1 /*
2  * jquant2.c
3  *
4  * Copyright (C) 1991-1994, Thomas G. Lane.
5  * This file is part of the Independent JPEG Group's software.
6  * For conditions of distribution and use, see the accompanying README file.
7  *
8  * This file contains 2-pass color quantization (color mapping) routines.
9  * These routines provide selection of a custom color map for an image,
10  * followed by mapping of the image to that color map, with optional
11  * Floyd-Steinberg dithering.
12  * It is also possible to use just the second pass to map to an arbitrary
13  * externally-given color map.
14  *
15  * Note: ordered dithering is not supported, since there isn't any fast
16  * way to compute intercolor distances; it's unclear that ordered dither's
17  * fundamental assumptions even hold with an irregularly spaced color map.
18  */
19 
20 #define JPEG_INTERNALS
21 #include "jinclude.h"
22 #include "jpeglib.h"
23 
24 #ifdef QUANT_2PASS_SUPPORTED
25 
26 
27 /*
28  * This module implements the well-known Heckbert paradigm for color
29  * quantization.  Most of the ideas used here can be traced back to
30  * Heckbert's seminal paper
31  *   Heckbert, Paul.  "Color Image Quantization for Frame Buffer Display",
32  *   Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
33  *
34  * In the first pass over the image, we accumulate a histogram showing the
35  * usage count of each possible color.  To keep the histogram to a reasonable
36  * size, we reduce the precision of the input; typical practice is to retain
37  * 5 or 6 bits per color, so that 8 or 4 different input values are counted
38  * in the same histogram cell.
39  *
40  * Next, the color-selection step begins with a box representing the whole
41  * color space, and repeatedly splits the "largest" remaining box until we
42  * have as many boxes as desired colors.  Then the mean color in each
43  * remaining box becomes one of the possible output colors.
44  *
45  * The second pass over the image maps each input pixel to the closest output
46  * color (optionally after applying a Floyd-Steinberg dithering correction).
47  * This mapping is logically trivial, but making it go fast enough requires
48  * considerable care.
49  *
50  * Heckbert-style quantizers vary a good deal in their policies for choosing
51  * the "largest" box and deciding where to cut it.  The particular policies
52  * used here have proved out well in experimental comparisons, but better ones
53  * may yet be found.
54  *
55  * In earlier versions of the IJG code, this module quantized in YCbCr color
56  * space, processing the raw upsampled data without a color conversion step.
57  * This allowed the color conversion math to be done only once per colormap
58  * entry, not once per pixel.  However, that optimization precluded other
59  * useful optimizations (such as merging color conversion with upsampling)
60  * and it also interfered with desired capabilities such as quantizing to an
61  * externally-supplied colormap.  We have therefore abandoned that approach.
62  * The present code works in the post-conversion color space, typically RGB.
63  *
64  * To improve the visual quality of the results, we actually work in scaled
65  * RGB space, giving G distances more weight than R, and R in turn more than
66  * B.  To do everything in integer math, we must use integer scale factors.
67  * The 2/3/1 scale factors used here correspond loosely to the relative
68  * weights of the colors in the NTSC grayscale equation.
69  * If you want to use this code to quantize a non-RGB color space, you'll
70  * probably need to change these scale factors.
71  */
72 
73 #define R_SCALE 2		/* scale R distances by this much */
74 #define G_SCALE 3		/* scale G distances by this much */
75 #define B_SCALE 1		/* and B by this much */
76 
77 /* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
78  * in jmorecfg.h.  As the code stands, it will do the right thing for R,G,B
79  * and B,G,R orders.  If you define some other weird order in jmorecfg.h,
80  * you'll get compile errors until you extend this logic.  In that case
81  * you'll probably want to tweak the histogram sizes too.
82  */
83 
84 #if RGB_RED == 0
85 #define C0_SCALE R_SCALE
86 #endif
87 #if RGB_BLUE == 0
88 #define C0_SCALE B_SCALE
89 #endif
90 #if RGB_GREEN == 1
91 #define C1_SCALE G_SCALE
92 #endif
93 #if RGB_RED == 2
94 #define C2_SCALE R_SCALE
95 #endif
96 #if RGB_BLUE == 2
97 #define C2_SCALE B_SCALE
98 #endif
99 
100 
101 /*
102  * First we have the histogram data structure and routines for creating it.
103  *
104  * The number of bits of precision can be adjusted by changing these symbols.
105  * We recommend keeping 6 bits for G and 5 each for R and B.
106  * If you have plenty of memory and cycles, 6 bits all around gives marginally
107  * better results; if you are short of memory, 5 bits all around will save
108  * some space but degrade the results.
109  * To maintain a fully accurate histogram, we'd need to allocate a "long"
110  * (preferably unsigned long) for each cell.  In practice this is overkill;
111  * we can get by with 16 bits per cell.  Few of the cell counts will overflow,
112  * and clamping those that do overflow to the maximum value will give close-
113  * enough results.  This reduces the recommended histogram size from 256Kb
114  * to 128Kb, which is a useful savings on PC-class machines.
115  * (In the second pass the histogram space is re-used for pixel mapping data;
116  * in that capacity, each cell must be able to store zero to the number of
117  * desired colors.  16 bits/cell is plenty for that too.)
118  * Since the JPEG code is intended to run in small memory model on 80x86
119  * machines, we can't just allocate the histogram in one chunk.  Instead
120  * of a true 3-D array, we use a row of pointers to 2-D arrays.  Each
121  * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
122  * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.  Note that
123  * on 80x86 machines, the pointer row is in near memory but the actual
124  * arrays are in far memory (same arrangement as we use for image arrays).
125  */
126 
127 #define MAXNUMCOLORS  (MAXJSAMPLE+1) /* maximum size of colormap */
128 
129 /* These will do the right thing for either R,G,B or B,G,R color order,
130  * but you may not like the results for other color orders.
