1 /*
2  * Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "asm/macroAssembler.inline.hpp"
27 #include "c1/c1_Compilation.hpp"
28 #include "c1/c1_LIRAssembler.hpp"
29 #include "c1/c1_MacroAssembler.hpp"
30 #include "c1/c1_Runtime1.hpp"
31 #include "c1/c1_ValueStack.hpp"
32 #include "ci/ciArrayKlass.hpp"
33 #include "ci/ciInstance.hpp"
34 #include "gc/shared/barrierSet.hpp"
35 #include "gc/shared/cardTableBarrierSet.hpp"
36 #include "gc/shared/collectedHeap.hpp"
37 #include "nativeInst_sparc.hpp"
38 #include "oops/objArrayKlass.hpp"
39 #include "runtime/frame.inline.hpp"
40 #include "runtime/interfaceSupport.inline.hpp"
41 #include "runtime/jniHandles.inline.hpp"
42 #include "runtime/safepointMechanism.inline.hpp"
43 #include "runtime/sharedRuntime.hpp"
44 
45 #define __ _masm->
46 
47 
48 //------------------------------------------------------------
49 
50 
is_small_constant(LIR_Opr opr)51 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
52   if (opr->is_constant()) {
53     LIR_Const* constant = opr->as_constant_ptr();
54     switch (constant->type()) {
55       case T_INT: {
56         jint value = constant->as_jint();
57         return Assembler::is_simm13(value);
58       }
59 
60       default:
61         return false;
62     }
63   }
64   return false;
65 }
66 
67 
is_single_instruction(LIR_Op * op)68 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
69   switch (op->code()) {
70     case lir_null_check:
71     return true;
72 
73 
74     case lir_add:
75     case lir_ushr:
76     case lir_shr:
77     case lir_shl:
78       // integer shifts and adds are always one instruction
79       return op->result_opr()->is_single_cpu();
80 
81 
82     case lir_move: {
83       LIR_Op1* op1 = op->as_Op1();
84       LIR_Opr src = op1->in_opr();
85       LIR_Opr dst = op1->result_opr();
86 
87       if (src == dst) {
88         NEEDS_CLEANUP;
89         // this works around a problem where moves with the same src and dst
90         // end up in the delay slot and then the assembler swallows the mov
91         // since it has no effect and then it complains because the delay slot
92         // is empty.  returning false stops the optimizer from putting this in
93         // the delay slot
94         return false;
95       }
96 
97       // don't put moves involving oops into the delay slot since the VerifyOops code
98       // will make it much larger than a single instruction.
99       if (VerifyOops) {
100         return false;
101       }
102 
103       if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
104           ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
105         return false;
106       }
107 
108       if (UseCompressedOops) {
109         if (dst->is_address() && !dst->is_stack() && (dst->type() == T_OBJECT || dst->type() == T_ARRAY)) return false;
110         if (src->is_address() && !src->is_stack() && (src->type() == T_OBJECT || src->type() == T_ARRAY)) return false;
111       }
112 
113       if (UseCompressedClassPointers) {
114         if (src->is_address() && !src->is_stack() && src->type() == T_ADDRESS &&
115             src->as_address_ptr()->disp() == oopDesc::klass_offset_in_bytes()) return false;
116       }
117 
118       if (dst->is_register()) {
119         if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
120           return !PatchALot;
121         } else if (src->is_single_stack()) {
122           return true;
123         }
124       }
125 
126       if (src->is_register()) {
127         if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
128           return !PatchALot;
129         } else if (dst->is_single_stack()) {
130           return true;
131         }
132       }
133 
134       if (dst->is_register() &&
135           ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
136            (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
137         return true;
138       }
139 
140       return false;
141     }
142 
143     default:
144       return false;
145   }
146   ShouldNotReachHere();
147 }
148 
149 
receiverOpr()150 LIR_Opr LIR_Assembler::receiverOpr() {
151   return FrameMap::O0_oop_opr;
152 }
153 
154 
osrBufferPointer()155 LIR_Opr LIR_Assembler::osrBufferPointer() {
156   return FrameMap::I0_opr;
157 }
158 
159 
initial_frame_size_in_bytes() const160 int LIR_Assembler::initial_frame_size_in_bytes() const {
161   return in_bytes(frame_map()->framesize_in_bytes());
162 }
163 
164 
165 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
166 // we fetch the class of the receiver (O0) and compare it with the cached class.
167 // If they do not match we jump to slow case.
check_icache()168 int LIR_Assembler::check_icache() {
169   int offset = __ offset();
170   __ inline_cache_check(O0, G5_inline_cache_reg);
171   return offset;
172 }
173 
174 
osr_entry()175 void LIR_Assembler::osr_entry() {
176   // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
177   //
178   //   1. Create a new compiled activation.
179   //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
180   //      at the osr_bci; it is not initialized.
181   //   3. Jump to the continuation address in compiled code to resume execution.
182 
183   // OSR entry point
184   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
185   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
186   ValueStack* entry_state = osr_entry->end()->state();
187   int number_of_locks = entry_state->locks_size();
188 
189   // Create a frame for the compiled activation.
190   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
191 
192   // OSR buffer is
193   //
194   // locals[nlocals-1..0]
195   // monitors[number_of_locks-1..0]
196   //
197   // locals is a direct copy of the interpreter frame so in the osr buffer
198   // so first slot in the local array is the last local from the interpreter
199   // and last slot is local[0] (receiver) from the interpreter
200   //
201   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
202   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
203   // in the interpreter frame (the method lock if a sync method)
204 
205   // Initialize monitors in the compiled activation.
206   //   I0: pointer to osr buffer
207   //
208   // All other registers are dead at this point and the locals will be
209   // copied into place by code emitted in the IR.
210 
211   Register OSR_buf = osrBufferPointer()->as_register();
212   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
213     int monitor_offset = BytesPerWord * method()->max_locals() +
214       (2 * BytesPerWord) * (number_of_locks - 1);
215     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
216     // the OSR buffer using 2 word entries: first the lock and then
217     // the oop.
218     for (int i = 0; i < number_of_locks; i++) {
219       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
220 #ifdef ASSERT
221       // verify the interpreter's monitor has a non-null object
222       {
223         Label L;
224         __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
225         __ cmp_and_br_short(O7, G0, Assembler::notEqual, Assembler::pt, L);
226         __ stop("locked object is NULL");
227         __ bind(L);
228       }
229 #endif // ASSERT
230       // Copy the lock field into the compiled activation.
231       __ ld_ptr(OSR_buf, slot_offset + 0, O7);
232       __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
233       __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
234       __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
235     }
236   }
237 }
238 
239 
240 // --------------------------------------------------------------------------------------------
241 
monitorexit(LIR_Opr obj_opr,LIR_Opr lock_opr,Register hdr,int monitor_no)242 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
243   if (!GenerateSynchronizationCode) return;
244 
245   Register obj_reg = obj_opr->as_register();
246   Register lock_reg = lock_opr->as_register();
247 
248   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
249   Register reg = mon_addr.base();
250   int offset = mon_addr.disp();
251   // compute pointer to BasicLock
252   if (mon_addr.is_simm13()) {
253     __ add(reg, offset, lock_reg);
254   }
255   else {
256     __ set(offset, lock_reg);
257     __ add(reg, lock_reg, lock_reg);
258   }
259   // unlock object
260   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
261   // _slow_case_stubs->append(slow_case);
262   // temporary fix: must be created after exceptionhandler, therefore as call stub
263   _slow_case_stubs->append(slow_case);
264   if (UseFastLocking) {
265     // try inlined fast unlocking first, revert to slow locking if it fails
266     // note: lock_reg points to the displaced header since the displaced header offset is 0!
267     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
268     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
269   } else {
270     // always do slow unlocking
271     // note: the slow unlocking code could be inlined here, however if we use
272     //       slow unlocking, speed doesn't matter anyway and this solution is
273     //       simpler and requires less duplicated code - additionally, the
274     //       slow unlocking code is the same in either case which simplifies
275     //       debugging
276     __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
277     __ delayed()->nop();
278   }
279   // done
280   __ bind(*slow_case->continuation());
281 }
282 
283 
emit_exception_handler()284 int LIR_Assembler::emit_exception_handler() {
285   // if the last instruction is a call (typically to do a throw which
286   // is coming at the end after block reordering) the return address
287   // must still point into the code area in order to avoid assertion
288   // failures when searching for the corresponding bci => add a nop
289   // (was bug 5/14/1999 - gri)
290   __ nop();
291 
292   // generate code for exception handler
293   ciMethod* method = compilation()->method();
294 
295   address handler_base = __ start_a_stub(exception_handler_size());
296 
297   if (handler_base == NULL) {
298     // not enough space left for the handler
299     bailout("exception handler overflow");
300     return -1;
301   }
302 
303   int offset = code_offset();
304 
305   __ call(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id), relocInfo::runtime_call_type);
306   __ delayed()->nop();
307   __ should_not_reach_here();
308   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
309   __ end_a_stub();
310 
311   return offset;
312 }
313 
314 
315 // Emit the code to remove the frame from the stack in the exception
316 // unwind path.
emit_unwind_handler()317 int LIR_Assembler::emit_unwind_handler() {
318 #ifndef PRODUCT
319   if (CommentedAssembly) {
320     _masm->block_comment("Unwind handler");
321   }
322 #endif
323 
324   int offset = code_offset();
325 
326   // Fetch the exception from TLS and clear out exception related thread state
327   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
328   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
329   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
330 
331   __ bind(_unwind_handler_entry);
332   __ verify_not_null_oop(O0);
333   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
334     __ mov(O0, I0);  // Preserve the exception
335   }
336 
337   // Preform needed unlocking
338   MonitorExitStub* stub = NULL;
339   if (method()->is_synchronized()) {
340     monitor_address(0, FrameMap::I1_opr);
341     stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
342     __ unlock_object(I3, I2, I1, *stub->entry());
343     __ bind(*stub->continuation());
344   }
345 
346   if (compilation()->env()->dtrace_method_probes()) {
347     __ mov(G2_thread, O0);
348     __ save_thread(I1); // need to preserve thread in G2 across
349                         // runtime call
350     metadata2reg(method()->constant_encoding(), O1);
351     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
352     __ delayed()->nop();
353     __ restore_thread(I1);
354   }
355 
356   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
357     __ mov(I0, O0);  // Restore the exception
358   }
359 
360   // dispatch to the unwind logic
361   __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
362   __ delayed()->nop();
363 
364   // Emit the slow path assembly
365   if (stub != NULL) {
366     stub->emit_code(this);
367   }
368 
369   return offset;
370 }
371 
372 
emit_deopt_handler()373 int LIR_Assembler::emit_deopt_handler() {
374   // if the last instruction is a call (typically to do a throw which
375   // is coming at the end after block reordering) the return address
376   // must still point into the code area in order to avoid assertion
377   // failures when searching for the corresponding bci => add a nop
378   // (was bug 5/14/1999 - gri)
379   __ nop();
380 
381   // generate code for deopt handler
382   ciMethod* method = compilation()->method();
383   address handler_base = __ start_a_stub(deopt_handler_size());
384   if (handler_base == NULL) {
385     // not enough space left for the handler
386     bailout("deopt handler overflow");
387     return -1;
388   }
389 
390   int offset = code_offset();
391   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
392   __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
393   __ delayed()->nop();
394   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
395   __ end_a_stub();
396 
397   return offset;
398 }
399 
400 
jobject2reg(jobject o,Register reg)401 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
402   if (o == NULL) {
403     __ set(NULL_WORD, reg);
404   } else {
405 #ifdef ASSERT
406     {
407       ThreadInVMfromNative tiv(JavaThread::current());
408       assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(o)), "should be real oop");
409     }
410 #endif
411     int oop_index = __ oop_recorder()->find_index(o);
412     RelocationHolder rspec = oop_Relocation::spec(oop_index);
413     __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
414   }
415 }
416 
417 
jobject2reg_with_patching(Register reg,CodeEmitInfo * info)418 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
419   // Allocate a new index in table to hold the object once it's been patched
420   int oop_index = __ oop_recorder()->allocate_oop_index(NULL);
421   PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index);
422 
423   AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
424   assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
425   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
426   // NULL will be dynamically patched later and the patched value may be large.  We must
427   // therefore generate the sethi/add as a placeholders
428   __ patchable_set(addrlit, reg);
429 
430   patching_epilog(patch, lir_patch_normal, reg, info);
431 }
432 
433 
metadata2reg(Metadata * o,Register reg)434 void LIR_Assembler::metadata2reg(Metadata* o, Register reg) {
435   __ set_metadata_constant(o, reg);
436 }
437 
klass2reg_with_patching(Register reg,CodeEmitInfo * info)438 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) {
439   // Allocate a new index in table to hold the klass once it's been patched
440   int index = __ oop_recorder()->allocate_metadata_index(NULL);
441   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index);
442   AddressLiteral addrlit(NULL, metadata_Relocation::spec(index));
443   assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc");
444   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
445   // NULL will be dynamically patched later and the patched value may be large.  We must
446   // therefore generate the sethi/add as a placeholders
447   __ patchable_set(addrlit, reg);
448 
449   patching_epilog(patch, lir_patch_normal, reg, info);
450 }
451 
emit_op3(LIR_Op3 * op)452 void LIR_Assembler::emit_op3(LIR_Op3* op) {
453   switch (op->code()) {
454     case lir_idiv:
455     case lir_irem:  // Both idiv & irem are handled after the switch (below).
