1 /*
2 * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "c1/c1_CFGPrinter.hpp"
27 #include "c1/c1_CodeStubs.hpp"
28 #include "c1/c1_Compilation.hpp"
29 #include "c1/c1_FrameMap.hpp"
30 #include "c1/c1_IR.hpp"
31 #include "c1/c1_LIRGenerator.hpp"
32 #include "c1/c1_LinearScan.hpp"
33 #include "c1/c1_ValueStack.hpp"
34 #include "code/vmreg.inline.hpp"
35 #include "runtime/timerTrace.hpp"
36 #include "utilities/bitMap.inline.hpp"
37
38 #ifndef PRODUCT
39
40 static LinearScanStatistic _stat_before_alloc;
41 static LinearScanStatistic _stat_after_asign;
42 static LinearScanStatistic _stat_final;
43
44 static LinearScanTimers _total_timer;
45
46 // helper macro for short definition of timer
47 #define TIME_LINEAR_SCAN(timer_name) TraceTime _block_timer("", _total_timer.timer(LinearScanTimers::timer_name), TimeLinearScan || TimeEachLinearScan, Verbose);
48
49 // helper macro for short definition of trace-output inside code
50 #define TRACE_LINEAR_SCAN(level, code) \
51 if (TraceLinearScanLevel >= level) { \
52 code; \
53 }
54
55 #else
56
57 #define TIME_LINEAR_SCAN(timer_name)
58 #define TRACE_LINEAR_SCAN(level, code)
59
60 #endif
61
62 // Map BasicType to spill size in 32-bit words, matching VMReg's notion of words
63 #ifdef _LP64
64 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 0, 2, 1, 2, 1, -1};
65 #else
66 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, -1, 1, 1, -1};
67 #endif
68
69
70 // Implementation of LinearScan
71
LinearScan(IR * ir,LIRGenerator * gen,FrameMap * frame_map)72 LinearScan::LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map)
73 : _compilation(ir->compilation())
74 , _ir(ir)
75 , _gen(gen)
76 , _frame_map(frame_map)
77 , _num_virtual_regs(gen->max_virtual_register_number())
78 , _has_fpu_registers(false)
79 , _num_calls(-1)
80 , _max_spills(0)
81 , _unused_spill_slot(-1)
82 , _intervals(0) // initialized later with correct length
83 , _new_intervals_from_allocation(NULL)
84 , _sorted_intervals(NULL)
85 , _needs_full_resort(false)
86 , _lir_ops(0) // initialized later with correct length
87 , _block_of_op(0) // initialized later with correct length
88 , _has_info(0)
89 , _has_call(0)
90 , _scope_value_cache(0) // initialized later with correct length
91 , _interval_in_loop(0) // initialized later with correct length
92 , _cached_blocks(*ir->linear_scan_order())
93 #ifdef X86
94 , _fpu_stack_allocator(NULL)
95 #endif
96 {
97 assert(this->ir() != NULL, "check if valid");
98 assert(this->compilation() != NULL, "check if valid");
99 assert(this->gen() != NULL, "check if valid");
100 assert(this->frame_map() != NULL, "check if valid");
101 }
102
103
104 // ********** functions for converting LIR-Operands to register numbers
105 //
106 // Emulate a flat register file comprising physical integer registers,
107 // physical floating-point registers and virtual registers, in that order.
108 // Virtual registers already have appropriate numbers, since V0 is
109 // the number of physical registers.
110 // Returns -1 for hi word if opr is a single word operand.
111 //
112 // Note: the inverse operation (calculating an operand for register numbers)
113 // is done in calc_operand_for_interval()
114
reg_num(LIR_Opr opr)115 int LinearScan::reg_num(LIR_Opr opr) {
116 assert(opr->is_register(), "should not call this otherwise");
117
118 if (opr->is_virtual_register()) {
119 assert(opr->vreg_number() >= nof_regs, "found a virtual register with a fixed-register number");
120 return opr->vreg_number();
121 } else if (opr->is_single_cpu()) {
122 return opr->cpu_regnr();
123 } else if (opr->is_double_cpu()) {
124 return opr->cpu_regnrLo();
125 #ifdef X86
126 } else if (opr->is_single_xmm()) {
127 return opr->fpu_regnr() + pd_first_xmm_reg;
128 } else if (opr->is_double_xmm()) {
129 return opr->fpu_regnrLo() + pd_first_xmm_reg;
130 #endif
131 } else if (opr->is_single_fpu()) {
132 return opr->fpu_regnr() + pd_first_fpu_reg;
133 } else if (opr->is_double_fpu()) {
134 return opr->fpu_regnrLo() + pd_first_fpu_reg;
135 } else {
136 ShouldNotReachHere();
137 return -1;
138 }
139 }
140
reg_numHi(LIR_Opr opr)141 int LinearScan::reg_numHi(LIR_Opr opr) {
142 assert(opr->is_register(), "should not call this otherwise");
143
144 if (opr->is_virtual_register()) {
145 return -1;
146 } else if (opr->is_single_cpu()) {
147 return -1;
148 } else if (opr->is_double_cpu()) {
149 return opr->cpu_regnrHi();
150 #ifdef X86
151 } else if (opr->is_single_xmm()) {
152 return -1;
153 } else if (opr->is_double_xmm()) {
154 return -1;
155 #endif
156 } else if (opr->is_single_fpu()) {
157 return -1;
158 } else if (opr->is_double_fpu()) {
159 return opr->fpu_regnrHi() + pd_first_fpu_reg;
160 } else {
161 ShouldNotReachHere();
162 return -1;
163 }
164 }
165
166
167 // ********** functions for classification of intervals
168
is_precolored_interval(const Interval * i)169 bool LinearScan::is_precolored_interval(const Interval* i) {
170 return i->reg_num() < LinearScan::nof_regs;
171 }
172
is_virtual_interval(const Interval * i)173 bool LinearScan::is_virtual_interval(const Interval* i) {
174 return i->reg_num() >= LIR_OprDesc::vreg_base;
175 }
176
is_precolored_cpu_interval(const Interval * i)177 bool LinearScan::is_precolored_cpu_interval(const Interval* i) {
178 return i->reg_num() < LinearScan::nof_cpu_regs;
179 }
180
is_virtual_cpu_interval(const Interval * i)181 bool LinearScan::is_virtual_cpu_interval(const Interval* i) {
182 #if defined(__SOFTFP__) || defined(E500V2)
183 return i->reg_num() >= LIR_OprDesc::vreg_base;
184 #else
185 return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() != T_FLOAT && i->type() != T_DOUBLE);
186 #endif // __SOFTFP__ or E500V2
187 }
188
is_precolored_fpu_interval(const Interval * i)189 bool LinearScan::is_precolored_fpu_interval(const Interval* i) {
190 return i->reg_num() >= LinearScan::nof_cpu_regs && i->reg_num() < LinearScan::nof_regs;
191 }
192
is_virtual_fpu_interval(const Interval * i)193 bool LinearScan::is_virtual_fpu_interval(const Interval* i) {
194 #if defined(__SOFTFP__) || defined(E500V2)
195 return false;
196 #else
197 return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() == T_FLOAT || i->type() == T_DOUBLE);
198 #endif // __SOFTFP__ or E500V2
199 }
200
is_in_fpu_register(const Interval * i)201 bool LinearScan::is_in_fpu_register(const Interval* i) {
202 // fixed intervals not needed for FPU stack allocation
203 return i->reg_num() >= nof_regs && pd_first_fpu_reg <= i->assigned_reg() && i->assigned_reg() <= pd_last_fpu_reg;
204 }
205
is_oop_interval(const Interval * i)206 bool LinearScan::is_oop_interval(const Interval* i) {
207 // fixed intervals never contain oops
208 return i->reg_num() >= nof_regs && i->type() == T_OBJECT;
209 }
210
211
212 // ********** General helper functions
213
214 // compute next unused stack index that can be used for spilling
allocate_spill_slot(bool double_word)215 int LinearScan::allocate_spill_slot(bool double_word) {
216 int spill_slot;
217 if (double_word) {
218 if ((_max_spills & 1) == 1) {
219 // alignment of double-word values
220 // the hole because of the alignment is filled with the next single-word value
221 assert(_unused_spill_slot == -1, "wasting a spill slot");
222 _unused_spill_slot = _max_spills;
223 _max_spills++;
224 }
225 spill_slot = _max_spills;
226 _max_spills += 2;
227
228 } else if (_unused_spill_slot != -1) {
229 // re-use hole that was the result of a previous double-word alignment
230 spill_slot = _unused_spill_slot;
231 _unused_spill_slot = -1;
232
233 } else {
234 spill_slot = _max_spills;
235 _max_spills++;
236 }
237
238 int result = spill_slot + LinearScan::nof_regs + frame_map()->argcount();
239
240 // the class OopMapValue uses only 11 bits for storing the name of the
241 // oop location. So a stack slot bigger than 2^11 leads to an overflow
242 // that is not reported in product builds. Prevent this by checking the
243 // spill slot here (altough this value and the later used location name
244 // are slightly different)
245 if (result > 2000) {
246 bailout("too many stack slots used");
247 }
248
249 return result;
250 }
251
assign_spill_slot(Interval * it)252 void LinearScan::assign_spill_slot(Interval* it) {
253 // assign the canonical spill slot of the parent (if a part of the interval
254 // is already spilled) or allocate a new spill slot
255 if (it->canonical_spill_slot() >= 0) {
256 it->assign_reg(it->canonical_spill_slot());
257 } else {
258 int spill = allocate_spill_slot(type2spill_size[it->type()] == 2);
259 it->set_canonical_spill_slot(spill);
260 it->assign_reg(spill);
261 }
262 }
263
propagate_spill_slots()264 void LinearScan::propagate_spill_slots() {
265 if (!frame_map()->finalize_frame(max_spills())) {
266 bailout("frame too large");
267 }
268 }
269
270 // create a new interval with a predefined reg_num
271 // (only used for parent intervals that are created during the building phase)
create_interval(int reg_num)272 Interval* LinearScan::create_interval(int reg_num) {
273 assert(_intervals.at(reg_num) == NULL, "overwriting exisiting interval");
274
275 Interval* interval = new Interval(reg_num);
276 _intervals.at_put(reg_num, interval);
277
278 // assign register number for precolored intervals
279 if (reg_num < LIR_OprDesc::vreg_base) {
280 interval->assign_reg(reg_num);
281 }
282 return interval;
283 }
284
285 // assign a new reg_num to the interval and append it to the list of intervals
286 // (only used for child intervals that are created during register allocation)
append_interval(Interval * it)287 void LinearScan::append_interval(Interval* it) {
288 it->set_reg_num(_intervals.length());
289 _intervals.append(it);
290 IntervalList* new_intervals = _new_intervals_from_allocation;
291 if (new_intervals == NULL) {
292 new_intervals = _new_intervals_from_allocation = new IntervalList();
293 }
294 new_intervals->append(it);
295 }
296
297 // copy the vreg-flags if an interval is split
copy_register_flags(Interval * from,Interval * to)298 void LinearScan::copy_register_flags(Interval* from, Interval* to) {
299 if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::byte_reg)) {
300 gen()->set_vreg_flag(to->reg_num(), LIRGenerator::byte_reg);
301 }
302 if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::callee_saved)) {
303 gen()->set_vreg_flag(to->reg_num(), LIRGenerator::callee_saved);
304 }
305
306 // Note: do not copy the must_start_in_memory flag because it is not necessary for child
307 // intervals (only the very beginning of the interval must be in memory)
308 }
309
310
311 // ********** spill move optimization
312 // eliminate moves from register to stack if stack slot is known to be correct
313
314 // called during building of intervals
change_spill_definition_pos(Interval * interval,int def_pos)315 void LinearScan::change_spill_definition_pos(Interval* interval, int def_pos) {
316 assert(interval->is_split_parent(), "can only be called for split parents");
317
318 switch (interval->spill_state()) {
319 case noDefinitionFound:
320 assert(interval->spill_definition_pos() == -1, "must no be set before");
321 interval->set_spill_definition_pos(def_pos);
322 interval->set_spill_state(oneDefinitionFound);
323 break;
324
325 case oneDefinitionFound:
326 assert(def_pos <= interval->spill_definition_pos(), "positions are processed in reverse order when intervals are created");
327 if (def_pos < interval->spill_definition_pos() - 2) {
328 // second definition found, so no spill optimization possible for this interval
329 interval->set_spill_state(noOptimization);
330 } else {
331 // two consecutive definitions (because of two-operand LIR form)
332 assert(block_of_op_with_id(def_pos) == block_of_op_with_id(interval->spill_definition_pos()), "block must be equal");
333 }
334 break;
335
336 case noOptimization:
337 // nothing to do
338 break;
339
340 default:
341 assert(false, "other states not allowed at this time");
342 }
343 }
344
345 // called during register allocation
change_spill_state(Interval * interval,int spill_pos)346 void LinearScan::change_spill_state(Interval* interval, int spill_pos) {
347 switch (interval->spill_state()) {
348 case oneDefinitionFound: {
349 int def_loop_depth = block_of_op_with_id(interval->spill_definition_pos())->loop_depth();
350 int spill_loop_depth = block_of_op_with_id(spill_pos)->loop_depth();
351
352 if (def_loop_depth < spill_loop_depth) {
353 // the loop depth of the spilling position is higher then the loop depth
354 // at the definition of the interval -> move write to memory out of loop
355 // by storing at definitin of the interval
356 interval->set_spill_state(storeAtDefinition);
357 } else {
358 // the interval is currently spilled only once, so for now there is no
359 // reason to store the interval at the definition
360 interval->set_spill_state(oneMoveInserted);
361 }
362 break;
363 }
364
365 case oneMoveInserted: {
366 // the interval is spilled more then once, so it is better to store it to
367 // memory at the definition
368 interval->set_spill_state(storeAtDefinition);
369 break;
370 }
371
372 case storeAtDefinition:
373 case startInMemory:
374 case noOptimization:
375 case noDefinitionFound:
376 // nothing to do
377 break;
378
379 default:
380 assert(false, "other states not allowed at this time");
381 }
382 }
383
384
must_store_at_definition(const Interval * i)385 bool LinearScan::must_store_at_definition(const Interval* i) {
386 return i->is_split_parent() && i->spill_state() == storeAtDefinition;
387 }
388
389 // called once before asignment of register numbers
eliminate_spill_moves()390 void LinearScan::eliminate_spill_moves() {
391 TIME_LINEAR_SCAN(timer_eliminate_spill_moves);
392 TRACE_LINEAR_SCAN(3, tty->print_cr("***** Eliminating unnecessary spill moves"));
393
394 // collect all intervals that must be stored after their definion.
