1 /*
2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #ifndef CPU_SPARC_VM_MACROASSEMBLER_SPARC_HPP
26 #define CPU_SPARC_VM_MACROASSEMBLER_SPARC_HPP
27 
28 #include "asm/assembler.hpp"
29 #include "utilities/macros.hpp"
30 
31 // <sys/trap.h> promises that the system will not use traps 16-31
32 #define ST_RESERVED_FOR_USER_0 0x10
33 
34 class BiasedLockingCounters;
35 
36 
37 // Register aliases for parts of the system:
38 
39 // 64 bit values can be kept in g1-g5, o1-o5 and o7 and all 64 bits are safe
40 // across context switches in V8+ ABI.  Of course, there are no 64 bit regs
41 // in V8 ABI. All 64 bits are preserved in V9 ABI for all registers.
42 
43 // g2-g4 are scratch registers called "application globals".  Their
44 // meaning is reserved to the "compilation system"--which means us!
45 // They are are not supposed to be touched by ordinary C code, although
46 // highly-optimized C code might steal them for temps.  They are safe
47 // across thread switches, and the ABI requires that they be safe
48 // across function calls.
49 //
50 // g1 and g3 are touched by more modules.  V8 allows g1 to be clobbered
51 // across func calls, and V8+ also allows g5 to be clobbered across
52 // func calls.  Also, g1 and g5 can get touched while doing shared
53 // library loading.
54 //
55 // We must not touch g7 (it is the thread-self register) and g6 is
56 // reserved for certain tools.  g0, of course, is always zero.
57 //
58 // (Sources:  SunSoft Compilers Group, thread library engineers.)
59 
60 // %%%% The interpreter should be revisited to reduce global scratch regs.
61 
62 // This global always holds the current JavaThread pointer:
63 
64 REGISTER_DECLARATION(Register, G2_thread , G2);
65 REGISTER_DECLARATION(Register, G6_heapbase , G6);
66 
67 // The following globals are part of the Java calling convention:
68 
69 REGISTER_DECLARATION(Register, G5_method             , G5);
70 REGISTER_DECLARATION(Register, G5_megamorphic_method , G5_method);
71 REGISTER_DECLARATION(Register, G5_inline_cache_reg   , G5_method);
72 
73 // The following globals are used for the new C1 & interpreter calling convention:
74 REGISTER_DECLARATION(Register, Gargs        , G4); // pointing to the last argument
75 
76 // This local is used to preserve G2_thread in the interpreter and in stubs:
77 REGISTER_DECLARATION(Register, L7_thread_cache , L7);
78 
79 // These globals are used as scratch registers in the interpreter:
80 
81 REGISTER_DECLARATION(Register, Gframe_size   , G1); // SAME REG as G1_scratch
82 REGISTER_DECLARATION(Register, G1_scratch    , G1); // also SAME
83 REGISTER_DECLARATION(Register, G3_scratch    , G3);
84 REGISTER_DECLARATION(Register, G4_scratch    , G4);
85 
86 // These globals are used as short-lived scratch registers in the compiler:
87 
88 REGISTER_DECLARATION(Register, Gtemp  , G5);
89 
90 // JSR 292 fixed register usages:
91 REGISTER_DECLARATION(Register, G5_method_type        , G5);
92 REGISTER_DECLARATION(Register, G3_method_handle      , G3);
93 REGISTER_DECLARATION(Register, L7_mh_SP_save         , L7);
94 
95 // The compiler requires that G5_megamorphic_method is G5_inline_cache_klass,
96 // because a single patchable "set" instruction (NativeMovConstReg,
97 // or NativeMovConstPatching for compiler1) instruction
98 // serves to set up either quantity, depending on whether the compiled
99 // call site is an inline cache or is megamorphic.  See the function
100 // CompiledIC::set_to_megamorphic.
101 //
102 // If a inline cache targets an interpreted method, then the
103 // G5 register will be used twice during the call.  First,
104 // the call site will be patched to load a compiledICHolder
105 // into G5. (This is an ordered pair of ic_klass, method.)
106 // The c2i adapter will first check the ic_klass, then load
107 // G5_method with the method part of the pair just before
108 // jumping into the interpreter.
109 //
110 // Note that G5_method is only the method-self for the interpreter,
111 // and is logically unrelated to G5_megamorphic_method.
112 //
113 // Invariants on G2_thread (the JavaThread pointer):
114 //  - it should not be used for any other purpose anywhere
115 //  - it must be re-initialized by StubRoutines::call_stub()
116 //  - it must be preserved around every use of call_VM
117 
118 // We can consider using g2/g3/g4 to cache more values than the
119 // JavaThread, such as the card-marking base or perhaps pointers into
120 // Eden.  It's something of a waste to use them as scratch temporaries,
121 // since they are not supposed to be volatile.  (Of course, if we find
122 // that Java doesn't benefit from application globals, then we can just
123 // use them as ordinary temporaries.)
124 //
125 // Since g1 and g5 (and/or g6) are the volatile (caller-save) registers,
126 // it makes sense to use them routinely for procedure linkage,
127 // whenever the On registers are not applicable.  Examples:  G5_method,
128 // G5_inline_cache_klass, and a double handful of miscellaneous compiler
129 // stubs.  This means that compiler stubs, etc., should be kept to a
130 // maximum of two or three G-register arguments.
131 
132 
133 // stub frames
134 
135 REGISTER_DECLARATION(Register, Lentry_args      , L0); // pointer to args passed to callee (interpreter) not stub itself
136 
137 // Interpreter frames
138 
139 REGISTER_DECLARATION(Register, Lesp             , L0); // expression stack pointer
140 REGISTER_DECLARATION(Register, Lbcp             , L1); // pointer to next bytecode
141 REGISTER_DECLARATION(Register, Lmethod          , L2);
142 REGISTER_DECLARATION(Register, Llocals          , L3);
143 REGISTER_DECLARATION(Register, Largs            , L3); // pointer to locals for signature handler
144                                                        // must match Llocals in asm interpreter
145 REGISTER_DECLARATION(Register, Lmonitors        , L4);
146 REGISTER_DECLARATION(Register, Lbyte_code       , L5);
147 // When calling out from the interpreter we record SP so that we can remove any extra stack
148 // space allocated during adapter transitions. This register is only live from the point
149 // of the call until we return.
150 REGISTER_DECLARATION(Register, Llast_SP         , L5);
151 REGISTER_DECLARATION(Register, Lscratch         , L5);
152 REGISTER_DECLARATION(Register, Lscratch2        , L6);
153 REGISTER_DECLARATION(Register, LcpoolCache      , L6); // constant pool cache
154 
155 REGISTER_DECLARATION(Register, O5_savedSP       , O5);
156 REGISTER_DECLARATION(Register, I5_savedSP       , I5); // Saved SP before bumping for locals.  This is simply
157                                                        // a copy SP, so in 64-bit it's a biased value.  The bias
158                                                        // is added and removed as needed in the frame code.
159 REGISTER_DECLARATION(Register, IdispatchAddress , I3); // Register which saves the dispatch address for each bytecode
160 REGISTER_DECLARATION(Register, ImethodDataPtr   , I2); // Pointer to the current method data
161 
162 // NOTE: Lscratch2 and LcpoolCache point to the same registers in
163 //       the interpreter code. If Lscratch2 needs to be used for some
164 //       purpose than LcpoolCache should be restore after that for
165 //       the interpreter to work right
166 // (These assignments must be compatible with L7_thread_cache; see above.)
167 
168 // Lbcp points into the middle of the method object.
169 
170 // Exception processing
171 // These registers are passed into exception handlers.
172 // All exception handlers require the exception object being thrown.
173 // In addition, an nmethod's exception handler must be passed
174 // the address of the call site within the nmethod, to allow
175 // proper selection of the applicable catch block.
176 // (Interpreter frames use their own bcp() for this purpose.)
