1 
2 package java_cup.runtime;
3 
4 import java.util.Stack;
5 
6 /** This class implements a skeleton table driven LR parser.  In general,
7  *  LR parsers are a form of bottom up shift-reduce parsers.  Shift-reduce
8  *  parsers act by shifting input onto a parse stack until the symbols
9  *  matching the right hand side of a production appear on the top of the
10  *  stack.  Once this occurs, a reduce is performed.  This involves removing
11  *  the symbols corresponding to the right hand side of the production
12  *  (the so called "handle") and replacing them with the non-terminal from
13  *  the left hand side of the production.  <p>
14  *
15  *  To control the decision of whether to shift or reduce at any given point,
16  *  the parser uses a state machine (the "viable prefix recognition machine"
17  *  built by the parser generator).  The current state of the machine is placed
18  *  on top of the parse stack (stored as part of a symbol object representing
19  *  a terminal or non terminal).  The parse action table is consulted
20  *  (using the current state and the current lookahead token as indexes) to
21  *  determine whether to shift or to reduce.  When the parser shifts, it
22  *  changes to a new state by pushing a new symbol (containing a new state)
23  *  onto the stack.  When the parser reduces, it pops the handle (right hand
24  *  side of a production) off the stack.  This leaves the parser in the state
25  *  it was in before any of those symbols were matched.  Next the reduce-goto
26  *  table is consulted (using the new state and current lookahead token as
27  *  indexes) to determine a new state to go to.  The parser then shifts to
28  *  this goto state by pushing the left hand side symbol of the production
29  *  (also containing the new state) onto the stack.<p>
30  *
31  *  This class actually provides four LR parsers.  The methods parse() and
32  *  debug_parse() provide two versions of the main parser (the only difference
33  *  being that debug_parse() emits debugging trace messages as it parses).
34  *  In addition to these main parsers, the error recovery mechanism uses two
35  *  more.  One of these is used to simulate "parsing ahead" in the input
36  *  without carrying out actions (to verify that a potential error recovery
37  *  has worked), and the other is used to parse through buffered "parse ahead"
38  *  input in order to execute all actions and re-synchronize the actual parser
39  *  configuration.<p>
40  *
41  *  This is an abstract class which is normally filled out by a subclass
42  *  generated by the JavaCup parser generator.  In addition to supplying
43  *  the actual parse tables, generated code also supplies methods which
44  *  invoke various pieces of user supplied code, provide access to certain
45  *  special symbols (e.g., EOF and error), etc.  Specifically, the following
46  *  abstract methods are normally supplied by generated code:
47  *  <dl compact>
48  *  <dt> short[][] production_table()
49  *  <dd> Provides a reference to the production table (indicating the index of
50  *       the left hand side non terminal and the length of the right hand side
51  *       for each production in the grammar).
52  *  <dt> short[][] action_table()
53  *  <dd> Provides a reference to the parse action table.
54  *  <dt> short[][] reduce_table()
55  *  <dd> Provides a reference to the reduce-goto table.
56  *  <dt> int start_state()
57  *  <dd> Indicates the index of the start state.
58  *  <dt> int start_production()
59  *  <dd> Indicates the index of the starting production.
60  *  <dt> int EOF_sym()
61  *  <dd> Indicates the index of the EOF symbol.
62  *  <dt> int error_sym()
63  *  <dd> Indicates the index of the error symbol.
64  *  <dt> symbol do_action()
65  *  <dd> Executes a piece of user supplied action code.  This always comes at
66  *       the point of a reduce in the parse, so this code also allocates and
67  *       fills in the left hand side non terminal symbol object that is to be
68  *       pushed onto the stack for the reduce.
69  *  <dt> void init_actions()
70  *  <dd> Code to initialize a special object that encapsulates user supplied
71  *       actions (this object is used by do_action() to actually carry out the
72  *       actions).
73  *  <dt> token scan()
74  *  <dd> Used to get the next input token from the scanner.
75  *  </dl>
76  *
77  *  In addition to these routines that <i>must</i> be supplied by the
78  *  generated subclass there are also a series of routines that <i>may</i>
79  *  be supplied.  These include:
80  *  <dl>
81  *  <dt> int error_sync_size()
82  *  <dd> This determines how many tokens past the point of an error
83  *       must be parsed without error in order to consider a recovery to
84  *       be valid.  This defaults to 3.  Values less than 2 are not
85  *       recommended.
86  *  <dt> void report_error(String message, Object info)
87  *  <dd> This method is called to report an error.  The default implementation
88  *       simply prints a message to System.err and ignores its second parameter.
89  *       This method is often replaced in order to provide a more sophisticated
90  *       error reporting mechanism.
91  *  <dt> void report_fatal_error(String message, Object info)
92  *  <dd> This method is called when a fatal error that cannot be recovered from
93  *       is encountered.  In the default implementation, it calls
94  *       report_error() to emit a message, then throws an exception.