131  */
132 #define HIST_C0_BITS  5		/* bits of precision in R/B histogram */
133 #define HIST_C1_BITS  6		/* bits of precision in G histogram */
134 #define HIST_C2_BITS  5		/* bits of precision in B/R histogram */
135 
136 /* Number of elements along histogram axes. */
137 #define HIST_C0_ELEMS  (1<<HIST_C0_BITS)
138 #define HIST_C1_ELEMS  (1<<HIST_C1_BITS)
139 #define HIST_C2_ELEMS  (1<<HIST_C2_BITS)
140 
141 /* These are the amounts to shift an input value to get a histogram index. */
142 #define C0_SHIFT  (BITS_IN_JSAMPLE-HIST_C0_BITS)
143 #define C1_SHIFT  (BITS_IN_JSAMPLE-HIST_C1_BITS)
144 #define C2_SHIFT  (BITS_IN_JSAMPLE-HIST_C2_BITS)
145 
146 
147 typedef UINT16 histcell;	/* histogram cell; prefer an unsigned type */
148 
149 typedef histcell FAR * histptr;	/* for pointers to histogram cells */
150 
151 typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
152 typedef hist1d FAR * hist2d;	/* type for the 2nd-level pointers */
153 typedef hist2d * hist3d;	/* type for top-level pointer */
154 
155 
156 /* Declarations for Floyd-Steinberg dithering.
157  *
158  * Errors are accumulated into the array fserrors[], at a resolution of
159  * 1/16th of a pixel count.  The error at a given pixel is propagated
160  * to its not-yet-processed neighbors using the standard F-S fractions,
161  *		...	(here)	7/16
162  *		3/16	5/16	1/16
163  * We work left-to-right on even rows, right-to-left on odd rows.
164  *
165  * We can get away with a single array (holding one row's worth of errors)
166  * by using it to store the current row's errors at pixel columns not yet
167  * processed, but the next row's errors at columns already processed.  We
168  * need only a few extra variables to hold the errors immediately around the
169  * current column.  (If we are lucky, those variables are in registers, but
170  * even if not, they're probably cheaper to access than array elements are.)
171  *
172  * The fserrors[] array has (#columns + 2) entries; the extra entry at
173  * each end saves us from special-casing the first and last pixels.
174  * Each entry is three values long, one value for each color component.
175  *
176  * Note: on a wide image, we might not have enough room in a PC's near data
177  * segment to hold the error array; so it is allocated with alloc_large.
178  */
179 
180 #if BITS_IN_JSAMPLE == 8
181 typedef INT16 FSERROR;		/* 16 bits should be enough */
182 typedef int LOCFSERROR;		/* use 'int' for calculation temps */
183 #else
184 typedef INT32 FSERROR;		/* may need more than 16 bits */
185 typedef INT32 LOCFSERROR;	/* be sure calculation temps are big enough */
186 #endif
187 
188 typedef FSERROR FAR *FSERRPTR;	/* pointer to error array (in FAR storage!) */
189 
190 
191 /* Private subobject */
192 
193 typedef struct {
194   struct jpeg_color_quantizer pub; /* public fields */
195 
196   /* Variables for accumulating image statistics */
197   hist3d histogram;		/* pointer to the histogram */
198 
199   /* Variables for Floyd-Steinberg dithering */
200   FSERRPTR fserrors;		/* accumulated errors */
201   boolean on_odd_row;		/* flag to remember which row we are on */
202   int * error_limiter;		/* table for clamping the applied error */
203 } my_cquantizer;
204 
205 typedef my_cquantizer * my_cquantize_ptr;
206 
207 
208 /*
209  * Prescan some rows of pixels.
210  * In this module the prescan simply updates the histogram, which has been
211  * initialized to zeroes by start_pass.
212  * An output_buf parameter is required by the method signature, but no data
213  * is actually output (in fact the buffer controller is probably passing a
214  * NULL pointer).
215  */
216 
217 METHODDEF void
prescan_quantize(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)218 prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
219 		  JSAMPARRAY output_buf, int num_rows)
220 {
221   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
222   register JSAMPROW ptr;
223   register histptr histp;
224   register hist3d histogram = cquantize->histogram;
225   int row;
226   JDIMENSION col;
227   JDIMENSION width = cinfo->output_width;
228 
229   for (row = 0; row < num_rows; row++) {
230     ptr = input_buf[row];
231     for (col = width; col > 0; col--) {
232       /* get pixel value and index into the histogram */
233       histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
234 			 [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
235 			 [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
236       /* increment, check for overflow and undo increment if so. */
237       if (++(*histp) <= 0)
238 	(*histp)--;
239       ptr += 3;
240     }
241   }
242 }
243 
244 
245 /*
246  * Next we have the really interesting routines: selection of a colormap
247  * given the completed histogram.
248  * These routines work with a list of "boxes", each representing a rectangular
249  * subset of the input color space (to histogram precision).
250  */
251 
252 typedef struct {
253   /* The bounds of the box (inclusive); expressed as histogram indexes */
254   int c0min, c0max;
255   int c1min, c1max;
256   int c2min, c2max;
257   /* The volume (actually 2-norm) of the box */
258   INT32 volume;
259   /* The number of nonzero histogram cells within this box */
260   long colorcount;
261 } box;
262 
263 typedef box * boxptr;
264 
265 
266 LOCAL boxptr
find_biggest_color_pop(boxptr boxlist,int numboxes)267 find_biggest_color_pop (boxptr boxlist, int numboxes)
268 /* Find the splittable box with the largest color population */
269 /* Returns NULL if no splittable boxes remain */
270 {
271   register boxptr boxp;
272   register int i;
273   register long maxc = 0;
274   boxptr which = NULL;
275 
276   for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
277     if (boxp->colorcount > maxc && boxp->volume > 0) {
278       which = boxp;
279       maxc = boxp->colorcount;
280     }
281   }
282   return which;
283 }
284 
285 
286 LOCAL boxptr
find_biggest_volume(boxptr boxlist,int numboxes)287 find_biggest_volume (boxptr boxlist, int numboxes)
288 /* Find the splittable box with the largest (scaled) volume */
289 /* Returns NULL if no splittable boxes remain */
290 {
