraints(const b2SolverData& data)
142 {
143 	b2Vec2 vA = data.velocities[m_indexA].v;
144 	float32 wA = data.velocities[m_indexA].w;
145 	b2Vec2 vB = data.velocities[m_indexB].v;
146 	float32 wB = data.velocities[m_indexB].w;
147 
148 	float32 mA = m_invMassA, mB = m_invMassB;
149 	float32 iA = m_invIA, iB = m_invIB;
150 
151 	float32 h = data.step.dt;
152 	float32 inv_h = data.step.inv_dt;
153 
154 	// Solve angular friction
155 	{
156 		float32 Cdot = wB - wA + inv_h * m_correctionFactor * m_angularError;
157 		float32 impulse = -m_angularMass * Cdot;
158 
159 		float32 oldImpulse = m_angularImpulse;
160 		float32 maxImpulse = h * m_maxTorque;
161 		m_angularImpulse = b2Clamp(m_angularImpulse + impulse, -maxImpulse, maxImpulse);
162 		impulse = m_angularImpulse - oldImpulse;
163 
164 		wA -= iA * impulse;
165 		wB += iB * impulse;
166 	}
167 
168 	// Solve linear friction
169 	{
170 		b2Vec2 Cdot = vB + b2Cross(wB, m_rB) - vA - b2Cross(wA, m_rA) + inv_h * m_correctionFactor * m_linearError;
171 
172 		b2Vec2 impulse = -b2Mul(m_linearMass, Cdot);
173 		b2Vec2 oldImpulse = m_linearImpulse;
174 		m_linearImpulse += impulse;
175 
176 		float32 maxImpulse = h * m_maxForce;
177 
178 		if (m_linearImpulse.LengthSquared() > maxImpulse * maxImpulse)
179 		{
180 			m_linearImpulse.Normalize();
181 			m_linearImpulse *= maxImpulse;
182 		}
183 
184 		impulse = m_linearImpulse - oldImpulse;
185 
186 		vA -= mA * impulse;
187 		wA -= iA * b2Cross(m_rA, impulse);
188 
189 		vB += mB * impulse;
190 		wB += iB * b2Cross(m_rB, impulse);
191 	}
192 
193 	data.velocities[m_indexA].v = vA;
194 	data.velocities[m_indexA].w = wA;
195 	data.velocities[m_indexB].v = vB;
196 	data.velocities[m_indexB].w = wB;
197 }
198 
SolvePositionConstraints(const b2SolverData & data)199 bool b2MotorJoint::SolvePositionConstraints(const b2SolverData& data)
200 {
201 	B2_NOT_USED(data);
202 
203 	return true;
204 }
205 
GetAnchorA() const206 b2Vec2 b2MotorJoint::GetAnchorA() const
207 {
208 	return m_bodyA->GetPosition();
209 }
210 
GetAnchorB() const211 b2Vec2 b2MotorJoint::GetAnchorB() const
212 {
213 	return m_bodyB->GetPosition();
214 }
215 
GetReactionForce(float32 inv_dt) const216 b2Vec2 b2MotorJoint::GetReactionForce(float32 inv_dt) const
217 {
218 	return inv_dt * m_linearImpulse;
219 }
220 
GetReactionTorque(float32 inv_dt) const221 float32 b2MotorJoint::GetReactionTorque(float32 inv_dt) const
222 {
223 	return inv_dt * m_angularImpulse;
224 }
225 
SetMaxForce(float32 force)226 void b2MotorJoint::SetMaxForce(float32 force)
227 {
228 	b2Assert(b2IsValid(force) && force >= 0.0f);
229 	m_maxForce = force;
230 }
231 
GetMaxForce() const232 float32 b2MotorJoint::GetMaxForce() const
233 {
234 	return m_maxForce;
235 }
236 
SetMaxTorque(float32 torque)237 void b2MotorJoint::SetMaxTorque(float32 torque)
238 {
239 	b2Assert(b2IsValid(torque) && torque >= 0.0f);
240 	m_maxTorque = torque;
241 }
242 
GetMaxTorque() const243 float32 b2MotorJoint::GetMaxTorque() const
244 {
245 	return m_maxTorque;
246 }
247 
SetCorrectionFactor(float32 factor)248 void b2MotorJoint::SetCorrectionFactor(float32 factor)
249 {
250 	b2Assert(b2IsValid(factor) && 0.0f <= factor && factor <= 1.0f);
251 	m_correctionFactor = factor;
252 }
253 
GetCorrectionFactor() const254 float32 b2MotorJoint::GetCorrectionFactor() const
255 {
256 	return m_correctionFactor;
257 }
258 
SetLinearOffset(const b2Vec2 & linearOffset)259 void b2MotorJoint::SetLinearOffset(const b2Vec2& linearOffset)
260 {
261 	if (linearOffset.x != m_linearOffset.x || linearOffset.y != m_linearOffset.y)
262 	{
263 		m_bodyA->SetAwake(true);
264 		m_bodyB->SetAwake(true);
265 		m_linearOffset = linearOffset;
266 	}
267 }
268 
GetLinearOffset() const269 const b2Vec2& b2MotorJoint::GetLinearOffset() const
270 {
271 	return m_linearOffset;
272 }
273 
SetAngularOffset(float32 angularOffset)274 void b2MotorJoint::SetAngularOffset(float32 angularOffset)
275 {
276 	if (angularOffset != m_angularOffset)
277 	{
278 		m_bodyA->SetAwake(true);
279 		m_bodyB->SetAwake(true);
280 		m_angularOffset = angularOffset;
281 	}
282 }
283 
GetAngularOffset() const284 float32 b2MotorJoint::GetAngularOffset() const
285 {
286 	return m_angularOffset;
287 }
288 
Dump()289 void b2MotorJoint::Dump()
290 {
291 	int32 indexA = m_bodyA->m_islandIndex;
292 	int32 indexB = m_bodyB->m_islandIndex;
293 
294 	b2Log("  b2MotorJointDef jd;\n");
295 	b2Log("  jd.bodyA = bodies[%d];\n", indexA);
296 	b2Log("  jd.bodyB = bodies[%d];\n", indexB);
297 	b2Log("  jd.collideConnected = bool(%d);\n", m_collideConnected);
298 	b2Log("  jd.linearOffset.Set(%.15lef, %.15lef);\n", m_linearOffset.x, m_linearOffset.y);
299 	b2Log("  jd.angularOffset = %.15lef;\n", m_angularOffset);
300 	b2Log("  jd.maxForce = %.15lef;\n", m_maxForce);
301 	b2Log("  jd.maxTorque = %.15lef;\n", m_maxTorque);
302 	b2Log("  jd.correctionFactor = %.15lef;\n", m_correctionFactor);
303 	b2Log("  joints[%d] = m_world->CreateJoint(&jd);\n", m_index);
304 }
305