456       break;
457     case lir_fmaf:
458       __ fmadd(FloatRegisterImpl::S,
459                op->in_opr1()->as_float_reg(),
460                op->in_opr2()->as_float_reg(),
461                op->in_opr3()->as_float_reg(),
462                op->result_opr()->as_float_reg());
463       return;
464     case lir_fmad:
465       __ fmadd(FloatRegisterImpl::D,
466                op->in_opr1()->as_double_reg(),
467                op->in_opr2()->as_double_reg(),
468                op->in_opr3()->as_double_reg(),
469                op->result_opr()->as_double_reg());
470       return;
471     default:
472       ShouldNotReachHere();
473       break;
474   }
475 
476   // Handle idiv & irem:
477 
478   Register Rdividend = op->in_opr1()->as_register();
479   Register Rdivisor  = noreg;
480   Register Rscratch  = op->in_opr3()->as_register();
481   Register Rresult   = op->result_opr()->as_register();
482   int divisor = -1;
483 
484   if (op->in_opr2()->is_register()) {
485     Rdivisor = op->in_opr2()->as_register();
486   } else {
487     divisor = op->in_opr2()->as_constant_ptr()->as_jint();
488     assert(Assembler::is_simm13(divisor), "can only handle simm13");
489   }
490 
491   assert(Rdividend != Rscratch, "");
492   assert(Rdivisor  != Rscratch, "");
493   assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
494 
495   if (Rdivisor == noreg && is_power_of_2(divisor)) {
496     // convert division by a power of two into some shifts and logical operations
497     if (op->code() == lir_idiv) {
498       if (divisor == 2) {
499         __ srl(Rdividend, 31, Rscratch);
500       } else {
501         __ sra(Rdividend, 31, Rscratch);
502         __ and3(Rscratch, divisor - 1, Rscratch);
503       }
504       __ add(Rdividend, Rscratch, Rscratch);
505       __ sra(Rscratch, log2_int(divisor), Rresult);
506       return;
507     } else {
508       if (divisor == 2) {
509         __ srl(Rdividend, 31, Rscratch);
510       } else {
511         __ sra(Rdividend, 31, Rscratch);
512         __ and3(Rscratch, divisor - 1,Rscratch);
513       }
514       __ add(Rdividend, Rscratch, Rscratch);
515       __ andn(Rscratch, divisor - 1,Rscratch);
516       __ sub(Rdividend, Rscratch, Rresult);
517       return;
518     }
519   }
520 
521   __ sra(Rdividend, 31, Rscratch);
522   __ wry(Rscratch);
523 
524   add_debug_info_for_div0_here(op->info());
525 
526   if (Rdivisor != noreg) {
527     __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
528   } else {
529     assert(Assembler::is_simm13(divisor), "can only handle simm13");
530     __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
531   }
532 
533   Label skip;
534   __ br(Assembler::overflowSet, true, Assembler::pn, skip);
535   __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
536   __ bind(skip);
537 
538   if (op->code() == lir_irem) {
539     if (Rdivisor != noreg) {
540       __ smul(Rscratch, Rdivisor, Rscratch);
541     } else {
542       __ smul(Rscratch, divisor, Rscratch);
543     }
544     __ sub(Rdividend, Rscratch, Rresult);
545   }
546 }
547 
548 
emit_opBranch(LIR_OpBranch * op)549 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
550 #ifdef ASSERT
551   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
552   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
553   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
554 #endif
555   assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
556 
557   if (op->cond() == lir_cond_always) {
558     __ br(Assembler::always, false, Assembler::pt, *(op->label()));
559   } else if (op->code() == lir_cond_float_branch) {
560     assert(op->ublock() != NULL, "must have unordered successor");
561     bool is_unordered = (op->ublock() == op->block());
562     Assembler::Condition acond;
563     switch (op->cond()) {
564       case lir_cond_equal:         acond = Assembler::f_equal;    break;
565       case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
566       case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
567       case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
568       case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
569       case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
570       default :                         ShouldNotReachHere();
571     }
572     __ fb( acond, false, Assembler::pn, *(op->label()));
573   } else {
574     assert (op->code() == lir_branch, "just checking");
575 
576     Assembler::Condition acond;
577     switch (op->cond()) {
578       case lir_cond_equal:        acond = Assembler::equal;                break;
579       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
580       case lir_cond_less:         acond = Assembler::less;                 break;
581       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
582       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
583       case lir_cond_greater:      acond = Assembler::greater;              break;
584       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
585       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
586       default:                         ShouldNotReachHere();
587     };
588 
589     // sparc has different condition codes for testing 32-bit
590     // vs. 64-bit values.  We could always test xcc is we could
591     // guarantee that 32-bit loads always sign extended but that isn't
592     // true and since sign extension isn't free, it would impose a
593     // slight cost.
594     if  (op->type() == T_INT) {
595       __ br(acond, false, Assembler::pn, *(op->label()));
596     } else
597       __ brx(acond, false, Assembler::pn, *(op->label()));
598   }
599   // The peephole pass fills the delay slot
600 }
601 
602 
emit_opConvert(LIR_OpConvert * op)603 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
604   Bytecodes::Code code = op->bytecode();
605   LIR_Opr dst = op->result_opr();
606 
607   switch(code) {
608     case Bytecodes::_i2l: {
609       Register rlo  = dst->as_register_lo();
610       Register rhi  = dst->as_register_hi();
611       Register rval = op->in_opr()->as_register();
612       __ sra(rval, 0, rlo);
613       break;
614     }
615     case Bytecodes::_i2d:
616     case Bytecodes::_i2f: {
617       bool is_double = (code == Bytecodes::_i2d);
618       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
619       FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
620       FloatRegister rsrc = op->in_opr()->as_float_reg();
621       if (rsrc != rdst) {
622         __ fmov(FloatRegisterImpl::S, rsrc, rdst);
623       }
624       __ fitof(w, rdst, rdst);
625       break;
626     }
627     case Bytecodes::_f2i:{
628       FloatRegister rsrc = op->in_opr()->as_float_reg();
629       Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
630       Label L;
631       // result must be 0 if value is NaN; test by comparing value to itself
632       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
633       __ fb(Assembler::f_unordered, true, Assembler::pn, L);
634       __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
635       __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
636       // move integer result from float register to int register
637       __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
638       __ bind (L);
639       break;
640     }
641     case Bytecodes::_l2i: {
642       Register rlo  = op->in_opr()->as_register_lo();
643       Register rhi  = op->in_opr()->as_register_hi();
644       Register rdst = dst->as_register();
645       __ sra(rlo, 0, rdst);
646       break;
647     }
648     case Bytecodes::_d2f:
649     case Bytecodes::_f2d: {
650       bool is_double = (code == Bytecodes::_f2d);
651       assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
652       LIR_Opr val = op->in_opr();
653       FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
654       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
655       FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
656       FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
657       __ ftof(vw, dw, rval, rdst);
658       break;
659     }
660     case Bytecodes::_i2s:
661     case Bytecodes::_i2b: {
662       Register rval = op->in_opr()->as_register();
663       Register rdst = dst->as_register();
664       int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
665       __ sll (rval, shift, rdst);
666       __ sra (rdst, shift, rdst);
667       break;
668     }
669     case Bytecodes::_i2c: {
670       Register rval = op->in_opr()->as_register();
671       Register rdst = dst->as_register();
672       int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
673       __ sll (rval, shift, rdst);
674       __ srl (rdst, shift, rdst);
675       break;
676     }
677 
678     default: ShouldNotReachHere();
679   }
680 }
681 
682 
align_call(LIR_Code)683 void LIR_Assembler::align_call(LIR_Code) {
684   // do nothing since all instructions are word aligned on sparc
685 }
686 
687 
call(LIR_OpJavaCall * op,relocInfo::relocType rtype)688 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
689   __ call(op->addr(), rtype);
690   // The peephole pass fills the delay slot, add_call_info is done in
691   // LIR_Assembler::emit_delay.
692 }
693 
694 
ic_call(LIR_OpJavaCall * op)695 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
696   __ ic_call(op->addr(), false);
697   // The peephole pass fills the delay slot, add_call_info is done in
698   // LIR_Assembler::emit_delay.
699 }
700 
701 
vtable_call(LIR_OpJavaCall * op)702 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
703   add_debug_info_for_null_check_here(op->info());
704   __ load_klass(O0, G3_scratch);
705   if (Assembler::is_simm13(op->vtable_offset())) {
706     __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
707   } else {
708     // This will generate 2 instructions
709     __ set(op->vtable_offset(), G5_method);
710     // ld_ptr, set_hi, set
711     __ ld_ptr(G3_scratch, G5_method, G5_method);
712   }
713   __ ld_ptr(G5_method, Method::from_compiled_offset(), G3_scratch);
714   __ callr(G3_scratch, G0);
715   // the peephole pass fills the delay slot
716 }
717 
store(LIR_Opr from_reg,Register base,int offset,BasicType type,bool wide,bool unaligned)718 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
719   int store_offset;
720   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
721     assert(base != O7, "destroying register");
722     assert(!unaligned, "can't handle this");
723     // for offsets larger than a simm13 we setup the offset in O7
724     __ set(offset, O7);
725     store_offset = store(from_reg, base, O7, type, wide);
726   } else {
727     if (type == T_ARRAY || type == T_OBJECT) {
728       __ verify_oop(from_reg->as_register());
729     }
730     store_offset = code_offset();
731     switch (type) {
732       case T_BOOLEAN: // fall through
733       case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
734       case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
735       case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
736       case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
737       case T_LONG  :
738         if (unaligned || PatchALot) {
739           // Don't use O7 here because it may be equal to 'base' (see LIR_Assembler::reg2mem)
740           assert(G3_scratch != base, "can't handle this");
741           assert(G3_scratch != from_reg->as_register_lo(), "can't handle this");
742           __ srax(from_reg->as_register_lo(), 32, G3_scratch);
743           __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
744           __ stw(G3_scratch,                 base, offset + hi_word_offset_in_bytes);
745         } else {
746           __ stx(from_reg->as_register_lo(), base, offset);
747         }
748         break;
749       case T_ADDRESS:
750       case T_METADATA:
751         __ st_ptr(from_reg->as_register(), base, offset);
752         break;
753       case T_ARRAY : // fall through
754       case T_OBJECT:
755         {
756           if (UseCompressedOops && !wide) {
757             __ encode_heap_oop(from_reg->as_register(), G3_scratch);
758             store_offset = code_offset();
759             __ stw(G3_scratch, base, offset);
760           } else {
761             __ st_ptr(from_reg->as_register(), base, offset);
762           }
763           break;
764         }
765 
766       case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
767       case T_DOUBLE:
768         {
769           FloatRegister reg = from_reg->as_double_reg();
770           // split unaligned stores
771           if (unaligned || PatchALot) {
772             assert(Assembler::is_simm13(offset + 4), "must be");
773             __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
774             __ stf(FloatRegisterImpl::S, reg,              base, offset);
775           } else {
776             __ stf(FloatRegisterImpl::D, reg, base, offset);
777           }
778           break;
779         }
780       default      : ShouldNotReachHere();
781     }
782   }
783   return store_offset;
784 }
785 
786 
store(LIR_Opr from_reg,Register base,Register disp,BasicType type,bool wide)787 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
788   if (type == T_ARRAY || type == T_OBJECT) {
789     __ verify_oop(from_reg->as_register());
790   }
791   int store_offset = code_offset();
792   switch (type) {
793     case T_BOOLEAN: // fall through
794     case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
795     case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
796     case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
797     case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
798     case T_LONG  :
799       __ stx(from_reg->as_register_lo(), base, disp);
800       break;
801     case T_ADDRESS:
802       __ st_ptr(from_reg->as_register(), base, disp);
803       break;
804     case T_ARRAY : // fall through
805     case T_OBJECT:
806       {
807         if (UseCompressedOops && !wide) {
808           __ encode_heap_oop(from_reg->as_register(), G3_scratch);
809           store_offset = code_offset();
810           __ stw(G3_scratch, base, disp);
811         } else {
812           __ st_ptr(from_reg->as_register(), base, disp);
813         }
814         break;
815       }
816     case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
817     case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
818     default      : ShouldNotReachHere();
819   }
820   return store_offset;
821 }
822 
823 
load(Register base,int offset,LIR_Opr to_reg,BasicType type,bool wide,bool unaligned)824 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
825   int load_offset;
826   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
827     assert(base != O7, "destroying register");
828     assert(!unaligned, "can't handle this");
829     // for offsets larger than a simm13 we setup the offset in O7
830     __ set(offset, O7);
831     load_offset = load(base, O7, to_reg, type, wide);
832   } else {
833     load_offset = code_offset();
834     switch(type) {
835       case T_BOOLEAN: // fall through
836       case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
837       case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
838       case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
839       case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
840       case T_LONG  :
841         if (!unaligned && !PatchALot) {
842           __ ldx(base, offset, to_reg->as_register_lo());
843         } else {
844           assert(base != to_reg->as_register_lo(), "can't handle this");
845           assert(O7 != to_reg->as_register_lo(), "can't handle this");
846           __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
847           __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
848           __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
849           __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
850         }
851         break;
852       case T_METADATA:  __ ld_ptr(base, offset, to_reg->as_register()); break;
853       case T_ADDRESS:
854         if (offset == oopDesc::klass_offset_in_bytes() && UseCompressedClassPointers) {
855           __ lduw(base, offset, to_reg->as_register());
856           __ decode_klass_not_null(to_reg->as_register());
857         } else
858         {
859           __ ld_ptr(base, offset, to_reg->as_register());
860         }
861         break;
862       case T_ARRAY : // fall through
863       case T_OBJECT:
864         {
865           if (UseCompressedOops && !wide) {
866             __ lduw(base, offset, to_reg->as_register());
867             __ decode_heap_oop(to_reg->as_register());
868           } else {
869             __ ld_ptr(base, offset, to_reg->as_register());
870           }
871           break;
872         }
873       case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
874       case T_DOUBLE:
875         {
876           FloatRegister reg = to_reg->as_double_reg();
877           // split unaligned loads
878           if (unaligned || PatchALot) {
879             __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
880             __ ldf(FloatRegisterImpl::S, base, offset,     reg);
881           } else {
882             __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
883           }
884           break;
885         }
886       default      : ShouldNotReachHere();
887     }
888     if (type == T_ARRAY || type == T_OBJECT) {
889       __ verify_oop(to_reg->as_register());
890     }
891   }
892   return load_offset;
893 }
894 
895 
load(Register base,Register disp,LIR_Opr to_reg,BasicType type,bool wide)896 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
897   int load_offset = code_offset();
898   switch(type) {
899     case T_BOOLEAN: // fall through
900     case T_BYTE  :  __ ldsb(base, disp, to_reg->as_register()); break;
901     case T_CHAR  :  __ lduh(base, disp, to_reg->as_register()); break;
902     case T_SHORT :  __ ldsh(base, disp, to_reg->as_register()); break;
903     case T_INT   :  __ ld(base, disp, to_reg->as_register()); break;
904     case T_ADDRESS: __ ld_ptr(base, disp, to_reg->as_register()); break;
905     case T_ARRAY : // fall through
906     case T_OBJECT:
907       {
908           if (UseCompressedOops && !wide) {
909             __ lduw(base, disp, to_reg->as_register());
910             __ decode_heap_oop(to_reg->as_register());
911           } else {
912             __ ld_ptr(base, disp, to_reg->as_register());
913           }
914           break;
915       }
916     case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
917     case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
918     case T_LONG  :
919       __ ldx(base, disp, to_reg->as_register_lo());
920       break;
921     default      : ShouldNotReachHere();
922   }
923   if (type == T_ARRAY || type == T_OBJECT) {
924     __ verify_oop(to_reg->as_register());
925   }
926   return load_offset;
927 }
928 
const2stack(LIR_Opr src,LIR_Opr dest)929 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
930   LIR_Const* c = src->as_constant_ptr();
931   switch (c->type()) {
932     case T_INT:
933     case T_FLOAT: {
934       Register src_reg = O7;
935       int value = c->as_jint_bits();
936       if (value == 0) {
937         src_reg = G0;
938       } else {
939         __ set(value, O7);
940       }
941       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
942       __ stw(src_reg, addr.base(), addr.disp());
943       break;
944     }
945     case T_ADDRESS: {
946       Register src_reg = O7;
947       int value = c->as_jint_bits();
948       if (value == 0) {
949         src_reg = G0;
950       } else {
951         __ set(value, O7);
952       }
953       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
954       __ st_ptr(src_reg, addr.base(), addr.disp());
955       break;
956     }
957     case T_OBJECT: {
958       Register src_reg = O7;
959       jobject2reg(c->as_jobject(), src_reg);
960       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
961       __ st_ptr(src_reg, addr.base(), addr.disp());
962       break;
963     }
964     case T_LONG:
965     case T_DOUBLE: {
966       Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
967 
968       Register tmp = O7;
969       int value_lo = c->as_jint_lo_bits();
970       if (value_lo == 0) {
971         tmp = G0;
972       } else {
973         __ set(value_lo, O7);
974       }
975       __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
976       int value_hi = c->as_jint_hi_bits();
977       if (value_hi == 0) {
978         tmp = G0;
979       } else {
980         __ set(value_hi, O7);
981       }
982       __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
983       break;
984     }
985     default:
986       Unimplemented();
987   }
988 }
989 
990 
const2mem(LIR_Opr src,LIR_Opr dest,BasicType type,CodeEmitInfo * info,bool wide)991 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
992   LIR_Const* c = src->as_constant_ptr();
993   LIR_Address* addr     = dest->as_address_ptr();
994   Register base = addr->base()->as_pointer_register();
995   int offset = -1;
996 
997   switch (c->type()) {
998     case T_FLOAT: type = T_INT; // Float constants are stored by int store instructions.