395 // the list is sorted by Interval::spill_definition_pos
396 Interval* interval;
397 Interval* temp_list;
398 create_unhandled_lists(&interval, &temp_list, must_store_at_definition, NULL);
399
400 #ifdef ASSERT
401 Interval* prev = NULL;
402 Interval* temp = interval;
403 while (temp != Interval::end()) {
404 assert(temp->spill_definition_pos() > 0, "invalid spill definition pos");
405 if (prev != NULL) {
406 assert(temp->from() >= prev->from(), "intervals not sorted");
407 assert(temp->spill_definition_pos() >= prev->spill_definition_pos(), "when intervals are sorted by from, then they must also be sorted by spill_definition_pos");
408 }
409
410 assert(temp->canonical_spill_slot() >= LinearScan::nof_regs, "interval has no spill slot assigned");
411 assert(temp->spill_definition_pos() >= temp->from(), "invalid order");
412 assert(temp->spill_definition_pos() <= temp->from() + 2, "only intervals defined once at their start-pos can be optimized");
413
414 TRACE_LINEAR_SCAN(4, tty->print_cr("interval %d (from %d to %d) must be stored at %d", temp->reg_num(), temp->from(), temp->to(), temp->spill_definition_pos()));
415
416 temp = temp->next();
417 }
418 #endif
419
420 LIR_InsertionBuffer insertion_buffer;
421 int num_blocks = block_count();
422 for (int i = 0; i < num_blocks; i++) {
423 BlockBegin* block = block_at(i);
424 LIR_OpList* instructions = block->lir()->instructions_list();
425 int num_inst = instructions->length();
426 bool has_new = false;
427
428 // iterate all instructions of the block. skip the first because it is always a label
429 for (int j = 1; j < num_inst; j++) {
430 LIR_Op* op = instructions->at(j);
431 int op_id = op->id();
432
433 if (op_id == -1) {
434 // remove move from register to stack if the stack slot is guaranteed to be correct.
435 // only moves that have been inserted by LinearScan can be removed.
436 assert(op->code() == lir_move, "only moves can have a op_id of -1");
437 assert(op->as_Op1() != NULL, "move must be LIR_Op1");
438 assert(op->as_Op1()->result_opr()->is_virtual(), "LinearScan inserts only moves to virtual registers");
439
440 LIR_Op1* op1 = (LIR_Op1*)op;
441 Interval* interval = interval_at(op1->result_opr()->vreg_number());
442
443 if (interval->assigned_reg() >= LinearScan::nof_regs && interval->always_in_memory()) {
444 // move target is a stack slot that is always correct, so eliminate instruction
445 TRACE_LINEAR_SCAN(4, tty->print_cr("eliminating move from interval %d to %d", op1->in_opr()->vreg_number(), op1->result_opr()->vreg_number()));
446 instructions->at_put(j, NULL); // NULL-instructions are deleted by assign_reg_num
447 }
448
449 } else {
450 // insert move from register to stack just after the beginning of the interval
451 assert(interval == Interval::end() || interval->spill_definition_pos() >= op_id, "invalid order");
452 assert(interval == Interval::end() || (interval->is_split_parent() && interval->spill_state() == storeAtDefinition), "invalid interval");
453
454 while (interval != Interval::end() && interval->spill_definition_pos() == op_id) {
455 if (!has_new) {
456 // prepare insertion buffer (appended when all instructions of the block are processed)
457 insertion_buffer.init(block->lir());
458 has_new = true;
459 }
460
461 LIR_Opr from_opr = operand_for_interval(interval);
462 LIR_Opr to_opr = canonical_spill_opr(interval);
463 assert(from_opr->is_fixed_cpu() || from_opr->is_fixed_fpu(), "from operand must be a register");
464 assert(to_opr->is_stack(), "to operand must be a stack slot");
465
466 insertion_buffer.move(j, from_opr, to_opr);
467 TRACE_LINEAR_SCAN(4, tty->print_cr("inserting move after definition of interval %d to stack slot %d at op_id %d", interval->reg_num(), interval->canonical_spill_slot() - LinearScan::nof_regs, op_id));
468
469 interval = interval->next();
470 }
471 }
472 } // end of instruction iteration
473
474 if (has_new) {
475 block->lir()->append(&insertion_buffer);
476 }
477 } // end of block iteration
478
479 assert(interval == Interval::end(), "missed an interval");
480 }
481
482
483 // ********** Phase 1: number all instructions in all blocks
484 // Compute depth-first and linear scan block orders, and number LIR_Op nodes for linear scan.
485
number_instructions()486 void LinearScan::number_instructions() {
487 {
488 // dummy-timer to measure the cost of the timer itself
489 // (this time is then subtracted from all other timers to get the real value)
490 TIME_LINEAR_SCAN(timer_do_nothing);
491 }
492 TIME_LINEAR_SCAN(timer_number_instructions);
493
494 // Assign IDs to LIR nodes and build a mapping, lir_ops, from ID to LIR_Op node.
495 int num_blocks = block_count();
496 int num_instructions = 0;
497 int i;
498 for (i = 0; i < num_blocks; i++) {
499 num_instructions += block_at(i)->lir()->instructions_list()->length();
500 }
501
502 // initialize with correct length
503 _lir_ops = LIR_OpArray(num_instructions, num_instructions, NULL);
504 _block_of_op = BlockBeginArray(num_instructions, num_instructions, NULL);
505
506 int op_id = 0;
507 int idx = 0;
508
509 for (i = 0; i < num_blocks; i++) {
510 BlockBegin* block = block_at(i);
511 block->set_first_lir_instruction_id(op_id);
512 LIR_OpList* instructions = block->lir()->instructions_list();
513
514 int num_inst = instructions->length();
515 for (int j = 0; j < num_inst; j++) {
516 LIR_Op* op = instructions->at(j);
517 op->set_id(op_id);
518
519 _lir_ops.at_put(idx, op);
520 _block_of_op.at_put(idx, block);
521 assert(lir_op_with_id(op_id) == op, "must match");
522
523 idx++;
524 op_id += 2; // numbering of lir_ops by two
525 }
526 block->set_last_lir_instruction_id(op_id - 2);
527 }
528 assert(idx == num_instructions, "must match");
529 assert(idx * 2 == op_id, "must match");
530
531 _has_call.initialize(num_instructions);
532 _has_info.initialize(num_instructions);
533 }
534
535
536 // ********** Phase 2: compute local live sets separately for each block
537 // (sets live_gen and live_kill for each block)
538
set_live_gen_kill(Value value,LIR_Op * op,BitMap & live_gen,BitMap & live_kill)539 void LinearScan::set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill) {
540 LIR_Opr opr = value->operand();
541 Constant* con = value->as_Constant();
542
543 // check some asumptions about debug information
544 assert(!value->type()->is_illegal(), "if this local is used by the interpreter it shouldn't be of indeterminate type");
545 assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands");
546 assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
547
548 if ((con == NULL || con->is_pinned()) && opr->is_register()) {
549 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
550 int reg = opr->vreg_number();
551 if (!live_kill.at(reg)) {
552 live_gen.set_bit(reg);
553 TRACE_LINEAR_SCAN(4, tty->print_cr(" Setting live_gen for value %c%d, LIR op_id %d, register number %d", value->type()->tchar(), value->id(), op->id(), reg));
554 }
555 }
556 }
557
558
compute_local_live_sets()559 void LinearScan::compute_local_live_sets() {
560 TIME_LINEAR_SCAN(timer_compute_local_live_sets);
561
562 int num_blocks = block_count();
563 int live_size = live_set_size();
564 bool local_has_fpu_registers = false;
565 int local_num_calls = 0;
566 LIR_OpVisitState visitor;
567
568 BitMap2D local_interval_in_loop = BitMap2D(_num_virtual_regs, num_loops());
569
570 // iterate all blocks
571 for (int i = 0; i < num_blocks; i++) {
572 BlockBegin* block = block_at(i);
573
574 ResourceBitMap live_gen(live_size);
575 ResourceBitMap live_kill(live_size);
576
577 if (block->is_set(BlockBegin::exception_entry_flag)) {
578 // Phi functions at the begin of an exception handler are
579 // implicitly defined (= killed) at the beginning of the block.
580 for_each_phi_fun(block, phi,
581 if (!phi->is_illegal()) { live_kill.set_bit(phi->operand()->vreg_number()); }
582 );
583 }
584
585 LIR_OpList* instructions = block->lir()->instructions_list();
586 int num_inst = instructions->length();
587
588 // iterate all instructions of the block. skip the first because it is always a label
589 assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
590 for (int j = 1; j < num_inst; j++) {
591 LIR_Op* op = instructions->at(j);
592
593 // visit operation to collect all operands
594 visitor.visit(op);
595
596 if (visitor.has_call()) {
597 _has_call.set_bit(op->id() >> 1);
598 local_num_calls++;
599 }
600 if (visitor.info_count() > 0) {
601 _has_info.set_bit(op->id() >> 1);
602 }
603
604 // iterate input operands of instruction
605 int k, n, reg;
606 n = visitor.opr_count(LIR_OpVisitState::inputMode);
607 for (k = 0; k < n; k++) {
608 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
609 assert(opr->is_register(), "visitor should only return register operands");
610
611 if (opr->is_virtual_register()) {
612 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
613 reg = opr->vreg_number();
614 if (!live_kill.at(reg)) {
615 live_gen.set_bit(reg);
616 TRACE_LINEAR_SCAN(4, tty->print_cr(" Setting live_gen for register %d at instruction %d", reg, op->id()));
617 }
618 if (block->loop_index() >= 0) {
619 local_interval_in_loop.set_bit(reg, block->loop_index());
620 }
621 local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
622 }
623
624 #ifdef ASSERT
625 // fixed intervals are never live at block boundaries, so
626 // they need not be processed in live sets.
627 // this is checked by these assertions to be sure about it.
628 // the entry block may have incoming values in registers, which is ok.
629 if (!opr->is_virtual_register() && block != ir()->start()) {
630 reg = reg_num(opr);
631 if (is_processed_reg_num(reg)) {
632 assert(live_kill.at(reg), "using fixed register that is not defined in this block");
633 }
634 reg = reg_numHi(opr);
635 if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
636 assert(live_kill.at(reg), "using fixed register that is not defined in this block");
637 }
638 }
639 #endif
640 }
641
642 // Add uses of live locals from interpreter's point of view for proper debug information generation
643 n = visitor.info_count();
644 for (k = 0; k < n; k++) {
645 CodeEmitInfo* info = visitor.info_at(k);
646 ValueStack* stack = info->stack();
647 for_each_state_value(stack, value,
648 set_live_gen_kill(value, op, live_gen, live_kill);
649 local_has_fpu_registers = local_has_fpu_registers || value->type()->is_float_kind();
650 );
651 }
652
653 // iterate temp operands of instruction
654 n = visitor.opr_count(LIR_OpVisitState::tempMode);
655 for (k = 0; k < n; k++) {
656 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
657 assert(opr->is_register(), "visitor should only return register operands");
658
659 if (opr->is_virtual_register()) {
660 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
661 reg = opr->vreg_number();
662 live_kill.set_bit(reg);
663 if (block->loop_index() >= 0) {
664 local_interval_in_loop.set_bit(reg, block->loop_index());
665 }
666 local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
667 }
668
669 #ifdef ASSERT
670 // fixed intervals are never live at block boundaries, so
671 // they need not be processed in live sets
672 // process them only in debug mode so that this can be checked
673 if (!opr->is_virtual_register()) {
674 reg = reg_num(opr);
675 if (is_processed_reg_num(reg)) {
676 live_kill.set_bit(reg_num(opr));
677 }
678 reg = reg_numHi(opr);
679 if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
680 live_kill.set_bit(reg);
681 }
682 }
683 #endif
684 }
685
686 // iterate output operands of instruction
687 n = visitor.opr_count(LIR_OpVisitState::outputMode);
688 for (k = 0; k < n; k++) {
689 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
690 assert(opr->is_register(), "visitor should only return register operands");
691
692 if (opr->is_virtual_register()) {
693 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
694 reg = opr->vreg_number();
695 live_kill.set_bit(reg);
696 if (block->loop_index() >= 0) {
697 local_interval_in_loop.set_bit(reg, block->loop_index());
698 }
699 local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
700 }
701
702 #ifdef ASSERT
703 // fixed intervals are never live at block boundaries, so
704 // they need not be processed in live sets
705 // process them only in debug mode so that this can be checked
706 if (!opr->is_virtual_register()) {
707 reg = reg_num(opr);
708 if (is_processed_reg_num(reg)) {
709 live_kill.set_bit(reg_num(opr));
710 }
711 reg = reg_numHi(opr);
712 if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
713 live_kill.set_bit(reg);
714 }
715 }
716 #endif
717 }
718 } // end of instruction iteration
719
720 block->set_live_gen (live_gen);
721 block->set_live_kill(live_kill);
722 block->set_live_in (ResourceBitMap(live_size));
723 block->set_live_out (ResourceBitMap(live_size));
724
725 TRACE_LINEAR_SCAN(4, tty->print("live_gen B%d ", block->block_id()); print_bitmap(block->live_gen()));
726 TRACE_LINEAR_SCAN(4, tty->print("live_kill B%d ", block->block_id()); print_bitmap(block->live_kill()));
727 } // end of block iteration
728
729 // propagate local calculated information into LinearScan object
730 _has_fpu_registers = local_has_fpu_registers;
731 compilation()->set_has_fpu_code(local_has_fpu_registers);
732
733 _num_calls = local_num_calls;
734 _interval_in_loop = local_interval_in_loop;
735 }
736
737
738 // ********** Phase 3: perform a backward dataflow analysis to compute global live sets
739 // (sets live_in and live_out for each block)
740
compute_global_live_sets()741 void LinearScan::compute_global_live_sets() {
742 TIME_LINEAR_SCAN(timer_compute_global_live_sets);
743
744 int num_blocks = block_count();
745 bool change_occurred;
746 bool change_occurred_in_block;
747 int iteration_count = 0;
748 ResourceBitMap live_out(live_set_size()); // scratch set for calculations
749
750 // Perform a backward dataflow analysis to compute live_out and live_in for each block.