177 //
178 // The Oissuing_pc value is not always needed.  When jumping to a
179 // handler that is known to be interpreted, the Oissuing_pc value can be
180 // omitted.  An actual catch block in compiled code receives (from its
181 // nmethod's exception handler) the thrown exception in the Oexception,
182 // but it doesn't need the Oissuing_pc.
183 //
184 // If an exception handler (either interpreted or compiled)
185 // discovers there is no applicable catch block, it updates
186 // the Oissuing_pc to the continuation PC of its own caller,
187 // pops back to that caller's stack frame, and executes that
188 // caller's exception handler.  Obviously, this process will
189 // iterate until the control stack is popped back to a method
190 // containing an applicable catch block.  A key invariant is
191 // that the Oissuing_pc value is always a value local to
192 // the method whose exception handler is currently executing.
193 //
194 // Note:  The issuing PC value is __not__ a raw return address (I7 value).
195 // It is a "return pc", the address __following__ the call.
196 // Raw return addresses are converted to issuing PCs by frame::pc(),
197 // or by stubs.  Issuing PCs can be used directly with PC range tables.
198 //
199 REGISTER_DECLARATION(Register, Oexception  , O0); // exception being thrown
200 REGISTER_DECLARATION(Register, Oissuing_pc , O1); // where the exception is coming from
201 
202 // Address is an abstraction used to represent a memory location.
203 //
204 // Note: A register location is represented via a Register, not
205 //       via an address for efficiency & simplicity reasons.
206 
207 class Address {
208  private:
209   Register           _base;           // Base register.
210   RegisterOrConstant _index_or_disp;  // Index register or constant displacement.
211   RelocationHolder   _rspec;
212 
213  public:
Address()214   Address() : _base(noreg), _index_or_disp(noreg) {}
215 
Address(Register base,RegisterOrConstant index_or_disp)216   Address(Register base, RegisterOrConstant index_or_disp)
217     : _base(base),
218       _index_or_disp(index_or_disp) {
219   }
220 
Address(Register base,Register index)221   Address(Register base, Register index)
222     : _base(base),
223       _index_or_disp(index) {
224   }
225 
Address(Register base,int disp)226   Address(Register base, int disp)
227     : _base(base),
228       _index_or_disp(disp) {
229   }
230 
231 #ifdef ASSERT
232   // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
Address(Register base,ByteSize disp)233   Address(Register base, ByteSize disp)
234     : _base(base),
235       _index_or_disp(in_bytes(disp)) {
236   }
237 #endif
238 
239   // accessors
base() const240   Register base()             const { return _base; }
index() const241   Register index()            const { return _index_or_disp.as_register(); }
disp() const242   int      disp()             const { return _index_or_disp.as_constant(); }
243 
has_index() const244   bool     has_index()        const { return _index_or_disp.is_register(); }
has_disp() const245   bool     has_disp()         const { return _index_or_disp.is_constant(); }
246 
uses(Register reg) const247   bool     uses(Register reg) const { return base() == reg || (has_index() && index() == reg); }
248 
rtype()249   const relocInfo::relocType rtype() { return _rspec.type(); }
rspec()250   const RelocationHolder&    rspec() { return _rspec; }
251 
rspec(int offset) const252   RelocationHolder rspec(int offset) const {
253     return offset == 0 ? _rspec : _rspec.plus(offset);
254   }
255 
256   inline bool is_simm13(int offset = 0);  // check disp+offset for overflow
257 
plus_disp(int plusdisp) const258   Address plus_disp(int plusdisp) const {     // bump disp by a small amount
259     assert(_index_or_disp.is_constant(), "must have a displacement");
260     Address a(base(), disp() + plusdisp);
261     return a;
262   }
is_same_address(Address a) const263   bool is_same_address(Address a) const {
264     // disregard _rspec
265     return base() == a.base() && (has_index() ? index() == a.index() : disp() == a.disp());
266   }
267 
after_save() const268   Address after_save() const {
269     Address a = (*this);
270     a._base = a._base->after_save();
271     return a;
272   }
273 
after_restore() const274   Address after_restore() const {
275     Address a = (*this);
276     a._base = a._base->after_restore();
277     return a;
278   }
279 
280   // Convert the raw encoding form into the form expected by the
281   // constructor for Address.
282   static Address make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc);
283 
284   friend class Assembler;
285 };
286 
287 
288 class AddressLiteral {
289  private:
290   address          _address;
291   RelocationHolder _rspec;
292 
rspec_from_rtype(relocInfo::relocType rtype,address addr)293   RelocationHolder rspec_from_rtype(relocInfo::relocType rtype, address addr) {
294     switch (rtype) {
295     case relocInfo::external_word_type:
296       return external_word_Relocation::spec(addr);
297     case relocInfo::internal_word_type:
298       return internal_word_Relocation::spec(addr);
299     case relocInfo::opt_virtual_call_type:
300       return opt_virtual_call_Relocation::spec();
301     case relocInfo::static_call_type:
302       return static_call_Relocation::spec();
303     case relocInfo::runtime_call_type:
304       return runtime_call_Relocation::spec();
305     case relocInfo::none:
306       return RelocationHolder();
307     default:
308       ShouldNotReachHere();
309       return RelocationHolder();
310     }
311   }
312 
313  protected:
314   // creation
AddressLiteral()315   AddressLiteral() : _address(NULL), _rspec(NULL) {}
316 
317  public:
AddressLiteral(address addr,RelocationHolder const & rspec)318   AddressLiteral(address addr, RelocationHolder const& rspec)
319     : _address(addr),
320       _rspec(rspec) {}
321 
322   // Some constructors to avoid casting at the call site.
AddressLiteral(jobject obj,RelocationHolder const & rspec)323   AddressLiteral(jobject obj, RelocationHolder const& rspec)
324     : _address((address) obj),
325       _rspec(rspec) {}
326 
AddressLiteral(intptr_t value,RelocationHolder const & rspec)327   AddressLiteral(intptr_t value, RelocationHolder const& rspec)
328     : _address((address) value),
329       _rspec(rspec) {}
330 
AddressLiteral(address addr,relocInfo::relocType rtype=relocInfo::none)331   AddressLiteral(address addr, relocInfo::relocType rtype = relocInfo::none)
332     : _address((address) addr),
333     _rspec(rspec_from_rtype(rtype, (address) addr)) {}
334 
335   // Some constructors to avoid casting at the call site.
AddressLiteral(address * addr,relocInfo::relocType rtype=relocInfo::none)336   AddressLiteral(address* addr, relocInfo::relocType rtype = relocInfo::none)
337     : _address((address) addr),
338     _rspec(rspec_from_rtype(rtype, (address) addr)) {}
339 
AddressLiteral(bool * addr,relocInfo::relocType rtype=relocInfo::none)340   AddressLiteral(bool* addr, relocInfo::relocType rtype = relocInfo::none)
341     : _address((address) addr),
342       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
343 
AddressLiteral(const bool * addr,relocInfo::relocType rtype=relocInfo::none)344   AddressLiteral(const bool* addr, relocInfo::relocType rtype = relocInfo::none)
345     : _address((address) addr),
346       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
347 
AddressLiteral(signed char * addr,relocInfo::relocType rtype=relocInfo::none)348   AddressLiteral(signed char* addr, relocInfo::relocType rtype = relocInfo::none)
349     : _address((address) addr),
350       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
351 
AddressLiteral(int * addr,relocInfo::relocType rtype=relocInfo::none)352   AddressLiteral(int* addr, relocInfo::relocType rtype = relocInfo::none)
353     : _address((address) addr),
354       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
355 
AddressLiteral(intptr_t addr,relocInfo::relocType rtype=relocInfo::none)356   AddressLiteral(intptr_t addr, relocInfo::relocType rtype = relocInfo::none)
357     : _address((address) addr),
358       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
359 
360   // 32-bit complains about a multiple declaration for int*.