95  *  <dt> void syntax_error(token cur_token)
96  *  <dd> This method is called as soon as syntax error is detected (but
97  *       before recovery is attempted).  In the default implementation it
98  *       invokes: report_error("Syntax error", null);
99  *  <dt> void unrecovered_syntax_error(token cur_token)
100  *  <dd> This method is called if syntax error recovery fails.  In the default
101  *       implementation it invokes:<br>
102  *         report_fatal_error("Couldn't repair and continue parse", null);
103  *  </dl>
104  *
105  * @see     java_cup.runtime.symbol
106  * @see     java_cup.runtime.token
107  * @see     java_cup.runtime.virtual_parse_stack
108  * @version last updated: 11/25/95
109  * @author  Scott Hudson
110  */
111 
112 public abstract class lr_parser {
113 
114   /*-----------------------------------------------------------*/
115   /*--- Constructor(s) ----------------------------------------*/
116   /*-----------------------------------------------------------*/
117 
118   /** Simple constructor. */
lr_parser()119   public lr_parser()
120     {
121       /* nothing to do here */
122     }
123 
124   /*-----------------------------------------------------------*/
125   /*--- (Access to) Static (Class) Variables ------------------*/
126   /*-----------------------------------------------------------*/
127 
128   /** The default number of tokens after an error we much match to consider
129    *  it recovered from.
130    */
131   protected final static int _error_sync_size = 3;
132 
133   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
134 
135   /** The number of tokens after an error we much match to consider it
136    *  recovered from.
137    */
error_sync_size()138   protected int error_sync_size() {return _error_sync_size; }
139 
140   /*-----------------------------------------------------------*/
141   /*--- (Access to) Instance Variables ------------------------*/
142   /*-----------------------------------------------------------*/
143 
144   /** Table of production information (supplied by generated subclass).
145    *  This table contains one entry per production and is indexed by
146    *  the negative-encoded values (reduce actions) in the action_table.
147    *  Each entry has two parts, the index of the non-terminal on the
148    *  left hand side of the production, and the number of symbols
149    *  on the right hand side.
150    */
production_table()151   public abstract short[][] production_table();
152 
153   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
154 
155   /** The action table (supplied by generated subclass).  This table is
156    *  indexed by state and terminal number indicating what action is to
157    *  be taken when the parser is in the given state (i.e., the given state
158    *  is on top of the stack) and the given terminal is next on the input.
159    *  States are indexed using the first dimension, however, the entries for
160    *  a given state are compacted and stored in adjacent index, value pairs
161    *  which are searched for rather than accessed directly (see get_action()).
162    *  The actions stored in the table will be either shifts, reduces, or
163    *  errors.  Shifts are encoded as positive values (one greater than the
164    *  state shifted to).  Reduces are encoded as negative values (one less
165    *  than the production reduced by).  Error entries are denoted by zero.
166    *
167    * @see java_cup.runtime.lr_parser#get_action
168    */
action_table()169   public abstract short[][] action_table();
170 
171   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
172 
173   /** The reduce-goto table (supplied by generated subclass).  This
174    *  table is indexed by state and non-terminal number and contains
175    *  state numbers.  States are indexed using the first dimension, however,
176    *  the entries for a given state are compacted and stored in adjacent
177    *  index, value pairs which are searched for rather than accessed
178    *  directly (see get_reduce()).  When a reduce occurs, the handle
179    *  (corresponding to the RHS of the matched production) is popped off
180    *  the stack.  The new top of stack indicates a state.  This table is
181    *  then indexed by that state and the LHS of the reducing production to
182    *  indicate where to "shift" to.
183    *
184    * @see java_cup.runtime.lr_parser#get_reduce
185    */
reduce_table()186   public abstract short[][] reduce_table();
187 
188   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
189 
190   /** The index of the start state (supplied by generated subclass). */
start_state()191   public abstract int start_state();
192 
193   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
194 
195   /** The index of the start production (supplied by generated subclass). */
start_production()196   public abstract int start_production();
197 
198   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
199 
200   /** The index of the end of file terminal symbol (supplied by generated
201    *  subclass).
202    */
EOF_sym()203   public abstract int EOF_sym();
204 
205   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
206 
207   /** The index of the special error symbol (supplied by generated subclass). */
error_sym()208   public abstract int error_sym();
209 
210   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
211 
212   /** Internal flag to indicate when parser should quit. */
213   protected boolean _done_parsing = false;
214 
215   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
216 
217   /** This method is called to indicate that the parser should quit.  This is
218    *  normally called by an accept action, but can be used to cancel parsing
219    *  early in other circumstances if desired.