751 // The loop is executed until a fixpoint is reached (no changes in an iteration)
752 // Exception handlers must be processed because not all live values are
753 // present in the state array, e.g. because of global value numbering
754 do {
755 change_occurred = false;
756
757 // iterate all blocks in reverse order
758 for (int i = num_blocks - 1; i >= 0; i--) {
759 BlockBegin* block = block_at(i);
760
761 change_occurred_in_block = false;
762
763 // live_out(block) is the union of live_in(sux), for successors sux of block
764 int n = block->number_of_sux();
765 int e = block->number_of_exception_handlers();
766 if (n + e > 0) {
767 // block has successors
768 if (n > 0) {
769 live_out.set_from(block->sux_at(0)->live_in());
770 for (int j = 1; j < n; j++) {
771 live_out.set_union(block->sux_at(j)->live_in());
772 }
773 } else {
774 live_out.clear();
775 }
776 for (int j = 0; j < e; j++) {
777 live_out.set_union(block->exception_handler_at(j)->live_in());
778 }
779
780 if (!block->live_out().is_same(live_out)) {
781 // A change occurred. Swap the old and new live out sets to avoid copying.
782 ResourceBitMap temp = block->live_out();
783 block->set_live_out(live_out);
784 live_out = temp;
785
786 change_occurred = true;
787 change_occurred_in_block = true;
788 }
789 }
790
791 if (iteration_count == 0 || change_occurred_in_block) {
792 // live_in(block) is the union of live_gen(block) with (live_out(block) & !live_kill(block))
793 // note: live_in has to be computed only in first iteration or if live_out has changed!
794 ResourceBitMap live_in = block->live_in();
795 live_in.set_from(block->live_out());
796 live_in.set_difference(block->live_kill());
797 live_in.set_union(block->live_gen());
798 }
799
800 #ifndef PRODUCT
801 if (TraceLinearScanLevel >= 4) {
802 char c = ' ';
803 if (iteration_count == 0 || change_occurred_in_block) {
804 c = '*';
805 }
806 tty->print("(%d) live_in%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_in());
807 tty->print("(%d) live_out%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_out());
808 }
809 #endif
810 }
811 iteration_count++;
812
813 if (change_occurred && iteration_count > 50) {
814 BAILOUT("too many iterations in compute_global_live_sets");
815 }
816 } while (change_occurred);
817
818
819 #ifdef ASSERT
820 // check that fixed intervals are not live at block boundaries
821 // (live set must be empty at fixed intervals)
822 for (int i = 0; i < num_blocks; i++) {
823 BlockBegin* block = block_at(i);
824 for (int j = 0; j < LIR_OprDesc::vreg_base; j++) {
825 assert(block->live_in().at(j) == false, "live_in set of fixed register must be empty");
826 assert(block->live_out().at(j) == false, "live_out set of fixed register must be empty");
827 assert(block->live_gen().at(j) == false, "live_gen set of fixed register must be empty");
828 }
829 }
830 #endif
831
832 // check that the live_in set of the first block is empty
833 ResourceBitMap live_in_args(ir()->start()->live_in().size());
834 if (!ir()->start()->live_in().is_same(live_in_args)) {
835 #ifdef ASSERT
836 tty->print_cr("Error: live_in set of first block must be empty (when this fails, virtual registers are used before they are defined)");
837 tty->print_cr("affected registers:");
838 print_bitmap(ir()->start()->live_in());
839
840 // print some additional information to simplify debugging
841 for (unsigned int i = 0; i < ir()->start()->live_in().size(); i++) {
842 if (ir()->start()->live_in().at(i)) {
843 Instruction* instr = gen()->instruction_for_vreg(i);
844 tty->print_cr("* vreg %d (HIR instruction %c%d)", i, instr == NULL ? ' ' : instr->type()->tchar(), instr == NULL ? 0 : instr->id());
845
846 for (int j = 0; j < num_blocks; j++) {
847 BlockBegin* block = block_at(j);
848 if (block->live_gen().at(i)) {
849 tty->print_cr(" used in block B%d", block->block_id());
850 }
851 if (block->live_kill().at(i)) {
852 tty->print_cr(" defined in block B%d", block->block_id());
853 }
854 }
855 }
856 }
857
858 #endif
859 // when this fails, virtual registers are used before they are defined.
860 assert(false, "live_in set of first block must be empty");
861 // bailout of if this occurs in product mode.
862 bailout("live_in set of first block not empty");
863 }
864 }
865
866
867 // ********** Phase 4: build intervals
868 // (fills the list _intervals)
869
add_use(Value value,int from,int to,IntervalUseKind use_kind)870 void LinearScan::add_use(Value value, int from, int to, IntervalUseKind use_kind) {
871 assert(!value->type()->is_illegal(), "if this value is used by the interpreter it shouldn't be of indeterminate type");
872 LIR_Opr opr = value->operand();
873 Constant* con = value->as_Constant();
874
875 if ((con == NULL || con->is_pinned()) && opr->is_register()) {
876 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
877 add_use(opr, from, to, use_kind);
878 }
879 }
880
881
add_def(LIR_Opr opr,int def_pos,IntervalUseKind use_kind)882 void LinearScan::add_def(LIR_Opr opr, int def_pos, IntervalUseKind use_kind) {
883 TRACE_LINEAR_SCAN(2, tty->print(" def "); opr->print(tty); tty->print_cr(" def_pos %d (%d)", def_pos, use_kind));
884 assert(opr->is_register(), "should not be called otherwise");
885
886 if (opr->is_virtual_register()) {
887 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
888 add_def(opr->vreg_number(), def_pos, use_kind, opr->type_register());
889
890 } else {
891 int reg = reg_num(opr);
892 if (is_processed_reg_num(reg)) {
893 add_def(reg, def_pos, use_kind, opr->type_register());
894 }
895 reg = reg_numHi(opr);
896 if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
897 add_def(reg, def_pos, use_kind, opr->type_register());
898 }
899 }
900 }
901
add_use(LIR_Opr opr,int from,int to,IntervalUseKind use_kind)902 void LinearScan::add_use(LIR_Opr opr, int from, int to, IntervalUseKind use_kind) {
903 TRACE_LINEAR_SCAN(2, tty->print(" use "); opr->print(tty); tty->print_cr(" from %d to %d (%d)", from, to, use_kind));
904 assert(opr->is_register(), "should not be called otherwise");
905
906 if (opr->is_virtual_register()) {
907 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
908 add_use(opr->vreg_number(), from, to, use_kind, opr->type_register());
909
910 } else {
911 int reg = reg_num(opr);
912 if (is_processed_reg_num(reg)) {
913 add_use(reg, from, to, use_kind, opr->type_register());
914 }
915 reg = reg_numHi(opr);
916 if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
917 add_use(reg, from, to, use_kind, opr->type_register());
918 }
919 }
920 }
921
add_temp(LIR_Opr opr,int temp_pos,IntervalUseKind use_kind)922 void LinearScan::add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind) {
923 TRACE_LINEAR_SCAN(2, tty->print(" temp "); opr->print(tty); tty->print_cr(" temp_pos %d (%d)", temp_pos, use_kind));
924 assert(opr->is_register(), "should not be called otherwise");
925
926 if (opr->is_virtual_register()) {
927 assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
928 add_temp(opr->vreg_number(), temp_pos, use_kind, opr->type_register());
929
930 } else {
931 int reg = reg_num(opr);
932 if (is_processed_reg_num(reg)) {
933 add_temp(reg, temp_pos, use_kind, opr->type_register());
934 }
935 reg = reg_numHi(opr);
936 if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
937 add_temp(reg, temp_pos, use_kind, opr->type_register());
938 }
939 }
940 }
941
942
add_def(int reg_num,int def_pos,IntervalUseKind use_kind,BasicType type)943 void LinearScan::add_def(int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type) {
944 Interval* interval = interval_at(reg_num);
945 if (interval != NULL) {
946 assert(interval->reg_num() == reg_num, "wrong interval");
947
948 if (type != T_ILLEGAL) {
949 interval->set_type(type);
950 }
951
952 Range* r = interval->first();
953 if (r->from() <= def_pos) {
954 // Update the starting point (when a range is first created for a use, its
955 // start is the beginning of the current block until a def is encountered.)
956 r->set_from(def_pos);
957 interval->add_use_pos(def_pos, use_kind);
958
959 } else {
960 // Dead value - make vacuous interval
961 // also add use_kind for dead intervals
962 interval->add_range(def_pos, def_pos + 1);
963 interval->add_use_pos(def_pos, use_kind);
964 TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: def of reg %d at %d occurs without use", reg_num, def_pos));
965 }
966
967 } else {
968 // Dead value - make vacuous interval
969 // also add use_kind for dead intervals
970 interval = create_interval(reg_num);
971 if (type != T_ILLEGAL) {
972 interval->set_type(type);
973 }
974
975 interval->add_range(def_pos, def_pos + 1);
976 interval->add_use_pos(def_pos, use_kind);
977 TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: dead value %d at %d in live intervals", reg_num, def_pos));
978 }
979
980 change_spill_definition_pos(interval, def_pos);
981 if (use_kind == noUse && interval->spill_state() <= startInMemory) {
982 // detection of method-parameters and roundfp-results
983 // TODO: move this directly to position where use-kind is computed
984 interval->set_spill_state(startInMemory);
985 }
986 }
987
add_use(int reg_num,int from,int to,IntervalUseKind use_kind,BasicType type)988 void LinearScan::add_use(int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type) {
989 Interval* interval = interval_at(reg_num);
990 if (interval == NULL) {
991 interval = create_interval(reg_num);
992 }
993 assert(interval->reg_num() == reg_num, "wrong interval");
994
995 if (type != T_ILLEGAL) {
996 interval->set_type(type);
997 }
998
999 interval->add_range(from, to);
1000 interval->add_use_pos(to, use_kind);
1001 }
1002
add_temp(int reg_num,int temp_pos,IntervalUseKind use_kind,BasicType type)1003 void LinearScan::add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type) {
1004 Interval* interval = interval_at(reg_num);
1005 if (interval == NULL) {
1006 interval = create_interval(reg_num);
1007 }
1008 assert(interval->reg_num() == reg_num, "wrong interval");
1009
1010 if (type != T_ILLEGAL) {
1011 interval->set_type(type);
1012 }
1013
1014 interval->add_range(temp_pos, temp_pos + 1);
1015 interval->add_use_pos(temp_pos, use_kind);
1016 }
1017
1018
1019 // the results of this functions are used for optimizing spilling and reloading
1020 // if the functions return shouldHaveRegister and the interval is spilled,
1021 // it is not reloaded to a register.
use_kind_of_output_operand(LIR_Op * op,LIR_Opr opr)1022 IntervalUseKind LinearScan::use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr) {
1023 if (op->code() == lir_move) {
1024 assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1025 LIR_Op1* move = (LIR_Op1*)op;
1026 LIR_Opr res = move->result_opr();
1027 bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1028
1029 if (result_in_memory) {
1030 // Begin of an interval with must_start_in_memory set.
1031 // This interval will always get a stack slot first, so return noUse.
1032 return noUse;
1033
1034 } else if (move->in_opr()->is_stack()) {
1035 // method argument (condition must be equal to handle_method_arguments)
1036 return noUse;
1037
1038 } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1039 // Move from register to register
1040 if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1041 // special handling of phi-function moves inside osr-entry blocks
1042 // input operand must have a register instead of output operand (leads to better register allocation)
1043 return shouldHaveRegister;
1044 }
1045 }
1046 }
1047
1048 if (opr->is_virtual() &&
1049 gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::must_start_in_memory)) {
1050 // result is a stack-slot, so prevent immediate reloading
1051 return noUse;
1052 }
1053
1054 // all other operands require a register
1055 return mustHaveRegister;
1056 }
1057
use_kind_of_input_operand(LIR_Op * op,LIR_Opr opr)1058 IntervalUseKind LinearScan::use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr) {
1059 if (op->code() == lir_move) {
1060 assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1061 LIR_Op1* move = (LIR_Op1*)op;
1062 LIR_Opr res = move->result_opr();
1063 bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1064
1065 if (result_in_memory) {
1066 // Move to an interval with must_start_in_memory set.