999     case T_INT:
1000     case T_ADDRESS: {
1001       LIR_Opr tmp = FrameMap::O7_opr;
1002       int value = c->as_jint_bits();
1003       if (value == 0) {
1004         tmp = FrameMap::G0_opr;
1005       } else if (Assembler::is_simm13(value)) {
1006         __ set(value, O7);
1007       }
1008       if (addr->index()->is_valid()) {
1009         assert(addr->disp() == 0, "must be zero");
1010         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
1011       } else {
1012         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1013         offset = store(tmp, base, addr->disp(), type, wide, false);
1014       }
1015       break;
1016     }
1017     case T_LONG:
1018     case T_DOUBLE: {
1019       assert(!addr->index()->is_valid(), "can't handle reg reg address here");
1020       assert(Assembler::is_simm13(addr->disp()) &&
1021              Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
1022 
1023       LIR_Opr tmp = FrameMap::O7_opr;
1024       int value_lo = c->as_jint_lo_bits();
1025       if (value_lo == 0) {
1026         tmp = FrameMap::G0_opr;
1027       } else {
1028         __ set(value_lo, O7);
1029       }
1030       offset = store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT, wide, false);
1031       int value_hi = c->as_jint_hi_bits();
1032       if (value_hi == 0) {
1033         tmp = FrameMap::G0_opr;
1034       } else {
1035         __ set(value_hi, O7);
1036       }
1037       store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT, wide, false);
1038       break;
1039     }
1040     case T_OBJECT: {
1041       jobject obj = c->as_jobject();
1042       LIR_Opr tmp;
1043       if (obj == NULL) {
1044         tmp = FrameMap::G0_opr;
1045       } else {
1046         tmp = FrameMap::O7_opr;
1047         jobject2reg(c->as_jobject(), O7);
1048       }
1049       // handle either reg+reg or reg+disp address
1050       if (addr->index()->is_valid()) {
1051         assert(addr->disp() == 0, "must be zero");
1052         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
1053       } else {
1054         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1055         offset = store(tmp, base, addr->disp(), type, wide, false);
1056       }
1057 
1058       break;
1059     }
1060     default:
1061       Unimplemented();
1062   }
1063   if (info != NULL) {
1064     assert(offset != -1, "offset should've been set");
1065     add_debug_info_for_null_check(offset, info);
1066   }
1067 }
1068 
1069 
const2reg(LIR_Opr src,LIR_Opr dest,LIR_PatchCode patch_code,CodeEmitInfo * info)1070 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
1071   LIR_Const* c = src->as_constant_ptr();
1072   LIR_Opr to_reg = dest;
1073 
1074   switch (c->type()) {
1075     case T_INT:
1076     case T_ADDRESS:
1077       {
1078         jint con = c->as_jint();
1079         if (to_reg->is_single_cpu()) {
1080           assert(patch_code == lir_patch_none, "no patching handled here");
1081           __ set(con, to_reg->as_register());
1082         } else {
1083           ShouldNotReachHere();
1084           assert(to_reg->is_single_fpu(), "wrong register kind");
1085 
1086           __ set(con, O7);
1087           Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
1088           __ st(O7, temp_slot);
1089           __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
1090         }
1091       }
1092       break;
1093 
1094     case T_LONG:
1095       {
1096         jlong con = c->as_jlong();
1097 
1098         if (to_reg->is_double_cpu()) {
1099           __ set(con,  to_reg->as_register_lo());
1100         } else if (to_reg->is_single_cpu()) {
1101           __ set(con, to_reg->as_register());
1102         } else {
1103           ShouldNotReachHere();
1104           assert(to_reg->is_double_fpu(), "wrong register kind");
1105           Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
1106           Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
1107           __ set(low(con),  O7);
1108           __ st(O7, temp_slot_lo);
1109           __ set(high(con), O7);
1110           __ st(O7, temp_slot_hi);
1111           __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
1112         }
1113       }
1114       break;
1115 
1116     case T_OBJECT:
1117       {
1118         if (patch_code == lir_patch_none) {
1119           jobject2reg(c->as_jobject(), to_reg->as_register());
1120         } else {
1121           jobject2reg_with_patching(to_reg->as_register(), info);
1122         }
1123       }
1124       break;
1125 
1126     case T_METADATA:
1127       {
1128         if (patch_code == lir_patch_none) {
1129           metadata2reg(c->as_metadata(), to_reg->as_register());
1130         } else {
1131           klass2reg_with_patching(to_reg->as_register(), info);
1132         }
1133       }
1134       break;
1135 
1136     case T_FLOAT:
1137       {
1138         address const_addr = __ float_constant(c->as_jfloat());
1139         if (const_addr == NULL) {
1140           bailout("const section overflow");
1141           break;
1142         }
1143         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1144         AddressLiteral const_addrlit(const_addr, rspec);
1145         if (to_reg->is_single_fpu()) {
1146           __ patchable_sethi(const_addrlit, O7);
1147           __ relocate(rspec);
1148           __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
1149 
1150         } else {
1151           assert(to_reg->is_single_cpu(), "Must be a cpu register.");
1152 
1153           __ set(const_addrlit, O7);
1154           __ ld(O7, 0, to_reg->as_register());
1155         }
1156       }
1157       break;
1158 
1159     case T_DOUBLE:
1160       {
1161         address const_addr = __ double_constant(c->as_jdouble());
1162         if (const_addr == NULL) {
1163           bailout("const section overflow");
1164           break;
1165         }
1166         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1167 
1168         if (to_reg->is_double_fpu()) {
1169           AddressLiteral const_addrlit(const_addr, rspec);
1170           __ patchable_sethi(const_addrlit, O7);
1171           __ relocate(rspec);
1172           __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
1173         } else {
1174           assert(to_reg->is_double_cpu(), "Must be a long register.");
1175           __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
1176         }
1177 
1178       }
1179       break;
1180 
1181     default:
1182       ShouldNotReachHere();
1183   }
1184 }
1185 
as_Address(LIR_Address * addr)1186 Address LIR_Assembler::as_Address(LIR_Address* addr) {
1187   Register reg = addr->base()->as_pointer_register();
1188   LIR_Opr index = addr->index();
1189   if (index->is_illegal()) {
1190     return Address(reg, addr->disp());
1191   } else {
1192     assert (addr->disp() == 0, "unsupported address mode");
1193     return Address(reg, index->as_pointer_register());
1194   }
1195 }
1196 
1197 
stack2stack(LIR_Opr src,LIR_Opr dest,BasicType type)1198 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1199   switch (type) {
1200     case T_INT:
1201     case T_FLOAT: {
1202       Register tmp = O7;
1203       Address from = frame_map()->address_for_slot(src->single_stack_ix());
1204       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1205       __ lduw(from.base(), from.disp(), tmp);
1206       __ stw(tmp, to.base(), to.disp());
1207       break;
1208     }
1209     case T_ADDRESS:
1210     case T_OBJECT: {
1211       Register tmp = O7;
1212       Address from = frame_map()->address_for_slot(src->single_stack_ix());
1213       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1214       __ ld_ptr(from.base(), from.disp(), tmp);
1215       __ st_ptr(tmp, to.base(), to.disp());
1216       break;
1217     }
1218     case T_LONG:
1219     case T_DOUBLE: {
1220       Register tmp = O7;
1221       Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
1222       Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
1223       __ lduw(from.base(), from.disp(), tmp);
1224       __ stw(tmp, to.base(), to.disp());
1225       __ lduw(from.base(), from.disp() + 4, tmp);
1226       __ stw(tmp, to.base(), to.disp() + 4);
1227       break;
1228     }
1229 
1230     default:
1231       ShouldNotReachHere();
1232   }
1233 }
1234 
1235 
as_Address_hi(LIR_Address * addr)1236 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
1237   Address base = as_Address(addr);
1238   return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
1239 }
1240 
1241 
as_Address_lo(LIR_Address * addr)1242 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
1243   Address base = as_Address(addr);
1244   return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
1245 }
1246 
1247 
mem2reg(LIR_Opr src_opr,LIR_Opr dest,BasicType type,LIR_PatchCode patch_code,CodeEmitInfo * info,bool wide,bool unaligned)1248 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
1249                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
1250 
1251   assert(type != T_METADATA, "load of metadata ptr not supported");
1252   LIR_Address* addr = src_opr->as_address_ptr();
1253   LIR_Opr to_reg = dest;
1254 
1255   Register src = addr->base()->as_pointer_register();
1256   Register disp_reg = noreg;
1257   int disp_value = addr->disp();
1258   bool needs_patching = (patch_code != lir_patch_none);
1259 
1260   if (addr->base()->type() == T_OBJECT) {
1261     __ verify_oop(src);
1262   }
1263 
1264   PatchingStub* patch = NULL;
1265   if (needs_patching) {
1266     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1267     assert(!to_reg->is_double_cpu() ||
1268            patch_code == lir_patch_none ||
1269            patch_code == lir_patch_normal, "patching doesn't match register");
1270   }
1271 
1272   if (addr->index()->is_illegal()) {
1273     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1274       if (needs_patching) {
1275         __ patchable_set(0, O7);
1276       } else {
1277         __ set(disp_value, O7);
1278       }
1279       disp_reg = O7;
1280     }
1281   } else if (unaligned || PatchALot) {
1282     __ add(src, addr->index()->as_pointer_register(), O7);
1283     src = O7;
1284   } else {
1285     disp_reg = addr->index()->as_pointer_register();
1286     assert(disp_value == 0, "can't handle 3 operand addresses");
1287   }
1288 
1289   // remember the offset of the load.  The patching_epilog must be done
1290   // before the call to add_debug_info, otherwise the PcDescs don't get
1291   // entered in increasing order.
1292   int offset = code_offset();
1293 
1294   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1295   if (disp_reg == noreg) {
1296     offset = load(src, disp_value, to_reg, type, wide, unaligned);
1297   } else {
1298     assert(!unaligned, "can't handle this");
1299     offset = load(src, disp_reg, to_reg, type, wide);
1300   }
1301 
1302   if (patch != NULL) {
1303     patching_epilog(patch, patch_code, src, info);
1304   }
1305   if (info != NULL) add_debug_info_for_null_check(offset, info);
1306 }
1307 
1308 
stack2reg(LIR_Opr src,LIR_Opr dest,BasicType type)1309 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1310   Address addr;
1311   if (src->is_single_word()) {
1312     addr = frame_map()->address_for_slot(src->single_stack_ix());
1313   } else if (src->is_double_word())  {
1314     addr = frame_map()->address_for_double_slot(src->double_stack_ix());
1315   }
1316 
1317   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1318   load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
1319 }
1320 
1321 
reg2stack(LIR_Opr from_reg,LIR_Opr dest,BasicType type,bool pop_fpu_stack)1322 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
1323   Address addr;
1324   if (dest->is_single_word()) {
1325     addr = frame_map()->address_for_slot(dest->single_stack_ix());
1326   } else if (dest->is_double_word())  {
1327     addr = frame_map()->address_for_slot(dest->double_stack_ix());
1328   }
1329   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1330   store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
1331 }
1332 
1333 
reg2reg(LIR_Opr from_reg,LIR_Opr to_reg)1334 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
1335   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
1336     if (from_reg->is_double_fpu()) {
1337       // double to double moves
1338       assert(to_reg->is_double_fpu(), "should match");
1339       __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
1340     } else {
1341       // float to float moves
1342       assert(to_reg->is_single_fpu(), "should match");
1343       __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
1344     }
1345   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
1346     if (from_reg->is_double_cpu()) {
1347       __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
1348     } else if (to_reg->is_double_cpu()) {
1349       // int to int moves
1350       __ mov(from_reg->as_register(), to_reg->as_register_lo());
1351     } else {
1352       // int to int moves
1353       __ mov(from_reg->as_register(), to_reg->as_register());
1354     }
1355   } else {
1356     ShouldNotReachHere();
1357   }
1358   if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
1359     __ verify_oop(to_reg->as_register());
1360   }
1361 }
1362 
reg2mem(LIR_Opr from_reg,LIR_Opr dest,BasicType type,LIR_PatchCode patch_code,CodeEmitInfo * info,bool pop_fpu_stack,bool wide,bool unaligned)1363 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
1364                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
1365                             bool wide, bool unaligned) {
1366   assert(type != T_METADATA, "store of metadata ptr not supported");
1367   LIR_Address* addr = dest->as_address_ptr();
1368 
1369   Register src = addr->base()->as_pointer_register();
1370   Register disp_reg = noreg;
1371   int disp_value = addr->disp();
1372   bool needs_patching = (patch_code != lir_patch_none);
1373 
1374   if (addr->base()->is_oop_register()) {
1375     __ verify_oop(src);
1376   }
1377 
1378   PatchingStub* patch = NULL;
1379   if (needs_patching) {
1380     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1381     assert(!from_reg->is_double_cpu() ||
1382            patch_code == lir_patch_none ||
1383            patch_code == lir_patch_normal, "patching doesn't match register");
1384   }
1385 
1386   if (addr->index()->is_illegal()) {
1387     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1388       if (needs_patching) {
1389         __ patchable_set(0, O7);
1390       } else {
1391         __ set(disp_value, O7);
1392       }
1393       disp_reg = O7;
1394     }
1395   } else if (unaligned || PatchALot) {
1396     __ add(src, addr->index()->as_pointer_register(), O7);
1397     src = O7;
1398   } else {
1399     disp_reg = addr->index()->as_pointer_register();
1400     assert(disp_value == 0, "can't handle 3 operand addresses");
1401   }
1402 
1403   // remember the offset of the store.  The patching_epilog must be done
1404   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
1405   // entered in increasing order.