AddressLiteral(intptr_t * addr,relocInfo::relocType rtype=relocInfo::none)361   AddressLiteral(intptr_t* addr, relocInfo::relocType rtype = relocInfo::none)
362     : _address((address) addr),
363       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
364 
AddressLiteral(Metadata * addr,relocInfo::relocType rtype=relocInfo::none)365   AddressLiteral(Metadata* addr, relocInfo::relocType rtype = relocInfo::none)
366     : _address((address) addr),
367       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
368 
AddressLiteral(Metadata ** addr,relocInfo::relocType rtype=relocInfo::none)369   AddressLiteral(Metadata** addr, relocInfo::relocType rtype = relocInfo::none)
370     : _address((address) addr),
371       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
372 
AddressLiteral(float * addr,relocInfo::relocType rtype=relocInfo::none)373   AddressLiteral(float* addr, relocInfo::relocType rtype = relocInfo::none)
374     : _address((address) addr),
375       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
376 
AddressLiteral(double * addr,relocInfo::relocType rtype=relocInfo::none)377   AddressLiteral(double* addr, relocInfo::relocType rtype = relocInfo::none)
378     : _address((address) addr),
379       _rspec(rspec_from_rtype(rtype, (address) addr)) {}
380 
value() const381   intptr_t value() const { return (intptr_t) _address; }
382   int      low10() const;
383 
rtype() const384   const relocInfo::relocType rtype() const { return _rspec.type(); }
rspec() const385   const RelocationHolder&    rspec() const { return _rspec; }
386 
rspec(int offset) const387   RelocationHolder rspec(int offset) const {
388     return offset == 0 ? _rspec : _rspec.plus(offset);
389   }
390 };
391 
392 // Convenience classes
393 class ExternalAddress: public AddressLiteral {
394  private:
reloc_for_target(address target)395   static relocInfo::relocType reloc_for_target(address target) {
396     // Sometimes ExternalAddress is used for values which aren't
397     // exactly addresses, like the card table base.
398     // external_word_type can't be used for values in the first page
399     // so just skip the reloc in that case.
400     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
401   }
402 
403  public:
ExternalAddress(address target)404   ExternalAddress(address target) : AddressLiteral(target, reloc_for_target(          target)) {}
ExternalAddress(Metadata ** target)405   ExternalAddress(Metadata** target) : AddressLiteral(target, reloc_for_target((address) target)) {}
406 };
407 
address_in_saved_window() const408 inline Address RegisterImpl::address_in_saved_window() const {
409    return (Address(SP, (sp_offset_in_saved_window() * wordSize) + STACK_BIAS));
410 }
411 
412 
413 
414 // Argument is an abstraction used to represent an outgoing
415 // actual argument or an incoming formal parameter, whether
416 // it resides in memory or in a register, in a manner consistent
417 // with the SPARC Application Binary Interface, or ABI.  This is
418 // often referred to as the native or C calling convention.
419 
420 class Argument {
421  private:
422   int _number;
423   bool _is_in;
424 
425  public:
426   enum {
427     n_register_parameters = 6,          // only 6 registers may contain integer parameters
428     n_float_register_parameters = 16    // Can have up to 16 floating registers
429   };
430 
431   // creation
Argument(int number,bool is_in)432   Argument(int number, bool is_in) : _number(number), _is_in(is_in) {}
433 
number() const434   int  number() const  { return _number;  }
is_in() const435   bool is_in()  const  { return _is_in;   }
is_out() const436   bool is_out() const  { return !is_in(); }
437 
successor() const438   Argument successor() const  { return Argument(number() + 1, is_in()); }
as_in() const439   Argument as_in()     const  { return Argument(number(), true ); }
as_out() const440   Argument as_out()    const  { return Argument(number(), false); }
441 
442   // locating register-based arguments:
is_register() const443   bool is_register() const { return _number < n_register_parameters; }
444 
445   // locating Floating Point register-based arguments:
is_float_register() const446   bool is_float_register() const { return _number < n_float_register_parameters; }
447 
as_float_register() const448   FloatRegister as_float_register() const {
449     assert(is_float_register(), "must be a register argument");
450     return as_FloatRegister(( number() *2 ) + 1);
451   }
as_double_register() const452   FloatRegister as_double_register() const {
453     assert(is_float_register(), "must be a register argument");
454     return as_FloatRegister(( number() *2 ));
455   }
456 
as_register() const457   Register as_register() const {
458     assert(is_register(), "must be a register argument");
459     return is_in() ? as_iRegister(number()) : as_oRegister(number());
460   }
461 
462   // locating memory-based arguments
as_address() const463   Address as_address() const {
464     assert(!is_register(), "must be a memory argument");
465     return address_in_frame();
466   }
467 
468   // When applied to a register-based argument, give the corresponding address
469   // into the 6-word area "into which callee may store register arguments"
470   // (This is a different place than the corresponding register-save area location.)
471   Address address_in_frame() const;
472 
473   // debugging
474   const char* name() const;
475 
476   friend class Assembler;
477 };
478 
479 
480 class RegistersForDebugging : public StackObj {
481  public:
482   intptr_t i[8], l[8], o[8], g[8];
483   float    f[32];
484   double   d[32];
485 
486   void print(outputStream* s);
487 
i_offset(int j)488   static int i_offset(int j) { return offset_of(RegistersForDebugging, i[j]); }
l_offset(int j)489   static int l_offset(int j) { return offset_of(RegistersForDebugging, l[j]); }
o_offset(int j)490   static int o_offset(int j) { return offset_of(RegistersForDebugging, o[j]); }
g_offset(int j)491   static int g_offset(int j) { return offset_of(RegistersForDebugging, g[j]); }
f_offset(int j)492   static int f_offset(int j) { return offset_of(RegistersForDebugging, f[j]); }
d_offset(int j)493   static int d_offset(int j) { return offset_of(RegistersForDebugging, d[j / 2]); }
494 
495   // gen asm code to save regs
496   static void save_registers(MacroAssembler* a);
497 
498   // restore global registers in case C code disturbed them
499   static void restore_registers(MacroAssembler* a, Register r);
500 };
501 
502 
503 // MacroAssembler extends Assembler by a few frequently used macros.
504 //
505 // Most of the standard SPARC synthetic ops are defined here.
506 // Instructions for which a 'better' code sequence exists depending
507 // on arguments should also go in here.
508 
509 #define JMP2(r1, r2) jmp(r1, r2, __FILE__, __LINE__)
510 #define JMP(r1, off) jmp(r1, off, __FILE__, __LINE__)
511 #define JUMP(a, temp, off)     jump(a, temp, off, __FILE__, __LINE__)
512 #define JUMPL(a, temp, d, off) jumpl(a, temp, d, off, __FILE__, __LINE__)
513 
514 
515 class MacroAssembler : public Assembler {
516   // code patchers need various routines like inv_wdisp()
517   friend class NativeInstruction;
518   friend class NativeGeneralJump;
519   friend class Relocation;
520   friend class Label;
521 
522  protected:
523   static int  patched_branch(int dest_pos, int inst, int inst_pos);
524   static int  branch_destination(int inst, int pos);
525 
526   // Support for VM calls
527   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
528   // may customize this version by overriding it for its purposes (e.g., to save/restore
529   // additional registers when doing a VM call).
530   virtual void call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments);
531 
532   //
533   // It is imperative that all calls into the VM are handled via the call_VM macros.
534   // They make sure that the stack linkage is setup correctly. call_VM's correspond
535   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
536   //
537   // This is the base routine called by the different versions of call_VM. The interpreter
538   // may customize this version by overriding it for its purposes (e.g., to save/restore
539   // additional registers when doing a VM call).
540   //
541   // A non-volatile java_thread_cache register should be specified so
542   // that the G2_thread value can be preserved across the call.
543   // (If java_thread_cache is noreg, then a slow get_thread call
544   // will re-initialize the G2_thread.) call_VM_base returns the register that contains the
545   // thread.
546   //
547   // If no last_java_sp is specified (noreg) than SP will be used instead.