1067 // To avoid moves from stack to stack (not allowed) force the input operand to a register
1068 return mustHaveRegister;
1069
1070 } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1071 // Move from register to register
1072 if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1073 // special handling of phi-function moves inside osr-entry blocks
1074 // input operand must have a register instead of output operand (leads to better register allocation)
1075 return mustHaveRegister;
1076 }
1077
1078 // The input operand is not forced to a register (moves from stack to register are allowed),
1079 // but it is faster if the input operand is in a register
1080 return shouldHaveRegister;
1081 }
1082 }
1083
1084
1085 #if defined(X86) || defined(S390)
1086 if (op->code() == lir_cmove) {
1087 // conditional moves can handle stack operands
1088 assert(op->result_opr()->is_register(), "result must always be in a register");
1089 return shouldHaveRegister;
1090 }
1091
1092 // optimizations for second input operand of arithmehtic operations on Intel
1093 // this operand is allowed to be on the stack in some cases
1094 BasicType opr_type = opr->type_register();
1095 if (opr_type == T_FLOAT || opr_type == T_DOUBLE) {
1096 if ((UseSSE == 1 && opr_type == T_FLOAT) || UseSSE >= 2 S390_ONLY(|| true)) {
1097 // SSE float instruction (T_DOUBLE only supported with SSE2)
1098 switch (op->code()) {
1099 case lir_cmp:
1100 case lir_add:
1101 case lir_sub:
1102 case lir_mul:
1103 case lir_div:
1104 {
1105 assert(op->as_Op2() != NULL, "must be LIR_Op2");
1106 LIR_Op2* op2 = (LIR_Op2*)op;
1107 if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1108 assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1109 return shouldHaveRegister;
1110 }
1111 }
1112 default:
1113 break;
1114 }
1115 } else {
1116 // FPU stack float instruction
1117 switch (op->code()) {
1118 case lir_add:
1119 case lir_sub:
1120 case lir_mul:
1121 case lir_div:
1122 {
1123 assert(op->as_Op2() != NULL, "must be LIR_Op2");
1124 LIR_Op2* op2 = (LIR_Op2*)op;
1125 if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1126 assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1127 return shouldHaveRegister;
1128 }
1129 }
1130 default:
1131 break;
1132 }
1133 }
1134 // We want to sometimes use logical operations on pointers, in particular in GC barriers.
1135 // Since 64bit logical operations do not current support operands on stack, we have to make sure
1136 // T_OBJECT doesn't get spilled along with T_LONG.
1137 } else if (opr_type != T_LONG LP64_ONLY(&& opr_type != T_OBJECT)) {
1138 // integer instruction (note: long operands must always be in register)
1139 switch (op->code()) {
1140 case lir_cmp:
1141 case lir_add:
1142 case lir_sub:
1143 case lir_logic_and:
1144 case lir_logic_or:
1145 case lir_logic_xor:
1146 {
1147 assert(op->as_Op2() != NULL, "must be LIR_Op2");
1148 LIR_Op2* op2 = (LIR_Op2*)op;
1149 if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1150 assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1151 return shouldHaveRegister;
1152 }
1153 }
1154 default:
1155 break;
1156 }
1157 }
1158 #endif // X86 S390
1159
1160 // all other operands require a register
1161 return mustHaveRegister;
1162 }
1163
1164
handle_method_arguments(LIR_Op * op)1165 void LinearScan::handle_method_arguments(LIR_Op* op) {
1166 // special handling for method arguments (moves from stack to virtual register):
1167 // the interval gets no register assigned, but the stack slot.
1168 // it is split before the first use by the register allocator.
1169
1170 if (op->code() == lir_move) {
1171 assert(op->as_Op1() != NULL, "must be LIR_Op1");
1172 LIR_Op1* move = (LIR_Op1*)op;
1173
1174 if (move->in_opr()->is_stack()) {
1175 #ifdef ASSERT
1176 int arg_size = compilation()->method()->arg_size();
1177 LIR_Opr o = move->in_opr();
1178 if (o->is_single_stack()) {
1179 assert(o->single_stack_ix() >= 0 && o->single_stack_ix() < arg_size, "out of range");
1180 } else if (o->is_double_stack()) {
1181 assert(o->double_stack_ix() >= 0 && o->double_stack_ix() < arg_size, "out of range");
1182 } else {
1183 ShouldNotReachHere();
1184 }
1185
1186 assert(move->id() > 0, "invalid id");
1187 assert(block_of_op_with_id(move->id())->number_of_preds() == 0, "move from stack must be in first block");
1188 assert(move->result_opr()->is_virtual(), "result of move must be a virtual register");
1189
1190 TRACE_LINEAR_SCAN(4, tty->print_cr("found move from stack slot %d to vreg %d", o->is_single_stack() ? o->single_stack_ix() : o->double_stack_ix(), reg_num(move->result_opr())));
1191 #endif
1192
1193 Interval* interval = interval_at(reg_num(move->result_opr()));
1194
1195 int stack_slot = LinearScan::nof_regs + (move->in_opr()->is_single_stack() ? move->in_opr()->single_stack_ix() : move->in_opr()->double_stack_ix());
1196 interval->set_canonical_spill_slot(stack_slot);
1197 interval->assign_reg(stack_slot);
1198 }
1199 }
1200 }
1201
handle_doubleword_moves(LIR_Op * op)1202 void LinearScan::handle_doubleword_moves(LIR_Op* op) {
1203 // special handling for doubleword move from memory to register:
1204 // in this case the registers of the input address and the result
1205 // registers must not overlap -> add a temp range for the input registers
1206 if (op->code() == lir_move) {
1207 assert(op->as_Op1() != NULL, "must be LIR_Op1");
1208 LIR_Op1* move = (LIR_Op1*)op;
1209
1210 if (move->result_opr()->is_double_cpu() && move->in_opr()->is_pointer()) {
1211 LIR_Address* address = move->in_opr()->as_address_ptr();
1212 if (address != NULL) {
1213 if (address->base()->is_valid()) {
1214 add_temp(address->base(), op->id(), noUse);
1215 }
1216 if (address->index()->is_valid()) {
1217 add_temp(address->index(), op->id(), noUse);
1218 }
1219 }
1220 }
1221 }
1222 }
1223
add_register_hints(LIR_Op * op)1224 void LinearScan::add_register_hints(LIR_Op* op) {
1225 switch (op->code()) {
1226 case lir_move: // fall through
1227 case lir_convert: {
1228 assert(op->as_Op1() != NULL, "lir_move, lir_convert must be LIR_Op1");
1229 LIR_Op1* move = (LIR_Op1*)op;
1230
1231 LIR_Opr move_from = move->in_opr();
1232 LIR_Opr move_to = move->result_opr();
1233
1234 if (move_to->is_register() && move_from->is_register()) {
1235 Interval* from = interval_at(reg_num(move_from));
1236 Interval* to = interval_at(reg_num(move_to));
1237 if (from != NULL && to != NULL) {
1238 to->set_register_hint(from);
1239 TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", move->id(), from->reg_num(), to->reg_num()));
1240 }
1241 }
1242 break;
1243 }
1244 case lir_cmove: {
1245 assert(op->as_Op2() != NULL, "lir_cmove must be LIR_Op2");
1246 LIR_Op2* cmove = (LIR_Op2*)op;
1247
1248 LIR_Opr move_from = cmove->in_opr1();
1249 LIR_Opr move_to = cmove->result_opr();
1250
1251 if (move_to->is_register() && move_from->is_register()) {
1252 Interval* from = interval_at(reg_num(move_from));
1253 Interval* to = interval_at(reg_num(move_to));
1254 if (from != NULL && to != NULL) {
1255 to->set_register_hint(from);
1256 TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", cmove->id(), from->reg_num(), to->reg_num()));
1257 }
1258 }
1259 break;
1260 }
1261 default:
1262 break;
1263 }
1264 }
1265
1266
build_intervals()1267 void LinearScan::build_intervals() {
1268 TIME_LINEAR_SCAN(timer_build_intervals);
1269
1270 // initialize interval list with expected number of intervals
1271 // (32 is added to have some space for split children without having to resize the list)
1272 _intervals = IntervalList(num_virtual_regs() + 32);
1273 // initialize all slots that are used by build_intervals
1274 _intervals.at_put_grow(num_virtual_regs() - 1, NULL, NULL);
1275
1276 // create a list with all caller-save registers (cpu, fpu, xmm)
1277 // when an instruction is a call, a temp range is created for all these registers
1278 int num_caller_save_registers = 0;
1279 int caller_save_registers[LinearScan::nof_regs];
1280
1281 int i;
1282 for (i = 0; i < FrameMap::nof_caller_save_cpu_regs(); i++) {
1283 LIR_Opr opr = FrameMap::caller_save_cpu_reg_at(i);
1284 assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1285 assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1286 caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1287 }
1288
1289 // temp ranges for fpu registers are only created when the method has
1290 // virtual fpu operands. Otherwise no allocation for fpu registers is
1291 // performed and so the temp ranges would be useless
1292 if (has_fpu_registers()) {
1293 #ifdef X86
1294 if (UseSSE < 2) {
1295 #endif
1296 for (i = 0; i < FrameMap::nof_caller_save_fpu_regs; i++) {
1297 LIR_Opr opr = FrameMap::caller_save_fpu_reg_at(i);
1298 assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1299 assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1300 caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1301 }
1302 #ifdef X86
1303 }
1304 if (UseSSE > 0) {
1305 int num_caller_save_xmm_regs = FrameMap::get_num_caller_save_xmms();
1306 for (i = 0; i < num_caller_save_xmm_regs; i ++) {
1307 LIR_Opr opr = FrameMap::caller_save_xmm_reg_at(i);
1308 assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1309 assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1310 caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1311 }
1312 }
1313 #endif
1314 }
1315 assert(num_caller_save_registers <= LinearScan::nof_regs, "out of bounds");
1316
1317
1318 LIR_OpVisitState visitor;
1319
1320 // iterate all blocks in reverse order
1321 for (i = block_count() - 1; i >= 0; i--) {
1322 BlockBegin* block = block_at(i);
1323 LIR_OpList* instructions = block->lir()->instructions_list();
1324 int block_from = block->first_lir_instruction_id();
1325 int block_to = block->last_lir_instruction_id();
1326
1327 assert(block_from == instructions->at(0)->id(), "must be");
1328 assert(block_to == instructions->at(instructions->length() - 1)->id(), "must be");
1329
1330 // Update intervals for registers live at the end of this block;
1331 ResourceBitMap live = block->live_out();
1332 int size = (int)live.size();
1333 for (int number = (int)live.get_next_one_offset(0, size); number < size; number = (int)live.get_next_one_offset(number + 1, size)) {
1334 assert(live.at(number), "should not stop here otherwise");
1335 assert(number >= LIR_OprDesc::vreg_base, "fixed intervals must not be live on block bounds");
1336 TRACE_LINEAR_SCAN(2, tty->print_cr("live in %d to %d", number, block_to + 2));
1337
1338 add_use(number, block_from, block_to + 2, noUse, T_ILLEGAL);
1339
1340 // add special use positions for loop-end blocks when the
1341 // interval is used anywhere inside this loop. It's possible
1342 // that the block was part of a non-natural loop, so it might
1343 // have an invalid loop index.
1344 if (block->is_set(BlockBegin::linear_scan_loop_end_flag) &&
1345 block->loop_index() != -1 &&
1346 is_interval_in_loop(number, block->loop_index())) {
1347 interval_at(number)->add_use_pos(block_to + 1, loopEndMarker);
1348 }
1349 }
1350
1351 // iterate all instructions of the block in reverse order.
