1 /*
2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "interpreter/interpreter.hpp"
27 #include "memory/resourceArea.hpp"
28 #include "oops/markOop.hpp"
29 #include "oops/method.hpp"
30 #include "oops/oop.inline.hpp"
31 #include "prims/methodHandles.hpp"
32 #include "runtime/frame.inline.hpp"
33 #include "runtime/handles.inline.hpp"
34 #include "runtime/javaCalls.hpp"
35 #include "runtime/monitorChunk.hpp"
36 #include "runtime/os.inline.hpp"
37 #include "runtime/signature.hpp"
38 #include "runtime/stubCodeGenerator.hpp"
39 #include "runtime/stubRoutines.hpp"
40 #include "vmreg_x86.inline.hpp"
41 #ifdef COMPILER1
42 #include "c1/c1_Runtime1.hpp"
43 #include "runtime/vframeArray.hpp"
44 #endif
45 
46 #ifdef ASSERT
check_location_valid()47 void RegisterMap::check_location_valid() {
48 }
49 #endif
50 
51 // Profiling/safepoint support
52 
safe_for_sender(JavaThread * thread)53 bool frame::safe_for_sender(JavaThread *thread) {
54   address   sp = (address)_sp;
55   address   fp = (address)_fp;
56   address   unextended_sp = (address)_unextended_sp;
57 
58   // consider stack guards when trying to determine "safe" stack pointers
59   static size_t stack_guard_size = os::uses_stack_guard_pages() ?
60     JavaThread::stack_red_zone_size() + JavaThread::stack_yellow_zone_size() : 0;
61   size_t usable_stack_size = thread->stack_size() - stack_guard_size;
62 
63   // sp must be within the usable part of the stack (not in guards)
64   bool sp_safe = (sp < thread->stack_base()) &&
65                  (sp >= thread->stack_base() - usable_stack_size);
66 
67 
68   if (!sp_safe) {
69     return false;
70   }
71 
72   // unextended sp must be within the stack and above or equal sp
73   bool unextended_sp_safe = (unextended_sp < thread->stack_base()) &&
74                             (unextended_sp >= sp);
75 
76   if (!unextended_sp_safe) {
77     return false;
78   }
79 
80   // an fp must be within the stack and above (but not equal) sp
81   // second evaluation on fp+ is added to handle situation where fp is -1
82   bool fp_safe = (fp < thread->stack_base() && (fp > sp) && (((fp + (return_addr_offset * sizeof(void*))) < thread->stack_base())));
83 
84   // We know sp/unextended_sp are safe only fp is questionable here
85 
86   // If the current frame is known to the code cache then we can attempt to
87   // to construct the sender and do some validation of it. This goes a long way
88   // toward eliminating issues when we get in frame construction code
89 
90   if (_cb != NULL ) {
91 
92     // First check if frame is complete and tester is reliable
93     // Unfortunately we can only check frame complete for runtime stubs and nmethod
94     // other generic buffer blobs are more problematic so we just assume they are
95     // ok. adapter blobs never have a frame complete and are never ok.
96 
97     if (!_cb->is_frame_complete_at(_pc)) {
98       if (_cb->is_compiled() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) {
99         return false;
100       }
101     }
102 
103     // Could just be some random pointer within the codeBlob
104     if (!_cb->code_contains(_pc)) {
105       return false;
106     }
107 
108     // Entry frame checks
109     if (is_entry_frame()) {
110       // an entry frame must have a valid fp.
111       return fp_safe && is_entry_frame_valid(thread);
112     }
113 
114     intptr_t* sender_sp = NULL;
115     intptr_t* sender_unextended_sp = NULL;
116     address   sender_pc = NULL;
117     intptr_t* saved_fp =  NULL;
118 
119     if (is_interpreted_frame()) {
120       // fp must be safe
121       if (!fp_safe) {
122         return false;
123       }
124 
125       sender_pc = (address) this->fp()[return_addr_offset];
126       // for interpreted frames, the value below is the sender "raw" sp,
127       // which can be different from the sender unextended sp (the sp seen
128       // by the sender) because of current frame local variables
129       sender_sp = (intptr_t*) addr_at(sender_sp_offset);
130       sender_unextended_sp = (intptr_t*) this->fp()[interpreter_frame_sender_sp_offset];
131       saved_fp = (intptr_t*) this->fp()[link_offset];
132 
133     } else {
134       // must be some sort of compiled/runtime frame
135       // fp does not have to be safe (although it could be check for c1?)