1406   int offset;
1407 
1408   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1409   if (disp_reg == noreg) {
1410     offset = store(from_reg, src, disp_value, type, wide, unaligned);
1411   } else {
1412     assert(!unaligned, "can't handle this");
1413     offset = store(from_reg, src, disp_reg, type, wide);
1414   }
1415 
1416   if (patch != NULL) {
1417     patching_epilog(patch, patch_code, src, info);
1418   }
1419 
1420   if (info != NULL) add_debug_info_for_null_check(offset, info);
1421 }
1422 
1423 
return_op(LIR_Opr result)1424 void LIR_Assembler::return_op(LIR_Opr result) {
1425   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
1426     __ reserved_stack_check();
1427   }
1428   if (SafepointMechanism::uses_thread_local_poll()) {
1429     __ ld_ptr(Address(G2_thread, Thread::polling_page_offset()), L0);
1430   } else {
1431     __ set((intptr_t)os::get_polling_page(), L0);
1432   }
1433   __ relocate(relocInfo::poll_return_type);
1434   __ ld_ptr(L0, 0, G0);
1435   __ ret();
1436   __ delayed()->restore();
1437 }
1438 
1439 
safepoint_poll(LIR_Opr tmp,CodeEmitInfo * info)1440 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
1441   if (SafepointMechanism::uses_thread_local_poll()) {
1442     __ ld_ptr(Address(G2_thread, Thread::polling_page_offset()), tmp->as_register());
1443   } else {
1444     __ set((intptr_t)os::get_polling_page(), tmp->as_register());
1445   }
1446   if (info != NULL) {
1447     add_debug_info_for_branch(info);
1448   }
1449   int offset = __ offset();
1450 
1451   __ relocate(relocInfo::poll_type);
1452   __ ld_ptr(tmp->as_register(), 0, G0);
1453   return offset;
1454 }
1455 
1456 
emit_static_call_stub()1457 void LIR_Assembler::emit_static_call_stub() {
1458   address call_pc = __ pc();
1459   address stub = __ start_a_stub(call_stub_size());
1460   if (stub == NULL) {
1461     bailout("static call stub overflow");
1462     return;
1463   }
1464 
1465   int start = __ offset();
1466   __ relocate(static_stub_Relocation::spec(call_pc));
1467 
1468   __ set_metadata(NULL, G5);
1469   // must be set to -1 at code generation time
1470   AddressLiteral addrlit(-1);
1471   __ jump_to(addrlit, G3);
1472   __ delayed()->nop();
1473 
1474   assert(__ offset() - start <= call_stub_size(), "stub too big");
1475   __ end_a_stub();
1476 }
1477 
1478 
comp_op(LIR_Condition condition,LIR_Opr opr1,LIR_Opr opr2,LIR_Op2 * op)1479 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1480   if (opr1->is_single_fpu()) {
1481     __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
1482   } else if (opr1->is_double_fpu()) {
1483     __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
1484   } else if (opr1->is_single_cpu()) {
1485     if (opr2->is_constant()) {
1486       switch (opr2->as_constant_ptr()->type()) {
1487         case T_INT:
1488           { jint con = opr2->as_constant_ptr()->as_jint();
1489             if (Assembler::is_simm13(con)) {
1490               __ cmp(opr1->as_register(), con);
1491             } else {
1492               __ set(con, O7);
1493               __ cmp(opr1->as_register(), O7);
1494             }
1495           }
1496           break;
1497 
1498         case T_OBJECT:
1499           // there are only equal/notequal comparisions on objects
1500           { jobject con = opr2->as_constant_ptr()->as_jobject();
1501             if (con == NULL) {
1502               __ cmp(opr1->as_register(), 0);
1503             } else {
1504               jobject2reg(con, O7);
1505               __ cmp(opr1->as_register(), O7);
1506             }
1507           }
1508           break;
1509 
1510         case T_METADATA:
1511           // We only need, for now, comparison with NULL for metadata.
1512           { assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops");
1513             Metadata* m = opr2->as_constant_ptr()->as_metadata();
1514             if (m == NULL) {
1515               __ cmp(opr1->as_register(), 0);
1516             } else {
1517               ShouldNotReachHere();
1518             }
1519           }
1520           break;
1521 
1522         default:
1523           ShouldNotReachHere();
1524           break;
1525       }
1526     } else {
1527       if (opr2->is_address()) {
1528         LIR_Address * addr = opr2->as_address_ptr();
1529         BasicType type = addr->type();
1530         if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1531         else                    __ ld(as_Address(addr), O7);
1532         __ cmp(opr1->as_register(), O7);
1533       } else {
1534         __ cmp(opr1->as_register(), opr2->as_register());
1535       }
1536     }
1537   } else if (opr1->is_double_cpu()) {
1538     Register xlo = opr1->as_register_lo();
1539     Register xhi = opr1->as_register_hi();
1540     if (opr2->is_constant() && opr2->as_jlong() == 0) {
1541       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
1542       __ orcc(xhi, G0, G0);
1543     } else if (opr2->is_register()) {
1544       Register ylo = opr2->as_register_lo();
1545       Register yhi = opr2->as_register_hi();
1546       __ cmp(xlo, ylo);
1547     } else {
1548       ShouldNotReachHere();
1549     }
1550   } else if (opr1->is_address()) {
1551     LIR_Address * addr = opr1->as_address_ptr();
1552     BasicType type = addr->type();
1553     assert (opr2->is_constant(), "Checking");
1554     if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1555     else                    __ ld(as_Address(addr), O7);
1556     __ cmp(O7, opr2->as_constant_ptr()->as_jint());
1557   } else {
1558     ShouldNotReachHere();
1559   }
1560 }
1561 
1562 
comp_fl2i(LIR_Code code,LIR_Opr left,LIR_Opr right,LIR_Opr dst,LIR_Op2 * op)1563 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
1564   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1565     bool is_unordered_less = (code == lir_ucmp_fd2i);
1566     if (left->is_single_fpu()) {
1567       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
1568     } else if (left->is_double_fpu()) {
1569       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
1570     } else {
1571       ShouldNotReachHere();
1572     }
1573   } else if (code == lir_cmp_l2i) {
1574     __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
1575   } else {
1576     ShouldNotReachHere();
1577   }
1578 }
1579 
1580 
cmove(LIR_Condition condition,LIR_Opr opr1,LIR_Opr opr2,LIR_Opr result,BasicType type)1581 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1582   Assembler::Condition acond;
1583   switch (condition) {
1584     case lir_cond_equal:        acond = Assembler::equal;        break;
1585     case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
1586     case lir_cond_less:         acond = Assembler::less;         break;
1587     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
1588     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
1589     case lir_cond_greater:      acond = Assembler::greater;      break;
1590     case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
1591     case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
1592     default:                         ShouldNotReachHere();
1593   };
1594 
1595   if (opr1->is_constant() && opr1->type() == T_INT) {
1596     Register dest = result->as_register();
1597     // load up first part of constant before branch
1598     // and do the rest in the delay slot.
1599     if (!Assembler::is_simm13(opr1->as_jint())) {
1600       __ sethi(opr1->as_jint(), dest);
1601     }
1602   } else if (opr1->is_constant()) {
1603     const2reg(opr1, result, lir_patch_none, NULL);
1604   } else if (opr1->is_register()) {
1605     reg2reg(opr1, result);
1606   } else if (opr1->is_stack()) {
1607     stack2reg(opr1, result, result->type());
1608   } else {
1609     ShouldNotReachHere();
1610   }
1611   Label skip;
1612     if  (type == T_INT) {
1613       __ br(acond, false, Assembler::pt, skip);
1614     } else {
1615       __ brx(acond, false, Assembler::pt, skip); // checks icc on 32bit and xcc on 64bit
1616     }
1617   if (opr1->is_constant() && opr1->type() == T_INT) {
1618     Register dest = result->as_register();
1619     if (Assembler::is_simm13(opr1->as_jint())) {
1620       __ delayed()->or3(G0, opr1->as_jint(), dest);
1621     } else {
1622       // the sethi has been done above, so just put in the low 10 bits
1623       __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
1624     }
1625   } else {
1626     // can't do anything useful in the delay slot
1627     __ delayed()->nop();
1628   }
1629   if (opr2->is_constant()) {
1630     const2reg(opr2, result, lir_patch_none, NULL);
1631   } else if (opr2->is_register()) {
1632     reg2reg(opr2, result);
1633   } else if (opr2->is_stack()) {
1634     stack2reg(opr2, result, result->type());
1635   } else {
1636     ShouldNotReachHere();
1637   }
1638   __ bind(skip);
1639 }
1640 
1641 
arith_op(LIR_Code code,LIR_Opr left,LIR_Opr right,LIR_Opr dest,CodeEmitInfo * info,bool pop_fpu_stack)1642 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1643   assert(info == NULL, "unused on this code path");
1644   assert(left->is_register(), "wrong items state");
1645   assert(dest->is_register(), "wrong items state");
1646 
1647   if (right->is_register()) {
1648     if (dest->is_float_kind()) {
1649 
1650       FloatRegister lreg, rreg, res;
1651       FloatRegisterImpl::Width w;
1652       if (right->is_single_fpu()) {
1653         w = FloatRegisterImpl::S;
1654         lreg = left->as_float_reg();
1655         rreg = right->as_float_reg();
1656         res  = dest->as_float_reg();
1657       } else {
1658         w = FloatRegisterImpl::D;
1659         lreg = left->as_double_reg();
1660         rreg = right->as_double_reg();
1661         res  = dest->as_double_reg();
1662       }
1663 
1664       switch (code) {
1665         case lir_add: __ fadd(w, lreg, rreg, res); break;
1666         case lir_sub: __ fsub(w, lreg, rreg, res); break;
1667         case lir_mul: // fall through
1668         case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
1669         case lir_div: // fall through
1670         case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
1671         default: ShouldNotReachHere();
1672       }
1673 
1674     } else if (dest->is_double_cpu()) {
1675       Register dst_lo = dest->as_register_lo();
1676       Register op1_lo = left->as_pointer_register();
1677       Register op2_lo = right->as_pointer_register();
1678 
1679       switch (code) {
1680         case lir_add:
1681           __ add(op1_lo, op2_lo, dst_lo);
1682           break;
1683 
1684         case lir_sub:
1685           __ sub(op1_lo, op2_lo, dst_lo);
1686           break;
1687 
1688         default: ShouldNotReachHere();
1689       }
1690     } else {
1691       assert (right->is_single_cpu(), "Just Checking");
1692 
1693       Register lreg = left->as_register();
1694       Register res  = dest->as_register();
1695       Register rreg = right->as_register();
1696       switch (code) {
1697         case lir_add:  __ add  (lreg, rreg, res); break;
1698         case lir_sub:  __ sub  (lreg, rreg, res); break;
1699         case lir_mul:  __ mulx (lreg, rreg, res); break;
1700         default: ShouldNotReachHere();
1701       }
1702     }
1703   } else {
1704     assert (right->is_constant(), "must be constant");
1705 
1706     if (dest->is_single_cpu()) {
1707       Register lreg = left->as_register();
1708       Register res  = dest->as_register();
1709       int    simm13 = right->as_constant_ptr()->as_jint();
1710 
1711       switch (code) {
1712         case lir_add:  __ add  (lreg, simm13, res); break;
1713         case lir_sub:  __ sub  (lreg, simm13, res); break;
1714         case lir_mul:  __ mulx (lreg, simm13, res); break;
1715         default: ShouldNotReachHere();
1716       }
1717     } else {
1718       Register lreg = left->as_pointer_register();
1719       Register res  = dest->as_register_lo();
1720       long con = right->as_constant_ptr()->as_jlong();
1721       assert(Assembler::is_simm13(con), "must be simm13");
1722 
1723       switch (code) {
1724         case lir_add:  __ add  (lreg, (int)con, res); break;
1725         case lir_sub:  __ sub  (lreg, (int)con, res); break;
1726         case lir_mul:  __ mulx (lreg, (int)con, res); break;
1727         default: ShouldNotReachHere();
1728       }
1729     }
1730   }
1731 }
1732 
1733 
fpop()1734 void LIR_Assembler::fpop() {
1735   // do nothing
1736 }
1737 
1738 
intrinsic_op(LIR_Code code,LIR_Opr value,LIR_Opr thread,LIR_Opr dest,LIR_Op * op)1739 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
1740   switch (code) {
1741     case lir_tan: {
1742       assert(thread->is_valid(), "preserve the thread object for performance reasons");
1743       assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
1744       break;
1745     }
1746     case lir_sqrt: {
1747       assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
1748       FloatRegister src_reg = value->as_double_reg();
1749       FloatRegister dst_reg = dest->as_double_reg();
1750       __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
1751       break;
1752     }
1753     case lir_abs: {
1754       assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
1755       FloatRegister src_reg = value->as_double_reg();
1756       FloatRegister dst_reg = dest->as_double_reg();
1757       __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
1758       break;
1759     }
1760     default: {
1761       ShouldNotReachHere();
1762       break;
1763     }
1764   }
1765 }
1766 
1767 
logic_op(LIR_Code code,LIR_Opr left,LIR_Opr right,LIR_Opr dest)1768 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
1769   if (right->is_constant()) {
1770     if (dest->is_single_cpu()) {
1771       int simm13 = right->as_constant_ptr()->as_jint();
1772       switch (code) {
1773         case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
1774         case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
1775         case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
1776         default: ShouldNotReachHere();
1777       }
1778     } else {
1779       long c = right->as_constant_ptr()->as_jlong();
1780       assert(c == (int)c && Assembler::is_simm13(c), "out of range");
1781       int simm13 = (int)c;
1782       switch (code) {
1783         case lir_logic_and:
1784           __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
1785           break;
1786 
1787         case lir_logic_or:
1788           __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
1789           break;
1790 
1791         case lir_logic_xor:
1792           __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
1793           break;
1794 
1795         default: ShouldNotReachHere();
1796       }
1797     }
1798   } else {
1799     assert(right->is_register(), "right should be in register");
1800 
1801     if (dest->is_single_cpu()) {
1802       switch (code) {
1803         case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
1804         case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
1805         case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
1806         default: ShouldNotReachHere();
1807       }
1808     } else {
1809       Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
1810                                                                         left->as_register_lo();
1811       Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
1812                                                                           right->as_register_lo();
1813 
1814       switch (code) {
1815         case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
1816         case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
1817         case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
1818         default: ShouldNotReachHere();
1819       }
1820     }
1821   }
1822 }
1823 
1824 
shift_amount(BasicType t)1825 int LIR_Assembler::shift_amount(BasicType t) {
1826   int elem_size = type2aelembytes(t);
1827   switch (elem_size) {
1828     case 1 : return 0;
1829     case 2 : return 1;
1830     case 4 : return 2;
1831     case 8 : return 3;
1832   }
1833   ShouldNotReachHere();
1834   return -1;
1835 }
1836 
1837 
throw_op(LIR_Opr exceptionPC,LIR_Opr exceptionOop,CodeEmitInfo * info)1838 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
1839   assert(exceptionOop->as_register() == Oexception, "should match");
1840   assert(exceptionPC->as_register() == Oissuing_pc, "should match");
1841 
1842   info->add_register_oop(exceptionOop);
1843 
1844   // reuse the debug info from the safepoint poll for the throw op itself
1845   address pc_for_athrow  = __ pc();
1846   int pc_for_athrow_offset = __ offset();
1847   RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
1848   __ set(pc_for_athrow, Oissuing_pc, rspec);
1849   add_call_info(pc_for_athrow_offset, info); // for exception handler
1850 
1851   __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
1852   __ delayed()->nop();
1853 }
1854 
1855 
unwind_op(LIR_Opr exceptionOop)1856 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
1857   assert(exceptionOop->as_register() == Oexception, "should match");
1858 
1859   __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
1860   __ delayed()->nop();
1861 }
1862 
emit_arraycopy(LIR_OpArrayCopy * op)1863 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
1864   Register src = op->src()->as_register();
1865   Register dst = op->dst()->as_register();
1866   Register src_pos = op->src_pos()->as_register();
1867   Register dst_pos = op->dst_pos()->as_register();
1868   Register length  = op->length()->as_register();
1869   Register tmp = op->tmp()->as_register();
1870   Register tmp2 = O7;
1871 
1872   int flags = op->flags();
1873   ciArrayKlass* default_type = op->expected_type();
1874   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
1875   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
1876 
1877   // higher 32bits must be null
1878   __ sra(dst_pos, 0, dst_pos);
1879   __ sra(src_pos, 0, src_pos);
1880   __ sra(length, 0, length);
1881 
1882   // set up the arraycopy stub information
1883   ArrayCopyStub* stub = op->stub();
1884 
1885   // always do stub if no type information is available.  it's ok if
1886   // the known type isn't loaded since the code sanity checks
1887   // in debug mode and the type isn't required when we know the exact type
1888   // also check that the type is an array type.