291   register boxptr boxp;
292   register int i;
293   register INT32 maxv = 0;
294   boxptr which = NULL;
295 
296   for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
297     if (boxp->volume > maxv) {
298       which = boxp;
299       maxv = boxp->volume;
300     }
301   }
302   return which;
303 }
304 
305 
306 LOCAL void
update_box(j_decompress_ptr cinfo,boxptr boxp)307 update_box (j_decompress_ptr cinfo, boxptr boxp)
308 /* Shrink the min/max bounds of a box to enclose only nonzero elements, */
309 /* and recompute its volume and population */
310 {
311   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
312   hist3d histogram = cquantize->histogram;
313   histptr histp;
314   int c0,c1,c2;
315   int c0min,c0max,c1min,c1max,c2min,c2max;
316   INT32 dist0,dist1,dist2;
317   long ccount;
318 
319   c0min = boxp->c0min;  c0max = boxp->c0max;
320   c1min = boxp->c1min;  c1max = boxp->c1max;
321   c2min = boxp->c2min;  c2max = boxp->c2max;
322 
323   if (c0max > c0min)
324     for (c0 = c0min; c0 <= c0max; c0++)
325       for (c1 = c1min; c1 <= c1max; c1++) {
326 	histp = & histogram[c0][c1][c2min];
327 	for (c2 = c2min; c2 <= c2max; c2++)
328 	  if (*histp++ != 0) {
329 	    boxp->c0min = c0min = c0;
330 	    goto have_c0min;
331 	  }
332       }
333  have_c0min:
334   if (c0max > c0min)
335     for (c0 = c0max; c0 >= c0min; c0--)
336       for (c1 = c1min; c1 <= c1max; c1++) {
337 	histp = & histogram[c0][c1][c2min];
338 	for (c2 = c2min; c2 <= c2max; c2++)
339 	  if (*histp++ != 0) {
340 	    boxp->c0max = c0max = c0;
341 	    goto have_c0max;
342 	  }
343       }
344  have_c0max:
345   if (c1max > c1min)
346     for (c1 = c1min; c1 <= c1max; c1++)
347       for (c0 = c0min; c0 <= c0max; c0++) {
348 	histp = & histogram[c0][c1][c2min];
349 	for (c2 = c2min; c2 <= c2max; c2++)
350 	  if (*histp++ != 0) {
351 	    boxp->c1min = c1min = c1;
352 	    goto have_c1min;
353 	  }
354       }
355  have_c1min:
356   if (c1max > c1min)
357     for (c1 = c1max; c1 >= c1min; c1--)
358       for (c0 = c0min; c0 <= c0max; c0++) {
359 	histp = & histogram[c0][c1][c2min];
360 	for (c2 = c2min; c2 <= c2max; c2++)
361 	  if (*histp++ != 0) {
362 	    boxp->c1max = c1max = c1;
363 	    goto have_c1max;
364 	  }
365       }
366  have_c1max:
367   if (c2max > c2min)
368     for (c2 = c2min; c2 <= c2max; c2++)
369       for (c0 = c0min; c0 <= c0max; c0++) {
370 	histp = & histogram[c0][c1min][c2];
371 	for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
372 	  if (*histp != 0) {
373 	    boxp->c2min = c2min = c2;
374 	    goto have_c2min;
375 	  }
376       }
377  have_c2min:
378   if (c2max > c2min)
379     for (c2 = c2max; c2 >= c2min; c2--)
380       for (c0 = c0min; c0 <= c0max; c0++) {
381 	histp = & histogram[c0][c1min][c2];
382 	for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
383 	  if (*histp != 0) {
384 	    boxp->c2max = c2max = c2;
385 	    goto have_c2max;
386 	  }
387       }
388  have_c2max:
389 
390   /* Update box volume.
391    * We use 2-norm rather than real volume here; this biases the method
392    * against making long narrow boxes, and it has the side benefit that
393    * a box is splittable iff norm > 0.
394    * Since the differences are expressed in histogram-cell units,
395    * we have to shift back to JSAMPLE units to get consistent distances;
396    * after which, we scale according to the selected distance scale factors.
397    */
398   dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
399   dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
400   dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
401   boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
402 
403   /* Now scan remaining volume of box and compute population */
404   ccount = 0;
405   for (c0 = c0min; c0 <= c0max; c0++)
406     for (c1 = c1min; c1 <= c1max; c1++) {
407       histp = & histogram[c0][c1][c2min];
408       for (c2 = c2min; c2 <= c2max; c2++, histp++)
409 	if (*histp != 0) {
410 	  ccount++;
411 	}
412     }
413   boxp->colorcount = ccount;
414 }
415 
416 
417 LOCAL int
median_cut(j_decompress_ptr cinfo,boxptr boxlist,int numboxes,int desired_colors)418 median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
419 	    int desired_colors)
420 /* Repeatedly select and split the largest box until we have enough boxes */
421 {
422   int n,lb;
423   int c0,c1,c2,cmax;
424   register boxptr b1,b2;
425 
426   while (numboxes < desired_colors) {
427     /* Select box to split.
428      * Current algorithm: by population for first half, then by volume.
429      */
430     if (numboxes*2 <= desired_colors) {
431       b1 = find_biggest_color_pop(boxlist, numboxes);
432     } else {
433       b1 = find_biggest_volume(boxlist, numboxes);
434     }
435     if (b1 == NULL)		/* no splittable boxes left! */
436       break;
437     b2 = &boxlist[numboxes];	/* where new box will go */
438     /* Copy the color bounds to the new box. */
439     b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
440     b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
441     /* Choose which axis to split the box on.
442      * Current algorithm: longest scaled axis.
443      * See notes in update_box about scaling distances.
444      */
445     c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
446     c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
447     c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
448     /* We want to break any ties in favor of green, then red, blue last.
449      * This code does the right thing for R,G,B or B,G,R color orders only.
450      */
451 #if RGB_RED == 0
452     cmax = c1; n = 1;
453     if (c0 > cmax) { cmax = c0; n = 0; }
454     if (c2 > cmax) { n = 2; }
455 #else
456     cmax = c1; n = 1;
457     if (c2 > cmax) { cmax = c2; n = 2; }
458     if (c0 > cmax) { n = 0; }
459 #endif
460     /* Choose split point along selected axis, and update box bounds.
461      * Current algorithm: split at halfway point.
462      * (Since the box has been shrunk to minimum volume,
463      * any split will produce two nonempty subboxes.)
464      * Note that lb value is max for lower box, so must be < old max.