136 
137       // check for a valid frame_size, otherwise we are unlikely to get a valid sender_pc
138       if (_cb->frame_size() <= 0) {
139         return false;
140       }
141 
142       sender_sp = _unextended_sp + _cb->frame_size();
143       // Is sender_sp safe?
144       if ((address)sender_sp >= thread->stack_base()) {
145         return false;
146       }
147       sender_unextended_sp = sender_sp;
148       // On Intel the return_address is always the word on the stack
149       sender_pc = (address) *(sender_sp-1);
150       // Note: frame::sender_sp_offset is only valid for compiled frame
151       saved_fp = (intptr_t*) *(sender_sp - frame::sender_sp_offset);
152     }
153 
154 
155     // If the potential sender is the interpreter then we can do some more checking
156     if (Interpreter::contains(sender_pc)) {
157 
158       // ebp is always saved in a recognizable place in any code we generate. However
159       // only if the sender is interpreted/call_stub (c1 too?) are we certain that the saved ebp
160       // is really a frame pointer.
161 
162       bool saved_fp_safe = ((address)saved_fp < thread->stack_base()) && (saved_fp > sender_sp);
163 
164       if (!saved_fp_safe) {
165         return false;
166       }
167 
168       // construct the potential sender
169 
170       frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc);
171 
172       return sender.is_interpreted_frame_valid(thread);
173 
174     }
175 
176     // We must always be able to find a recognizable pc
177     CodeBlob* sender_blob = CodeCache::find_blob_unsafe(sender_pc);
178     if (sender_pc == NULL ||  sender_blob == NULL) {
179       return false;
180     }
181 
182     // Could be a zombie method
183     if (sender_blob->is_zombie() || sender_blob->is_unloaded()) {
184       return false;
185     }
186 
187     // Could just be some random pointer within the codeBlob
188     if (!sender_blob->code_contains(sender_pc)) {
189       return false;
190     }
191 
192     // We should never be able to see an adapter if the current frame is something from code cache
193     if (sender_blob->is_adapter_blob()) {
194       return false;
195     }
196 
197     // Could be the call_stub
198     if (StubRoutines::returns_to_call_stub(sender_pc)) {
199       bool saved_fp_safe = ((address)saved_fp < thread->stack_base()) && (saved_fp > sender_sp);
200 
201       if (!saved_fp_safe) {
202         return false;
203       }
204 
205       // construct the potential sender
206 
207       frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc);
208 
209       // Validate the JavaCallWrapper an entry frame must have
210       address jcw = (address)sender.entry_frame_call_wrapper();
211 
212       bool jcw_safe = (jcw < thread->stack_base()) && (jcw > (address)sender.fp());
213 
214       return jcw_safe;
215     }
216 
217     CompiledMethod* nm = sender_blob->as_compiled_method_or_null();
218     if (nm != NULL) {
219         if (nm->is_deopt_mh_entry(sender_pc) || nm->is_deopt_entry(sender_pc) ||
220             nm->method()->is_method_handle_intrinsic()) {
221             return false;
222         }
223     }
224 
225     // If the frame size is 0 something (or less) is bad because every nmethod has a non-zero frame size
226     // because the return address counts against the callee's frame.
227 
228     if (sender_blob->frame_size() <= 0) {
229       assert(!sender_blob->is_compiled(), "should count return address at least");
230       return false;
231     }
232 
233     // We should never be able to see anything here except an nmethod. If something in the
234     // code cache (current frame) is called by an entity within the code cache that entity
235     // should not be anything but the call stub (already covered), the interpreter (already covered)
236     // or an nmethod.