548 
549   virtual void call_VM_base(
550     Register        oop_result,             // where an oop-result ends up if any; use noreg otherwise
551     Register        java_thread_cache,      // the thread if computed before     ; use noreg otherwise
552     Register        last_java_sp,           // to set up last_Java_frame in stubs; use noreg otherwise
553     address         entry_point,            // the entry point
554     int             number_of_arguments,    // the number of arguments (w/o thread) to pop after call
555     bool            check_exception=true    // flag which indicates if exception should be checked
556   );
557 
558  public:
MacroAssembler(CodeBuffer * code)559   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
560 
561   // This routine should emit JVMTI PopFrame and ForceEarlyReturn handling code.
562   // The implementation is only non-empty for the InterpreterMacroAssembler,
563   // as only the interpreter handles and ForceEarlyReturn PopFrame requests.
564   virtual void check_and_handle_popframe(Register scratch_reg);
565   virtual void check_and_handle_earlyret(Register scratch_reg);
566 
567   // Support for NULL-checks
568   //
569   // Generates code that causes a NULL OS exception if the content of reg is NULL.
570   // If the accessed location is M[reg + offset] and the offset is known, provide the
571   // offset.  No explicit code generation is needed if the offset is within a certain
572   // range (0 <= offset <= page_size).
573   //
574   // FIXME: Currently not done for SPARC
575 
576   void null_check(Register reg, int offset = -1);
577   static bool needs_explicit_null_check(intptr_t offset);
578 
579   // support for delayed instructions
delayed()580   MacroAssembler* delayed() { Assembler::delayed();  return this; }
581 
582   // branches that use right instruction for v8 vs. v9
583   inline void br( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
584   inline void br( Condition c, bool a, Predict p, Label& L );
585 
586   inline void fb( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
587   inline void fb( Condition c, bool a, Predict p, Label& L );
588 
589   // compares register with zero (32 bit) and branches (V9 and V8 instructions)
590   void cmp_zero_and_br( Condition c, Register s1, Label& L, bool a = false, Predict p = pn );
591   // Compares a pointer register with zero and branches on (not)null.
592   // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
593   void br_null   ( Register s1, bool a, Predict p, Label& L );
594   void br_notnull( Register s1, bool a, Predict p, Label& L );
595 
596   //
597   // Compare registers and branch with nop in delay slot or cbcond without delay slot.
598   //
599   // ATTENTION: use these instructions with caution because cbcond instruction
600   //            has very short distance: 512 instructions (2Kbyte).
601 
602   // Compare integer (32 bit) values (icc only).
603   void cmp_and_br_short(Register s1, Register s2, Condition c, Predict p, Label& L);
604   void cmp_and_br_short(Register s1, int simm13a, Condition c, Predict p, Label& L);
605   // Platform depending version for pointer compare (icc on !LP64 and xcc on LP64).
606   void cmp_and_brx_short(Register s1, Register s2, Condition c, Predict p, Label& L);
607   void cmp_and_brx_short(Register s1, int simm13a, Condition c, Predict p, Label& L);
608 
609   // Short branch version for compares a pointer pwith zero.
610   void br_null_short   ( Register s1, Predict p, Label& L );
611   void br_notnull_short( Register s1, Predict p, Label& L );
612 
613   // unconditional short branch
614   void ba_short(Label& L);
615 
616   // Branch on icc.z (true or not).
617   void br_icc_zero(bool iszero, Predict p, Label &L);
618 
619   inline void bp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
620   inline void bp( Condition c, bool a, CC cc, Predict p, Label& L );
621 
622   // Branch that tests xcc in LP64 and icc in !LP64
623   inline void brx( Condition c, bool a, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
624   inline void brx( Condition c, bool a, Predict p, Label& L );
625 
626   // unconditional branch
627   inline void ba( Label& L );
628 
629   // Branch that tests fp condition codes
630   inline void fbp( Condition c, bool a, CC cc, Predict p, address d, relocInfo::relocType rt = relocInfo::none );
631   inline void fbp( Condition c, bool a, CC cc, Predict p, Label& L );
632 
633   // Sparc shorthands(pp 85, V8 manual, pp 289 V9 manual)
634   inline void cmp( Register s1, Register s2 );
635   inline void cmp( Register s1, int simm13a );
636 
637   inline void jmp( Register s1, Register s2 );
638   inline void jmp( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
639 
640   // Check if the call target is out of wdisp30 range (relative to the code cache)
641   static inline bool is_far_target(address d);
642   inline void call( address d, relocInfo::relocType rt = relocInfo::runtime_call_type );
643   inline void call( address d, RelocationHolder const& rspec);
644 
645   inline void call( Label& L, relocInfo::relocType rt = relocInfo::runtime_call_type );
646   inline void call( Label& L, RelocationHolder const& rspec);
647 
648   inline void callr( Register s1, Register s2 );
649   inline void callr( Register s1, int simm13a, RelocationHolder const& rspec = RelocationHolder() );
650 
651   // Emits nothing on V8
652   inline void iprefetch( address d, relocInfo::relocType rt = relocInfo::none );
653   inline void iprefetch( Label& L);
654 
655   inline void tst( Register s );
656 
657   inline void ret(  bool trace = false );
658   inline void retl( bool trace = false );
659 
660   // Required platform-specific helpers for Label::patch_instructions.
661   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
662   void pd_patch_instruction(address branch, address target);
663 
664   // sethi Macro handles optimizations and relocations
665 private:
666   void internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable);
667 public:
668   void sethi(const AddressLiteral& addrlit, Register d);
669   void patchable_sethi(const AddressLiteral& addrlit, Register d);
670 
671   // compute the number of instructions for a sethi/set
672   static int  insts_for_sethi( address a, bool worst_case = false );
673   static int  worst_case_insts_for_set();
674 
675   // set may be either setsw or setuw (high 32 bits may be zero or sign)
676 private:
677   void internal_set(const AddressLiteral& al, Register d, bool ForceRelocatable);
678   static int insts_for_internal_set(intptr_t value);
679 public:
680   void set(const AddressLiteral& addrlit, Register d);
681   void set(intptr_t value, Register d);
682   void set(address addr, Register d, RelocationHolder const& rspec);
insts_for_set(intptr_t value)683   static int insts_for_set(intptr_t value) { return insts_for_internal_set(value); }
684 
685   void patchable_set(const AddressLiteral& addrlit, Register d);
686   void patchable_set(intptr_t value, Register d);
687   void set64(jlong value, Register d, Register tmp);
688   static int insts_for_set64(jlong value);
689 
690   // sign-extend 32 to 64
691   inline void signx( Register s, Register d );
692   inline void signx( Register d );
693 
694   inline void not1( Register s, Register d );
695   inline void not1( Register d );
696 
697   inline void neg( Register s, Register d );
698   inline void neg( Register d );
699 
700   inline void cas(  Register s1, Register s2, Register d);
701   inline void casx( Register s1, Register s2, Register d);
702   // Functions for isolating 64 bit atomic swaps for LP64
703   // cas_ptr will perform cas for 32 bit VM's and casx for 64 bit VM's
704   inline void cas_ptr(  Register s1, Register s2, Register d);
705 
706   // Resolve a jobject or jweak
707   void resolve_jobject(Register value, Register tmp);
708 
709   // Functions for isolating 64 bit shifts for LP64
710   inline void sll_ptr( Register s1, Register s2, Register d );
711   inline void sll_ptr( Register s1, int imm6a,   Register d );
712   inline void sll_ptr( Register s1, RegisterOrConstant s2, Register d );
713   inline void srl_ptr( Register s1, Register s2, Register d );
714   inline void srl_ptr( Register s1, int imm6a,   Register d );
715 
716   // little-endian
717   inline void casl(  Register s1, Register s2, Register d);
718   inline void casxl( Register s1, Register s2, Register d);
719 
720   inline void inc(   Register d,  int const13 = 1 );
721   inline void inccc( Register d,  int const13 = 1 );
722 
723   inline void dec(   Register d,  int const13 = 1 );
724   inline void deccc( Register d,  int const13 = 1 );
725 
726   using Assembler::add;
727   inline void add(Register s1, int simm13a, Register d, relocInfo::relocType rtype);
728   inline void add(Register s1, int simm13a, Register d, RelocationHolder const& rspec);