465      */
466     switch (n) {
467     case 0:
468       lb = (b1->c0max + b1->c0min) / 2;
469       b1->c0max = lb;
470       b2->c0min = lb+1;
471       break;
472     case 1:
473       lb = (b1->c1max + b1->c1min) / 2;
474       b1->c1max = lb;
475       b2->c1min = lb+1;
476       break;
477     case 2:
478       lb = (b1->c2max + b1->c2min) / 2;
479       b1->c2max = lb;
480       b2->c2min = lb+1;
481       break;
482     }
483     /* Update stats for boxes */
484     update_box(cinfo, b1);
485     update_box(cinfo, b2);
486     numboxes++;
487   }
488   return numboxes;
489 }
490 
491 
492 LOCAL void
compute_color(j_decompress_ptr cinfo,boxptr boxp,int icolor)493 compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
494 /* Compute representative color for a box, put it in colormap[icolor] */
495 {
496   /* Current algorithm: mean weighted by pixels (not colors) */
497   /* Note it is important to get the rounding correct! */
498   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
499   hist3d histogram = cquantize->histogram;
500   histptr histp;
501   int c0,c1,c2;
502   int c0min,c0max,c1min,c1max,c2min,c2max;
503   long count;
504   long total = 0;
505   long c0total = 0;
506   long c1total = 0;
507   long c2total = 0;
508 
509   c0min = boxp->c0min;  c0max = boxp->c0max;
510   c1min = boxp->c1min;  c1max = boxp->c1max;
511   c2min = boxp->c2min;  c2max = boxp->c2max;
512 
513   for (c0 = c0min; c0 <= c0max; c0++)
514     for (c1 = c1min; c1 <= c1max; c1++) {
515       histp = & histogram[c0][c1][c2min];
516       for (c2 = c2min; c2 <= c2max; c2++) {
517 	if ((count = *histp++) != 0) {
518 	  total += count;
519 	  c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
520 	  c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
521 	  c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
522 	}
523       }
524     }
525 
526   cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
527   cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
528   cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
529 }
530 
531 
532 LOCAL void
select_colors(j_decompress_ptr cinfo)533 select_colors (j_decompress_ptr cinfo)
534 /* Master routine for color selection */
535 {
536   boxptr boxlist;
537   int numboxes;
538   int desired = cinfo->desired_number_of_colors;
539   int i;
540 
541   /* Allocate workspace for box list */
542   boxlist = (boxptr) (*cinfo->mem->alloc_small)
543     ((j_common_ptr) cinfo, JPOOL_IMAGE, desired * SIZEOF(box));
544   /* Initialize one box containing whole space */
545   numboxes = 1;
546   boxlist[0].c0min = 0;
547   boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
548   boxlist[0].c1min = 0;
549   boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
550   boxlist[0].c2min = 0;
551   boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
552   /* Shrink it to actually-used volume and set its statistics */
553   update_box(cinfo, & boxlist[0]);
554   /* Perform median-cut to produce final box list */
555   numboxes = median_cut(cinfo, boxlist, numboxes, desired);
556   /* Compute the representative color for each box, fill colormap */
557   for (i = 0; i < numboxes; i++)
558     compute_color(cinfo, & boxlist[i], i);
559   cinfo->actual_number_of_colors = numboxes;
560   TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
561 }
562 
563 
564 /*
565  * These routines are concerned with the time-critical task of mapping input
566  * colors to the nearest color in the selected colormap.
567  *
568  * We re-use the histogram space as an "inverse color map", essentially a
569  * cache for the results of nearest-color searches.  All colors within a
570  * histogram cell will be mapped to the same colormap entry, namely the one
571  * closest to the cell's center.  This may not be quite the closest entry to
572  * the actual input color, but it's almost as good.  A zero in the cache
573  * indicates we haven't found the nearest color for that cell yet; the array
574  * is cleared to zeroes before starting the mapping pass.  When we find the
575  * nearest color for a cell, its colormap index plus one is recorded in the
576  * cache for future use.  The pass2 scanning routines call fill_inverse_cmap
577  * when they need to use an unfilled entry in the cache.
578  *
579  * Our method of efficiently finding nearest colors is based on the "locally
580  * sorted search" idea described by Heckbert and on the incremental distance
581  * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
582  * Gems II (James Arvo, ed.  Academic Press, 1991).  Thomas points out that
583  * the distances from a given colormap entry to each cell of the histogram can
584  * be computed quickly using an incremental method: the differences between
585  * distances to adjacent cells themselves differ by a constant.  This allows a
586  * fairly fast implementation of the "brute force" approach of computing the
587  * distance from every colormap entry to every histogram cell.  Unfortunately,
588  * it needs a work array to hold the best-distance-so-far for each histogram
589  * cell (because the inner loop has to be over cells, not colormap entries).
590  * The work array elements have to be INT32s, so the work array would need
591  * 256Kb at our recommended precision.  This is not feasible in DOS machines.
592  *
593  * To get around these problems, we apply Thomas' method to compute the
594  * nearest colors for only the cells within a small subbox of the histogram.
595  * The work array need be only as big as the subbox, so the memory usage
596  * problem is solved.  Furthermore, we need not fill subboxes that are never
597  * referenced in pass2; many images use only part of the color gamut, so a
598  * fair amount of work is saved.  An additional advantage of this
599  * approach is that we can apply Heckbert's locality criterion to quickly
600  * eliminate colormap entries that are far away from the subbox; typically
601  * three-fourths of the colormap entries are rejected by Heckbert's criterion,
602  * and we need not compute their distances to individual cells in the subbox.
603  * The speed of this approach is heavily influenced by the subbox size: too
604  * small means too much overhead, too big loses because Heckbert's criterion
605  * can't eliminate as many colormap entries.  Empirically the best subbox
606  * size seems to be about 1/512th of the histogram (1/8th in each direction).
607  *
608  * Thomas' article also describes a refined method which is asymptotically
609  * faster than the brute-force method, but it is also far more complex and
610  * cannot efficiently be applied to small subboxes.  It is therefore not
611  * useful for programs intended to be portable to DOS machines.  On machines
612  * with plenty of memory, filling the whole histogram in one shot with Thomas'
613  * refined method might be faster than the present code --- but then again,
614  * it might not be any faster, and it's certainly more complicated.
615  */
616 
617 
618 /* log2(histogram cells in update box) for each axis; this can be adjusted */
619 #define BOX_C0_LOG  (HIST_C0_BITS-3)
620 #define BOX_C1_LOG  (HIST_C1_BITS-3)
621 #define BOX_C2_LOG  (HIST_C2_BITS-3)
622 
623 #define BOX_C0_ELEMS  (1<<BOX_C0_LOG) /* # of hist cells in update box */
624 #define BOX_C1_ELEMS  (1<<BOX_C1_LOG)
625 #define BOX_C2_ELEMS  (1<<BOX_C2_LOG)
626 
627 #define BOX_C0_SHIFT  (C0_SHIFT + BOX_C0_LOG)
628 #define BOX_C1_SHIFT  (C1_SHIFT + BOX_C1_LOG)
629 #define BOX_C2_SHIFT  (C2_SHIFT + BOX_C2_LOG)
630 
631 
632 /*
633  * The next three routines implement inverse colormap filling.  They could
634  * all be folded into one big routine, but splitting them up this way saves
635  * some stack space (the mindist[] and bestdist[] arrays need not coexist)
636  * and may allow some compilers to produce better code by registerizing more
637  * inner-loop variables.