1889   if (op->expected_type() == NULL) {
1890     __ mov(src,     O0);
1891     __ mov(src_pos, O1);
1892     __ mov(dst,     O2);
1893     __ mov(dst_pos, O3);
1894     __ mov(length,  O4);
1895     address copyfunc_addr = StubRoutines::generic_arraycopy();
1896     assert(copyfunc_addr != NULL, "generic arraycopy stub required");
1897 
1898 #ifndef PRODUCT
1899     if (PrintC1Statistics) {
1900       address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
1901       __ inc_counter(counter, G1, G3);
1902     }
1903 #endif
1904     __ call_VM_leaf(tmp, copyfunc_addr);
1905 
1906     __ xor3(O0, -1, tmp);
1907     __ sub(length, tmp, length);
1908     __ add(src_pos, tmp, src_pos);
1909     __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
1910     __ delayed()->add(dst_pos, tmp, dst_pos);
1911     __ bind(*stub->continuation());
1912     return;
1913   }
1914 
1915   assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
1916 
1917   // make sure src and dst are non-null and load array length
1918   if (flags & LIR_OpArrayCopy::src_null_check) {
1919     __ tst(src);
1920     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
1921     __ delayed()->nop();
1922   }
1923 
1924   if (flags & LIR_OpArrayCopy::dst_null_check) {
1925     __ tst(dst);
1926     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
1927     __ delayed()->nop();
1928   }
1929 
1930   // If the compiler was not able to prove that exact type of the source or the destination
1931   // of the arraycopy is an array type, check at runtime if the source or the destination is
1932   // an instance type.
1933   if (flags & LIR_OpArrayCopy::type_check) {
1934     if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) {
1935       __ load_klass(dst, tmp);
1936       __ lduw(tmp, in_bytes(Klass::layout_helper_offset()), tmp2);
1937       __ cmp(tmp2, Klass::_lh_neutral_value);
1938       __ br(Assembler::greaterEqual, false, Assembler::pn, *stub->entry());
1939       __ delayed()->nop();
1940     }
1941 
1942     if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) {
1943       __ load_klass(src, tmp);
1944       __ lduw(tmp, in_bytes(Klass::layout_helper_offset()), tmp2);
1945       __ cmp(tmp2, Klass::_lh_neutral_value);
1946       __ br(Assembler::greaterEqual, false, Assembler::pn, *stub->entry());
1947       __ delayed()->nop();
1948     }
1949   }
1950 
1951   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
1952     // test src_pos register
1953     __ cmp_zero_and_br(Assembler::less, src_pos, *stub->entry());
1954     __ delayed()->nop();
1955   }
1956 
1957   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
1958     // test dst_pos register
1959     __ cmp_zero_and_br(Assembler::less, dst_pos, *stub->entry());
1960     __ delayed()->nop();
1961   }
1962 
1963   if (flags & LIR_OpArrayCopy::length_positive_check) {
1964     // make sure length isn't negative
1965     __ cmp_zero_and_br(Assembler::less, length, *stub->entry());
1966     __ delayed()->nop();
1967   }
1968 
1969   if (flags & LIR_OpArrayCopy::src_range_check) {
1970     __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
1971     __ add(length, src_pos, tmp);
1972     __ cmp(tmp2, tmp);
1973     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
1974     __ delayed()->nop();
1975   }
1976 
1977   if (flags & LIR_OpArrayCopy::dst_range_check) {
1978     __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
1979     __ add(length, dst_pos, tmp);
1980     __ cmp(tmp2, tmp);
1981     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
1982     __ delayed()->nop();
1983   }
1984 
1985   int shift = shift_amount(basic_type);
1986 
1987   if (flags & LIR_OpArrayCopy::type_check) {
1988     // We don't know the array types are compatible
1989     if (basic_type != T_OBJECT) {
1990       // Simple test for basic type arrays
1991       if (UseCompressedClassPointers) {
1992         // We don't need decode because we just need to compare
1993         __ lduw(src, oopDesc::klass_offset_in_bytes(), tmp);
1994         __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
1995         __ cmp(tmp, tmp2);
1996         __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
1997       } else {
1998         __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
1999         __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2000         __ cmp(tmp, tmp2);
2001         __ brx(Assembler::notEqual, false, Assembler::pt, *stub->entry());
2002       }
2003       __ delayed()->nop();
2004     } else {
2005       // For object arrays, if src is a sub class of dst then we can
2006       // safely do the copy.
2007       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
2008 
2009       Label cont, slow;
2010       assert_different_registers(tmp, tmp2, G3, G1);
2011 
2012       __ load_klass(src, G3);
2013       __ load_klass(dst, G1);
2014 
2015       __ check_klass_subtype_fast_path(G3, G1, tmp, tmp2, &cont, copyfunc_addr == NULL ? stub->entry() : &slow, NULL);
2016 
2017       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2018       __ delayed()->nop();
2019 
2020       __ cmp(G3, 0);
2021       if (copyfunc_addr != NULL) { // use stub if available
2022         // src is not a sub class of dst so we have to do a
2023         // per-element check.
2024         __ br(Assembler::notEqual, false, Assembler::pt, cont);
2025         __ delayed()->nop();
2026 
2027         __ bind(slow);
2028 
2029         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
2030         if ((flags & mask) != mask) {
2031           // Check that at least both of them object arrays.
2032           assert(flags & mask, "one of the two should be known to be an object array");
2033 
2034           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2035             __ load_klass(src, tmp);
2036           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2037             __ load_klass(dst, tmp);
2038           }
2039           int lh_offset = in_bytes(Klass::layout_helper_offset());
2040 
2041           __ lduw(tmp, lh_offset, tmp2);
2042 
2043           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2044           __ set(objArray_lh, tmp);
2045           __ cmp(tmp, tmp2);
2046           __ br(Assembler::notEqual, false, Assembler::pt,  *stub->entry());
2047           __ delayed()->nop();
2048         }
2049 
2050         Register src_ptr = O0;
2051         Register dst_ptr = O1;
2052         Register len     = O2;
2053         Register chk_off = O3;
2054         Register super_k = O4;
2055 
2056         __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
2057         if (shift == 0) {
2058           __ add(src_ptr, src_pos, src_ptr);
2059         } else {
2060           __ sll(src_pos, shift, tmp);
2061           __ add(src_ptr, tmp, src_ptr);
2062         }
2063 
2064         __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
2065         if (shift == 0) {
2066           __ add(dst_ptr, dst_pos, dst_ptr);
2067         } else {
2068           __ sll(dst_pos, shift, tmp);
2069           __ add(dst_ptr, tmp, dst_ptr);
2070         }
2071         __ mov(length, len);
2072         __ load_klass(dst, tmp);
2073 
2074         int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
2075         __ ld_ptr(tmp, ek_offset, super_k);
2076 
2077         int sco_offset = in_bytes(Klass::super_check_offset_offset());
2078         __ lduw(super_k, sco_offset, chk_off);
2079 
2080         __ call_VM_leaf(tmp, copyfunc_addr);
2081 
2082 #ifndef PRODUCT
2083         if (PrintC1Statistics) {
2084           Label failed;
2085           __ br_notnull_short(O0, Assembler::pn, failed);
2086           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, G1, G3);
2087           __ bind(failed);
2088         }
2089 #endif
2090 
2091         __ br_null(O0, false, Assembler::pt,  *stub->continuation());
2092         __ delayed()->xor3(O0, -1, tmp);
2093 
2094 #ifndef PRODUCT
2095         if (PrintC1Statistics) {
2096           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, G1, G3);
2097         }
2098 #endif
2099 
2100         __ sub(length, tmp, length);
2101         __ add(src_pos, tmp, src_pos);
2102         __ br(Assembler::always, false, Assembler::pt, *stub->entry());
2103         __ delayed()->add(dst_pos, tmp, dst_pos);
2104 
2105         __ bind(cont);
2106       } else {
2107         __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2108         __ delayed()->nop();
2109         __ bind(cont);
2110       }
2111     }
2112   }
2113 
2114 #ifdef ASSERT
2115   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2116     // Sanity check the known type with the incoming class.  For the
2117     // primitive case the types must match exactly with src.klass and
2118     // dst.klass each exactly matching the default type.  For the
2119     // object array case, if no type check is needed then either the
2120     // dst type is exactly the expected type and the src type is a
2121     // subtype which we can't check or src is the same array as dst
2122     // but not necessarily exactly of type default_type.
2123     Label known_ok, halt;
2124     metadata2reg(op->expected_type()->constant_encoding(), tmp);
2125     if (UseCompressedClassPointers) {
2126       // tmp holds the default type. It currently comes uncompressed after the
2127       // load of a constant, so encode it.
2128       __ encode_klass_not_null(tmp);
2129       // load the raw value of the dst klass, since we will be comparing
2130       // uncompressed values directly.
2131       __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2132       if (basic_type != T_OBJECT) {
2133         __ cmp(tmp, tmp2);
2134         __ br(Assembler::notEqual, false, Assembler::pn, halt);
2135         // load the raw value of the src klass.
2136         __ delayed()->lduw(src, oopDesc::klass_offset_in_bytes(), tmp2);
2137         __ cmp_and_br_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
2138       } else {
2139         __ cmp(tmp, tmp2);
2140         __ br(Assembler::equal, false, Assembler::pn, known_ok);
2141         __ delayed()->cmp(src, dst);
2142         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2143         __ delayed()->nop();
2144       }
2145     } else {
2146       __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2147       if (basic_type != T_OBJECT) {
2148         __ cmp(tmp, tmp2);
2149         __ brx(Assembler::notEqual, false, Assembler::pn, halt);
2150         __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
2151         __ cmp_and_brx_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
2152       } else {
2153         __ cmp(tmp, tmp2);
2154         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2155         __ delayed()->cmp(src, dst);
2156         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2157         __ delayed()->nop();
2158       }
2159     }
2160     __ bind(halt);
2161     __ stop("incorrect type information in arraycopy");
2162     __ bind(known_ok);
2163   }
2164 #endif
2165 
2166 #ifndef PRODUCT
2167   if (PrintC1Statistics) {
2168     address counter = Runtime1::arraycopy_count_address(basic_type);
2169     __ inc_counter(counter, G1, G3);
2170   }
2171 #endif
2172 
2173   Register src_ptr = O0;
2174   Register dst_ptr = O1;
2175   Register len     = O2;
2176 
2177   __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
2178   if (shift == 0) {
2179     __ add(src_ptr, src_pos, src_ptr);
2180   } else {
2181     __ sll(src_pos, shift, tmp);
2182     __ add(src_ptr, tmp, src_ptr);
2183   }
2184 
2185   __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
2186   if (shift == 0) {
2187     __ add(dst_ptr, dst_pos, dst_ptr);
2188   } else {
2189     __ sll(dst_pos, shift, tmp);
2190     __ add(dst_ptr, tmp, dst_ptr);
2191   }
2192 
2193   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
2194   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
2195   const char *name;
2196   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
2197 
2198   // arraycopy stubs takes a length in number of elements, so don't scale it.