237 
238     if (!sender_blob->is_compiled()) {
239         return false;
240     }
241 
242     // Could put some more validation for the potential non-interpreted sender
243     // frame we'd create by calling sender if I could think of any. Wait for next crash in forte...
244 
245     // One idea is seeing if the sender_pc we have is one that we'd expect to call to current cb
246 
247     // We've validated the potential sender that would be created
248     return true;
249   }
250 
251   // Must be native-compiled frame. Since sender will try and use fp to find
252   // linkages it must be safe
253 
254   if (!fp_safe) {
255     return false;
256   }
257 
258   // Will the pc we fetch be non-zero (which we'll find at the oldest frame)
259 
260   if ( (address) this->fp()[return_addr_offset] == NULL) return false;
261 
262 
263   // could try and do some more potential verification of native frame if we could think of some...
264 
265   return true;
266 
267 }
268 
269 
patch_pc(Thread * thread,address pc)270 void frame::patch_pc(Thread* thread, address pc) {
271   address* pc_addr = &(((address*) sp())[-1]);
272   if (TracePcPatching) {
273     tty->print_cr("patch_pc at address " INTPTR_FORMAT " [" INTPTR_FORMAT " -> " INTPTR_FORMAT "]",
274                   p2i(pc_addr), p2i(*pc_addr), p2i(pc));
275   }
276   // Either the return address is the original one or we are going to
277   // patch in the same address that's already there.
278   assert(_pc == *pc_addr || pc == *pc_addr, "must be");
279   *pc_addr = pc;
280   _cb = CodeCache::find_blob(pc);
281   address original_pc = CompiledMethod::get_deopt_original_pc(this);
282   if (original_pc != NULL) {
283     assert(original_pc == _pc, "expected original PC to be stored before patching");
284     _deopt_state = is_deoptimized;
285     // leave _pc as is
286   } else {
287     _deopt_state = not_deoptimized;
288     _pc = pc;
289   }
290 }
291 
is_interpreted_frame() const292 bool frame::is_interpreted_frame() const  {
293   return Interpreter::contains(pc());
294 }
295 
frame_size(RegisterMap * map) const296 int frame::frame_size(RegisterMap* map) const {
297   frame sender = this->sender(map);
298   return sender.sp() - sp();
299 }
300 
entry_frame_argument_at(int offset) const301 intptr_t* frame::entry_frame_argument_at(int offset) const {
302   // convert offset to index to deal with tsi
303   int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
304   // Entry frame's arguments are always in relation to unextended_sp()
305   return &unextended_sp()[index];
306 }
307 
308 // sender_sp
309 
interpreter_frame_sender_sp() const310 intptr_t* frame::interpreter_frame_sender_sp() const {
311   assert(is_interpreted_frame(), "interpreted frame expected");
312   return (intptr_t*) at(interpreter_frame_sender_sp_offset);
313 }
314 
set_interpreter_frame_sender_sp(intptr_t * sender_sp)315 void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) {
316   assert(is_interpreted_frame(), "interpreted frame expected");
317   ptr_at_put(interpreter_frame_sender_sp_offset, (intptr_t) sender_sp);
318 }
319 
320 
321 // monitor elements
322 
interpreter_frame_monitor_begin() const323 BasicObjectLock* frame::interpreter_frame_monitor_begin() const {
324   return (BasicObjectLock*) addr_at(interpreter_frame_monitor_block_bottom_offset);
325 }
326 
interpreter_frame_monitor_end() const327 BasicObjectLock* frame::interpreter_frame_monitor_end() const {
328   BasicObjectLock* result = (BasicObjectLock*) *addr_at(interpreter_frame_monitor_block_top_offset);
329   // make sure the pointer points inside the frame
330   assert(sp() <= (intptr_t*) result, "monitor end should be above the stack pointer");
331   assert((intptr_t*) result < fp(),  "monitor end should be strictly below the frame pointer");
332   return result;
333 }
334 
interpreter_frame_set_monitor_end(BasicObjectLock * value)335 void frame::interpreter_frame_set_monitor_end(BasicObjectLock* value) {
336   *((BasicObjectLock**)addr_at(interpreter_frame_monitor_block_top_offset)) = value;
337 }
338 
339 // Used by template based interpreter deoptimization
interpreter_frame_set_last_sp(intptr_t * sp)340 void frame::interpreter_frame_set_last_sp(intptr_t* sp) {
341     *((intptr_t**)addr_at(interpreter_frame_last_sp_offset)) = sp;
342 }
343 
sender_for_entry_frame(RegisterMap * map) const344 frame frame::sender_for_entry_frame(RegisterMap* map) const {
345   assert(map != NULL, "map must be set");
346   // Java frame called from C; skip all C frames and return top C
347   // frame of that chunk as the sender
348   JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor();
349   assert(!entry_frame_is_first(), "next Java fp must be non zero");
350   assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack");
351   // Since we are walking the stack now this nested anchor is obviously walkable
352   // even if it wasn't when it was stacked.