638  */
639 
640 LOCAL int
find_nearby_colors(j_decompress_ptr cinfo,int minc0,int minc1,int minc2,JSAMPLE colorlist[])641 find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
642 		    JSAMPLE colorlist[])
643 /* Locate the colormap entries close enough to an update box to be candidates
644  * for the nearest entry to some cell(s) in the update box.  The update box
645  * is specified by the center coordinates of its first cell.  The number of
646  * candidate colormap entries is returned, and their colormap indexes are
647  * placed in colorlist[].
648  * This routine uses Heckbert's "locally sorted search" criterion to select
649  * the colors that need further consideration.
650  */
651 {
652   int numcolors = cinfo->actual_number_of_colors;
653   int maxc0, maxc1, maxc2;
654   int centerc0, centerc1, centerc2;
655   int i, x, ncolors;
656   INT32 minmaxdist, min_dist, max_dist, tdist;
657   INT32 mindist[MAXNUMCOLORS];	/* min distance to colormap entry i */
658 
659   /* Compute true coordinates of update box's upper corner and center.
660    * Actually we compute the coordinates of the center of the upper-corner
661    * histogram cell, which are the upper bounds of the volume we care about.
662    * Note that since ">>" rounds down, the "center" values may be closer to
663    * min than to max; hence comparisons to them must be "<=", not "<".
664    */
665   maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
666   centerc0 = (minc0 + maxc0) >> 1;
667   maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
668   centerc1 = (minc1 + maxc1) >> 1;
669   maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
670   centerc2 = (minc2 + maxc2) >> 1;
671 
672   /* For each color in colormap, find:
673    *  1. its minimum squared-distance to any point in the update box
674    *     (zero if color is within update box);
675    *  2. its maximum squared-distance to any point in the update box.
676    * Both of these can be found by considering only the corners of the box.
677    * We save the minimum distance for each color in mindist[];
678    * only the smallest maximum distance is of interest.
679    */
680   minmaxdist = 0x7FFFFFFFL;
681 
682   for (i = 0; i < numcolors; i++) {
683     /* We compute the squared-c0-distance term, then add in the other two. */
684     x = GETJSAMPLE(cinfo->colormap[0][i]);
685     if (x < minc0) {
686       tdist = (x - minc0) * C0_SCALE;
687       min_dist = tdist*tdist;
688       tdist = (x - maxc0) * C0_SCALE;
689       max_dist = tdist*tdist;
690     } else if (x > maxc0) {
691       tdist = (x - maxc0) * C0_SCALE;
692       min_dist = tdist*tdist;
693       tdist = (x - minc0) * C0_SCALE;
694       max_dist = tdist*tdist;
695     } else {
696       /* within cell range so no contribution to min_dist */
697       min_dist = 0;
698       if (x <= centerc0) {
699 	tdist = (x - maxc0) * C0_SCALE;
700 	max_dist = tdist*tdist;
701       } else {
702 	tdist = (x - minc0) * C0_SCALE;
703 	max_dist = tdist*tdist;
704       }
705     }
706 
707     x = GETJSAMPLE(cinfo->colormap[1][i]);
708     if (x < minc1) {
709       tdist = (x - minc1) * C1_SCALE;
710       min_dist += tdist*tdist;
711       tdist = (x - maxc1) * C1_SCALE;
712       max_dist += tdist*tdist;
713     } else if (x > maxc1) {
714       tdist = (x - maxc1) * C1_SCALE;
715       min_dist += tdist*tdist;
716       tdist = (x - minc1) * C1_SCALE;
717       max_dist += tdist*tdist;
718     } else {
719       /* within cell range so no contribution to min_dist */
720       if (x <= centerc1) {
721 	tdist = (x - maxc1) * C1_SCALE;
722 	max_dist += tdist*tdist;
723       } else {
724 	tdist = (x - minc1) * C1_SCALE;
725 	max_dist += tdist*tdist;
726       }
727     }
728 
729     x = GETJSAMPLE(cinfo->colormap[2][i]);
730     if (x < minc2) {
731       tdist = (x - minc2) * C2_SCALE;
732       min_dist += tdist*tdist;
733       tdist = (x - maxc2) * C2_SCALE;
734       max_dist += tdist*tdist;
735     } else if (x > maxc2) {
736       tdist = (x - maxc2) * C2_SCALE;
737       min_dist += tdist*tdist;
738       tdist = (x - minc2) * C2_SCALE;
739       max_dist += tdist*tdist;
740     } else {
741       /* within cell range so no contribution to min_dist */
742       if (x <= centerc2) {
743 	tdist = (x - maxc2) * C2_SCALE;
744 	max_dist += tdist*tdist;
745       } else {
746 	tdist = (x - minc2) * C2_SCALE;
747 	max_dist += tdist*tdist;
748       }
749     }
750 
751     mindist[i] = min_dist;	/* save away the results */
752     if (max_dist < minmaxdist)
753       minmaxdist = max_dist;
754   }
755 
756   /* Now we know that no cell in the update box is more than minmaxdist
757    * away from some colormap entry.  Therefore, only colors that are
758    * within minmaxdist of some part of the box need be considered.
759    */
760   ncolors = 0;
761   for (i = 0; i < numcolors; i++) {
762     if (mindist[i] <= minmaxdist)
763       colorlist[ncolors++] = (JSAMPLE) i;
764   }
765   return ncolors;
766 }
767 
768 
769 LOCAL void
find_best_colors(j_decompress_ptr cinfo,int minc0,int minc1,int minc2,int numcolors,JSAMPLE colorlist[],JSAMPLE bestcolor[])770 find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
771 		  int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
772 /* Find the closest colormap entry for each cell in the update box,
773  * given the list of candidate colors prepared by find_nearby_colors.
774  * Return the indexes of the closest entries in the bestcolor[] array.