2199   __ mov(length, len);
2200   __ call_VM_leaf(tmp, entry);
2201 
2202   __ bind(*stub->continuation());
2203 }
2204 
2205 
shift_op(LIR_Code code,LIR_Opr left,LIR_Opr count,LIR_Opr dest,LIR_Opr tmp)2206 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2207   if (dest->is_single_cpu()) {
2208     if (left->type() == T_OBJECT) {
2209       switch (code) {
2210         case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
2211         case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
2212         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2213         default: ShouldNotReachHere();
2214       }
2215     } else
2216       switch (code) {
2217         case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
2218         case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
2219         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2220         default: ShouldNotReachHere();
2221       }
2222   } else {
2223     switch (code) {
2224       case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2225       case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2226       case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2227       default: ShouldNotReachHere();
2228     }
2229   }
2230 }
2231 
2232 
shift_op(LIR_Code code,LIR_Opr left,jint count,LIR_Opr dest)2233 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2234   if (left->type() == T_OBJECT) {
2235     count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
2236     Register l = left->as_register();
2237     Register d = dest->as_register_lo();
2238     switch (code) {
2239       case lir_shl:  __ sllx  (l, count, d); break;
2240       case lir_shr:  __ srax  (l, count, d); break;
2241       case lir_ushr: __ srlx  (l, count, d); break;
2242       default: ShouldNotReachHere();
2243     }
2244     return;
2245   }
2246 
2247   if (dest->is_single_cpu()) {
2248     count = count & 0x1F; // Java spec
2249     switch (code) {
2250       case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
2251       case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
2252       case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
2253       default: ShouldNotReachHere();
2254     }
2255   } else if (dest->is_double_cpu()) {
2256     count = count & 63; // Java spec
2257     switch (code) {
2258       case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2259       case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2260       case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2261       default: ShouldNotReachHere();
2262     }
2263   } else {
2264     ShouldNotReachHere();
2265   }
2266 }
2267 
2268 
emit_alloc_obj(LIR_OpAllocObj * op)2269 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
2270   assert(op->tmp1()->as_register()  == G1 &&
2271          op->tmp2()->as_register()  == G3 &&
2272          op->tmp3()->as_register()  == G4 &&
2273          op->obj()->as_register()   == O0 &&
2274          op->klass()->as_register() == G5, "must be");
2275   if (op->init_check()) {
2276     add_debug_info_for_null_check_here(op->stub()->info());
2277     __ ldub(op->klass()->as_register(),
2278           in_bytes(InstanceKlass::init_state_offset()),
2279           op->tmp1()->as_register());
2280     __ cmp(op->tmp1()->as_register(), InstanceKlass::fully_initialized);
2281     __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
2282     __ delayed()->nop();
2283   }
2284   __ allocate_object(op->obj()->as_register(),
2285                      op->tmp1()->as_register(),
2286                      op->tmp2()->as_register(),
2287                      op->tmp3()->as_register(),
2288                      op->header_size(),
2289                      op->object_size(),
2290                      op->klass()->as_register(),
2291                      *op->stub()->entry());
2292   __ bind(*op->stub()->continuation());
2293   __ verify_oop(op->obj()->as_register());
2294 }
2295 
2296 
emit_alloc_array(LIR_OpAllocArray * op)2297 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
2298   assert(op->tmp1()->as_register()  == G1 &&
2299          op->tmp2()->as_register()  == G3 &&
2300          op->tmp3()->as_register()  == G4 &&
2301          op->tmp4()->as_register()  == O1 &&
2302          op->klass()->as_register() == G5, "must be");
2303 
2304   __ signx(op->len()->as_register());
2305   if (UseSlowPath ||
2306       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
2307       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
2308     __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2309     __ delayed()->nop();
2310   } else {
2311     __ allocate_array(op->obj()->as_register(),
2312                       op->len()->as_register(),
2313                       op->tmp1()->as_register(),
2314                       op->tmp2()->as_register(),
2315                       op->tmp3()->as_register(),
2316                       arrayOopDesc::header_size(op->type()),
2317                       type2aelembytes(op->type()),
2318                       op->klass()->as_register(),
2319                       *op->stub()->entry());
2320   }
2321   __ bind(*op->stub()->continuation());
2322 }
2323 
2324 
type_profile_helper(Register mdo,int mdo_offset_bias,ciMethodData * md,ciProfileData * data,Register recv,Register tmp1,Label * update_done)2325 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
2326                                         ciMethodData *md, ciProfileData *data,
2327                                         Register recv, Register tmp1, Label* update_done) {
2328   uint i;
2329   for (i = 0; i < VirtualCallData::row_limit(); i++) {
2330     Label next_test;
2331     // See if the receiver is receiver[n].
2332     Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
2333                           mdo_offset_bias);
2334     __ ld_ptr(receiver_addr, tmp1);
2335     __ verify_klass_ptr(tmp1);
2336     __ cmp_and_brx_short(recv, tmp1, Assembler::notEqual, Assembler::pt, next_test);
2337     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
2338                       mdo_offset_bias);
2339     __ ld_ptr(data_addr, tmp1);
2340     __ add(tmp1, DataLayout::counter_increment, tmp1);
2341     __ st_ptr(tmp1, data_addr);
2342     __ ba(*update_done);
2343     __ delayed()->nop();
2344     __ bind(next_test);
2345   }
2346 
2347   // Didn't find receiver; find next empty slot and fill it in
2348   for (i = 0; i < VirtualCallData::row_limit(); i++) {
2349     Label next_test;
2350     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
2351                       mdo_offset_bias);
2352     __ ld_ptr(recv_addr, tmp1);
2353     __ br_notnull_short(tmp1, Assembler::pt, next_test);
2354     __ st_ptr(recv, recv_addr);
2355     __ set(DataLayout::counter_increment, tmp1);
2356     __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
2357               mdo_offset_bias);
2358     __ ba(*update_done);
2359     __ delayed()->nop();
2360     __ bind(next_test);
2361   }
2362 }
2363 
2364 
setup_md_access(ciMethod * method,int bci,ciMethodData * & md,ciProfileData * & data,int & mdo_offset_bias)2365 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
2366                                     ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
2367   md = method->method_data_or_null();
2368   assert(md != NULL, "Sanity");
2369   data = md->bci_to_data(bci);
2370   assert(data != NULL,       "need data for checkcast");
2371   assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
2372   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
2373     // The offset is large so bias the mdo by the base of the slot so
2374     // that the ld can use simm13s to reference the slots of the data
2375     mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
2376   }
2377 }
2378 
emit_typecheck_helper(LIR_OpTypeCheck * op,Label * success,Label * failure,Label * obj_is_null)2379 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
2380   // we always need a stub for the failure case.
2381   CodeStub* stub = op->stub();
2382   Register obj = op->object()->as_register();
2383   Register k_RInfo = op->tmp1()->as_register();
2384   Register klass_RInfo = op->tmp2()->as_register();
2385   Register dst = op->result_opr()->as_register();
2386   Register Rtmp1 = op->tmp3()->as_register();
2387   ciKlass* k = op->klass();
2388 
2389 
2390   if (obj == k_RInfo) {
2391     k_RInfo = klass_RInfo;
2392     klass_RInfo = obj;
2393   }
2394 
2395   ciMethodData* md;
2396   ciProfileData* data;
2397   int mdo_offset_bias = 0;
2398   if (op->should_profile()) {
2399     ciMethod* method = op->profiled_method();
2400     assert(method != NULL, "Should have method");
2401     setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2402 
2403     Label not_null;
2404     __ br_notnull_short(obj, Assembler::pn, not_null);
2405     Register mdo      = k_RInfo;
2406     Register data_val = Rtmp1;
2407     metadata2reg(md->constant_encoding(), mdo);
2408     if (mdo_offset_bias > 0) {
2409       __ set(mdo_offset_bias, data_val);
2410       __ add(mdo, data_val, mdo);
2411     }
2412     Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2413     __ ldub(flags_addr, data_val);
2414     __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2415     __ stb(data_val, flags_addr);
2416     __ ba(*obj_is_null);
2417     __ delayed()->nop();
2418     __ bind(not_null);
2419   } else {
2420     __ br_null(obj, false, Assembler::pn, *obj_is_null);
2421     __ delayed()->nop();
2422   }
2423 
2424   Label profile_cast_failure, profile_cast_success;
2425   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
2426   Label *success_target = op->should_profile() ? &profile_cast_success : success;
2427 
2428   // patching may screw with our temporaries on sparc,
2429   // so let's do it before loading the class
2430   if (k->is_loaded()) {
2431     metadata2reg(k->constant_encoding(), k_RInfo);
2432   } else {
2433     klass2reg_with_patching(k_RInfo, op->info_for_patch());
2434   }
2435   assert(obj != k_RInfo, "must be different");
2436 
2437   // get object class
2438   // not a safepoint as obj null check happens earlier
2439   __ load_klass(obj, klass_RInfo);
2440   if (op->fast_check()) {
2441     assert_different_registers(klass_RInfo, k_RInfo);
2442     __ cmp(k_RInfo, klass_RInfo);
2443     __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
2444     __ delayed()->nop();
2445   } else {
2446     bool need_slow_path = true;
2447     if (k->is_loaded()) {
2448       if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset()))
2449         need_slow_path = false;
2450       // perform the fast part of the checking logic
2451       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
2452                                        (need_slow_path ? success_target : NULL),
2453                                        failure_target, NULL,
2454                                        RegisterOrConstant(k->super_check_offset()));
2455     } else {
2456       // perform the fast part of the checking logic
2457       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
2458                                        failure_target, NULL);
2459     }
2460     if (need_slow_path) {
2461       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2462       assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2463       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2464       __ delayed()->nop();
2465       __ cmp(G3, 0);
2466       __ br(Assembler::equal, false, Assembler::pn, *failure_target);
2467       __ delayed()->nop();
2468       // Fall through to success case
2469     }
2470   }
2471 
2472   if (op->should_profile()) {
2473     Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2474     assert_different_registers(obj, mdo, recv, tmp1);
2475     __ bind(profile_cast_success);
2476     metadata2reg(md->constant_encoding(), mdo);
2477     if (mdo_offset_bias > 0) {
2478       __ set(mdo_offset_bias, tmp1);
2479       __ add(mdo, tmp1, mdo);
2480     }
2481     __ load_klass(obj, recv);
2482     type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
2483     // Jump over the failure case
2484     __ ba(*success);
2485     __ delayed()->nop();
2486     // Cast failure case
2487     __ bind(profile_cast_failure);
2488     metadata2reg(md->constant_encoding(), mdo);
2489     if (mdo_offset_bias > 0) {
2490       __ set(mdo_offset_bias, tmp1);
2491       __ add(mdo, tmp1, mdo);
2492     }
2493     Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2494     __ ld_ptr(data_addr, tmp1);
2495     __ sub(tmp1, DataLayout::counter_increment, tmp1);
2496     __ st_ptr(tmp1, data_addr);
2497     __ ba(*failure);
2498     __ delayed()->nop();
2499   }
2500   __ ba(*success);
2501   __ delayed()->nop();
2502 }
2503 
emit_opTypeCheck(LIR_OpTypeCheck * op)2504 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
2505   LIR_Code code = op->code();
2506   if (code == lir_store_check) {
2507     Register value = op->object()->as_register();
2508     Register array = op->array()->as_register();
2509     Register k_RInfo = op->tmp1()->as_register();
2510     Register klass_RInfo = op->tmp2()->as_register();
2511     Register Rtmp1 = op->tmp3()->as_register();
2512 
2513     __ verify_oop(value);
2514     CodeStub* stub = op->stub();
2515     // check if it needs to be profiled
2516     ciMethodData* md;
2517     ciProfileData* data;
2518     int mdo_offset_bias = 0;
2519     if (op->should_profile()) {
2520       ciMethod* method = op->profiled_method();
2521       assert(method != NULL, "Should have method");
2522       setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2523     }
2524     Label profile_cast_success, profile_cast_failure, done;
2525     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
2526     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
2527 
2528     if (op->should_profile()) {
2529       Label not_null;
2530       __ br_notnull_short(value, Assembler::pn, not_null);
2531       Register mdo      = k_RInfo;
2532       Register data_val = Rtmp1;
2533       metadata2reg(md->constant_encoding(), mdo);
2534       if (mdo_offset_bias > 0) {
2535         __ set(mdo_offset_bias, data_val);
2536         __ add(mdo, data_val, mdo);
2537       }
2538       Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2539       __ ldub(flags_addr, data_val);
2540       __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2541       __ stb(data_val, flags_addr);
2542       __ ba_short(done);
2543       __ bind(not_null);
2544     } else {
2545       __ br_null_short(value, Assembler::pn, done);
2546     }
2547     add_debug_info_for_null_check_here(op->info_for_exception());
2548     __ load_klass(array, k_RInfo);
2549     __ load_klass(value, klass_RInfo);
2550 
2551     // get instance klass
2552     __ ld_ptr(Address(k_RInfo, ObjArrayKlass::element_klass_offset()), k_RInfo);
2553     // perform the fast part of the checking logic
2554     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
2555 
2556     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2557     assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2558     __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2559     __ delayed()->nop();
2560     __ cmp(G3, 0);
2561     __ br(Assembler::equal, false, Assembler::pn, *failure_target);
2562     __ delayed()->nop();
2563     // fall through to the success case
2564 
2565     if (op->should_profile()) {
2566       Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2567       assert_different_registers(value, mdo, recv, tmp1);
2568       __ bind(profile_cast_success);
2569       metadata2reg(md->constant_encoding(), mdo);
2570       if (mdo_offset_bias > 0) {
2571         __ set(mdo_offset_bias, tmp1);
2572         __ add(mdo, tmp1, mdo);
2573       }
2574       __ load_klass(value, recv);
2575       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
2576       __ ba_short(done);
2577       // Cast failure case
2578       __ bind(profile_cast_failure);
2579       metadata2reg(md->constant_encoding(), mdo);
2580       if (mdo_offset_bias > 0) {
2581         __ set(mdo_offset_bias, tmp1);
2582         __ add(mdo, tmp1, mdo);
2583       }
2584       Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2585       __ ld_ptr(data_addr, tmp1);
2586       __ sub(tmp1, DataLayout::counter_increment, tmp1);
2587       __ st_ptr(tmp1, data_addr);
2588       __ ba(*stub->entry());
2589       __ delayed()->nop();
2590     }
2591     __ bind(done);
2592   } else if (code == lir_checkcast) {
2593     Register obj = op->object()->as_register();
2594     Register dst = op->result_opr()->as_register();
2595     Label success;
2596     emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
2597     __ bind(success);
2598     __ mov(obj, dst);
2599   } else if (code == lir_instanceof) {
2600     Register obj = op->object()->as_register();
2601     Register dst = op->result_opr()->as_register();
2602     Label success, failure, done;
2603     emit_typecheck_helper(op, &success, &failure, &failure);
2604     __ bind(failure);
2605     __ set(0, dst);
2606     __ ba_short(done);
2607     __ bind(success);
2608     __ set(1, dst);
2609     __ bind(done);
2610   } else {
2611     ShouldNotReachHere();
2612   }
2613 
2614 }
2615 
2616 
emit_compare_and_swap(LIR_OpCompareAndSwap * op)2617 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
2618   if (op->code() == lir_cas_long) {
2619     assert(VM_Version::supports_cx8(), "wrong machine");
2620     Register addr = op->addr()->as_pointer_register();
2621     Register cmp_value_lo = op->cmp_value()->as_register_lo();
2622     Register cmp_value_hi = op->cmp_value()->as_register_hi();
2623     Register new_value_lo = op->new_value()->as_register_lo();
2624     Register new_value_hi = op->new_value()->as_register_hi();
2625     Register t1 = op->tmp1()->as_register();
2626     Register t2 = op->tmp2()->as_register();
2627     __ mov(cmp_value_lo, t1);
2628     __ mov(new_value_lo, t2);
2629     // perform the compare and swap operation
2630     __ casx(addr, t1, t2);
2631     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
2632     // overwritten with the original value in "addr" and will be equal to t1.