220    */
done_parsing()221   public void done_parsing()
222     {
223       _done_parsing = true;
224     }
225 
226   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
227   /* Global parse state shared by parse(), error recovery, and
228    * debugging routines */
229   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
230 
231   /** Indication of the index for top of stack (for use by actions). */
232   protected int tos;
233 
234   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
235 
236   /** The current lookahead token. */
237   protected token cur_token;
238 
239   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
240 
241   /** The parse stack itself. */
242   protected Stack stack = new Stack();
243 
244   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
245 
246   /** Direct reference to the production table. */
247   protected short[][] production_tab;
248 
249   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
250 
251   /** Direct reference to the action table. */
252   protected short[][] action_tab;
253 
254   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
255 
256   /** Direct reference to the reduce-goto table. */
257   protected short[][] reduce_tab;
258 
259   /*-----------------------------------------------------------*/
260   /*--- General Methods ---------------------------------------*/
261   /*-----------------------------------------------------------*/
262 
263   /** Perform a bit of user supplied action code (supplied by generated
264    *  subclass).  Actions are indexed by an internal action number assigned
265    *  at parser generation time.
266    *
267    * @param act_num   the internal index of the action to be performed.
268    * @param parser    the parser object we are acting for.
269    * @param stack     the parse stack of that object.
270    * @param top       the index of the top element of the parse stack.
271    */
do_action( int act_num, lr_parser parser, Stack stack, int top)272   public abstract symbol do_action(
273     int       act_num,
274     lr_parser parser,
275     Stack     stack,
276     int       top)
277     throws java.lang.Exception;
278 
279   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
280 
281   /** User code for initialization inside the parser.  Typically this
282    *  initializes the scanner.  This is called before the parser requests
283    *  the first token.  Here this is just a placeholder for subclasses that
284    *  might need this and we perform no action.   This method is normally
285    *  overridden by the generated code using this contents of the "init with"
286    *  clause as its body.
287    */
user_init()288   public void user_init() throws java.lang.Exception { }
289 
290   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
291 
292   /** Initialize the action object.  This is called before the parser does
293    *  any parse actions. This is filled in by generated code to create
294    *  an object that encapsulates all action code.
295    */
init_actions()296   protected abstract void init_actions() throws java.lang.Exception;
297 
298   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
299 
300   /** Get the next token from the input (supplied by generated subclass).
301    *  Once end of file has been reached, all subsequent calls to scan
302    *  should return an EOF token (which is symbol number 0).  This method
303    *  is supplied by the generator using using the code declared in the
304    *  "scan with" clause.
305    */
scan()306   public abstract token scan() throws java.lang.Exception;
307 
308   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
309 
310   /** Report a fatal error.  This method takes a  message string and an
311    *  additional object (to be used by specializations implemented in
312    *  subclasses).  Here in the base class a very simple implementation
313    *  is provided which reports the error then throws an exception.
314    *
315    * @param message an error message.
316    * @param info    an extra object reserved for use by specialized subclasses.
317    */
report_fatal_error( String message, Object info)318   public void report_fatal_error(
319     String   message,
320     Object   info)
321     throws java.lang.Exception
322     {
323       /* stop parsing (not really necessary since we throw an exception, but) */
324       done_parsing();
325 
326       /* use the normal error message reporting to put out the message */
327       report_error(message, info);
328 
329       /* throw an exception */
330       throw new Exception("Can't recover from previous error(s)");
331     }
332 
333   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
334 
335   /** Report a non fatal error (or warning).  This method takes a message
336    *  string and an additional object (to be used by specializations
337    *  implemented in subclasses).  Here in the base class a very simple
338    *  implementation is provided which simply prints the message to
339    *  System.err.
340    *
341    * @param message an error message.
342    * @param info    an extra object reserved for use by specialized subclasses.
343    */
report_error(String message, Object info)344   public void report_error(String message, Object info)
345     {
346       System.err.println(message);
347     }
348 
349   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
350 
351   /** This method is called when a syntax error has been detected and recovery
352    *  is about to be invoked.  Here in the base class we just emit a
353    *  "Syntax error" error message.
354    *
355    * @param cur_token the current lookahead token.
356    */
syntax_error(token cur_token)357   public void syntax_error(token cur_token)
358     {
359       report_error("Syntax error", null);
360     }
361 
362   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
363 
364   /** This method is called if it is determined that syntax error recovery
365    *  has been unsuccessful.  Here in the base class we report a fatal error.
366    *
367    * @param cur_token the current lookahead token.
368    */
unrecovered_syntax_error(token cur_token)369   public void unrecovered_syntax_error(token cur_token)
370     throws java.lang.Exception
371     {
372       report_fatal_error("Couldn't repair and continue parse", null);
373     }
374 
375   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
376 
377   /** Fetch an action from the action table.  The table is broken up into
378    *  rows, one per state (rows are indexed directly by state number).
379    *  Within each row, a list of index, value pairs are given (as sequential
380    *  entries in the table), and the list is terminated by a default entry
381    *  (denoted with a symbol index of -1).  To find the proper entry in a row
382    *  we do a linear or binary search (depending on the size of the row).
383    *
384    * @param state the state index of the action being accessed.
385    * @param sym   the symbol index of the action being accessed.