729   inline void add(Register s1, RegisterOrConstant s2, Register d, int offset = 0);
730   inline void add(const Address& a, Register d, int offset = 0);
731 
732   using Assembler::andn;
733   inline void andn(  Register s1, RegisterOrConstant s2, Register d);
734 
735   inline void btst( Register s1,  Register s2 );
736   inline void btst( int simm13a,  Register s );
737 
738   inline void bset( Register s1,  Register s2 );
739   inline void bset( int simm13a,  Register s );
740 
741   inline void bclr( Register s1,  Register s2 );
742   inline void bclr( int simm13a,  Register s );
743 
744   inline void btog( Register s1,  Register s2 );
745   inline void btog( int simm13a,  Register s );
746 
747   inline void clr( Register d );
748 
749   inline void clrb( Register s1, Register s2);
750   inline void clrh( Register s1, Register s2);
751   inline void clr(  Register s1, Register s2);
752   inline void clrx( Register s1, Register s2);
753 
754   inline void clrb( Register s1, int simm13a);
755   inline void clrh( Register s1, int simm13a);
756   inline void clr(  Register s1, int simm13a);
757   inline void clrx( Register s1, int simm13a);
758 
759   // copy & clear upper word
760   inline void clruw( Register s, Register d );
761   // clear upper word
762   inline void clruwu( Register d );
763 
764   using Assembler::ldsb;
765   using Assembler::ldsh;
766   using Assembler::ldsw;
767   using Assembler::ldub;
768   using Assembler::lduh;
769   using Assembler::lduw;
770   using Assembler::ldx;
771   using Assembler::ldd;
772 
773 #ifdef ASSERT
774   // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
775   inline void ld(Register s1, ByteSize simm13a, Register d);
776 #endif
777 
778   inline void ld(Register s1, Register s2, Register d);
779   inline void ld(Register s1, int simm13a, Register d);
780 
781   inline void ldsb(const Address& a, Register d, int offset = 0);
782   inline void ldsh(const Address& a, Register d, int offset = 0);
783   inline void ldsw(const Address& a, Register d, int offset = 0);
784   inline void ldub(const Address& a, Register d, int offset = 0);
785   inline void lduh(const Address& a, Register d, int offset = 0);
786   inline void lduw(const Address& a, Register d, int offset = 0);
787   inline void ldx( const Address& a, Register d, int offset = 0);
788   inline void ld(  const Address& a, Register d, int offset = 0);
789   inline void ldd( const Address& a, Register d, int offset = 0);
790 
791   inline void ldub(Register s1, RegisterOrConstant s2, Register d );
792   inline void ldsb(Register s1, RegisterOrConstant s2, Register d );
793   inline void lduh(Register s1, RegisterOrConstant s2, Register d );
794   inline void ldsh(Register s1, RegisterOrConstant s2, Register d );
795   inline void lduw(Register s1, RegisterOrConstant s2, Register d );
796   inline void ldsw(Register s1, RegisterOrConstant s2, Register d );
797   inline void ldx( Register s1, RegisterOrConstant s2, Register d );
798   inline void ld(  Register s1, RegisterOrConstant s2, Register d );
799   inline void ldd( Register s1, RegisterOrConstant s2, Register d );
800 
801   using Assembler::ldf;
802   inline void ldf(FloatRegisterImpl::Width w, Register s1, RegisterOrConstant s2, FloatRegister d);
803   inline void ldf(FloatRegisterImpl::Width w, const Address& a, FloatRegister d, int offset = 0);
804 
805   // little-endian
806   inline void lduwl(Register s1, Register s2, Register d);
807   inline void ldswl(Register s1, Register s2, Register d);
808   inline void ldxl( Register s1, Register s2, Register d);
809   inline void ldfl(FloatRegisterImpl::Width w, Register s1, Register s2, FloatRegister d);
810 
811   // membar psuedo instruction.  takes into account target memory model.
812   inline void membar( Assembler::Membar_mask_bits const7a );
813 
814   // returns if membar generates anything.
815   inline bool membar_has_effect( Assembler::Membar_mask_bits const7a );
816 
817   // mov pseudo instructions
818   inline void mov( Register s,  Register d);
819 
820   inline void mov_or_nop( Register s,  Register d);
821 
822   inline void mov( int simm13a, Register d);
823 
824   using Assembler::prefetch;
825   inline void prefetch(const Address& a, PrefetchFcn F, int offset = 0);
826 
827   using Assembler::stb;
828   using Assembler::sth;
829   using Assembler::stw;
830   using Assembler::stx;
831   using Assembler::std;
832 
833 #ifdef ASSERT
834   // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
835   inline void st(Register d, Register s1, ByteSize simm13a);
836 #endif
837 
838   inline void st(Register d, Register s1, Register s2);
839   inline void st(Register d, Register s1, int simm13a);
840 
841   inline void stb(Register d, const Address& a, int offset = 0 );
842   inline void sth(Register d, const Address& a, int offset = 0 );
843   inline void stw(Register d, const Address& a, int offset = 0 );
844   inline void stx(Register d, const Address& a, int offset = 0 );
845   inline void st( Register d, const Address& a, int offset = 0 );
846   inline void std(Register d, const Address& a, int offset = 0 );
847 
848   inline void stb(Register d, Register s1, RegisterOrConstant s2 );
849   inline void sth(Register d, Register s1, RegisterOrConstant s2 );
850   inline void stw(Register d, Register s1, RegisterOrConstant s2 );
851   inline void stx(Register d, Register s1, RegisterOrConstant s2 );
852   inline void std(Register d, Register s1, RegisterOrConstant s2 );
853   inline void st( Register d, Register s1, RegisterOrConstant s2 );
854 
855   using Assembler::stf;
856   inline void stf(FloatRegisterImpl::Width w, FloatRegister d, Register s1, RegisterOrConstant s2);
857   inline void stf(FloatRegisterImpl::Width w, FloatRegister d, const Address& a, int offset = 0);
858 
859   // Note: offset is added to s2.
860   using Assembler::sub;
861   inline void sub(Register s1, RegisterOrConstant s2, Register d, int offset = 0);
862 
863   using Assembler::swap;
864   inline void swap(const Address& a, Register d, int offset = 0);
865 
866   // address pseudos: make these names unlike instruction names to avoid confusion
867   inline intptr_t load_pc_address( Register reg, int bytes_to_skip );
868   inline void load_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
869   inline void load_bool_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
870   inline void load_ptr_contents(const AddressLiteral& addrlit, Register d, int offset = 0);
871   inline void store_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset = 0);
872   inline void store_ptr_contents(Register s, const AddressLiteral& addrlit, Register temp, int offset = 0);
873   inline void jumpl_to(const AddressLiteral& addrlit, Register temp, Register d, int offset = 0);
874   inline void jump_to(const AddressLiteral& addrlit, Register temp, int offset = 0);
875   inline void jump_indirect_to(Address& a, Register temp, int ld_offset = 0, int jmp_offset = 0);
876 
877   // ring buffer traceable jumps
878 
879   void jmp2( Register r1, Register r2, const char* file, int line );
880   void jmp ( Register r1, int offset,  const char* file, int line );
881 
882   void jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line);
883   void jump (const AddressLiteral& addrlit, Register temp,             int offset, const char* file, int line);
884 
885 
886   // argument pseudos:
887 
888   inline void load_argument( Argument& a, Register  d );
889   inline void store_argument( Register s, Argument& a );
890   inline void store_ptr_argument( Register s, Argument& a );
891   inline void store_float_argument( FloatRegister s, Argument& a );
892   inline void store_double_argument( FloatRegister s, Argument& a );
893   inline void store_long_argument( Register s, Argument& a );
894 
895   // handy macros:
896 
897   inline void round_to( Register r, int modulus );
898 
899   // --------------------------------------------------
900 
901   // Functions for isolating 64 bit loads for LP64
902   // ld_ptr will perform ld for 32 bit VM's and ldx for 64 bit VM's
903   // st_ptr will perform st for 32 bit VM's and stx for 64 bit VM's
904   inline void ld_ptr(Register s1, Register s2, Register d);
905   inline void ld_ptr(Register s1, int simm13a, Register d);
906   inline void ld_ptr(Register s1, RegisterOrConstant s2, Register d);
907   inline void ld_ptr(const Address& a, Register d, int offset = 0);
908   inline void st_ptr(Register d, Register s1, Register s2);
909   inline void st_ptr(Register d, Register s1, int simm13a);
910   inline void st_ptr(Register d, Register s1, RegisterOrConstant s2);
911   inline void st_ptr(Register d, const Address& a, int offset = 0);
912 
913 #ifdef ASSERT
914   // ByteSize is only a class when ASSERT is defined, otherwise it's an int.