775  * This routine uses Thomas' incremental distance calculation method to
776  * find the distance from a colormap entry to successive cells in the box.
777  */
778 {
779   int ic0, ic1, ic2;
780   int i, icolor;
781   register INT32 * bptr;	/* pointer into bestdist[] array */
782   JSAMPLE * cptr;		/* pointer into bestcolor[] array */
783   INT32 dist0, dist1;		/* initial distance values */
784   register INT32 dist2;		/* current distance in inner loop */
785   INT32 xx0, xx1;		/* distance increments */
786   register INT32 xx2;
787   INT32 inc0, inc1, inc2;	/* initial values for increments */
788   /* This array holds the distance to the nearest-so-far color for each cell */
789   INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
790 
791   /* Initialize best-distance for each cell of the update box */
792   bptr = bestdist;
793   for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
794     *bptr++ = 0x7FFFFFFFL;
795 
796   /* For each color selected by find_nearby_colors,
797    * compute its distance to the center of each cell in the box.
798    * If that's less than best-so-far, update best distance and color number.
799    */
800 
801   /* Nominal steps between cell centers ("x" in Thomas article) */
802 #define STEP_C0  ((1 << C0_SHIFT) * C0_SCALE)
803 #define STEP_C1  ((1 << C1_SHIFT) * C1_SCALE)
804 #define STEP_C2  ((1 << C2_SHIFT) * C2_SCALE)
805 
806   for (i = 0; i < numcolors; i++) {
807     icolor = GETJSAMPLE(colorlist[i]);
808     /* Compute (square of) distance from minc0/c1/c2 to this color */
809     inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
810     dist0 = inc0*inc0;
811     inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
812     dist0 += inc1*inc1;
813     inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
814     dist0 += inc2*inc2;
815     /* Form the initial difference increments */
816     inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
817     inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
818     inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
819     /* Now loop over all cells in box, updating distance per Thomas method */
820     bptr = bestdist;
821     cptr = bestcolor;
822     xx0 = inc0;
823     for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
824       dist1 = dist0;
825       xx1 = inc1;
826       for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
827 	dist2 = dist1;
828 	xx2 = inc2;
829 	for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
830 	  if (dist2 < *bptr) {
831 	    *bptr = dist2;
832 	    *cptr = (JSAMPLE) icolor;
833 	  }
834 	  dist2 += xx2;
835 	  xx2 += 2 * STEP_C2 * STEP_C2;
836 	  bptr++;
837 	  cptr++;
838 	}
839 	dist1 += xx1;
840 	xx1 += 2 * STEP_C1 * STEP_C1;
841       }
842       dist0 += xx0;
843       xx0 += 2 * STEP_C0 * STEP_C0;
844     }
845   }
846 }
847 
848 
849 LOCAL void
fill_inverse_cmap(j_decompress_ptr cinfo,int c0,int c1,int c2)850 fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
851 /* Fill the inverse-colormap entries in the update box that contains */
852 /* histogram cell c0/c1/c2.  (Only that one cell MUST be filled, but */
853 /* we can fill as many others as we wish.) */
854 {
855   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
856   hist3d histogram = cquantize->histogram;
857   int minc0, minc1, minc2;	/* lower left corner of update box */
858   int ic0, ic1, ic2;
859   register JSAMPLE * cptr;	/* pointer into bestcolor[] array */
860   register histptr cachep;	/* pointer into main cache array */
861   /* This array lists the candidate colormap indexes. */
862   JSAMPLE colorlist[MAXNUMCOLORS];
863   int numcolors;		/* number of candidate colors */
864   /* This array holds the actually closest colormap index for each cell. */
865   JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
866 
867   /* Convert cell coordinates to update box ID */
868   c0 >>= BOX_C0_LOG;
869   c1 >>= BOX_C1_LOG;
870   c2 >>= BOX_C2_LOG;
871 
872   /* Compute true coordinates of update box's origin corner.
873    * Actually we compute the coordinates of the center of the corner
874    * histogram cell, which are the lower bounds of the volume we care about.
875    */
876   minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
877   minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
878   minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
879 
880   /* Determine which colormap entries are close enough to be candidates
881    * for the nearest entry to some cell in the update box.
882    */
883   numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
884 
885   /* Determine the actually nearest colors. */
886   find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
887 		   bestcolor);
888 
889   /* Save the best color numbers (plus 1) in the main cache array */
890   c0 <<= BOX_C0_LOG;		/* convert ID back to base cell indexes */
891   c1 <<= BOX_C1_LOG;
892   c2 <<= BOX_C2_LOG;
893   cptr = bestcolor;
894   for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
895     for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
896       cachep = & histogram[c0+ic0][c1+ic1][c2];
897       for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
898 	*cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
899       }
900     }
901   }
902 }
903 
904 
905 /*
906  * Map some rows of pixels to the output colormapped representation.