1352 // skip the first instruction because it is always a label
1353 // definitions of intervals are processed before uses
1354 assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
1355 for (int j = instructions->length() - 1; j >= 1; j--) {
1356 LIR_Op* op = instructions->at(j);
1357 int op_id = op->id();
1358
1359 // visit operation to collect all operands
1360 visitor.visit(op);
1361
1362 // add a temp range for each register if operation destroys caller-save registers
1363 if (visitor.has_call()) {
1364 for (int k = 0; k < num_caller_save_registers; k++) {
1365 add_temp(caller_save_registers[k], op_id, noUse, T_ILLEGAL);
1366 }
1367 TRACE_LINEAR_SCAN(4, tty->print_cr("operation destroys all caller-save registers"));
1368 }
1369
1370 // Add any platform dependent temps
1371 pd_add_temps(op);
1372
1373 // visit definitions (output and temp operands)
1374 int k, n;
1375 n = visitor.opr_count(LIR_OpVisitState::outputMode);
1376 for (k = 0; k < n; k++) {
1377 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
1378 assert(opr->is_register(), "visitor should only return register operands");
1379 add_def(opr, op_id, use_kind_of_output_operand(op, opr));
1380 }
1381
1382 n = visitor.opr_count(LIR_OpVisitState::tempMode);
1383 for (k = 0; k < n; k++) {
1384 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
1385 assert(opr->is_register(), "visitor should only return register operands");
1386 add_temp(opr, op_id, mustHaveRegister);
1387 }
1388
1389 // visit uses (input operands)
1390 n = visitor.opr_count(LIR_OpVisitState::inputMode);
1391 for (k = 0; k < n; k++) {
1392 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
1393 assert(opr->is_register(), "visitor should only return register operands");
1394 add_use(opr, block_from, op_id, use_kind_of_input_operand(op, opr));
1395 }
1396
1397 // Add uses of live locals from interpreter's point of view for proper
1398 // debug information generation
1399 // Treat these operands as temp values (if the life range is extended
1400 // to a call site, the value would be in a register at the call otherwise)
1401 n = visitor.info_count();
1402 for (k = 0; k < n; k++) {
1403 CodeEmitInfo* info = visitor.info_at(k);
1404 ValueStack* stack = info->stack();
1405 for_each_state_value(stack, value,
1406 add_use(value, block_from, op_id + 1, noUse);
1407 );
1408 }
1409
1410 // special steps for some instructions (especially moves)
1411 handle_method_arguments(op);
1412 handle_doubleword_moves(op);
1413 add_register_hints(op);
1414
1415 } // end of instruction iteration
1416 } // end of block iteration
1417
1418
1419 // add the range [0, 1[ to all fixed intervals
1420 // -> the register allocator need not handle unhandled fixed intervals
1421 for (int n = 0; n < LinearScan::nof_regs; n++) {
1422 Interval* interval = interval_at(n);
1423 if (interval != NULL) {
1424 interval->add_range(0, 1);
1425 }
1426 }
1427 }
1428
1429
1430 // ********** Phase 5: actual register allocation
1431
interval_cmp(Interval ** a,Interval ** b)1432 int LinearScan::interval_cmp(Interval** a, Interval** b) {
1433 if (*a != NULL) {
1434 if (*b != NULL) {
1435 return (*a)->from() - (*b)->from();
1436 } else {
1437 return -1;
1438 }
1439 } else {
1440 if (*b != NULL) {
1441 return 1;
1442 } else {
1443 return 0;
1444 }
1445 }
1446 }
1447
1448 #ifndef PRODUCT
interval_cmp(Interval * const & l,Interval * const & r)1449 int interval_cmp(Interval* const& l, Interval* const& r) {
1450 return l->from() - r->from();
1451 }
1452
find_interval(Interval * interval,IntervalArray * intervals)1453 bool find_interval(Interval* interval, IntervalArray* intervals) {
1454 bool found;
1455 int idx = intervals->find_sorted<Interval*, interval_cmp>(interval, found);
1456
1457 if (!found) {
1458 return false;
1459 }
1460
1461 int from = interval->from();
1462
1463 // The index we've found using binary search is pointing to an interval
1464 // that is defined in the same place as the interval we were looking for.
1465 // So now we have to look around that index and find exact interval.
1466 for (int i = idx; i >= 0; i--) {
1467 if (intervals->at(i) == interval) {
1468 return true;
1469 }
1470 if (intervals->at(i)->from() != from) {
1471 break;
1472 }
1473 }
1474
1475 for (int i = idx + 1; i < intervals->length(); i++) {
1476 if (intervals->at(i) == interval) {
1477 return true;
1478 }
1479 if (intervals->at(i)->from() != from) {
1480 break;
1481 }
1482 }
1483
1484 return false;
1485 }
1486
is_sorted(IntervalArray * intervals)1487 bool LinearScan::is_sorted(IntervalArray* intervals) {
1488 int from = -1;
1489 int null_count = 0;
1490
1491 for (int i = 0; i < intervals->length(); i++) {
1492 Interval* it = intervals->at(i);
1493 if (it != NULL) {
1494 assert(from <= it->from(), "Intervals are unordered");
1495 from = it->from();
1496 } else {
1497 null_count++;
1498 }
1499 }
1500
1501 assert(null_count == 0, "Sorted intervals should not contain nulls");
1502
1503 null_count = 0;
1504
1505 for (int i = 0; i < interval_count(); i++) {
1506 Interval* interval = interval_at(i);
1507 if (interval != NULL) {
1508 assert(find_interval(interval, intervals), "Lists do not contain same intervals");
1509 } else {
1510 null_count++;
1511 }
1512 }
1513
1514 assert(interval_count() - null_count == intervals->length(),
1515 "Sorted list should contain the same amount of non-NULL intervals as unsorted list");
1516
1517 return true;
1518 }
1519 #endif
1520
add_to_list(Interval ** first,Interval ** prev,Interval * interval)1521 void LinearScan::add_to_list(Interval** first, Interval** prev, Interval* interval) {
1522 if (*prev != NULL) {
1523 (*prev)->set_next(interval);
1524 } else {
1525 *first = interval;
1526 }
1527 *prev = interval;
1528 }
1529
create_unhandled_lists(Interval ** list1,Interval ** list2,bool (is_list1)(const Interval * i),bool (is_list2)(const Interval * i))1530 void LinearScan::create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i)) {
1531 assert(is_sorted(_sorted_intervals), "interval list is not sorted");
1532
1533 *list1 = *list2 = Interval::end();
1534
1535 Interval* list1_prev = NULL;
1536 Interval* list2_prev = NULL;
1537 Interval* v;
1538
1539 const int n = _sorted_intervals->length();
1540 for (int i = 0; i < n; i++) {
1541 v = _sorted_intervals->at(i);
1542 if (v == NULL) continue;
1543
1544 if (is_list1(v)) {
1545 add_to_list(list1, &list1_prev, v);
1546 } else if (is_list2 == NULL || is_list2(v)) {
1547 add_to_list(list2, &list2_prev, v);
1548 }
1549 }
1550
1551 if (list1_prev != NULL) list1_prev->set_next(Interval::end());
1552 if (list2_prev != NULL) list2_prev->set_next(Interval::end());
1553
1554 assert(list1_prev == NULL || list1_prev->next() == Interval::end(), "linear list ends not with sentinel");
1555 assert(list2_prev == NULL || list2_prev->next() == Interval::end(), "linear list ends not with sentinel");
1556 }
1557
1558
sort_intervals_before_allocation()1559 void LinearScan::sort_intervals_before_allocation() {
1560 TIME_LINEAR_SCAN(timer_sort_intervals_before);
1561
1562 if (_needs_full_resort) {
1563 // There is no known reason why this should occur but just in case...
1564 assert(false, "should never occur");
1565 // Re-sort existing interval list because an Interval::from() has changed
1566 _sorted_intervals->sort(interval_cmp);
1567 _needs_full_resort = false;
1568 }
1569
1570 IntervalList* unsorted_list = &_intervals;
1571 int unsorted_len = unsorted_list->length();
1572 int sorted_len = 0;
1573 int unsorted_idx;
1574 int sorted_idx = 0;
1575 int sorted_from_max = -1;
1576
1577 // calc number of items for sorted list (sorted list must not contain NULL values)
1578 for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1579 if (unsorted_list->at(unsorted_idx) != NULL) {
1580 sorted_len++;
1581 }
1582 }
1583 IntervalArray* sorted_list = new IntervalArray(sorted_len, sorted_len, NULL);
1584
1585 // special sorting algorithm: the original interval-list is almost sorted,
1586 // only some intervals are swapped. So this is much faster than a complete QuickSort
1587 for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1588 Interval* cur_interval = unsorted_list->at(unsorted_idx);
1589
1590 if (cur_interval != NULL) {
1591 int cur_from = cur_interval->from();
1592
1593 if (sorted_from_max <= cur_from) {
1594 sorted_list->at_put(sorted_idx++, cur_interval);
1595 sorted_from_max = cur_interval->from();
1596 } else {
1597 // the asumption that the intervals are already sorted failed,
1598 // so this interval must be sorted in manually
1599 int j;
1600 for (j = sorted_idx - 1; j >= 0 && cur_from < sorted_list->at(j)->from(); j--) {
1601 sorted_list->at_put(j + 1, sorted_list->at(j));
1602 }
1603 sorted_list->at_put(j + 1, cur_interval);
1604 sorted_idx++;
1605 }
1606 }
1607 }
1608 _sorted_intervals = sorted_list;
1609 assert(is_sorted(_sorted_intervals), "intervals unsorted");
1610 }
1611
sort_intervals_after_allocation()1612 void LinearScan::sort_intervals_after_allocation() {
1613 TIME_LINEAR_SCAN(timer_sort_intervals_after);
1614
1615 if (_needs_full_resort) {
1616 // Re-sort existing interval list because an Interval::from() has changed
1617 _sorted_intervals->sort(interval_cmp);
1618 _needs_full_resort = false;
1619 }
1620
1621 IntervalArray* old_list = _sorted_intervals;
1622 IntervalList* new_list = _new_intervals_from_allocation;
1623 int old_len = old_list->length();
1624 int new_len = new_list == NULL ? 0 : new_list->length();
1625
1626 if (new_len == 0) {
1627 // no intervals have been added during allocation, so sorted list is already up to date
1628 assert(is_sorted(_sorted_intervals), "intervals unsorted");
1629 return;
1630 }
1631
1632 // conventional sort-algorithm for new intervals
1633 new_list->sort(interval_cmp);
1634
1635 // merge old and new list (both already sorted) into one combined list
1636 int combined_list_len = old_len + new_len;
1637 IntervalArray* combined_list = new IntervalArray(combined_list_len, combined_list_len, NULL);
1638 int old_idx = 0;
1639 int new_idx = 0;
1640
1641 while (old_idx + new_idx < old_len + new_len) {
1642 if (new_idx >= new_len || (old_idx < old_len && old_list->at(old_idx)->from() <= new_list->at(new_idx)->from())) {
1643 combined_list->at_put(old_idx + new_idx, old_list->at(old_idx));
1644 old_idx++;
1645 } else {
1646 combined_list->at_put(old_idx + new_idx, new_list->at(new_idx));
1647 new_idx++;
1648 }
1649 }
1650
1651 _sorted_intervals = combined_list;
1652 assert(is_sorted(_sorted_intervals), "intervals unsorted");
1653 }
1654
1655
allocate_registers()1656 void LinearScan::allocate_registers() {
1657 TIME_LINEAR_SCAN(timer_allocate_registers);
1658
1659 Interval* precolored_cpu_intervals, *not_precolored_cpu_intervals;
1660 Interval* precolored_fpu_intervals, *not_precolored_fpu_intervals;
1661
1662 // collect cpu intervals
1663 create_unhandled_lists(&precolored_cpu_intervals, ¬_precolored_cpu_intervals,
1664 is_precolored_cpu_interval, is_virtual_cpu_interval);
1665
1666 // collect fpu intervals
1667 create_unhandled_lists(&precolored_fpu_intervals, ¬_precolored_fpu_intervals,
1668 is_precolored_fpu_interval, is_virtual_fpu_interval);
1669 // this fpu interval collection cannot be moved down below with the allocation section as
1670 // the cpu_lsw.walk() changes interval positions.
1671
1672 if (!has_fpu_registers()) {
1673 #ifdef ASSERT
1674 assert(not_precolored_fpu_intervals == Interval::end(), "missed an uncolored fpu interval");
1675 #else
1676 if (not_precolored_fpu_intervals != Interval::end()) {
1677 BAILOUT("missed an uncolored fpu interval");
1678 }
1679 #endif
1680 }
1681
1682 // allocate cpu registers
1683 LinearScanWalker cpu_lsw(this, precolored_cpu_intervals, not_precolored_cpu_intervals);
1684 cpu_lsw.walk();
1685 cpu_lsw.finish_allocation();
1686
1687 if (has_fpu_registers()) {
1688 // allocate fpu registers
1689 LinearScanWalker fpu_lsw(this, precolored_fpu_intervals, not_precolored_fpu_intervals);
1690 fpu_lsw.walk();
1691 fpu_lsw.finish_allocation();
1692 }
1693 }
1694
1695
1696 // ********** Phase 6: resolve data flow
1697 // (insert moves at edges between blocks if intervals have been split)
1698
1699 // wrapper for Interval::split_child_at_op_id that performs a bailout in product mode
1700 // instead of returning NULL
split_child_at_op_id(Interval * interval,int op_id,LIR_OpVisitState::OprMode mode)1701 Interval* LinearScan::split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode) {
1702 Interval* result = interval->split_child_at_op_id(op_id, mode);
1703 if (result != NULL) {
1704 return result;
1705 }
1706
1707 assert(false, "must find an interval, but do a clean bailout in product mode");
1708 result = new Interval(LIR_OprDesc::vreg_base);
1709 result->assign_reg(0);
1710 result->set_type(T_INT);
1711 BAILOUT_("LinearScan: interval is NULL", result);
1712 }
1713
1714
interval_at_block_begin(BlockBegin * block,int reg_num)1715 Interval* LinearScan::interval_at_block_begin(BlockBegin* block, int reg_num) {
1716 assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1717 assert(interval_at(reg_num) != NULL, "no interval found");
1718
1719 return split_child_at_op_id(interval_at(reg_num), block->first_lir_instruction_id(), LIR_OpVisitState::outputMode);
1720 }
1721
interval_at_block_end(BlockBegin * block,int reg_num)1722 Interval* LinearScan::interval_at_block_end(BlockBegin* block, int reg_num) {
1723 assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1724 assert(interval_at(reg_num) != NULL, "no interval found");
1725
1726 return split_child_at_op_id(interval_at(reg_num), block->last_lir_instruction_id() + 1, LIR_OpVisitState::outputMode);
1727 }
1728
interval_at_op_id(int reg_num,int op_id)1729 Interval* LinearScan::interval_at_op_id(int reg_num, int op_id) {
1730 assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1731 assert(interval_at(reg_num) != NULL, "no interval found");
1732
1733 return split_child_at_op_id(interval_at(reg_num), op_id, LIR_OpVisitState::inputMode);
1734 }
1735
1736
resolve_collect_mappings(BlockBegin * from_block,BlockBegin * to_block,MoveResolver & move_resolver)1737 void LinearScan::resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1738 DEBUG_ONLY(move_resolver.check_empty());
1739
1740 const int size = live_set_size();
1741 const ResourceBitMap live_at_edge = to_block->live_in();
1742
1743 // visit all registers where the live_at_edge bit is set
1744 for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
1745 assert(r < num_virtual_regs(), "live information set for not exisiting interval");
1746 assert(from_block->live_out().at(r) && to_block->live_in().at(r), "interval not live at this edge");
1747
1748 Interval* from_interval = interval_at_block_end(from_block, r);
1749 Interval* to_interval = interval_at_block_begin(to_block, r);
1750
1751 if (from_interval != to_interval && (from_interval->assigned_reg() != to_interval->assigned_reg() || from_interval->assigned_regHi() != to_interval->assigned_regHi())) {
1752 // need to insert move instruction
1753 move_resolver.add_mapping(from_interval, to_interval);
1754 }
1755 }
1756 }
1757
1758
resolve_find_insert_pos(BlockBegin * from_block,BlockBegin * to_block,MoveResolver & move_resolver)1759 void LinearScan::resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1760 if (from_block->number_of_sux() <= 1) {
1761 TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at end of from_block B%d", from_block->block_id()));
1762
1763 LIR_OpList* instructions = from_block->lir()->instructions_list();
1764 LIR_OpBranch* branch = instructions->last()->as_OpBranch();
1765 if (branch != NULL) {
1766 // insert moves before branch
1767 assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
1768 move_resolver.set_insert_position(from_block->lir(), instructions->length() - 2);
1769 } else {
1770 move_resolver.set_insert_position(from_block->lir(), instructions->length() - 1);
1771 }
1772
1773 } else {
1774 TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at beginning of to_block B%d", to_block->block_id()));
1775 #ifdef ASSERT
1776 assert(from_block->lir()->instructions_list()->at(0)->as_OpLabel() != NULL, "block does not start with a label");
1777
1778 // because the number of predecessor edges matches the number of
1779 // successor edges, blocks which are reached by switch statements
1780 // may have be more than one predecessor but it will be guaranteed
1781 // that all predecessors will be the same.