915   inline void ld_ptr(Register s1, ByteSize simm13a, Register d);
916   inline void st_ptr(Register d, Register s1, ByteSize simm13a);
917 #endif
918 
919   // ld_long will perform ldd for 32 bit VM's and ldx for 64 bit VM's
920   // st_long will perform std for 32 bit VM's and stx for 64 bit VM's
921   inline void ld_long(Register s1, Register s2, Register d);
922   inline void ld_long(Register s1, int simm13a, Register d);
923   inline void ld_long(Register s1, RegisterOrConstant s2, Register d);
924   inline void ld_long(const Address& a, Register d, int offset = 0);
925   inline void st_long(Register d, Register s1, Register s2);
926   inline void st_long(Register d, Register s1, int simm13a);
927   inline void st_long(Register d, Register s1, RegisterOrConstant s2);
928   inline void st_long(Register d, const Address& a, int offset = 0);
929 
930   // Helpers for address formation.
931   // - They emit only a move if s2 is a constant zero.
932   // - If dest is a constant and either s1 or s2 is a register, the temp argument is required and becomes the result.
933   // - If dest is a register and either s1 or s2 is a non-simm13 constant, the temp argument is required and used to materialize the constant.
934   RegisterOrConstant regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
935   RegisterOrConstant regcon_inc_ptr( RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
936   RegisterOrConstant regcon_sll_ptr( RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp = noreg);
937 
ensure_simm13_or_reg(RegisterOrConstant src,Register temp)938   RegisterOrConstant ensure_simm13_or_reg(RegisterOrConstant src, Register temp) {
939     if (is_simm13(src.constant_or_zero()))
940       return src;               // register or short constant
941     guarantee(temp != noreg, "constant offset overflow");
942     set(src.as_constant(), temp);
943     return temp;
944   }
945 
946   // --------------------------------------------------
947 
948  public:
949   // traps as per trap.h (SPARC ABI?)
950 
951   void breakpoint_trap();
952   void breakpoint_trap(Condition c, CC cc);
953 
954   // Support for serializing memory accesses between threads
955   void serialize_memory(Register thread, Register tmp1, Register tmp2);
956 
957   void safepoint_poll(Label& slow_path, bool a, Register thread_reg, Register temp_reg);
958 
959   // Stack frame creation/removal
960   void enter();
961   void leave();
962 
963   // Manipulation of C++ bools
964   // These are idioms to flag the need for care with accessing bools but on
965   // this platform we assume byte size
966 
967   inline void stbool(Register d, const Address& a);
968   inline void ldbool(const Address& a, Register d);
969   inline void movbool( bool boolconst, Register d);
970 
971   void resolve_oop_handle(Register result, Register tmp);
972   void load_mirror(Register mirror, Register method, Register tmp);
973 
974   // klass oop manipulations if compressed
975   void load_klass(Register src_oop, Register klass);
976   void store_klass(Register klass, Register dst_oop);
977   void store_klass_gap(Register s, Register dst_oop);
978 
979    // oop manipulations
980   void access_store_at(BasicType type, DecoratorSet decorators,
981                        Register src, Address dst, Register tmp);
982   void access_load_at(BasicType type, DecoratorSet decorators,
983                       Address src, Register dst, Register tmp);
984 
985   void load_heap_oop(const Address& s, Register d,
986                      Register tmp = noreg, DecoratorSet decorators = 0);
987   void load_heap_oop(Register s1, Register s2, Register d,
988                      Register tmp = noreg, DecoratorSet decorators = 0);
989   void load_heap_oop(Register s1, int simm13a, Register d,
990                      Register tmp = noreg, DecoratorSet decorators = 0);
991   void load_heap_oop(Register s1, RegisterOrConstant s2, Register d,
992                      Register tmp = noreg, DecoratorSet decorators = 0);
993   void store_heap_oop(Register d, Register s1, Register s2,
994                       Register tmp = noreg, DecoratorSet decorators = 0);
995   void store_heap_oop(Register d, Register s1, int simm13a,
996                       Register tmp = noreg, DecoratorSet decorators = 0);
997   void store_heap_oop(Register d, const Address& a, int offset = 0,
998                       Register tmp = noreg, DecoratorSet decorators = 0);
999 
1000   void encode_heap_oop(Register src, Register dst);
encode_heap_oop(Register r)1001   void encode_heap_oop(Register r) {
1002     encode_heap_oop(r, r);
1003   }
1004   void decode_heap_oop(Register src, Register dst);
decode_heap_oop(Register r)1005   void decode_heap_oop(Register r) {
1006     decode_heap_oop(r, r);
1007   }
1008   void encode_heap_oop_not_null(Register r);
1009   void decode_heap_oop_not_null(Register r);
1010   void encode_heap_oop_not_null(Register src, Register dst);
1011   void decode_heap_oop_not_null(Register src, Register dst);
1012 
1013   void encode_klass_not_null(Register r);
1014   void decode_klass_not_null(Register r);
1015   void encode_klass_not_null(Register src, Register dst);
1016   void decode_klass_not_null(Register src, Register dst);
1017 
1018   // Support for managing the JavaThread pointer (i.e.; the reference to
1019   // thread-local information).
1020   void get_thread();                                // load G2_thread
1021   void verify_thread();                             // verify G2_thread contents
1022   void save_thread   (const Register threache); // save to cache
1023   void restore_thread(const Register thread_cache); // restore from cache
1024 
1025   // Support for last Java frame (but use call_VM instead where possible)
1026   void set_last_Java_frame(Register last_java_sp, Register last_Java_pc);
1027   void reset_last_Java_frame(void);
1028 
1029   // Call into the VM.
1030   // Passes the thread pointer (in O0) as a prepended argument.
1031   // Makes sure oop return values are visible to the GC.
1032   void call_VM(Register oop_result, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
1033   void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
1034   void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
1035   void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
1036 
1037   // these overloadings are not presently used on SPARC:
1038   void call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
1039   void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
1040   void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
1041   void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
1042 
1043   void call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments = 0);
1044   void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1);
1045   void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2);
1046   void call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3);
1047 
1048   void get_vm_result  (Register oop_result);
1049   void get_vm_result_2(Register metadata_result);
1050 
1051   // vm result is currently getting hijacked to for oop preservation
1052   void set_vm_result(Register oop_result);
1053 
1054   // Emit the CompiledIC call idiom
1055   void ic_call(address entry, bool emit_delay = true, jint method_index = 0);
1056 
1057   // if call_VM_base was called with check_exceptions=false, then call
1058   // check_and_forward_exception to handle exceptions when it is safe
1059   void check_and_forward_exception(Register scratch_reg);
1060 
1061   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
1062   void push_fTOS();
1063 
1064   // pops double TOS element from CPU stack and pushes on FPU stack
1065   void pop_fTOS();
1066 
1067   void empty_FPU_stack();
1068 
1069   void push_IU_state();
1070   void pop_IU_state();
1071 
1072   void push_FPU_state();
1073   void pop_FPU_state();
1074 
1075   void push_CPU_state();
1076   void pop_CPU_state();
1077 
1078   // Returns the byte size of the instructions generated by decode_klass_not_null().