907  */
908 
909 METHODDEF void
pass2_no_dither(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)910 pass2_no_dither (j_decompress_ptr cinfo,
911 		 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
912 /* This version performs no dithering */
913 {
914   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
915   hist3d histogram = cquantize->histogram;
916   register JSAMPROW inptr, outptr;
917   register histptr cachep;
918   register int c0, c1, c2;
919   int row;
920   JDIMENSION col;
921   JDIMENSION width = cinfo->output_width;
922 
923   for (row = 0; row < num_rows; row++) {
924     inptr = input_buf[row];
925     outptr = output_buf[row];
926     for (col = width; col > 0; col--) {
927       /* get pixel value and index into the cache */
928       c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
929       c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
930       c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
931       cachep = & histogram[c0][c1][c2];
932       /* If we have not seen this color before, find nearest colormap entry */
933       /* and update the cache */
934       if (*cachep == 0)
935 	fill_inverse_cmap(cinfo, c0,c1,c2);
936       /* Now emit the colormap index for this cell */
937       *outptr++ = (JSAMPLE) (*cachep - 1);
938     }
939   }
940 }
941 
942 
943 METHODDEF void
pass2_fs_dither(j_decompress_ptr cinfo,JSAMPARRAY input_buf,JSAMPARRAY output_buf,int num_rows)944 pass2_fs_dither (j_decompress_ptr cinfo,
945 		 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
946 /* This version performs Floyd-Steinberg dithering */
947 {
948   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
949   hist3d histogram = cquantize->histogram;
950   register LOCFSERROR cur0, cur1, cur2;	/* current error or pixel value */
951   LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
952   LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
953   register FSERRPTR errorptr;	/* => fserrors[] at column before current */
954   JSAMPROW inptr;		/* => current input pixel */
955   JSAMPROW outptr;		/* => current output pixel */
956   histptr cachep;
957   int dir;			/* +1 or -1 depending on direction */
958   int dir3;			/* 3*dir, for advancing inptr & errorptr */
959   int row;
960   JDIMENSION col;
961   JDIMENSION width = cinfo->output_width;
962   JSAMPLE *range_limit = cinfo->sample_range_limit;
963   int *error_limit = cquantize->error_limiter;
964   JSAMPROW colormap0 = cinfo->colormap[0];
965   JSAMPROW colormap1 = cinfo->colormap[1];
966   JSAMPROW colormap2 = cinfo->colormap[2];
967   SHIFT_TEMPS
968 
969   for (row = 0; row < num_rows; row++) {
970     inptr = input_buf[row];
971     outptr = output_buf[row];
972     if (cquantize->on_odd_row) {
973       /* work right to left in this row */
974       inptr += (width-1) * 3;	/* so point to rightmost pixel */
975       outptr += width-1;
976       dir = -1;
977       dir3 = -3;
978       errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
979       cquantize->on_odd_row = FALSE; /* flip for next time */
980     } else {
981       /* work left to right in this row */
982       dir = 1;
983       dir3 = 3;
984       errorptr = cquantize->fserrors; /* => entry before first real column */
985       cquantize->on_odd_row = TRUE; /* flip for next time */
986     }
987     /* Preset error values: no error propagated to first pixel from left */
988     cur0 = cur1 = cur2 = 0;
989     /* and no error propagated to row below yet */
990     belowerr0 = belowerr1 = belowerr2 = 0;
991     bpreverr0 = bpreverr1 = bpreverr2 = 0;
992 
993     for (col = width; col > 0; col--) {
994       /* curN holds the error propagated from the previous pixel on the
995        * current line.  Add the error propagated from the previous line
996        * to form the complete error correction term for this pixel, and
997        * round the error term (which is expressed * 16) to an integer.
998        * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
999        * for either sign of the error value.
1000        * Note: errorptr points to *previous* column's array entry.
1001        */
1002       cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
1003       cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
1004       cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
1005       /* Limit the error using transfer function set by init_error_limit.
1006        * See comments with init_error_limit for rationale.
1007        */
1008       cur0 = error_limit[cur0];
1009       cur1 = error_limit[cur1];
1010       cur2 = error_limit[cur2];
1011       /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
1012        * The maximum error is +- MAXJSAMPLE (or less with error limiting);
1013        * this sets the required size of the range_limit array.
1014        */
1015       cur0 += GETJSAMPLE(inptr[0]);
1016       cur1 += GETJSAMPLE(inptr[1]);
1017       cur2 += GETJSAMPLE(inptr[2]);
1018       cur0 = GETJSAMPLE(range_limit[cur0]);
1019       cur1 = GETJSAMPLE(range_limit[cur1]);
1020       cur2 = GETJSAMPLE(range_limit[cur2]);
1021       /* Index into the cache with adjusted pixel value */
1022       cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
1023       /* If we have not seen this color before, find nearest colormap */
1024       /* entry and update the cache */
1025       if (*cachep == 0)
1026 	fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
1027       /* Now emit the colormap index for this cell */
1028       { register int pixcode = *cachep - 1;
1029 	*outptr = (JSAMPLE) pixcode;
1030 	/* Compute representation error for this pixel */
1031 	cur0 -= GETJSAMPLE(colormap0[pixcode]);
1032 	cur1 -= GETJSAMPLE(colormap1[pixcode]);
1033 	cur2 -= GETJSAMPLE(colormap2[pixcode]);
1034       }
1035       /* Compute error fractions to be propagated to adjacent pixels.
1036        * Add these into the running sums, and simultaneously shift the
1037        * next-line error sums left by 1 column.
1038        */
1039       { register LOCFSERROR bnexterr, delta;
1040 
1041 	bnexterr = cur0;	/* Process component 0 */
1042 	delta = cur0 * 2;
1043 	cur0 += delta;		/* form error * 3 */
1044 	errorptr[0] = (FSERROR) (bpreverr0 + cur0);
1045 	cur0 += delta;		/* form error * 5 */
1046 	bpreverr0 = belowerr0 + cur0;
1047 	belowerr0 = bnexterr;
1048 	cur0 += delta;		/* form error * 7 */
1049 	bnexterr = cur1;	/* Process component 1 */
1050 	delta = cur1 * 2;
1051 	cur1 += delta;		/* form error * 3 */
1052 	errorptr[1] = (FSERROR) (bpreverr1 + cur1);
1053 	cur1 += delta;		/* form error * 5 */
1054 	bpreverr1 = belowerr1 + cur1;
1055 	belowerr1 = bnexterr;
1056 	cur1 += delta;		/* form error * 7 */
1057 	bnexterr = cur2;	/* Process component 2 */
1058 	delta = cur2 * 2;
1059 	cur2 += delta;		/* form error * 3 */
1060 	errorptr[2] = (FSERROR) (bpreverr2 + cur2);
1061 	cur2 += delta;		/* form error * 5 */
1062 	bpreverr2 = belowerr2 + cur2;
1063 	belowerr2 = bnexterr;
1064 	cur2 += delta;		/* form error * 7 */
1065       }
1066       /* At this point curN contains the 7/16 error value to be propagated
1067        * to the next pixel on the current line, and all the errors for the
1068        * next line have been shifted over.  We are therefore ready to move on.
1069        */
1070       inptr += dir3;		/* Advance pixel pointers to next column */
1071       outptr += dir;
1072       errorptr += dir3;		/* advance errorptr to current column */
1073     }
1074     /* Post-loop cleanup: we must unload the final error values into the
1075      * final fserrors[] entry.  Note we need not unload belowerrN because
1076      * it is for the dummy column before or after the actual array.
1077      */
1078     errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
1079     errorptr[1] = (FSERROR) bpreverr1;
1080     errorptr[2] = (FSERROR) bpreverr2;
1081   }
1082 }
1083 
1084 
1085 /*
1086  * Initialize the error-limiting transfer function (lookup table).