386    */
get_action(int state, int sym)387   protected final short get_action(int state, int sym)
388     {
389       short tag;
390       int first, last, probe;
391       short[] row = action_tab[state];
392 
393       /* linear search if we are < 10 entries */
394       if (row.length < 20)
395         for (probe = 0; probe < row.length; probe++)
396 	  {
397 	    /* is this entry labeled with our symbol or the default? */
398 	    tag = row[probe++];
399 	    if (tag == sym || tag == -1)
400 	      {
401 	        /* return the next entry */
402 	        return row[probe];
403 	      }
404 	  }
405       /* otherwise binary search */
406       else
407 	{
408 	  first = 0;
409 	  last = (row.length-1)/2 - 1;  /* leave out trailing default entry */
410 	  while (first <= last)
411 	    {
412 	      probe = (first+last)/2;
413 	      if (sym == row[probe*2])
414 		return row[probe*2+1];
415 	      else if (sym > row[probe*2])
416 		first = probe+1;
417 	      else
418 	        last = probe-1;
419 	    }
420 
421 	  /* not found, use the default at the end */
422 	  return row[row.length-1];
423 	}
424 
425       /* shouldn't happened, but if we run off the end we return the
426 	 default (error == 0) */
427       return 0;
428     }
429 
430   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
431 
432   /** Fetch a state from the reduce-goto table.  The table is broken up into
433    *  rows, one per state (rows are indexed directly by state number).
434    *  Within each row, a list of index, value pairs are given (as sequential
435    *  entries in the table), and the list is terminated by a default entry
436    *  (denoted with a symbol index of -1).  To find the proper entry in a row
437    *  we do a linear search.
438    *
439    * @param state the state index of the entry being accessed.
440    * @param sym   the symbol index of the entry being accessed.
441    */
get_reduce(int state, int sym)442   protected final short get_reduce(int state, int sym)
443     {
444       short tag;
445       short[] row = reduce_tab[state];
446 
447       /* if we have a null row we go with the default */
448       if (row == null)
449         return -1;
450 
451       for (int probe = 0; probe < row.length; probe++)
452 	{
453 	  /* is this entry labeled with our symbol or the default? */
454 	  tag = row[probe++];
455 	  if (tag == sym || tag == -1)
456 	    {
457 	      /* return the next entry */
458 	      return row[probe];
459 	    }
460 	}
461       /* if we run off the end we return the default (error == -1) */
462       return -1;
463     }
464 
465   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
466 
467   /** This method provides the main parsing routine.  It returns only when
468    *  done_parsing() has been called (typically because the parser has
469    *  accepted, or a fatal error has been reported).  See the header
470    *  documentation for the class regarding how shift/reduce parsers operate
471    *  and how the various tables are used.
472    */
parse()473   public void parse() throws java.lang.Exception
474     {
475       /* the current action code */
476       int act;
477 
478       /* the symbol/stack element returned by a reduce */
479       symbol lhs_sym;
480 
481       /* information about production being reduced with */
482       short handle_size, lhs_sym_num;
483 
484       /* set up direct reference to tables to drive the parser */
485 
486       production_tab = production_table();
487       action_tab     = action_table();
488       reduce_tab     = reduce_table();
489 
490       /* initialize the action encapsulation object */
491       init_actions();
492 
493       /* do user initialization */
494       user_init();
495 
496       /* get the first token */
497       cur_token = scan();
498 
499       /* push dummy symbol with start state to get us underway */
500       stack.push(new symbol(0, start_state()));
501       tos = 0;
502 
503       /* continue until we are told to stop */
504       for (_done_parsing = false; !_done_parsing; )
505 	{
506 	  /* current state is always on the top of the stack */
507 
508 	  /* look up action out of the current state with the current input */
509 	  act = get_action(((symbol)stack.peek()).parse_state, cur_token.sym);
510 
511 	  /* decode the action -- > 0 encodes shift */
512 	  if (act > 0)
513 	    {
514 	      /* shift to the encoded state by pushing it on the stack */
515 	      cur_token.parse_state = act-1;
516 	      stack.push(cur_token);
517 	      tos++;
518 
519 	      /* advance to the next token */
520 	      cur_token = scan();
521 	    }
522 	  /* if its less than zero, then it encodes a reduce action */
523 	  else if (act < 0)
524 	    {
525 	      /* perform the action for the reduce */
526 	      lhs_sym = do_action((-act)-1, this, stack, tos);
527 
528 	      /* look up information about the production */
529 	      lhs_sym_num = production_tab[(-act)-1][0];
530 	      handle_size = production_tab[(-act)-1][1];
531 
532 	      /* pop the handle off the stack */
533 	      for (int i = 0; i < handle_size; i++)
534 		{
535 		  stack.pop();
536 		  tos--;
537 		}
538 
539 	      /* look up the state to go to from the one popped back to */
540 	      act = get_reduce(((symbol)stack.peek()).parse_state, lhs_sym_num);
541 
542 	      /* shift to that state */
543 	      lhs_sym.parse_state = act;
544 	      stack.push(lhs_sym);
545 	      tos++;
546 	    }
547 	  /* finally if the entry is zero, we have an error */
548 	  else if (act == 0)
549 	    {
550 	      /* call user syntax error reporting routine */
551 	      syntax_error(cur_token);
552 
553 	      /* try to error recover */
554 	      if (!error_recovery(false))
555 		{
556 		  /* if that fails give up with a fatal syntax error */
557 		  unrecovered_syntax_error(cur_token);
558 
559 		  /* just in case that wasn't fatal enough, end parse */
560 		  done_parsing();
561 		}
562 	    }
563 	}
564     }
565 
566   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
567 
568   /** Write a debugging message to System.err for the debugging version
569    *  of the parser.