353   if (!jfa->walkable()) {
354     // Capture _last_Java_pc (if needed) and mark anchor walkable.
355     jfa->capture_last_Java_pc();
356   }
357   map->clear();
358   assert(map->include_argument_oops(), "should be set by clear");
359   vmassert(jfa->last_Java_pc() != NULL, "not walkable");
360   frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc());
361   return fr;
362 }
363 
364 //------------------------------------------------------------------------------
365 // frame::verify_deopt_original_pc
366 //
367 // Verifies the calculated original PC of a deoptimization PC for the
368 // given unextended SP.
369 #ifdef ASSERT
verify_deopt_original_pc(CompiledMethod * nm,intptr_t * unextended_sp)370 void frame::verify_deopt_original_pc(CompiledMethod* nm, intptr_t* unextended_sp) {
371   frame fr;
372 
373   // This is ugly but it's better than to change {get,set}_original_pc
374   // to take an SP value as argument.  And it's only a debugging
375   // method anyway.
376   fr._unextended_sp = unextended_sp;
377 
378   address original_pc = nm->get_original_pc(&fr);
379   assert(nm->insts_contains_inclusive(original_pc),
380          "original PC must be in the main code section of the the compiled method (or must be immediately following it)");
381 }
382 #endif
383 
384 //------------------------------------------------------------------------------
385 // frame::adjust_unextended_sp
386 #ifdef ASSERT
adjust_unextended_sp()387 void frame::adjust_unextended_sp() {
388   // On x86, sites calling method handle intrinsics and lambda forms are treated
389   // as any other call site. Therefore, no special action is needed when we are
390   // returning to any of these call sites.
391 
392   if (_cb != NULL) {
393     CompiledMethod* sender_cm = _cb->as_compiled_method_or_null();
394     if (sender_cm != NULL) {
395       // If the sender PC is a deoptimization point, get the original PC.
396       if (sender_cm->is_deopt_entry(_pc) ||
397           sender_cm->is_deopt_mh_entry(_pc)) {
398         verify_deopt_original_pc(sender_cm, _unextended_sp);
399       }
400     }
401   }
402 }
403 #endif
404 
405 //------------------------------------------------------------------------------
406 // frame::update_map_with_saved_link
update_map_with_saved_link(RegisterMap * map,intptr_t ** link_addr)407 void frame::update_map_with_saved_link(RegisterMap* map, intptr_t** link_addr) {
408   // The interpreter and compiler(s) always save EBP/RBP in a known
409   // location on entry. We must record where that location is
410   // so this if EBP/RBP was live on callout from c2 we can find
411   // the saved copy no matter what it called.
412 
413   // Since the interpreter always saves EBP/RBP if we record where it is then
414   // we don't have to always save EBP/RBP on entry and exit to c2 compiled
415   // code, on entry will be enough.
416   map->set_location(rbp->as_VMReg(), (address) link_addr);
417 #ifdef AMD64
418   // this is weird "H" ought to be at a higher address however the
419   // oopMaps seems to have the "H" regs at the same address and the
420   // vanilla register.