1087  * The raw F-S error computation can potentially compute error values of up to
1088  * +- MAXJSAMPLE.  But we want the maximum correction applied to a pixel to be
1089  * much less, otherwise obviously wrong pixels will be created.  (Typical
1090  * effects include weird fringes at color-area boundaries, isolated bright
1091  * pixels in a dark area, etc.)  The standard advice for avoiding this problem
1092  * is to ensure that the "corners" of the color cube are allocated as output
1093  * colors; then repeated errors in the same direction cannot cause cascading
1094  * error buildup.  However, that only prevents the error from getting
1095  * completely out of hand; Aaron Giles reports that error limiting improves
1096  * the results even with corner colors allocated.
1097  * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
1098  * well, but the smoother transfer function used below is even better.  Thanks
1099  * to Aaron Giles for this idea.
1100  */
1101 
1102 LOCAL void
init_error_limit(j_decompress_ptr cinfo)1103 init_error_limit (j_decompress_ptr cinfo)
1104 /* Allocate and fill in the error_limiter table */
1105 {
1106   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1107   int * table;
1108   int in, out;
1109 
1110   table = (int *) (*cinfo->mem->alloc_small)
1111     ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int));
1112   table += MAXJSAMPLE;		/* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
1113   cquantize->error_limiter = table;
1114 
1115 #define STEPSIZE ((MAXJSAMPLE+1)/16)
1116   /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
1117   out = 0;
1118   for (in = 0; in < STEPSIZE; in++, out++) {
1119     table[in] = out; table[-in] = -out;
1120   }
1121   /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
1122   for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
1123     table[in] = out; table[-in] = -out;
1124   }
1125   /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
1126   for (; in <= MAXJSAMPLE; in++) {
1127     table[in] = out; table[-in] = -out;
1128   }
1129 #undef STEPSIZE
1130 }
1131 
1132 
1133 /*
1134  * Finish up at the end of each pass.
1135  */
1136 
1137 METHODDEF void
finish_pass1(j_decompress_ptr cinfo)1138 finish_pass1 (j_decompress_ptr cinfo)
1139 {
1140   /* Select the representative colors and fill in cinfo->colormap */
1141   select_colors(cinfo);
1142 }
1143 
1144 
1145 METHODDEF void
finish_pass2(j_decompress_ptr cinfo)1146 finish_pass2 (j_decompress_ptr cinfo)
1147 {
1148   /* no work */
1149 }
1150 
1151 
1152 /*
1153  * Initialize for each processing pass.
1154  */
1155 
1156 METHODDEF void
start_pass_2_quant(j_decompress_ptr cinfo,boolean is_pre_scan)1157 start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
1158 {
1159   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1160   hist3d histogram = cquantize->histogram;
1161   int i;
1162 
1163   if (is_pre_scan) {
1164     /* Set up method pointers */
1165     cquantize->pub.color_quantize = prescan_quantize;
1166     cquantize->pub.finish_pass = finish_pass1;
1167   } else {
1168     /* Set up method pointers */
1169     if (cinfo->dither_mode == JDITHER_FS)
1170       cquantize->pub.color_quantize = pass2_fs_dither;
1171     else
1172       cquantize->pub.color_quantize = pass2_no_dither;
1173     cquantize->pub.finish_pass = finish_pass2;
1174   }
1175   /* Zero the histogram or inverse color map */
1176   for (i = 0; i < HIST_C0_ELEMS; i++) {
1177     jzero_far((void FAR *) histogram[i],
1178 	      HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
1179   }
1180 }
1181 
1182 
1183 /*
1184  * Module initialization routine for 2-pass color quantization.
1185  */
1186 
1187 GLOBAL void
jinit_2pass_quantizer(j_decompress_ptr cinfo)1188 jinit_2pass_quantizer (j_decompress_ptr cinfo)
1189 {
1190   my_cquantize_ptr cquantize;
1191   int i;
1192 
1193   cquantize = (my_cquantize_ptr)
1194     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
1195 				SIZEOF(my_cquantizer));
1196   cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
1197   cquantize->pub.start_pass = start_pass_2_quant;
1198 
1199   /* Make sure jdmaster didn't give me a case I can't handle */
1200   if (cinfo->out_color_components != 3)
1201     ERREXIT(cinfo, JERR_NOTIMPL);
1202 
1203   /* Only F-S dithering or no dithering is supported. */
1204   /* If user asks for ordered dither, give him F-S. */
1205   if (cinfo->dither_mode != JDITHER_NONE)
1206     cinfo->dither_mode = JDITHER_FS;
1207 
1208   /* Make sure color count is acceptable */
1209   i = (cinfo->colormap != NULL) ? cinfo->actual_number_of_colors
1210 				: cinfo->desired_number_of_colors;
1211   /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
1212   if (i < 8)
1213     ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
1214   /* Make sure colormap indexes can be represented by JSAMPLEs */
1215   if (i > MAXNUMCOLORS)
1216     ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1217 
1218   /* Allocate the histogram/inverse colormap storage */
1219   cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small)
1220     ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d));
1221   for (i = 0; i < HIST_C0_ELEMS; i++) {
1222     cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large)
1223       ((j_common_ptr) cinfo, JPOOL_IMAGE,
1224        HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell));
1225   }
1226 
1227   /* Allocate storage for the completed colormap,
1228    * unless it has been supplied by the application.
1229    * We do this now since it is FAR storage and may affect
1230    * the memory manager's space calculations.
1231    */
1232   if (cinfo->colormap == NULL) {
1233     cinfo->colormap = (*cinfo->mem->alloc_sarray)
1234       ((j_common_ptr) cinfo, JPOOL_IMAGE,
1235        (JDIMENSION) cinfo->desired_number_of_colors, (JDIMENSION) 3);
1236   }
1237 
1238   /* Allocate Floyd-Steinberg workspace if necessary. */
1239   /* This isn't needed until pass 2, but again it is FAR storage. */
1240   if (cinfo->dither_mode == JDITHER_FS) {
1241     size_t arraysize = (size_t) ((cinfo->output_width + 2) *
1242 				 (3 * SIZEOF(FSERROR)));
1243 
1244     cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large)
1245       ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
1246     /* Initialize the propagated errors to zero. */
1247     jzero_far((void FAR *) cquantize->fserrors, arraysize);
1248     cquantize->on_odd_row = FALSE;
1249     init_error_limit(cinfo);
1250   }
1251 }
1252 
1253 #endif /* QUANT_2PASS_SUPPORTED */
1254