2633     __ cmp(t1, t2);
2634   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
2635     Register addr = op->addr()->as_pointer_register();
2636     Register cmp_value = op->cmp_value()->as_register();
2637     Register new_value = op->new_value()->as_register();
2638     Register t1 = op->tmp1()->as_register();
2639     Register t2 = op->tmp2()->as_register();
2640     __ mov(cmp_value, t1);
2641     __ mov(new_value, t2);
2642     if (op->code() == lir_cas_obj) {
2643       if (UseCompressedOops) {
2644         __ encode_heap_oop(t1);
2645         __ encode_heap_oop(t2);
2646         __ cas(addr, t1, t2);
2647       } else {
2648         __ cas_ptr(addr, t1, t2);
2649       }
2650     } else {
2651       __ cas(addr, t1, t2);
2652     }
2653     __ cmp(t1, t2);
2654   } else {
2655     Unimplemented();
2656   }
2657 }
2658 
set_24bit_FPU()2659 void LIR_Assembler::set_24bit_FPU() {
2660   Unimplemented();
2661 }
2662 
2663 
reset_FPU()2664 void LIR_Assembler::reset_FPU() {
2665   Unimplemented();
2666 }
2667 
2668 
breakpoint()2669 void LIR_Assembler::breakpoint() {
2670   __ breakpoint_trap();
2671 }
2672 
2673 
push(LIR_Opr opr)2674 void LIR_Assembler::push(LIR_Opr opr) {
2675   Unimplemented();
2676 }
2677 
2678 
pop(LIR_Opr opr)2679 void LIR_Assembler::pop(LIR_Opr opr) {
2680   Unimplemented();
2681 }
2682 
2683 
monitor_address(int monitor_no,LIR_Opr dst_opr)2684 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
2685   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
2686   Register dst = dst_opr->as_register();
2687   Register reg = mon_addr.base();
2688   int offset = mon_addr.disp();
2689   // compute pointer to BasicLock
2690   if (mon_addr.is_simm13()) {
2691     __ add(reg, offset, dst);
2692   } else {
2693     __ set(offset, dst);
2694     __ add(dst, reg, dst);
2695   }
2696 }
2697 
emit_updatecrc32(LIR_OpUpdateCRC32 * op)2698 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
2699   assert(op->crc()->is_single_cpu(),  "crc must be register");
2700   assert(op->val()->is_single_cpu(),  "byte value must be register");
2701   assert(op->result_opr()->is_single_cpu(), "result must be register");
2702   Register crc = op->crc()->as_register();
2703   Register val = op->val()->as_register();
2704   Register table = op->result_opr()->as_register();
2705   Register res   = op->result_opr()->as_register();
2706 
2707   assert_different_registers(val, crc, table);
2708 
2709   __ set(ExternalAddress(StubRoutines::crc_table_addr()), table);
2710   __ not1(crc);
2711   __ clruwu(crc);
2712   __ update_byte_crc32(crc, val, table);
2713   __ not1(crc);
2714 
2715   __ mov(crc, res);
2716 }
2717 
emit_lock(LIR_OpLock * op)2718 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2719   Register obj = op->obj_opr()->as_register();
2720   Register hdr = op->hdr_opr()->as_register();
2721   Register lock = op->lock_opr()->as_register();
2722 
2723   // obj may not be an oop
2724   if (op->code() == lir_lock) {
2725     MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
2726     if (UseFastLocking) {
2727       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2728       // add debug info for NullPointerException only if one is possible
2729       if (op->info() != NULL) {
2730         add_debug_info_for_null_check_here(op->info());
2731       }
2732       __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
2733     } else {
2734       // always do slow locking
2735       // note: the slow locking code could be inlined here, however if we use
2736       //       slow locking, speed doesn't matter anyway and this solution is
2737       //       simpler and requires less duplicated code - additionally, the
2738       //       slow locking code is the same in either case which simplifies
2739       //       debugging
2740       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2741       __ delayed()->nop();
2742     }
2743   } else {
2744     assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
2745     if (UseFastLocking) {
2746       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2747       __ unlock_object(hdr, obj, lock, *op->stub()->entry());
2748     } else {
2749       // always do slow unlocking
2750       // note: the slow unlocking code could be inlined here, however if we use
2751       //       slow unlocking, speed doesn't matter anyway and this solution is
2752       //       simpler and requires less duplicated code - additionally, the
2753       //       slow unlocking code is the same in either case which simplifies
2754       //       debugging
2755       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2756       __ delayed()->nop();
2757     }
2758   }
2759   __ bind(*op->stub()->continuation());
2760 }
2761 
2762 
emit_profile_call(LIR_OpProfileCall * op)2763 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2764   ciMethod* method = op->profiled_method();
2765   int bci          = op->profiled_bci();
2766   ciMethod* callee = op->profiled_callee();
2767 
2768   // Update counter for all call types
2769   ciMethodData* md = method->method_data_or_null();
2770   assert(md != NULL, "Sanity");
2771   ciProfileData* data = md->bci_to_data(bci);
2772   assert(data != NULL && data->is_CounterData(), "need CounterData for calls");
2773   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2774   Register mdo  = op->mdo()->as_register();
2775   assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
2776   Register tmp1 = op->tmp1()->as_register_lo();
2777   metadata2reg(md->constant_encoding(), mdo);
2778   int mdo_offset_bias = 0;
2779   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
2780                             data->size_in_bytes())) {
2781     // The offset is large so bias the mdo by the base of the slot so
2782     // that the ld can use simm13s to reference the slots of the data
2783     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
2784     __ set(mdo_offset_bias, O7);
2785     __ add(mdo, O7, mdo);
2786   }
2787 
2788   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2789   // Perform additional virtual call profiling for invokevirtual and
2790   // invokeinterface bytecodes
2791   if (op->should_profile_receiver_type()) {
2792     assert(op->recv()->is_single_cpu(), "recv must be allocated");
2793     Register recv = op->recv()->as_register();
2794     assert_different_registers(mdo, tmp1, recv);
2795     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2796     ciKlass* known_klass = op->known_holder();
2797     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
2798       // We know the type that will be seen at this call site; we can
2799       // statically update the MethodData* rather than needing to do
2800       // dynamic tests on the receiver type
2801 
2802       // NOTE: we should probably put a lock around this search to
2803       // avoid collisions by concurrent compilations
2804       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2805       uint i;
2806       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2807         ciKlass* receiver = vc_data->receiver(i);
2808         if (known_klass->equals(receiver)) {
2809           Address data_addr(mdo, md->byte_offset_of_slot(data,
2810                                                          VirtualCallData::receiver_count_offset(i)) -
2811                             mdo_offset_bias);
2812           __ ld_ptr(data_addr, tmp1);
2813           __ add(tmp1, DataLayout::counter_increment, tmp1);
2814           __ st_ptr(tmp1, data_addr);
2815           return;
2816         }
2817       }
2818 
2819       // Receiver type not found in profile data; select an empty slot
2820 
2821       // Note that this is less efficient than it should be because it
2822       // always does a write to the receiver part of the
2823       // VirtualCallData rather than just the first time
2824       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2825         ciKlass* receiver = vc_data->receiver(i);
2826         if (receiver == NULL) {
2827           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
2828                             mdo_offset_bias);
2829           metadata2reg(known_klass->constant_encoding(), tmp1);
2830           __ st_ptr(tmp1, recv_addr);
2831           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
2832                             mdo_offset_bias);
2833           __ ld_ptr(data_addr, tmp1);
2834           __ add(tmp1, DataLayout::counter_increment, tmp1);
2835           __ st_ptr(tmp1, data_addr);
2836           return;
2837         }
2838       }
2839     } else {
2840       __ load_klass(recv, recv);
2841       Label update_done;
2842       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
2843       // Receiver did not match any saved receiver and there is no empty row for it.
2844       // Increment total counter to indicate polymorphic case.
2845       __ ld_ptr(counter_addr, tmp1);
2846       __ add(tmp1, DataLayout::counter_increment, tmp1);
2847       __ st_ptr(tmp1, counter_addr);
2848 
2849       __ bind(update_done);
2850     }
2851   } else {
2852     // Static call
2853     __ ld_ptr(counter_addr, tmp1);
2854     __ add(tmp1, DataLayout::counter_increment, tmp1);
2855     __ st_ptr(tmp1, counter_addr);
2856   }
2857 }
2858 
emit_profile_type(LIR_OpProfileType * op)2859 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
2860   Register obj = op->obj()->as_register();
2861   Register tmp1 = op->tmp()->as_pointer_register();
2862   Register tmp2 = G1;
2863   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
2864   ciKlass* exact_klass = op->exact_klass();
2865   intptr_t current_klass = op->current_klass();
2866   bool not_null = op->not_null();
2867   bool no_conflict = op->no_conflict();
2868 
2869   Label update, next, none;
2870 
2871   bool do_null = !not_null;
2872   bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
2873   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
2874 
2875   assert(do_null || do_update, "why are we here?");
2876   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
2877 
2878   __ verify_oop(obj);
2879 
2880   if (tmp1 != obj) {
2881     __ mov(obj, tmp1);
2882   }
2883   if (do_null) {
2884     __ br_notnull_short(tmp1, Assembler::pt, update);
2885     if (!TypeEntries::was_null_seen(current_klass)) {
2886       __ ld_ptr(mdo_addr, tmp1);
2887       __ or3(tmp1, TypeEntries::null_seen, tmp1);
2888       __ st_ptr(tmp1, mdo_addr);
2889     }
2890     if (do_update) {
2891       __ ba(next);
2892       __ delayed()->nop();
2893     }
2894 #ifdef ASSERT
2895   } else {
2896     __ br_notnull_short(tmp1, Assembler::pt, update);
2897     __ stop("unexpect null obj");
2898 #endif
2899   }
2900 
2901   __ bind(update);
2902 
2903   if (do_update) {
2904 #ifdef ASSERT
2905     if (exact_klass != NULL) {
2906       Label ok;
2907       __ load_klass(tmp1, tmp1);
2908       metadata2reg(exact_klass->constant_encoding(), tmp2);
2909       __ cmp_and_br_short(tmp1, tmp2, Assembler::equal, Assembler::pt, ok);
2910       __ stop("exact klass and actual klass differ");
2911       __ bind(ok);
2912     }
2913 #endif
2914 
2915     Label do_update;
2916     __ ld_ptr(mdo_addr, tmp2);
2917 
2918     if (!no_conflict) {
2919       if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
2920         if (exact_klass != NULL) {
2921           metadata2reg(exact_klass->constant_encoding(), tmp1);
2922         } else {
2923           __ load_klass(tmp1, tmp1);
2924         }
2925 
2926         __ xor3(tmp1, tmp2, tmp1);
2927         __ btst(TypeEntries::type_klass_mask, tmp1);
2928         // klass seen before, nothing to do. The unknown bit may have been
2929         // set already but no need to check.
2930         __ brx(Assembler::zero, false, Assembler::pt, next);
2931         __ delayed()->
2932 
2933            btst(TypeEntries::type_unknown, tmp1);
2934         // already unknown. Nothing to do anymore.
2935         __ brx(Assembler::notZero, false, Assembler::pt, next);
2936 
2937         if (TypeEntries::is_type_none(current_klass)) {
2938           __ delayed()->btst(TypeEntries::type_mask, tmp2);
2939           __ brx(Assembler::zero, true, Assembler::pt, do_update);
2940           // first time here. Set profile type.
2941           __ delayed()->or3(tmp2, tmp1, tmp2);
2942         } else {
2943           __ delayed()->nop();
2944         }
2945       } else {
2946         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
2947                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
2948 
2949         __ btst(TypeEntries::type_unknown, tmp2);
2950         // already unknown. Nothing to do anymore.
2951         __ brx(Assembler::notZero, false, Assembler::pt, next);
2952         __ delayed()->nop();
2953       }
2954 
2955       // different than before. Cannot keep accurate profile.
2956       __ or3(tmp2, TypeEntries::type_unknown, tmp2);
2957     } else {
2958       // There's a single possible klass at this profile point
2959       assert(exact_klass != NULL, "should be");
2960       if (TypeEntries::is_type_none(current_klass)) {
2961         metadata2reg(exact_klass->constant_encoding(), tmp1);
2962         __ xor3(tmp1, tmp2, tmp1);
2963         __ btst(TypeEntries::type_klass_mask, tmp1);
2964         __ brx(Assembler::zero, false, Assembler::pt, next);
2965 #ifdef ASSERT
2966 
2967         {
2968           Label ok;
2969           __ delayed()->btst(TypeEntries::type_mask, tmp2);
2970           __ brx(Assembler::zero, true, Assembler::pt, ok);
2971           __ delayed()->nop();
2972 
2973           __ stop("unexpected profiling mismatch");
2974           __ bind(ok);
2975         }
2976         // first time here. Set profile type.
2977         __ or3(tmp2, tmp1, tmp2);
2978 #else
2979         // first time here. Set profile type.
2980         __ delayed()->or3(tmp2, tmp1, tmp2);
2981 #endif
2982 
2983       } else {
2984         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
2985                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
2986 
2987         // already unknown. Nothing to do anymore.