421   // XXXX make this go away
422   if (true) {
423     map->set_location(rbp->as_VMReg()->next(), (address) link_addr);
424   }
425 #endif // AMD64
426 }
427 
428 
429 //------------------------------------------------------------------------------
430 // frame::sender_for_interpreter_frame
sender_for_interpreter_frame(RegisterMap * map) const431 frame frame::sender_for_interpreter_frame(RegisterMap* map) const {
432   // SP is the raw SP from the sender after adapter or interpreter
433   // extension.
434   intptr_t* sender_sp = this->sender_sp();
435 
436   // This is the sp before any possible extension (adapter/locals).
437   intptr_t* unextended_sp = interpreter_frame_sender_sp();
438 
439 #if COMPILER2_OR_JVMCI
440   if (map->update_map()) {
441     update_map_with_saved_link(map, (intptr_t**) addr_at(link_offset));
442   }
443 #endif // COMPILER2_OR_JVMCI
444 
445   return frame(sender_sp, unextended_sp, link(), sender_pc());
446 }
447 
448 
449 //------------------------------------------------------------------------------
450 // frame::sender_for_compiled_frame
sender_for_compiled_frame(RegisterMap * map) const451 frame frame::sender_for_compiled_frame(RegisterMap* map) const {
452   assert(map != NULL, "map must be set");
453 
454   // frame owned by optimizing compiler
455   assert(_cb->frame_size() >= 0, "must have non-zero frame size");
456   intptr_t* sender_sp = unextended_sp() + _cb->frame_size();
457   intptr_t* unextended_sp = sender_sp;
458 
459   // On Intel the return_address is always the word on the stack
460   address sender_pc = (address) *(sender_sp-1);
461 
462   // This is the saved value of EBP which may or may not really be an FP.
463   // It is only an FP if the sender is an interpreter frame (or C1?).
464   intptr_t** saved_fp_addr = (intptr_t**) (sender_sp - frame::sender_sp_offset);
465 
466   if (map->update_map()) {
467     // Tell GC to use argument oopmaps for some runtime stubs that need it.
468     // For C1, the runtime stub might not have oop maps, so set this flag
469     // outside of update_register_map.
470     map->set_include_argument_oops(_cb->caller_must_gc_arguments(map->thread()));
471     if (_cb->oop_maps() != NULL) {
472       OopMapSet::update_register_map(this, map);
473     }
474 
475     // Since the prolog does the save and restore of EBP there is no oopmap
476     // for it so we must fill in its location as if there was an oopmap entry
477     // since if our caller was compiled code there could be live jvm state in it.
478     update_map_with_saved_link(map, saved_fp_addr);
479   }
480 
481   assert(sender_sp != sp(), "must have changed");
482   return frame(sender_sp, unextended_sp, *saved_fp_addr, sender_pc);
483 }
484 
485 
486 //------------------------------------------------------------------------------
487 // frame::sender
sender(RegisterMap * map) const488 frame frame::sender(RegisterMap* map) const {
489   // Default is we done have to follow them. The sender_for_xxx will
490   // update it accordingly
491   map->set_include_argument_oops(false);
492 
493   if (is_entry_frame())       return sender_for_entry_frame(map);
494   if (is_interpreted_frame()) return sender_for_interpreter_frame(map);
495   assert(_cb == CodeCache::find_blob(pc()),"Must be the same");
496 
497   if (_cb != NULL) {
498     return sender_for_compiled_frame(map);
499   }
500   // Must be native-compiled frame, i.e. the marshaling code for native
501   // methods that exists in the core system.
502   return frame(sender_sp(), link(), sender_pc());
503 }
504 
is_interpreted_frame_valid(JavaThread * thread) const505 bool frame::is_interpreted_frame_valid(JavaThread* thread) const {
506   assert(is_interpreted_frame(), "Not an interpreted frame");
507   // These are reasonable sanity checks
508   if (fp() == 0 || (intptr_t(fp()) & (wordSize-1)) != 0) {
509     return false;
510   }
511   if (sp() == 0 || (intptr_t(sp()) & (wordSize-1)) != 0) {
512     return false;
513   }
514   if (fp() + interpreter_frame_initial_sp_offset < sp()) {
515     return false;
516   }
517   // These are hacks to keep us out of trouble.