1782 for (int i = 0; i < to_block->number_of_preds(); i++) {
1783 assert(from_block == to_block->pred_at(i), "all critical edges must be broken");
1784 }
1785 #endif
1786
1787 move_resolver.set_insert_position(to_block->lir(), 0);
1788 }
1789 }
1790
1791
1792 // insert necessary moves (spilling or reloading) at edges between blocks if interval has been split
resolve_data_flow()1793 void LinearScan::resolve_data_flow() {
1794 TIME_LINEAR_SCAN(timer_resolve_data_flow);
1795
1796 int num_blocks = block_count();
1797 MoveResolver move_resolver(this);
1798 ResourceBitMap block_completed(num_blocks);
1799 ResourceBitMap already_resolved(num_blocks);
1800
1801 int i;
1802 for (i = 0; i < num_blocks; i++) {
1803 BlockBegin* block = block_at(i);
1804
1805 // check if block has only one predecessor and only one successor
1806 if (block->number_of_preds() == 1 && block->number_of_sux() == 1 && block->number_of_exception_handlers() == 0) {
1807 LIR_OpList* instructions = block->lir()->instructions_list();
1808 assert(instructions->at(0)->code() == lir_label, "block must start with label");
1809 assert(instructions->last()->code() == lir_branch, "block with successors must end with branch");
1810 assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block with successor must end with unconditional branch");
1811
1812 // check if block is empty (only label and branch)
1813 if (instructions->length() == 2) {
1814 BlockBegin* pred = block->pred_at(0);
1815 BlockBegin* sux = block->sux_at(0);
1816
1817 // prevent optimization of two consecutive blocks
1818 if (!block_completed.at(pred->linear_scan_number()) && !block_completed.at(sux->linear_scan_number())) {
1819 TRACE_LINEAR_SCAN(3, tty->print_cr("**** optimizing empty block B%d (pred: B%d, sux: B%d)", block->block_id(), pred->block_id(), sux->block_id()));
1820 block_completed.set_bit(block->linear_scan_number());
1821
1822 // directly resolve between pred and sux (without looking at the empty block between)
1823 resolve_collect_mappings(pred, sux, move_resolver);
1824 if (move_resolver.has_mappings()) {
1825 move_resolver.set_insert_position(block->lir(), 0);
1826 move_resolver.resolve_and_append_moves();
1827 }
1828 }
1829 }
1830 }
1831 }
1832
1833
1834 for (i = 0; i < num_blocks; i++) {
1835 if (!block_completed.at(i)) {
1836 BlockBegin* from_block = block_at(i);
1837 already_resolved.set_from(block_completed);
1838
1839 int num_sux = from_block->number_of_sux();
1840 for (int s = 0; s < num_sux; s++) {
1841 BlockBegin* to_block = from_block->sux_at(s);
1842
1843 // check for duplicate edges between the same blocks (can happen with switch blocks)
1844 if (!already_resolved.at(to_block->linear_scan_number())) {
1845 TRACE_LINEAR_SCAN(3, tty->print_cr("**** processing edge between B%d and B%d", from_block->block_id(), to_block->block_id()));
1846 already_resolved.set_bit(to_block->linear_scan_number());
1847
1848 // collect all intervals that have been split between from_block and to_block
1849 resolve_collect_mappings(from_block, to_block, move_resolver);
1850 if (move_resolver.has_mappings()) {
1851 resolve_find_insert_pos(from_block, to_block, move_resolver);
1852 move_resolver.resolve_and_append_moves();
1853 }
1854 }
1855 }
1856 }
1857 }
1858 }
1859
1860
resolve_exception_entry(BlockBegin * block,int reg_num,MoveResolver & move_resolver)1861 void LinearScan::resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver) {
1862 if (interval_at(reg_num) == NULL) {
1863 // if a phi function is never used, no interval is created -> ignore this
1864 return;
1865 }
1866
1867 Interval* interval = interval_at_block_begin(block, reg_num);
1868 int reg = interval->assigned_reg();
1869 int regHi = interval->assigned_regHi();
1870
1871 if ((reg < nof_regs && interval->always_in_memory()) ||
1872 (use_fpu_stack_allocation() && reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg)) {
1873 // the interval is split to get a short range that is located on the stack
1874 // in the following two cases:
1875 // * the interval started in memory (e.g. method parameter), but is currently in a register
1876 // this is an optimization for exception handling that reduces the number of moves that
1877 // are necessary for resolving the states when an exception uses this exception handler
1878 // * the interval would be on the fpu stack at the begin of the exception handler
1879 // this is not allowed because of the complicated fpu stack handling on Intel
1880
1881 // range that will be spilled to memory
1882 int from_op_id = block->first_lir_instruction_id();
1883 int to_op_id = from_op_id + 1; // short live range of length 1
1884 assert(interval->from() <= from_op_id && interval->to() >= to_op_id,
1885 "no split allowed between exception entry and first instruction");
1886
1887 if (interval->from() != from_op_id) {
1888 // the part before from_op_id is unchanged
1889 interval = interval->split(from_op_id);
1890 interval->assign_reg(reg, regHi);
1891 append_interval(interval);
1892 } else {
1893 _needs_full_resort = true;
1894 }
1895 assert(interval->from() == from_op_id, "must be true now");
1896
1897 Interval* spilled_part = interval;
1898 if (interval->to() != to_op_id) {
1899 // the part after to_op_id is unchanged
1900 spilled_part = interval->split_from_start(to_op_id);
1901 append_interval(spilled_part);
1902 move_resolver.add_mapping(spilled_part, interval);
1903 }
1904 assign_spill_slot(spilled_part);
1905
1906 assert(spilled_part->from() == from_op_id && spilled_part->to() == to_op_id, "just checking");
1907 }
1908 }
1909
resolve_exception_entry(BlockBegin * block,MoveResolver & move_resolver)1910 void LinearScan::resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver) {
1911 assert(block->is_set(BlockBegin::exception_entry_flag), "should not call otherwise");
1912 DEBUG_ONLY(move_resolver.check_empty());
1913
1914 // visit all registers where the live_in bit is set
1915 int size = live_set_size();
1916 for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1917 resolve_exception_entry(block, r, move_resolver);
1918 }
1919
1920 // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1921 for_each_phi_fun(block, phi,
1922 if (!phi->is_illegal()) { resolve_exception_entry(block, phi->operand()->vreg_number(), move_resolver); }
1923 );
1924
1925 if (move_resolver.has_mappings()) {
1926 // insert moves after first instruction
1927 move_resolver.set_insert_position(block->lir(), 0);
1928 move_resolver.resolve_and_append_moves();
1929 }
1930 }
1931
1932
resolve_exception_edge(XHandler * handler,int throwing_op_id,int reg_num,Phi * phi,MoveResolver & move_resolver)1933 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver) {
1934 if (interval_at(reg_num) == NULL) {
1935 // if a phi function is never used, no interval is created -> ignore this
1936 return;
1937 }
1938
1939 // the computation of to_interval is equal to resolve_collect_mappings,
1940 // but from_interval is more complicated because of phi functions
1941 BlockBegin* to_block = handler->entry_block();
1942 Interval* to_interval = interval_at_block_begin(to_block, reg_num);
1943
1944 if (phi != NULL) {
1945 // phi function of the exception entry block
1946 // no moves are created for this phi function in the LIR_Generator, so the
1947 // interval at the throwing instruction must be searched using the operands
1948 // of the phi function
1949 Value from_value = phi->operand_at(handler->phi_operand());
1950
1951 // with phi functions it can happen that the same from_value is used in
1952 // multiple mappings, so notify move-resolver that this is allowed
1953 move_resolver.set_multiple_reads_allowed();
1954
1955 Constant* con = from_value->as_Constant();
1956 if (con != NULL && (!con->is_pinned() || con->operand()->is_constant())) {
1957 // Need a mapping from constant to interval if unpinned (may have no register) or if the operand is a constant (no register).