2988         __ btst(TypeEntries::type_unknown, tmp2);
2989         __ brx(Assembler::notZero, false, Assembler::pt, next);
2990         __ delayed()->or3(tmp2, TypeEntries::type_unknown, tmp2);
2991       }
2992     }
2993 
2994     __ bind(do_update);
2995     __ st_ptr(tmp2, mdo_addr);
2996 
2997     __ bind(next);
2998   }
2999 }
3000 
align_backward_branch_target()3001 void LIR_Assembler::align_backward_branch_target() {
3002   __ align(OptoLoopAlignment);
3003 }
3004 
3005 
emit_delay(LIR_OpDelay * op)3006 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
3007   // make sure we are expecting a delay
3008   // this has the side effect of clearing the delay state
3009   // so we can use _masm instead of _masm->delayed() to do the
3010   // code generation.
3011   __ delayed();
3012 
3013   // make sure we only emit one instruction
3014   int offset = code_offset();
3015   op->delay_op()->emit_code(this);
3016 #ifdef ASSERT
3017   if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
3018     op->delay_op()->print();
3019   }
3020   assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
3021          "only one instruction can go in a delay slot");
3022 #endif
3023 
3024   // we may also be emitting the call info for the instruction
3025   // which we are the delay slot of.
3026   CodeEmitInfo* call_info = op->call_info();
3027   if (call_info) {
3028     add_call_info(code_offset(), call_info);
3029   }
3030 
3031   if (VerifyStackAtCalls) {
3032     _masm->sub(FP, SP, O7);
3033     _masm->cmp(O7, initial_frame_size_in_bytes());
3034     _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
3035   }
3036 }
3037 
3038 
negate(LIR_Opr left,LIR_Opr dest,LIR_Opr tmp)3039 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
3040   // tmp must be unused
3041   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
3042   assert(left->is_register(), "can only handle registers");
3043 
3044   if (left->is_single_cpu()) {
3045     __ neg(left->as_register(), dest->as_register());
3046   } else if (left->is_single_fpu()) {
3047     __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
3048   } else if (left->is_double_fpu()) {
3049     __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
3050   } else {
3051     assert (left->is_double_cpu(), "Must be a long");
3052     Register Rlow = left->as_register_lo();
3053     Register Rhi = left->as_register_hi();
3054     __ sub(G0, Rlow, dest->as_register_lo());
3055   }
3056 }
3057 
3058 
fxch(int i)3059 void LIR_Assembler::fxch(int i) {
3060   Unimplemented();
3061 }
3062 
fld(int i)3063 void LIR_Assembler::fld(int i) {
3064   Unimplemented();
3065 }
3066 
ffree(int i)3067 void LIR_Assembler::ffree(int i) {
3068   Unimplemented();
3069 }
3070 
rt_call(LIR_Opr result,address dest,const LIR_OprList * args,LIR_Opr tmp,CodeEmitInfo * info)3071 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
3072                             const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3073 
3074   // if tmp is invalid, then the function being called doesn't destroy the thread
3075   if (tmp->is_valid()) {
3076     __ save_thread(tmp->as_pointer_register());
3077   }
3078   __ call(dest, relocInfo::runtime_call_type);
3079   __ delayed()->nop();
3080   if (info != NULL) {
3081     add_call_info_here(info);
3082   }
3083   if (tmp->is_valid()) {
3084     __ restore_thread(tmp->as_pointer_register());
3085   }
3086 
3087 #ifdef ASSERT
3088   __ verify_thread();
3089 #endif // ASSERT
3090 }
3091 
3092 
volatile_move_op(LIR_Opr src,LIR_Opr dest,BasicType type,CodeEmitInfo * info)3093 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3094   ShouldNotReachHere();
3095 
3096   NEEDS_CLEANUP;
3097   if (type == T_LONG) {
3098     LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
3099 
3100     // (extended to allow indexed as well as constant displaced for JSR-166)
3101     Register idx = noreg; // contains either constant offset or index
3102 
3103     int disp = mem_addr->disp();
3104     if (mem_addr->index() == LIR_OprFact::illegalOpr) {
3105       if (!Assembler::is_simm13(disp)) {
3106         idx = O7;
3107         __ set(disp, idx);
3108       }
3109     } else {
3110       assert(disp == 0, "not both indexed and disp");
3111       idx = mem_addr->index()->as_register();
3112     }
3113 
3114     int null_check_offset = -1;
3115 
3116     Register base = mem_addr->base()->as_register();
3117     if (src->is_register() && dest->is_address()) {
3118       // G4 is high half, G5 is low half
3119       // clear the top bits of G5, and scale up G4
3120       __ srl (src->as_register_lo(),  0, G5);
3121       __ sllx(src->as_register_hi(), 32, G4);
3122       // combine the two halves into the 64 bits of G4
3123       __ or3(G4, G5, G4);
3124       null_check_offset = __ offset();
3125       if (idx == noreg) {
3126         __ stx(G4, base, disp);
3127       } else {
3128         __ stx(G4, base, idx);
3129       }
3130     } else if (src->is_address() && dest->is_register()) {
3131       null_check_offset = __ offset();
3132       if (idx == noreg) {
3133         __ ldx(base, disp, G5);
3134       } else {
3135         __ ldx(base, idx, G5);
3136       }
3137       __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
3138       __ mov (G5, dest->as_register_lo());     // copy low half into lo
3139     } else {
3140       Unimplemented();
3141     }
3142     if (info != NULL) {
3143       add_debug_info_for_null_check(null_check_offset, info);
3144     }
3145 
3146   } else {
3147     // use normal move for all other volatiles since they don't need
3148     // special handling to remain atomic.
3149     move_op(src, dest, type, lir_patch_none, info, false, false, false);
3150   }
3151 }
3152 
membar()3153 void LIR_Assembler::membar() {
3154   // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
3155   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3156 }
3157 
membar_acquire()3158 void LIR_Assembler::membar_acquire() {
3159   // no-op on TSO
3160 }
3161 
membar_release()3162 void LIR_Assembler::membar_release() {
3163   // no-op on TSO
3164 }
3165 
membar_loadload()3166 void LIR_Assembler::membar_loadload() {
3167   // no-op
3168   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
3169 }
3170 
membar_storestore()3171 void LIR_Assembler::membar_storestore() {
3172   // no-op
3173   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
3174 }
3175 
membar_loadstore()3176 void LIR_Assembler::membar_loadstore() {
3177   // no-op
3178   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
3179 }
3180 
membar_storeload()3181 void LIR_Assembler::membar_storeload() {
3182   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
3183 }
3184 
on_spin_wait()3185 void LIR_Assembler::on_spin_wait() {
3186   Unimplemented();
3187 }
3188 
3189 // Pack two sequential registers containing 32 bit values
3190 // into a single 64 bit register.
3191 // src and src->successor() are packed into dst
3192 // src and dst may be the same register.
3193 // Note: src is destroyed
pack64(LIR_Opr src,LIR_Opr dst)3194 void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
3195   Register rs = src->as_register();
3196   Register rd = dst->as_register_lo();
3197   __ sllx(rs, 32, rs);
3198   __ srl(rs->successor(), 0, rs->successor());
3199   __ or3(rs, rs->successor(), rd);
3200 }
3201 
3202 // Unpack a 64 bit value in a register into
3203 // two sequential registers.
3204 // src is unpacked into dst and dst->successor()
unpack64(LIR_Opr src,LIR_Opr dst)3205 void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
3206   Register rs = src->as_register_lo();
3207   Register rd = dst->as_register_hi();
3208   assert_different_registers(rs, rd, rd->successor());
3209   __ srlx(rs, 32, rd);
3210   __ srl (rs,  0, rd->successor());
3211 }
3212 
leal(LIR_Opr addr_opr,LIR_Opr dest,LIR_PatchCode patch_code,CodeEmitInfo * info)3213 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
3214   const LIR_Address* addr = addr_opr->as_address_ptr();
3215   assert(addr->scale() == LIR_Address::times_1, "can't handle complex addresses yet");
3216   const Register dest_reg = dest->as_pointer_register();
3217   const Register base_reg = addr->base()->as_pointer_register();
3218 
3219   if (patch_code != lir_patch_none) {
3220     PatchingStub* patch = new PatchingStub(_masm, PatchingStub::access_field_id);
3221     assert(addr->disp() != 0, "must have");
3222     assert(base_reg != G3_scratch, "invariant");
3223     __ patchable_set(0, G3_scratch);
3224     patching_epilog(patch, patch_code, base_reg, info);
3225     assert(dest_reg != G3_scratch, "invariant");
3226     if (addr->index()->is_valid()) {
3227       const Register index_reg = addr->index()->as_pointer_register();
3228       assert(index_reg != G3_scratch, "invariant");
3229       __ add(index_reg, G3_scratch, G3_scratch);
3230     }
3231     __ add(base_reg, G3_scratch, dest_reg);
3232   } else {
3233     if (Assembler::is_simm13(addr->disp())) {
3234       if (addr->index()->is_valid()) {
3235         const Register index_reg = addr->index()->as_pointer_register();
3236         assert(index_reg != G3_scratch, "invariant");
3237         __ add(base_reg, addr->disp(), G3_scratch);
3238         __ add(index_reg, G3_scratch, dest_reg);
3239       } else {
3240         __ add(base_reg, addr->disp(), dest_reg);
3241       }
3242     } else {
3243       __ set(addr->disp(), G3_scratch);
3244       if (addr->index()->is_valid()) {
3245         const Register index_reg = addr->index()->as_pointer_register();
3246         assert(index_reg != G3_scratch, "invariant");
3247         __ add(index_reg, G3_scratch, G3_scratch);
3248       }
3249       __ add(base_reg, G3_scratch, dest_reg);
3250     }
3251   }
3252 }
3253 
3254 
get_thread(LIR_Opr result_reg)3255 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3256   assert(result_reg->is_register(), "check");
3257   __ mov(G2_thread, result_reg->as_register());
3258 }
3259 
3260 #ifdef ASSERT
3261 // emit run-time assertion
emit_assert(LIR_OpAssert * op)3262 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3263   assert(op->code() == lir_assert, "must be");
3264 
3265   if (op->in_opr1()->is_valid()) {
3266     assert(op->in_opr2()->is_valid(), "both operands must be valid");
3267     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
3268   } else {
3269     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
3270     assert(op->condition() == lir_cond_always, "no other conditions allowed");
3271   }
3272 
3273   Label ok;
3274   if (op->condition() != lir_cond_always) {
3275     Assembler::Condition acond;
3276     switch (op->condition()) {
3277       case lir_cond_equal:        acond = Assembler::equal;                break;
3278       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
3279       case lir_cond_less:         acond = Assembler::less;                 break;
3280       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
3281       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
3282       case lir_cond_greater:      acond = Assembler::greater;              break;
3283       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
3284       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
3285       default:                         ShouldNotReachHere();
3286     };
3287     __ br(acond, false, Assembler::pt, ok);
3288     __ delayed()->nop();
3289   }
3290   if (op->halt()) {
3291     const char* str = __ code_string(op->msg());
3292     __ stop(str);
3293   } else {
3294     breakpoint();
3295   }
3296   __ bind(ok);
3297 }
3298 #endif
3299 
peephole(LIR_List * lir)3300 void LIR_Assembler::peephole(LIR_List* lir) {
3301   LIR_OpList* inst = lir->instructions_list();
3302   for (int i = 0; i < inst->length(); i++) {
3303     LIR_Op* op = inst->at(i);
3304     switch (op->code()) {
3305       case lir_cond_float_branch:
3306       case lir_branch: {
3307         LIR_OpBranch* branch = op->as_OpBranch();
3308         assert(branch->info() == NULL, "shouldn't be state on branches anymore");
3309         LIR_Op* delay_op = NULL;
3310         // we'd like to be able to pull following instructions into
3311         // this slot but we don't know enough to do it safely yet so
3312         // only optimize block to block control flow.
3313         if (LIRFillDelaySlots && branch->block()) {
3314           LIR_Op* prev = inst->at(i - 1);
3315           if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
3316             // swap previous instruction into delay slot
3317             inst->at_put(i - 1, op);
3318             inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3319 #ifndef PRODUCT
3320             if (LIRTracePeephole) {
3321               tty->print_cr("delayed");
3322               inst->at(i - 1)->print();
3323               inst->at(i)->print();
3324               tty->cr();
3325             }
3326 #endif
3327             continue;
3328           }
3329         }
3330 
3331         if (!delay_op) {
3332           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
3333         }
3334         inst->insert_before(i + 1, delay_op);
3335         break;
3336       }
3337       case lir_static_call:
3338       case lir_virtual_call:
3339       case lir_icvirtual_call:
3340       case lir_optvirtual_call:
3341       case lir_dynamic_call: {
3342         LIR_Op* prev = inst->at(i - 1);
3343         if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
3344             (op->code() != lir_virtual_call ||
3345              !prev->result_opr()->is_single_cpu() ||
3346              prev->result_opr()->as_register() != O0) &&
3347             LIR_Assembler::is_single_instruction(prev)) {
3348           // Only moves without info can be put into the delay slot.
3349           // Also don't allow the setup of the receiver in the delay
3350           // slot for vtable calls.
3351           inst->at_put(i - 1, op);
3352           inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3353 #ifndef PRODUCT
3354           if (LIRTracePeephole) {
3355             tty->print_cr("delayed");
3356             inst->at(i - 1)->print();
3357             inst->at(i)->print();
3358             tty->cr();
3359           }
3360 #endif
3361         } else {
3362           LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
3363           inst->insert_before(i + 1, delay_op);
3364           i++;
3365         }
3366         break;
3367       }
3368     }
3369   }
3370 }
3371 
atomic_op(LIR_Code code,LIR_Opr src,LIR_Opr data,LIR_Opr dest,LIR_Opr tmp)3372 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
3373   LIR_Address* addr = src->as_address_ptr();
3374 
3375   assert(data == dest, "swap uses only 2 operands");
3376   assert (code == lir_xchg, "no xadd on sparc");
3377 
3378   if (data->type() == T_INT) {
3379     __ swap(as_Address(addr), data->as_register());
3380   } else if (data->is_oop()) {
3381     Register obj = data->as_register();
3382     Register narrow = tmp->as_register();
3383     assert(UseCompressedOops, "swap is 32bit only");
3384     __ encode_heap_oop(obj, narrow);
3385     __ swap(as_Address(addr), narrow);
3386     __ decode_heap_oop(narrow, obj);
3387   } else {
3388     ShouldNotReachHere();
3389   }
3390 }
3391 
3392 #undef __
3393