518   // The problem with these is that they mask other problems
519   if (fp() <= sp()) {        // this attempts to deal with unsigned comparison above
520     return false;
521   }
522 
523   // do some validation of frame elements
524   // first the method
525 
526   Method* m = *interpreter_frame_method_addr();
527 
528   // validate the method we'd find in this potential sender
529   if (!Method::is_valid_method(m)) return false;
530 
531   // stack frames shouldn't be much larger than max_stack elements
532   // this test requires the use the unextended_sp which is the sp as seen by
533   // the current frame, and not sp which is the "raw" pc which could point
534   // further because of local variables of the callee method inserted after
535   // method arguments
536   if (fp() - unextended_sp() > 1024 + m->max_stack()*Interpreter::stackElementSize) {
537     return false;
538   }
539 
540   // validate bci/bcp
541 
542   address bcp = interpreter_frame_bcp();
543   if (m->validate_bci_from_bcp(bcp) < 0) {
544     return false;
545   }
546 
547   // validate ConstantPoolCache*
548   ConstantPoolCache* cp = *interpreter_frame_cache_addr();
549   if (MetaspaceObj::is_valid(cp) == false) return false;
550 
551   // validate locals
552 
553   address locals =  (address) *interpreter_frame_locals_addr();
554 
555   if (locals > thread->stack_base() || locals < (address) fp()) return false;
556 
557   // We'd have to be pretty unlucky to be mislead at this point
558   return true;
559 }
560 
interpreter_frame_result(oop * oop_result,jvalue * value_result)561 BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) {
562   assert(is_interpreted_frame(), "interpreted frame expected");
563   Method* method = interpreter_frame_method();
564   BasicType type = method->result_type();
565 
566   intptr_t* tos_addr;
567   if (method->is_native()) {
568     // Prior to calling into the runtime to report the method_exit the possible
569     // return value is pushed to the native stack. If the result is a jfloat/jdouble
570     // then ST0 is saved before EAX/EDX. See the note in generate_native_result
571     tos_addr = (intptr_t*)sp();
572     if (type == T_FLOAT || type == T_DOUBLE) {
573     // QQQ seems like this code is equivalent on the two platforms
574 #ifdef AMD64
575       // This is times two because we do a push(ltos) after pushing XMM0
576       // and that takes two interpreter stack slots.
577       tos_addr += 2 * Interpreter::stackElementWords;
578 #else
579       tos_addr += 2;
580 #endif // AMD64
581     }
582   } else {
583     tos_addr = (intptr_t*)interpreter_frame_tos_address();
584   }
585 
586   switch (type) {
587     case T_OBJECT  :
588     case T_ARRAY   : {
589       oop obj;
590       if (method->is_native()) {
591         obj = cast_to_oop(at(interpreter_frame_oop_temp_offset));
592       } else {
593         oop* obj_p = (oop*)tos_addr;
594         obj = (obj_p == NULL) ? (oop)NULL : *obj_p;
595       }
596       assert(obj == NULL || Universe::heap()->is_in(obj), "sanity check");
597       *oop_result = obj;
598       break;
599     }
600     case T_BOOLEAN : value_result->z = *(jboolean*)tos_addr; break;
601     case T_BYTE    : value_result->b = *(jbyte*)tos_addr; break;
602     case T_CHAR    : value_result->c = *(jchar*)tos_addr; break;
603     case T_SHORT   : value_result->s = *(jshort*)tos_addr; break;
604     case T_INT     : value_result->i = *(jint*)tos_addr; break;
605     case T_LONG    : value_result->j = *(jlong*)tos_addr; break;
606     case T_FLOAT   : {
607 #ifdef AMD64
608         value_result->f = *(jfloat*)tos_addr;