1958 move_resolver.add_mapping(LIR_OprFact::value_type(con->type()), to_interval);
1959 } else {
1960 // search split child at the throwing op_id
1961 Interval* from_interval = interval_at_op_id(from_value->operand()->vreg_number(), throwing_op_id);
1962 move_resolver.add_mapping(from_interval, to_interval);
1963 }
1964 } else {
1965 // no phi function, so use reg_num also for from_interval
1966 // search split child at the throwing op_id
1967 Interval* from_interval = interval_at_op_id(reg_num, throwing_op_id);
1968 if (from_interval != to_interval) {
1969 // optimization to reduce number of moves: when to_interval is on stack and
1970 // the stack slot is known to be always correct, then no move is necessary
1971 if (!from_interval->always_in_memory() || from_interval->canonical_spill_slot() != to_interval->assigned_reg()) {
1972 move_resolver.add_mapping(from_interval, to_interval);
1973 }
1974 }
1975 }
1976 }
1977
resolve_exception_edge(XHandler * handler,int throwing_op_id,MoveResolver & move_resolver)1978 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver) {
1979 TRACE_LINEAR_SCAN(4, tty->print_cr("resolving exception handler B%d: throwing_op_id=%d", handler->entry_block()->block_id(), throwing_op_id));
1980
1981 DEBUG_ONLY(move_resolver.check_empty());
1982 assert(handler->lir_op_id() == -1, "already processed this xhandler");
1983 DEBUG_ONLY(handler->set_lir_op_id(throwing_op_id));
1984 assert(handler->entry_code() == NULL, "code already present");
1985
1986 // visit all registers where the live_in bit is set
1987 BlockBegin* block = handler->entry_block();
1988 int size = live_set_size();
1989 for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1990 resolve_exception_edge(handler, throwing_op_id, r, NULL, move_resolver);
1991 }
1992
1993 // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1994 for_each_phi_fun(block, phi,
1995 if (!phi->is_illegal()) { resolve_exception_edge(handler, throwing_op_id, phi->operand()->vreg_number(), phi, move_resolver); }
1996 );
1997
1998 if (move_resolver.has_mappings()) {
1999 LIR_List* entry_code = new LIR_List(compilation());
2000 move_resolver.set_insert_position(entry_code, 0);
2001 move_resolver.resolve_and_append_moves();
2002
2003 entry_code->jump(handler->entry_block());
2004 handler->set_entry_code(entry_code);
2005 }
2006 }
2007
2008
resolve_exception_handlers()2009 void LinearScan::resolve_exception_handlers() {
2010 MoveResolver move_resolver(this);
2011 LIR_OpVisitState visitor;
2012 int num_blocks = block_count();
2013
2014 int i;
2015 for (i = 0; i < num_blocks; i++) {
2016 BlockBegin* block = block_at(i);
2017 if (block->is_set(BlockBegin::exception_entry_flag)) {
2018 resolve_exception_entry(block, move_resolver);
2019 }
2020 }
2021
2022 for (i = 0; i < num_blocks; i++) {
2023 BlockBegin* block = block_at(i);
2024 LIR_List* ops = block->lir();
2025 int num_ops = ops->length();
2026
2027 // iterate all instructions of the block. skip the first because it is always a label
2028 assert(visitor.no_operands(ops->at(0)), "first operation must always be a label");
2029 for (int j = 1; j < num_ops; j++) {
2030 LIR_Op* op = ops->at(j);
2031 int op_id = op->id();
2032
2033 if (op_id != -1 && has_info(op_id)) {
2034 // visit operation to collect all operands
2035 visitor.visit(op);
2036 assert(visitor.info_count() > 0, "should not visit otherwise");
2037
2038 XHandlers* xhandlers = visitor.all_xhandler();
2039 int n = xhandlers->length();
2040 for (int k = 0; k < n; k++) {
2041 resolve_exception_edge(xhandlers->handler_at(k), op_id, move_resolver);
2042 }
2043
2044 #ifdef ASSERT
2045 } else {
2046 visitor.visit(op);
2047 assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
2048 #endif
2049 }
2050 }
2051 }
2052 }
2053
2054
2055 // ********** Phase 7: assign register numbers back to LIR
2056 // (includes computation of debug information and oop maps)
2057
vm_reg_for_interval(Interval * interval)2058 VMReg LinearScan::vm_reg_for_interval(Interval* interval) {
2059 VMReg reg = interval->cached_vm_reg();
2060 if (!reg->is_valid() ) {
2061 reg = vm_reg_for_operand(operand_for_interval(interval));
2062 interval->set_cached_vm_reg(reg);
2063 }
2064 assert(reg == vm_reg_for_operand(operand_for_interval(interval)), "wrong cached value");
2065 return reg;
2066 }
2067
vm_reg_for_operand(LIR_Opr opr)2068 VMReg LinearScan::vm_reg_for_operand(LIR_Opr opr) {
2069 assert(opr->is_oop(), "currently only implemented for oop operands");
2070 return frame_map()->regname(opr);
2071 }
2072
2073
operand_for_interval(Interval * interval)2074 LIR_Opr LinearScan::operand_for_interval(Interval* interval) {
2075 LIR_Opr opr = interval->cached_opr();
2076 if (opr->is_illegal()) {
2077 opr = calc_operand_for_interval(interval);
2078 interval->set_cached_opr(opr);
2079 }
2080
2081 assert(opr == calc_operand_for_interval(interval), "wrong cached value");
2082 return opr;
2083 }
2084
calc_operand_for_interval(const Interval * interval)2085 LIR_Opr LinearScan::calc_operand_for_interval(const Interval* interval) {
2086 int assigned_reg = interval->assigned_reg();
2087 BasicType type = interval->type();
2088
2089 if (assigned_reg >= nof_regs) {
2090 // stack slot
2091 assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2092 return LIR_OprFact::stack(assigned_reg - nof_regs, type);
2093
2094 } else {
2095 // register
2096 switch (type) {
2097 case T_OBJECT: {
2098 assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2099 assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2100 return LIR_OprFact::single_cpu_oop(assigned_reg);
2101 }
2102
2103 case T_ADDRESS: {
2104 assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2105 assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2106 return LIR_OprFact::single_cpu_address(assigned_reg);
2107 }
2108
2109 case T_METADATA: {
2110 assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2111 assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2112 return LIR_OprFact::single_cpu_metadata(assigned_reg);
2113 }
2114
2115 #ifdef __SOFTFP__
2116 case T_FLOAT: // fall through
2117 #endif // __SOFTFP__
2118 case T_INT: {
2119 assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2120 assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2121 return LIR_OprFact::single_cpu(assigned_reg);
2122 }
2123
2124 #ifdef __SOFTFP__
2125 case T_DOUBLE: // fall through
2126 #endif // __SOFTFP__
2127 case T_LONG: {
2128 int assigned_regHi = interval->assigned_regHi();
2129 assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2130 assert(num_physical_regs(T_LONG) == 1 ||
2131 (assigned_regHi >= pd_first_cpu_reg && assigned_regHi <= pd_last_cpu_reg), "no cpu register");
2132
2133 assert(assigned_reg != assigned_regHi, "invalid allocation");
2134 assert(num_physical_regs(T_LONG) == 1 || assigned_reg < assigned_regHi,
2135 "register numbers must be sorted (ensure that e.g. a move from eax,ebx to ebx,eax can not occur)");
2136 assert((assigned_regHi != any_reg) ^ (num_physical_regs(T_LONG) == 1), "must be match");
2137 if (requires_adjacent_regs(T_LONG)) {
2138 assert(assigned_reg % 2 == 0 && assigned_reg + 1 == assigned_regHi, "must be sequential and even");
2139 }
2140
2141 #ifdef _LP64
2142 return LIR_OprFact::double_cpu(assigned_reg, assigned_reg);
2143 #else
2144 #if defined(SPARC) || defined(PPC32)
2145 return LIR_OprFact::double_cpu(assigned_regHi, assigned_reg);
2146 #else
2147 return LIR_OprFact::double_cpu(assigned_reg, assigned_regHi);
2148 #endif // SPARC
2149 #endif // LP64
2150 }
2151
2152 #ifndef __SOFTFP__
2153 case T_FLOAT: {
2154 #ifdef X86
2155 if (UseSSE >= 1) {
2156 int last_xmm_reg = pd_last_xmm_reg;
2157 #ifdef _LP64
2158 if (UseAVX < 3) {
2159 last_xmm_reg = pd_first_xmm_reg + (pd_nof_xmm_regs_frame_map / 2) - 1;
2160 }
2161 #endif
2162 assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= last_xmm_reg, "no xmm register");
2163 assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2164 return LIR_OprFact::single_xmm(assigned_reg - pd_first_xmm_reg);
2165 }
2166 #endif
2167
2168 assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2169 assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2170 return LIR_OprFact::single_fpu(assigned_reg - pd_first_fpu_reg);
2171 }
2172
2173 case T_DOUBLE: {
2174 #ifdef X86
2175 if (UseSSE >= 2) {
2176 int last_xmm_reg = pd_last_xmm_reg;
2177 #ifdef _LP64
2178 if (UseAVX < 3) {
2179 last_xmm_reg = pd_first_xmm_reg + (pd_nof_xmm_regs_frame_map / 2) - 1;
2180 }
2181 #endif
2182 assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= last_xmm_reg, "no xmm register");
2183 assert(interval->assigned_regHi() == any_reg, "must not have hi register (double xmm values are stored in one register)");
2184 return LIR_OprFact::double_xmm(assigned_reg - pd_first_xmm_reg);
2185 }
2186 #endif
2187
2188 #ifdef SPARC
2189 assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2190 assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2191 assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2192 LIR_Opr result = LIR_OprFact::double_fpu(interval->assigned_regHi() - pd_first_fpu_reg, assigned_reg - pd_first_fpu_reg);
2193 #elif defined(ARM32)
2194 assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2195 assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2196 assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2197 LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg, interval->assigned_regHi() - pd_first_fpu_reg);
2198 #else
2199 assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2200 assert(interval->assigned_regHi() == any_reg, "must not have hi register (double fpu values are stored in one register on Intel)");
2201 LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg);
2202 #endif
2203 return result;
2204 }
2205 #endif // __SOFTFP__
2206
2207 default: {
2208 ShouldNotReachHere();
2209 return LIR_OprFact::illegalOpr;
2210 }
2211 }
2212 }
2213 }
2214
canonical_spill_opr(Interval * interval)2215 LIR_Opr LinearScan::canonical_spill_opr(Interval* interval) {
2216 assert(interval->canonical_spill_slot() >= nof_regs, "canonical spill slot not set");
2217 return LIR_OprFact::stack(interval->canonical_spill_slot() - nof_regs, interval->type());
2218 }
2219
color_lir_opr(LIR_Opr opr,int op_id,LIR_OpVisitState::OprMode mode)2220 LIR_Opr LinearScan::color_lir_opr(LIR_Opr opr, int op_id, LIR_OpVisitState::OprMode mode) {
2221 assert(opr->is_virtual(), "should not call this otherwise");
2222
2223 Interval* interval = interval_at(opr->vreg_number());
2224 assert(interval != NULL, "interval must exist");
2225
2226 if (op_id != -1) {
2227 #ifdef ASSERT
2228 BlockBegin* block = block_of_op_with_id(op_id);
2229 if (block->number_of_sux() <= 1 && op_id == block->last_lir_instruction_id()) {
2230 // check if spill moves could have been appended at the end of this block, but
2231 // before the branch instruction. So the split child information for this branch would
2232 // be incorrect.
2233 LIR_OpBranch* branch = block->lir()->instructions_list()->last()->as_OpBranch();
2234 if (branch != NULL) {
2235 if (block->live_out().at(opr->vreg_number())) {
2236 assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
2237 assert(false, "can't get split child for the last branch of a block because the information would be incorrect (moves are inserted before the branch in resolve_data_flow)");
2238 }
2239 }
2240 }
2241 #endif
2242
2243 // operands are not changed when an interval is split during allocation,
2244 // so search the right interval here
2245 interval = split_child_at_op_id(interval, op_id, mode);
2246 }
2247
2248 LIR_Opr res = operand_for_interval(interval);
2249
2250 #ifdef X86
2251 // new semantic for is_last_use: not only set on definite end of interval,
2252 // but also before hole
2253 // This may still miss some cases (e.g. for dead values), but it is not necessary that the
2254 // last use information is completely correct
2255 // information is only needed for fpu stack allocation
2256 if (res->is_fpu_register()) {
2257 if (opr->is_last_use() || op_id == interval->to() || (op_id != -1 && interval->has_hole_between(op_id, op_id + 1))) {
2258 assert(op_id == -1 || !is_block_begin(op_id), "holes at begin of block may also result from control flow");
2259 res = res->make_last_use();
2260 }
2261 }
2262 #endif
2263
2264 assert(!gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::callee_saved) || !FrameMap::is_caller_save_register(res), "bad allocation");
2265
2266 return res;
2267 }
2268
2269
2270 #ifdef ASSERT
2271 // some methods used to check correctness of debug information
2272
assert_no_register_values(GrowableArray<ScopeValue * > * values)2273 void assert_no_register_values(GrowableArray<ScopeValue*>* values) {
2274 if (values == NULL) {
2275 return;
2276 }
2277
2278 for (int i = 0; i < values->length(); i++) {
2279 ScopeValue* value = values->at(i);
2280
2281 if (value->is_location()) {
2282 Location location = ((LocationValue*)value)->location();
2283 assert(location.where() == Location::on_stack, "value is in register");
2284 }
2285 }
2286 }
2287
assert_no_register_values(GrowableArray<MonitorValue * > * values)2288 void assert_no_register_values(GrowableArray<MonitorValue*>* values) {
2289 if (values == NULL) {
2290 return;
2291 }
2292
2293 for (int i = 0; i < values->length(); i++) {
2294 MonitorValue* value = values->at(i);
2295
2296 if (value->owner()->is_location()) {
2297 Location location = ((LocationValue*)value->owner())->location();
2298 assert(location.where() == Location::on_stack, "owner is in register");
2299 }
2300 assert(value->basic_lock().where() == Location::on_stack, "basic_lock is in register");
2301 }
2302 }
2303
assert_equal(Location l1,Location l2)2304 void assert_equal(Location l1, Location l2) {
2305 assert(l1.where() == l2.where() && l1.type() == l2.type() && l1.offset() == l2.offset(), "");
2306 }
2307
assert_equal(ScopeValue * v1,ScopeValue * v2)2308 void assert_equal(ScopeValue* v1, ScopeValue* v2) {
2309 if (v1->is_location()) {
2310 assert(v2->is_location(), "");
2311 assert_equal(((LocationValue*)v1)->location(), ((LocationValue*)v2)->location());
2312 } else if (v1->is_constant_int()) {
2313 assert(v2->is_constant_int(), "");
2314 assert(((ConstantIntValue*)v1)->value() == ((ConstantIntValue*)v2)->value(), "");
2315 } else if (v1->is_constant_double()) {
2316 assert(v2->is_constant_double(), "");
2317 assert(((ConstantDoubleValue*)v1)->value() == ((ConstantDoubleValue*)v2)->value(), "");
2318 } else if (v1->is_constant_long()) {