1079   static int instr_size_for_decode_klass_not_null();
1080 
1081   // if heap base register is used - reinit it with the correct value
1082   void reinit_heapbase();
1083 
1084   // Debugging
1085   void _verify_oop(Register reg, const char * msg, const char * file, int line);
1086   void _verify_oop_addr(Address addr, const char * msg, const char * file, int line);
1087 
1088   // TODO: verify_method and klass metadata (compare against vptr?)
_verify_method_ptr(Register reg,const char * msg,const char * file,int line)1089   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
_verify_klass_ptr(Register reg,const char * msg,const char * file,int line)1090   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
1091 
1092 #define verify_oop(reg) _verify_oop(reg, "broken oop " #reg, __FILE__, __LINE__)
1093 #define verify_oop_addr(addr) _verify_oop_addr(addr, "broken oop addr ", __FILE__, __LINE__)
1094 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
1095 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
1096 
1097         // only if +VerifyOops
1098   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
1099         // only if +VerifyFPU
1100   void stop(const char* msg);                          // prints msg, dumps registers and stops execution
1101   void warn(const char* msg);                          // prints msg, but don't stop
1102   void untested(const char* what = "");
1103   void unimplemented(const char* what = "");
should_not_reach_here()1104   void should_not_reach_here()                   { stop("should not reach here"); }
1105   void print_CPU_state();
1106 
1107   // oops in code
1108   AddressLiteral allocate_oop_address(jobject obj);                          // allocate_index
1109   AddressLiteral constant_oop_address(jobject obj);                          // find_index
1110   inline void    set_oop             (jobject obj, Register d);              // uses allocate_oop_address
1111   inline void    set_oop_constant    (jobject obj, Register d);              // uses constant_oop_address
1112   inline void    set_oop             (const AddressLiteral& obj_addr, Register d); // same as load_address
1113 
1114   // metadata in code that we have to keep track of
1115   AddressLiteral allocate_metadata_address(Metadata* obj); // allocate_index
1116   AddressLiteral constant_metadata_address(Metadata* obj); // find_index
1117   inline void    set_metadata             (Metadata* obj, Register d);              // uses allocate_metadata_address
1118   inline void    set_metadata_constant    (Metadata* obj, Register d);              // uses constant_metadata_address
1119   inline void    set_metadata             (const AddressLiteral& obj_addr, Register d); // same as load_address
1120 
1121   void set_narrow_oop( jobject obj, Register d );
1122   void set_narrow_klass( Klass* k, Register d );
1123 
1124   // nop padding
1125   void align(int modulus);
1126 
1127   // declare a safepoint
1128   void safepoint();
1129 
1130   // factor out part of stop into subroutine to save space
1131   void stop_subroutine();
1132   // factor out part of verify_oop into subroutine to save space
1133   void verify_oop_subroutine();
1134 
1135   // side-door communication with signalHandler in os_solaris.cpp
1136   static address _verify_oop_implicit_branch[3];
1137 
1138   int total_frame_size_in_bytes(int extraWords);
1139 
1140   // used when extraWords known statically
1141   void save_frame(int extraWords = 0);
1142   void save_frame_c1(int size_in_bytes);
1143   // make a frame, and simultaneously pass up one or two register value
1144   // into the new register window
1145   void save_frame_and_mov(int extraWords, Register s1, Register d1, Register s2 = Register(), Register d2 = Register());
1146 
1147   // give no. (outgoing) params, calc # of words will need on frame
1148   void calc_mem_param_words(Register Rparam_words, Register Rresult);
1149 
1150   // used to calculate frame size dynamically
1151   // result is in bytes and must be negated for save inst
1152   void calc_frame_size(Register extraWords, Register resultReg);
1153 
1154   // calc and also save
1155   void calc_frame_size_and_save(Register extraWords, Register resultReg);
1156 
1157   static void debug(char* msg, RegistersForDebugging* outWindow);
1158 
1159   // implementations of bytecodes used by both interpreter and compiler
1160 
1161   void lcmp( Register Ra_hi, Register Ra_low,
1162              Register Rb_hi, Register Rb_low,
1163              Register Rresult);
1164 
1165   void lneg( Register Rhi, Register Rlow );
1166 
1167   void lshl(  Register Rin_high,  Register Rin_low,  Register Rcount,
1168               Register Rout_high, Register Rout_low, Register Rtemp );
1169 
1170   void lshr(  Register Rin_high,  Register Rin_low,  Register Rcount,
1171               Register Rout_high, Register Rout_low, Register Rtemp );
1172 
1173   void lushr( Register Rin_high,  Register Rin_low,  Register Rcount,
1174               Register Rout_high, Register Rout_low, Register Rtemp );
1175 
1176   void lcmp( Register Ra, Register Rb, Register Rresult);
1177 
1178   // Load and store values by size and signed-ness
1179   void load_sized_value( Address src, Register dst, size_t size_in_bytes, bool is_signed);
1180   void store_sized_value(Register src, Address dst, size_t size_in_bytes);
1181 
1182   void float_cmp( bool is_float, int unordered_result,
1183                   FloatRegister Fa, FloatRegister Fb,
1184                   Register Rresult);
1185 
1186   void save_all_globals_into_locals();
1187   void restore_globals_from_locals();
1188 
1189   // These set the icc condition code to equal if the lock succeeded
1190   // and notEqual if it failed and requires a slow case
1191   void compiler_lock_object(Register Roop, Register Rmark, Register Rbox,
1192                             Register Rscratch,
1193                             BiasedLockingCounters* counters = NULL,
1194                             bool try_bias = UseBiasedLocking);
1195   void compiler_unlock_object(Register Roop, Register Rmark, Register Rbox,
1196                               Register Rscratch,
1197                               bool try_bias = UseBiasedLocking);
1198 
1199   // Biased locking support
1200   // Upon entry, lock_reg must point to the lock record on the stack,
1201   // obj_reg must contain the target object, and mark_reg must contain
1202   // the target object's header.
1203   // Destroys mark_reg if an attempt is made to bias an anonymously
1204   // biased lock. In this case a failure will go either to the slow
1205   // case or fall through with the notEqual condition code set with
1206   // the expectation that the slow case in the runtime will be called.
1207   // In the fall-through case where the CAS-based lock is done,
1208   // mark_reg is not destroyed.
1209   void biased_locking_enter(Register obj_reg, Register mark_reg, Register temp_reg,
1210                             Label& done, Label* slow_case = NULL,
1211                             BiasedLockingCounters* counters = NULL);
1212   // Upon entry, the base register of mark_addr must contain the oop.
1213   // Destroys temp_reg.
1214 
1215   // If allow_delay_slot_filling is set to true, the next instruction
1216   // emitted after this one will go in an annulled delay slot if the
1217   // biased locking exit case failed.
1218   void biased_locking_exit(Address mark_addr, Register temp_reg, Label& done, bool allow_delay_slot_filling = false);
1219 
1220   // allocation
1221   void eden_allocate(
1222     Register obj,                      // result: pointer to object after successful allocation
1223     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
1224     int      con_size_in_bytes,        // object size in bytes if   known at compile time
1225     Register t1,                       // temp register
1226     Register t2,                       // temp register
1227     Label&   slow_case                 // continuation point if fast allocation fails
1228   );
1229   void tlab_allocate(
1230     Register obj,                      // result: pointer to object after successful allocation
1231     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
1232     int      con_size_in_bytes,        // object size in bytes if   known at compile time
1233     Register t1,                       // temp register
1234     Label&   slow_case                 // continuation point if fast allocation fails
1235   );
1236   void zero_memory(Register base, Register index);
1237   void incr_allocated_bytes(RegisterOrConstant size_in_bytes,
1238                             Register t1, Register t2);
1239 
1240   // interface method calling
1241   void lookup_interface_method(Register recv_klass,
1242                                Register intf_klass,
1243                                RegisterOrConstant itable_index,
1244                                Register method_result,
1245                                Register temp_reg, Register temp2_reg,
1246                                Label& no_such_interface,
1247                                bool return_method = true);
1248 
1249   // virtual method calling
1250   void lookup_virtual_method(Register recv_klass,
1251                              RegisterOrConstant vtable_index,
1252                              Register method_result);
1253 
1254   // Test sub_klass against super_klass, with fast and slow paths.