609 #else
610       if (method->is_native()) {
611         jdouble d = *(jdouble*)tos_addr;  // Result was in ST0 so need to convert to jfloat
612         value_result->f = (jfloat)d;
613       } else {
614         value_result->f = *(jfloat*)tos_addr;
615       }
616 #endif // AMD64
617       break;
618     }
619     case T_DOUBLE  : value_result->d = *(jdouble*)tos_addr; break;
620     case T_VOID    : /* Nothing to do */ break;
621     default        : ShouldNotReachHere();
622   }
623 
624   return type;
625 }
626 
627 
interpreter_frame_tos_at(jint offset) const628 intptr_t* frame::interpreter_frame_tos_at(jint offset) const {
629   int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
630   return &interpreter_frame_tos_address()[index];
631 }
632 
633 #ifndef PRODUCT
634 
635 #define DESCRIBE_FP_OFFSET(name) \
636   values.describe(frame_no, fp() + frame::name##_offset, #name)
637 
describe_pd(FrameValues & values,int frame_no)638 void frame::describe_pd(FrameValues& values, int frame_no) {
639   if (is_interpreted_frame()) {
640     DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp);
641     DESCRIBE_FP_OFFSET(interpreter_frame_last_sp);
642     DESCRIBE_FP_OFFSET(interpreter_frame_method);
643     DESCRIBE_FP_OFFSET(interpreter_frame_mirror);
644     DESCRIBE_FP_OFFSET(interpreter_frame_mdp);
645     DESCRIBE_FP_OFFSET(interpreter_frame_cache);
646     DESCRIBE_FP_OFFSET(interpreter_frame_locals);
647     DESCRIBE_FP_OFFSET(interpreter_frame_bcp);
648     DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp);
649 #ifdef AMD64
650   } else if (is_entry_frame()) {
651     // This could be more descriptive if we use the enum in
652     // stubGenerator to map to real names but it's most important to
653     // claim these frame slots so the error checking works.
654     for (int i = 0; i < entry_frame_after_call_words; i++) {
655       values.describe(frame_no, fp() - i, err_msg("call_stub word fp - %d", i));
656     }
657 #endif // AMD64
658   }
659 }
660 #endif // !PRODUCT
661 
initial_deoptimization_info()662 intptr_t *frame::initial_deoptimization_info() {
663   // used to reset the saved FP
664   return fp();
665 }
666 
real_fp() const667 intptr_t* frame::real_fp() const {
668   if (_cb != NULL) {
669     // use the frame size if valid
670     int size = _cb->frame_size();
671     if (size > 0) {
672       return unextended_sp() + size;
673     }
674   }
675   // else rely on fp()
676   assert(! is_compiled_frame(), "unknown compiled frame size");
677   return fp();
678 }
679 
680 #ifndef PRODUCT
681 // This is a generic constructor which is only used by pns() in debug.cpp.
frame(void * sp,void * fp,void * pc)682 frame::frame(void* sp, void* fp, void* pc) {
683   init((intptr_t*)sp, (intptr_t*)fp, (address)pc);
684 }
685 
pd_ps()686 void frame::pd_ps() {}
687 #endif
688 
make_walkable(JavaThread * thread)689 void JavaFrameAnchor::make_walkable(JavaThread* thread) {
690   // last frame set?
691   if (last_Java_sp() == NULL) return;
692   // already walkable?
693   if (walkable()) return;
694   vmassert(Thread::current() == (Thread*)thread, "not current thread");
695   vmassert(last_Java_sp() != NULL, "not called from Java code?");
696   vmassert(last_Java_pc() == NULL, "already walkable");
697   capture_last_Java_pc();
698   vmassert(walkable(), "something went wrong");
699 }
700 
capture_last_Java_pc()701 void JavaFrameAnchor::capture_last_Java_pc() {
702   vmassert(_last_Java_sp != NULL, "no last frame set");
703   vmassert(_last_Java_pc == NULL, "already walkable");
704   _last_Java_pc = (address)_last_Java_sp[-1];
705 }
706