570    *
571    * @param mess the text of the debugging message.
572    */
debug_message(String mess)573   public void debug_message(String mess)
574     {
575       System.err.println(mess);
576     }
577 
578   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
579 
580   /** Dump the parse stack for debugging purposes. */
dump_stack()581   public void dump_stack()
582     {
583       if (stack == null)
584 	{
585 	  debug_message("# Stack dump requested, but stack is null");
586 	  return;
587 	}
588 
589       debug_message("============ Parse Stack Dump ============");
590 
591       /* dump the stack */
592       for (int i=0; i<stack.size(); i++)
593 	{
594 	  debug_message("Symbol: " + ((symbol)stack.elementAt(i)).sym +
595 			" State: " + ((symbol)stack.elementAt(i)).parse_state);
596 	}
597       debug_message("==========================================");
598     }
599 
600   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
601 
602   /** Do debug output for a reduce.
603    *
604    * @param prod_num  the production we are reducing with.
605    * @param nt_num    the index of the LHS non terminal.
606    * @param rhs_size  the size of the RHS.
607    */
debug_reduce(int prod_num, int nt_num, int rhs_size)608   public void debug_reduce(int prod_num, int nt_num, int rhs_size)
609     {
610       debug_message("# Reduce with prod #" + prod_num + " [NT=" + nt_num +
611 	            ", " + "SZ=" + rhs_size + "]");
612     }
613 
614   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
615 
616   /** Do debug output for shift.
617    *
618    * @param shift_tkn the token being shifted onto the stack.
619    */
debug_shift(token shift_tkn)620   public void debug_shift(token shift_tkn)
621     {
622       debug_message("# Shift under term #" + shift_tkn.sym +
623 		    " to state #" + shift_tkn.parse_state);
624     }
625 
626   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
627 
628   /** Perform a parse with debugging output.  This does exactly the
629    *  same things as parse(), except that it calls debug_shift() and
630    *  debug_reduce() when shift and reduce moves are taken by the parser
631    *  and produces various other debugging messages.
632    */
debug_parse()633   public void debug_parse()
634     throws java.lang.Exception
635     {
636       /* the current action code */
637       int act;
638 
639       /* the symbol/stack element returned by a reduce */
640       symbol lhs_sym;
641 
642       /* information about production being reduced with */
643       short handle_size, lhs_sym_num;
644 
645       /* set up direct reference to tables to drive the parser */
646       production_tab = production_table();
647       action_tab     = action_table();
648       reduce_tab     = reduce_table();
649 
650       debug_message("# Initializing parser");
651 
652       /* initialize the action encapsulation object */
653       init_actions();
654 
655       /* do user initialization */
656       user_init();
657 
658       /* the current token */
659       cur_token = scan();
660 
661       debug_message("# Current token is #" + cur_token.sym);
662 
663       /* push dummy symbol with start state to get us underway */
664       stack.push(new symbol(0, start_state()));
665       tos = 0;
666 
667       /* continue until we are told to stop */
668       for (_done_parsing = false; !_done_parsing; )
669 	{
670 	  /* current state is always on the top of the stack */
671 
672 	  /* look up action out of the current state with the current input */
673 	  act = get_action(((symbol)stack.peek()).parse_state, cur_token.sym);
674 
675 	  /* decode the action -- > 0 encodes shift */
676 	  if (act > 0)
677 	    {
678 	      /* shift to the encoded state by pushing it on the stack */
679 	      cur_token.parse_state = act-1;
680 	      debug_shift(cur_token);
681 	      stack.push(cur_token);
682 	      tos++;
683 
684 	      /* advance to the next token */
685 	      cur_token = scan();
686               debug_message("# Current token is #" + cur_token.sym);
687 	    }
688 	  /* if its less than zero, then it encodes a reduce action */
689 	  else if (act < 0)
690 	    {
691 	      /* perform the action for the reduce */
692 	      lhs_sym = do_action((-act)-1, this, stack, tos);
693 
694 	      /* look up information about the production */
695 	      lhs_sym_num = production_tab[(-act)-1][0];
696 	      handle_size = production_tab[(-act)-1][1];
697 
698 	      debug_reduce((-act)-1, lhs_sym_num, handle_size);
699 
700 	      /* pop the handle off the stack */
701 	      for (int i = 0; i < handle_size; i++)
702 		{
703 		  stack.pop();
704 		  tos--;
705 		}
706 
707 	      /* look up the state to go to from the one popped back to */
708 	      act = get_reduce(((symbol)stack.peek()).parse_state, lhs_sym_num);
709 
710 	      /* shift to that state */