1255 
1256   // The fast path produces a tri-state answer: yes / no / maybe-slow.
1257   // One of the three labels can be NULL, meaning take the fall-through.
1258   // If super_check_offset is -1, the value is loaded up from super_klass.
1259   // No registers are killed, except temp_reg and temp2_reg.
1260   // If super_check_offset is not -1, temp2_reg is not used and can be noreg.
1261   void check_klass_subtype_fast_path(Register sub_klass,
1262                                      Register super_klass,
1263                                      Register temp_reg,
1264                                      Register temp2_reg,
1265                                      Label* L_success,
1266                                      Label* L_failure,
1267                                      Label* L_slow_path,
1268                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
1269 
1270   // The rest of the type check; must be wired to a corresponding fast path.
1271   // It does not repeat the fast path logic, so don't use it standalone.
1272   // The temp_reg can be noreg, if no temps are available.
1273   // It can also be sub_klass or super_klass, meaning it's OK to kill that one.
1274   // Updates the sub's secondary super cache as necessary.
1275   void check_klass_subtype_slow_path(Register sub_klass,
1276                                      Register super_klass,
1277                                      Register temp_reg,
1278                                      Register temp2_reg,
1279                                      Register temp3_reg,
1280                                      Register temp4_reg,
1281                                      Label* L_success,
1282                                      Label* L_failure);
1283 
1284   // Simplified, combined version, good for typical uses.
1285   // Falls through on failure.
1286   void check_klass_subtype(Register sub_klass,
1287                            Register super_klass,
1288                            Register temp_reg,
1289                            Register temp2_reg,
1290                            Label& L_success);
1291 
1292   // method handles (JSR 292)
1293   // offset relative to Gargs of argument at tos[arg_slot].
1294   // (arg_slot == 0 means the last argument, not the first).
1295   RegisterOrConstant argument_offset(RegisterOrConstant arg_slot,
1296                                      Register temp_reg,
1297                                      int extra_slot_offset = 0);
1298   // Address of Gargs and argument_offset.
1299   Address            argument_address(RegisterOrConstant arg_slot,
1300                                       Register temp_reg = noreg,
1301                                       int extra_slot_offset = 0);
1302 
1303   // Stack overflow checking
1304 
1305   // Note: this clobbers G3_scratch
1306   void bang_stack_with_offset(int offset);
1307 
1308   // Writes to stack successive pages until offset reached to check for
1309   // stack overflow + shadow pages.  Clobbers tsp and scratch registers.
1310   void bang_stack_size(Register Rsize, Register Rtsp, Register Rscratch);
1311 
1312   // Check for reserved stack access in method being exited (for JIT)
1313   void reserved_stack_check();
1314 
1315   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset);
1316 
1317   void verify_tlab();
1318 
1319   Condition negate_condition(Condition cond);
1320 
1321   // Helper functions for statistics gathering.
1322   // Conditionally (non-atomically) increments passed counter address, preserving condition codes.
1323   void cond_inc(Condition cond, address counter_addr, Register Rtemp1, Register Rtemp2);
1324   // Unconditional increment.
1325   void inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2);
1326   void inc_counter(int*    counter_addr, Register Rtmp1, Register Rtmp2);
1327 
1328 #ifdef COMPILER2
1329   // Compress char[] to byte[] by compressing 16 bytes at once. Return 0 on failure.
1330   void string_compress_16(Register src, Register dst, Register cnt, Register result,
1331                           Register tmp1, Register tmp2, Register tmp3, Register tmp4,
1332                           FloatRegister ftmp1, FloatRegister ftmp2, FloatRegister ftmp3, Label& Ldone);
1333 
1334   // Compress char[] to byte[]. Return 0 on failure.
1335   void string_compress(Register src, Register dst, Register cnt, Register tmp, Register result, Label& Ldone);
1336 
1337   // Inflate byte[] to char[] by inflating 16 bytes at once.
1338   void string_inflate_16(Register src, Register dst, Register cnt, Register tmp,
1339                          FloatRegister ftmp1, FloatRegister ftmp2, FloatRegister ftmp3, FloatRegister ftmp4, Label& Ldone);
1340 
1341   // Inflate byte[] to char[].
1342   void string_inflate(Register src, Register dst, Register cnt, Register tmp, Label& Ldone);
1343 
1344   void string_compare(Register str1, Register str2,
1345                       Register cnt1, Register cnt2,
1346                       Register tmp1, Register tmp2,
1347                       Register result, int ae);
1348 
1349   void array_equals(bool is_array_equ, Register ary1, Register ary2,
1350                     Register limit, Register tmp, Register result, bool is_byte);
1351   // test for negative bytes in input string of a given size, result 0 if none
1352   void has_negatives(Register inp, Register size, Register result,
1353                      Register t2, Register t3, Register t4,
1354                      Register t5);
1355 
1356 #endif
1357 
1358   // Use BIS for zeroing
1359   void bis_zeroing(Register to, Register count, Register temp, Label& Ldone);
1360 
1361   // Update CRC-32[C] with a byte value according to constants in table
1362   void update_byte_crc32(Register crc, Register val, Register table);
1363 
1364   // Reverse byte order of lower 32 bits, assuming upper 32 bits all zeros
1365   void reverse_bytes_32(Register src, Register dst, Register tmp);
1366   void movitof_revbytes(Register src, FloatRegister dst, Register tmp1, Register tmp2);
1367   void movftoi_revbytes(FloatRegister src, Register dst, Register tmp1, Register tmp2);
1368 
1369   // CRC32 code for java.util.zip.CRC32::updateBytes0() intrinsic.
1370   void kernel_crc32(Register crc, Register buf, Register len, Register table);
1371   // Fold 128-bit data chunk
1372   void fold_128bit_crc32(Register xcrc_hi, Register xcrc_lo, Register xK_hi, Register xK_lo, Register xtmp_hi, Register xtmp_lo, Register buf, int offset);
1373   void fold_128bit_crc32(Register xcrc_hi, Register xcrc_lo, Register xK_hi, Register xK_lo, Register xtmp_hi, Register xtmp_lo, Register xbuf_hi, Register xbuf_lo);
1374   // Fold 8-bit data
1375   void fold_8bit_crc32(Register xcrc, Register table, Register xtmp, Register tmp);
1376   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1377   // CRC32C code for java.util.zip.CRC32C::updateBytes/updateDirectByteBuffer intrinsic.
1378   void kernel_crc32c(Register crc, Register buf, Register len, Register table);
1379 
1380 };
1381 
1382 /**
1383  * class SkipIfEqual:
1384  *
1385  * Instantiating this class will result in assembly code being output that will
1386  * jump around any code emitted between the creation of the instance and it's
1387  * automatic destruction at the end of a scope block, depending on the value of
1388  * the flag passed to the constructor, which will be checked at run-time.
1389  */
1390 class SkipIfEqual : public StackObj {
1391  private:
1392   MacroAssembler* _masm;
1393   Label _label;
1394 
1395  public:
1396    // 'temp' is a temp register that this object can use (and trash)
1397    SkipIfEqual(MacroAssembler*, Register temp,
1398                const bool* flag_addr, Assembler::Condition condition);
1399    ~SkipIfEqual();
1400 };
1401 
1402 #endif // CPU_SPARC_VM_MACROASSEMBLER_SPARC_HPP
1403