711 	      lhs_sym.parse_state = act;
712 	      stack.push(lhs_sym);
713 	      tos++;
714 
715 	      debug_message("# Goto state #" + act);
716 	    }
717 	  /* finally if the entry is zero, we have an error */
718 	  else if (act == 0)
719 	    {
720 	      /* call user syntax error reporting routine */
721 	      syntax_error(cur_token);
722 
723 	      /* try to error recover */
724 	      if (!error_recovery(true))
725 		{
726 		  /* if that fails give up with a fatal syntax error */
727 		  unrecovered_syntax_error(cur_token);
728 
729 		  /* just in case that wasn't fatal enough, end parse */
730 		  done_parsing();
731 		}
732 	    }
733 	}
734     }
735 
736   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
737   /* Error recovery code */
738   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
739 
740   /** Attempt to recover from a syntax error.  This returns false if recovery
741    *  fails, true if it succeeds.  Recovery happens in 4 steps.  First we
742    *  pop the parse stack down to a point at which we have a shift out
743    *  of the top-most state on the error symbol.  This represents the
744    *  initial error recovery configuration.  If no such configuration is
745    *  found, then we fail.  Next a small number of "lookahead" or "parse
746    *  ahead" tokens are read into a buffer.  The size of this buffer is
747    *  determined by error_sync_size() and determines how many tokens beyond
748    *  the error must be matched to consider the recovery a success.  Next,
749    *  we begin to discard tokens in attempt to get past the point of error
750    *  to a point where we can continue parsing.  After each token, we attempt
751    *  to "parse ahead" though the buffered lookahead tokens.  The "parse ahead"
752    *  process simulates that actual parse, but does not modify the real
753    *  parser's configuration, nor execute any actions. If we can  parse all
754    *  the stored tokens without error, then the recovery is considered a
755    *  success.  Once a successful recovery point is determined, we do an
756    *  actual parse over the stored input -- modifying the real parse
757    *  configuration and executing all actions.  Finally, we return the the
758    *  normal parser to continue with the overall parse.
759    *
760    * @param debug should we produce debugging messages as we parse.
761    */
error_recovery(boolean debug)762   protected boolean error_recovery(boolean debug)
763     throws java.lang.Exception
764     {
765       if (debug) debug_message("# Attempting error recovery");
766 
767       /* first pop the stack back into a state that can shift on error and
768 	 do that shift (if that fails, we fail) */
769       if (!find_recovery_config(debug))
770 	{
771 	  if (debug) debug_message("# Error recovery fails");
772 	  return false;
773 	}
774 
775       /* read ahead to create lookahead we can parse multiple times */
776       read_lookahead();
777 
778       /* repeatedly try to parse forward until we make it the required dist */
779       for (;;)
780 	{
781 	  /* try to parse forward, if it makes it, bail out of loop */
782 	  if (debug) debug_message("# Trying to parse ahead");
783 	  if (try_parse_ahead(debug))
784 	    {
785 	      break;
786 	    }
787 
788 	  /* if we are now at EOF, we have failed */
789 	  if (lookahead[0].sym == EOF_sym())
790 	    {
791 	      if (debug) debug_message("# Error recovery fails at EOF");
792 	      return false;
793 	    }
794 
795 	  /* otherwise, we consume another token and try again */
796 	  if (debug)
797 	  debug_message("# Consuming token #" + cur_err_token().sym);
798 	  restart_lookahead();
799 	}
800 
801       /* we have consumed to a point where we can parse forward */
802       if (debug) debug_message("# Parse-ahead ok, going back to normal parse");
803 
804       /* do the real parse (including actions) across the lookahead */
805       parse_lookahead(debug);
806 
807       /* we have success */
808       return true;
809     }
810 
811   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
812 
813   /** Determine if we can shift under the special error symbol out of the
814    *  state currently on the top of the (real) parse stack.
815    */
shift_under_error()816   protected boolean shift_under_error()
817     {
818       /* is there a shift under error symbol */
819       return get_action(((symbol)stack.peek()).parse_state, error_sym()) > 0;
820     }
821 
822   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
823 
824   /** Put the (real) parse stack into error recovery configuration by
825    *  popping the stack down to a state that can shift on the special
826    *  error symbol, then doing the shift.  If no suitable state exists on
827    *  the stack we return false
828    *
829    * @param debug should we produce debugging messages as we parse.
830    */
find_recovery_config(boolean debug)831   protected boolean find_recovery_config(boolean debug)
832     {
833       token error_token;
834       int act;
835 
836       if (debug) debug_message("# Finding recovery state on stack");
837 
838       /* pop down until we can shift under error token */
839       while (!shift_under_error())
840 	{
841 	  /* pop the stack */
842 	  if (debug)
843 	    debug_message("# Pop stack by one, state was # " +
844 	                  ((symbol)stack.peek()).parse_state);
845           stack.pop();
846 	  tos--;
847 
848 	  /* if we have hit bottom, we fail */
849 	  if (stack.empty())
850 	    {
851 	      if (debug) debug_message("# No recovery state found on stack");
852 	      return false;
853 	    }
854 	}
855 
856       /* state on top of the stack can shift under error, find the shift */
857       act = get_action(((symbol)stack.peek()).parse_state, error_sym());
858       if (debug)
859 	{
860 	  debug_message("# Recover state found (#" +
861 			((symbol)stack.peek()).parse_state + ")");
862 	  debug_message("# Shifting on error to state #" + (act-1));
863 	}
864 
865       /* build and shift a special error token */
866       error_token = new token(error_sym());
867       error_token.parse_state = act-1;
868       stack.push(error_token);
869       tos++;
870 
871       return true;
872     }
873 
874   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
875 
876   /** Lookahead tokens used for attempting error recovery "parse aheads". */
877   protected token lookahead[];
878 
879   /** Position in lookahead input buffer used for "parse ahead". */
880   protected int lookahead_pos;
881 
882   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
883 
884   /** Read from input to establish our buffer of "parse ahead" lookahead
885    *  symbols.
886    */
read_lookahead()887   protected void read_lookahead() throws java.lang.Exception
888     {
889       /* create the lookahead array */
890       lookahead = new token[error_sync_size()];
891 
892       /* fill in the array */
893       for (int i = 0; i < error_sync_size(); i++)
894 	{
895 	  lookahead[i] = cur_token;
896 	  cur_token = scan();
897 	}
898 
899       /* start at the beginning */
900       lookahead_pos = 0;
901     }
902 
903   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
904 
905   /** Return the current lookahead in our error "parse ahead" buffer. */
cur_err_token()906   protected token cur_err_token() { return lookahead[lookahead_pos]; }
907 
908   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
909 
910   /** Advance to next "parse ahead" input symbol. Return true if we have
911    *  input to advance to, false otherwise.
912    */
advance_lookahead()913   protected boolean advance_lookahead()
914     {
915       /* advance the input location */
916       lookahead_pos++;
917 
918       /* return true if we didn't go off the end */
919       return lookahead_pos < error_sync_size();
920     }
921 
922   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
923 
924   /** Reset the parse ahead input to one token past where we started error
925    *  recovery (this consumes one new token from the real input).
926    */
restart_lookahead()927   protected void restart_lookahead() throws java.lang.Exception
928     {
929       /* move all the existing input over */
930       for (int i = 1; i < error_sync_size(); i++)
931 	lookahead[i-1] = lookahead[i];
932 
933       /* read a new token into the last spot */
934       cur_token = scan();
935       lookahead[error_sync_size()-1] = cur_token;
936 
937       /* reset our internal position marker */
938       lookahead_pos = 0;
939     }
940 
941   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
942 
943   /** Do a simulated parse forward (a "parse ahead") from the current
944    *  stack configuration using stored lookahead input and a virtual parse
945    *  stack.  Return true if we make it all the way through the stored
946    *  lookahead input without error. This basically simulates the action of
947    *  parse() using only our saved "parse ahead" input, and not executing any
948    *  actions.
949    *
950    * @param debug should we produce debugging messages as we parse.
951    */
try_parse_ahead(boolean debug)952   protected boolean try_parse_ahead(boolean debug)
953     throws java.lang.Exception
954     {
955       int act;
956       short lhs, rhs_size;
957 
958       /* create a virtual stack from the real parse stack */
959       virtual_parse_stack vstack = new virtual_parse_stack(stack);
960 
961       /* parse until we fail or get past the lookahead input */
962       for (;;)
963 	{
964 	  /* look up the action from the current state (on top of stack) */
965 	  act = get_action(vstack.top(), cur_err_token().sym);
966 
967 	  /* if its an error, we fail */
968 	  if (act == 0) return false;
969 
970 	  /* > 0 encodes a shift */
971 	  if (act > 0)
972 	    {
973 	      /* push the new state on the stack */
974 	      vstack.push(act-1);
975 
976 	      if (debug) debug_message("# Parse-ahead shifts token #" +
977 		       cur_err_token().sym + " into state #" + (act-1));
978 
979 	      /* advance simulated input, if we run off the end, we are done */
980 	      if (!advance_lookahead()) return true;
981 	    }
982 	  /* < 0 encodes a reduce */
983 	  else
984 	    {
985 	      /* if this is a reduce with the start production we are done */
986 	      if ((-act)-1 == start_production())
987 		{
988 		  if (debug) debug_message("# Parse-ahead accepts");
989 		  return true;
990 		}
991 
992 	      /* get the lhs symbol and the rhs size */
993 	      lhs = production_tab[(-act)-1][0];
994 	      rhs_size = production_tab[(-act)-1][1];
995 
996 	      /* pop handle off the stack */
997 	      for (int i = 0; i < rhs_size; i++)
998 		vstack.pop();
999 
1000 	      if (debug)
1001 		debug_message("# Parse-ahead reduces: handle size = " +
1002 	          rhs_size + " lhs = #" + lhs + " from state #" + vstack.top());
1003 
1004 	      /* look up goto and push it onto the stack */
1005 	      vstack.push(get_reduce(vstack.top(), lhs));
1006 	      if (debug)
1007 		debug_message("# Goto state #" + vstack.top());
1008 	    }
1009 	}
1010     }
1011 
1012   /*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*/
1013 
1014   /** Parse forward using stored lookahead symbols.  In this case we have
1015    *  already verified that parsing will make it through the stored lookahead
1016    *  symbols and we are now getting back to the point at which we can hand
1017    *  control back to the normal parser.  Consequently, this version of the
1018    *  parser performs all actions and modifies the real parse configuration.
1019    *  This returns once we have consumed all the stored input or we accept.
1020    *
1021    * @param debug should we produce debugging messages as we parse.
1022    */
parse_lookahead(boolean debug)1023   protected void parse_lookahead(boolean debug)
1024     throws java.lang.Exception
1025     {
1026       /* the current action code */
1027       int act;
1028 
1029       /* the symbol/stack element returned by a reduce */
1030       symbol lhs_sym;
1031 
1032       /* information about production being reduced with */
1033       short handle_size, lhs_sym_num;
1034 
1035       /* restart the saved input at the beginning */
1036       lookahead_pos = 0;
1037 
1038       if (debug)
1039 	{
1040 	  debug_message("# Reparsing saved input with actions");
1041 	  debug_message("# Current token is #" + cur_err_token().sym);
1042 	  debug_message("# Current state is #" +
1043 			((symbol)stack.peek()).parse_state);
1044 	}
1045 
1046       /* continue until we accept or have read all lookahead input */
1047       while(!_done_parsing)
1048 	{
1049 	  /* current state is always on the top of the stack */
1050 
1051 	  /* look up action out of the current state with the current input */
1052 	  act =
1053 	    get_action(((symbol)stack.peek()).parse_state, cur_err_token().sym);
1054 
1055 	  /* decode the action -- > 0 encodes shift */
1056 	  if (act > 0)
1057 	    {
1058 	      /* shift to the encoded state by pushing it on the stack */
1059 	      cur_err_token().parse_state = act-1;
1060 	      if (debug) debug_shift(cur_err_token());
1061 	      stack.push(cur_err_token());
1062 	      tos++;
1063 
1064 	      /* advance to the next token, if there is none, we are done */
1065 	      if (!advance_lookahead())
1066 		{
1067 		  if (debug) debug_message("# Completed reparse");
1068 
1069 		  /* scan next token so we can continue parse */
1070 		  cur_token = scan();
1071 
1072 		  /* go back to normal parser */
1073 		  return;
1074 		}
1075 
1076 	      if (debug)
1077 		debug_message("# Current token is #" + cur_err_token().sym);
1078 	    }
1079 	  /* if its less than zero, then it encodes a reduce action */
1080 	  else if (act < 0)
1081 	    {
1082 	      /* perform the action for the reduce */
1083 	      lhs_sym = do_action((-act)-1, this, stack, tos);
1084 
1085 	      /* look up information about the production */
1086 	      lhs_sym_num = production_tab[(-act)-1][0];
1087 	      handle_size = production_tab[(-act)-1][1];
1088 
1089 	      if (debug) debug_reduce((-act)-1, lhs_sym_num, handle_size);
1090 
1091 	      /* pop the handle off the stack */
1092 	      for (int i = 0; i < handle_size; i++)
1093 		{
1094 		  stack.pop();
1095 		  tos--;
1096 		}
1097 
1098 	      /* look up the state to go to from the one popped back to */
1099 	      act = get_reduce(((symbol)stack.peek()).parse_state, lhs_sym_num);
1100 
1101 	      /* shift to that state */
1102 	      lhs_sym.parse_state = act;
1103 	      stack.push(lhs_sym);
1104 	      tos++;
1105 
1106 	      if (debug) debug_message("# Goto state #" + act);
1107 
1108 	    }
1109 	  /* finally if the entry is zero, we have an error
1110 	     (shouldn't happen here, but...)*/
1111 	  else if (act == 0)
1112 	    {
1113 	      report_fatal_error("Syntax error", null);
1114 	      return;
1115 	    }
1116 	}
1117     }
1118 
1119   /*-----------------------------------------------------------*/
1120 
1121 };
1122