2319 assert(v2->is_constant_long(), "");
2320 assert(((ConstantLongValue*)v1)->value() == ((ConstantLongValue*)v2)->value(), "");
2321 } else if (v1->is_constant_oop()) {
2322 assert(v2->is_constant_oop(), "");
2323 assert(((ConstantOopWriteValue*)v1)->value() == ((ConstantOopWriteValue*)v2)->value(), "");
2324 } else {
2325 ShouldNotReachHere();
2326 }
2327 }
2328
assert_equal(MonitorValue * m1,MonitorValue * m2)2329 void assert_equal(MonitorValue* m1, MonitorValue* m2) {
2330 assert_equal(m1->owner(), m2->owner());
2331 assert_equal(m1->basic_lock(), m2->basic_lock());
2332 }
2333
assert_equal(IRScopeDebugInfo * d1,IRScopeDebugInfo * d2)2334 void assert_equal(IRScopeDebugInfo* d1, IRScopeDebugInfo* d2) {
2335 assert(d1->scope() == d2->scope(), "not equal");
2336 assert(d1->bci() == d2->bci(), "not equal");
2337
2338 if (d1->locals() != NULL) {
2339 assert(d1->locals() != NULL && d2->locals() != NULL, "not equal");
2340 assert(d1->locals()->length() == d2->locals()->length(), "not equal");
2341 for (int i = 0; i < d1->locals()->length(); i++) {
2342 assert_equal(d1->locals()->at(i), d2->locals()->at(i));
2343 }
2344 } else {
2345 assert(d1->locals() == NULL && d2->locals() == NULL, "not equal");
2346 }
2347
2348 if (d1->expressions() != NULL) {
2349 assert(d1->expressions() != NULL && d2->expressions() != NULL, "not equal");
2350 assert(d1->expressions()->length() == d2->expressions()->length(), "not equal");
2351 for (int i = 0; i < d1->expressions()->length(); i++) {
2352 assert_equal(d1->expressions()->at(i), d2->expressions()->at(i));
2353 }
2354 } else {
2355 assert(d1->expressions() == NULL && d2->expressions() == NULL, "not equal");
2356 }
2357
2358 if (d1->monitors() != NULL) {
2359 assert(d1->monitors() != NULL && d2->monitors() != NULL, "not equal");
2360 assert(d1->monitors()->length() == d2->monitors()->length(), "not equal");
2361 for (int i = 0; i < d1->monitors()->length(); i++) {
2362 assert_equal(d1->monitors()->at(i), d2->monitors()->at(i));
2363 }
2364 } else {
2365 assert(d1->monitors() == NULL && d2->monitors() == NULL, "not equal");
2366 }
2367
2368 if (d1->caller() != NULL) {
2369 assert(d1->caller() != NULL && d2->caller() != NULL, "not equal");
2370 assert_equal(d1->caller(), d2->caller());
2371 } else {
2372 assert(d1->caller() == NULL && d2->caller() == NULL, "not equal");
2373 }
2374 }
2375
check_stack_depth(CodeEmitInfo * info,int stack_end)2376 void check_stack_depth(CodeEmitInfo* info, int stack_end) {
2377 if (info->stack()->bci() != SynchronizationEntryBCI && !info->scope()->method()->is_native()) {
2378 Bytecodes::Code code = info->scope()->method()->java_code_at_bci(info->stack()->bci());
2379 switch (code) {
2380 case Bytecodes::_ifnull : // fall through
2381 case Bytecodes::_ifnonnull : // fall through
2382 case Bytecodes::_ifeq : // fall through
2383 case Bytecodes::_ifne : // fall through
2384 case Bytecodes::_iflt : // fall through
2385 case Bytecodes::_ifge : // fall through
2386 case Bytecodes::_ifgt : // fall through
2387 case Bytecodes::_ifle : // fall through
2388 case Bytecodes::_if_icmpeq : // fall through
2389 case Bytecodes::_if_icmpne : // fall through
2390 case Bytecodes::_if_icmplt : // fall through
2391 case Bytecodes::_if_icmpge : // fall through
2392 case Bytecodes::_if_icmpgt : // fall through
2393 case Bytecodes::_if_icmple : // fall through
2394 case Bytecodes::_if_acmpeq : // fall through
2395 case Bytecodes::_if_acmpne :
2396 assert(stack_end >= -Bytecodes::depth(code), "must have non-empty expression stack at if bytecode");
2397 break;
2398 default:
2399 break;
2400 }
2401 }
2402 }
2403
2404 #endif // ASSERT
2405
2406
init_compute_oop_maps()2407 IntervalWalker* LinearScan::init_compute_oop_maps() {
2408 // setup lists of potential oops for walking
2409 Interval* oop_intervals;
2410 Interval* non_oop_intervals;
2411
2412 create_unhandled_lists(&oop_intervals, &non_oop_intervals, is_oop_interval, NULL);
2413
2414 // intervals that have no oops inside need not to be processed
2415 // to ensure a walking until the last instruction id, add a dummy interval
2416 // with a high operation id
2417 non_oop_intervals = new Interval(any_reg);
2418 non_oop_intervals->add_range(max_jint - 2, max_jint - 1);
2419
2420 return new IntervalWalker(this, oop_intervals, non_oop_intervals);
2421 }
2422
2423
compute_oop_map(IntervalWalker * iw,LIR_Op * op,CodeEmitInfo * info,bool is_call_site)2424 OopMap* LinearScan::compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site) {
2425 TRACE_LINEAR_SCAN(3, tty->print_cr("creating oop map at op_id %d", op->id()));
2426
2427 // walk before the current operation -> intervals that start at
2428 // the operation (= output operands of the operation) are not
2429 // included in the oop map
2430 iw->walk_before(op->id());
2431
2432 int frame_size = frame_map()->framesize();
2433 int arg_count = frame_map()->oop_map_arg_count();
2434 OopMap* map = new OopMap(frame_size, arg_count);
2435
2436 // Iterate through active intervals
2437 for (Interval* interval = iw->active_first(fixedKind); interval != Interval::end(); interval = interval->next()) {
2438 int assigned_reg = interval->assigned_reg();
2439
2440 assert(interval->current_from() <= op->id() && op->id() <= interval->current_to(), "interval should not be active otherwise");
2441 assert(interval->assigned_regHi() == any_reg, "oop must be single word");
2442 assert(interval->reg_num() >= LIR_OprDesc::vreg_base, "fixed interval found");
2443
2444 // Check if this range covers the instruction. Intervals that
2445 // start or end at the current operation are not included in the
2446 // oop map, except in the case of patching moves. For patching
2447 // moves, any intervals which end at this instruction are included
2448 // in the oop map since we may safepoint while doing the patch
2449 // before we've consumed the inputs.
2450 if (op->is_patching() || op->id() < interval->current_to()) {
2451
2452 // caller-save registers must not be included into oop-maps at calls
2453 assert(!is_call_site || assigned_reg >= nof_regs || !is_caller_save(assigned_reg), "interval is in a caller-save register at a call -> register will be overwritten");
2454
2455 VMReg name = vm_reg_for_interval(interval);
2456 set_oop(map, name);
2457
2458 // Spill optimization: when the stack value is guaranteed to be always correct,
2459 // then it must be added to the oop map even if the interval is currently in a register
2460 if (interval->always_in_memory() &&
2461 op->id() > interval->spill_definition_pos() &&
2462 interval->assigned_reg() != interval->canonical_spill_slot()) {
2463 assert(interval->spill_definition_pos() > 0, "position not set correctly");
2464 assert(interval->canonical_spill_slot() >= LinearScan::nof_regs, "no spill slot assigned");
2465 assert(interval->assigned_reg() < LinearScan::nof_regs, "interval is on stack, so stack slot is registered twice");
2466
2467 set_oop(map, frame_map()->slot_regname(interval->canonical_spill_slot() - LinearScan::nof_regs));
2468 }
2469 }
2470 }
2471
2472 // add oops from lock stack
2473 assert(info->stack() != NULL, "CodeEmitInfo must always have a stack");
2474 int locks_count = info->stack()->total_locks_size();
2475 for (int i = 0; i < locks_count; i++) {
2476 set_oop(map, frame_map()->monitor_object_regname(i));
2477 }
2478
2479 return map;
2480 }
2481
2482
compute_oop_map(IntervalWalker * iw,const LIR_OpVisitState & visitor,LIR_Op * op)2483 void LinearScan::compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op) {
2484 assert(visitor.info_count() > 0, "no oop map needed");
2485
2486 // compute oop_map only for first CodeEmitInfo
2487 // because it is (in most cases) equal for all other infos of the same operation
2488 CodeEmitInfo* first_info = visitor.info_at(0);
2489 OopMap* first_oop_map = compute_oop_map(iw, op, first_info, visitor.has_call());
2490
2491 for (int i = 0; i < visitor.info_count(); i++) {
2492 CodeEmitInfo* info = visitor.info_at(i);
2493 OopMap* oop_map = first_oop_map;
2494
2495 // compute worst case interpreter size in case of a deoptimization
2496 _compilation->update_interpreter_frame_size(info->interpreter_frame_size());
2497
2498 if (info->stack()->locks_size() != first_info->stack()->locks_size()) {
2499 // this info has a different number of locks then the precomputed oop map
2500 // (possible for lock and unlock instructions) -> compute oop map with
2501 // correct lock information
2502 oop_map = compute_oop_map(iw, op, info, visitor.has_call());
2503 }
2504
2505 if (info->_oop_map == NULL) {
2506 info->_oop_map = oop_map;
2507 } else {
2508 // a CodeEmitInfo can not be shared between different LIR-instructions
2509 // because interval splitting can occur anywhere between two instructions
2510 // and so the oop maps must be different
2511 // -> check if the already set oop_map is exactly the one calculated for this operation
2512 assert(info->_oop_map == oop_map, "same CodeEmitInfo used for multiple LIR instructions");
2513 }
2514 }
2515 }
2516
2517
2518 // frequently used constants
2519 // Allocate them with new so they are never destroyed (otherwise, a
2520 // forced exit could destroy these objects while they are still in
2521 // use).
2522 ConstantOopWriteValue* LinearScan::_oop_null_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantOopWriteValue(NULL);
2523 ConstantIntValue* LinearScan::_int_m1_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(-1);
2524 ConstantIntValue* LinearScan::_int_0_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue((jint)0);
2525 ConstantIntValue* LinearScan::_int_1_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(1);
2526 ConstantIntValue* LinearScan::_int_2_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(2);
2527 LocationValue* _illegal_value = new (ResourceObj::C_HEAP, mtCompiler) LocationValue(Location());
2528
init_compute_debug_info()2529 void LinearScan::init_compute_debug_info() {
2530 // cache for frequently used scope values
2531 // (cpu registers and stack slots)
2532 int cache_size = (LinearScan::nof_cpu_regs + frame_map()->argcount() + max_spills()) * 2;
2533 _scope_value_cache = ScopeValueArray(cache_size, cache_size, NULL);
2534 }
2535
location_for_monitor_index(int monitor_index)2536 MonitorValue* LinearScan::location_for_monitor_index(int monitor_index) {
2537 Location loc;
2538 if (!frame_map()->location_for_monitor_object(monitor_index, &loc)) {
2539 bailout("too large frame");
2540 }
2541 ScopeValue* object_scope_value = new LocationValue(loc);
2542
2543 if (!frame_map()->location_for_monitor_lock(monitor_index, &loc)) {
2544 bailout("too large frame");
2545 }
2546 return new MonitorValue(object_scope_value, loc);
2547 }
2548
location_for_name(int name,Location::Type loc_type)2549 LocationValue* LinearScan::location_for_name(int name, Location::Type loc_type) {
2550 Location loc;
2551 if (!frame_map()->locations_for_slot(name, loc_type, &loc)) {
2552 bailout("too large frame");
2553 }
2554 return new LocationValue(loc);
2555 }
2556
2557
append_scope_value_for_constant(LIR_Opr opr,GrowableArray<ScopeValue * > * scope_values)2558 int LinearScan::append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2559 assert(opr->is_constant(), "should not be called otherwise");
2560
2561 LIR_Const* c = opr->as_constant_ptr();
2562 BasicType t = c->type();
2563 switch (t) {
2564 case T_OBJECT: {
2565 jobject value = c->as_jobject();
2566 if (value == NULL) {
2567 scope_values->append(_oop_null_scope_value);
2568 } else {
2569 scope_values->append(new ConstantOopWriteValue(c->as_jobject()));
2570 }
2571 return 1;
2572 }
2573
2574 case T_INT: // fall through
2575 case T_FLOAT: {
2576 int value = c->as_jint_bits();
2577 switch (value) {
2578 case -1: scope_values->append(_int_m1_scope_value); break;
2579 case 0: scope_values->append(_int_0_scope_value); break;
2580 case 1: scope_values->append(_int_1_scope_value); break;
2581 case 2: scope_values->append(_int_2_scope_value); break;
2582 default: scope_values->append(new ConstantIntValue(c->as_jint_bits())); break;
2583 }
2584 return 1;
2585 }
2586
2587 case T_LONG: // fall through
2588 case T_DOUBLE: {
2589 #ifdef _LP64
2590 scope_values->append(_int_0_scope_value);
2591 scope_values->append(new ConstantLongValue(c->as_jlong_bits()));
2592 #else
2593 if (hi_word_offset_in_bytes > lo_word_offset_in_bytes) {
2594 scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2595 scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2596 } else {
2597 scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2598 scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2599 }
2600 #endif
2601 return 2;
2602 }
2603
2604 case T_ADDRESS: {
2605 #ifdef _LP64
2606 scope_values->append(new ConstantLongValue(c->as_jint()));
2607 #else
2608 scope_values->append(new ConstantIntValue(c->as_jint()));
2609 #endif
2610 return 1;
2611 }
2612
2613 default:
2614 ShouldNotReachHere();
2615 return -1;
2616 }
2617 }
2618
append_scope_value_for_operand(LIR_Opr opr,GrowableArray<ScopeValue * > * scope_values)2619 int LinearScan::append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2620 if (opr->is_single_stack()) {
2621 int stack_idx = opr->single_stack_ix();
2622 bool is_oop = opr->is_oop_register();
2623 int cache_idx = (stack_idx + LinearScan::nof_cpu_regs) * 2 + (is_oop ? 1 : 0);
2624
2625 ScopeValue* sv = _scope_value_cache.at(cache_idx);
2626 if (sv == NULL) {
2627 Location::Type loc_type = is_oop ? Location::oop : Location::normal;
2628 sv = location_for_name(stack_idx, loc_type);
2629 _scope_value_cache.at_put(cache_idx, sv);
2630 }
2631
2632 // check if cached value is correct
2633 DEBUG_ONLY(assert_equal(sv, location_for_name(stack_idx, is_oop ? Location::oop : Location::normal)));
2634
2635 scope_values->append(sv);
2636 return 1;
2637
2638 } else if (opr->is_single_cpu()) {
2639 bool is_oop = opr->is_oop_register();
2640 int cache_idx = opr->cpu_regnr() * 2 + (is_oop ? 1 : 0);
2641 Location::Type int_loc_type = NOT_LP64(Location::normal) LP64_ONLY(Location::int_in_long);
2642
2643 ScopeValue* sv = _scope_value_cache.at(cache_idx);
2644 if (sv == NULL) {
2645 Location::Type loc_type = is_oop ? Location::oop : int_loc_type;
2646 VMReg rname = frame_map()->regname(opr);
2647 sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2648 _scope_value_cache.at_put(cache_idx, sv);
2649 }
2650
2651 // check if cached value is correct
2652 DEBUG_ONLY(assert_equal(sv, new LocationValue(Location::new_reg_loc(is_oop ? Location::oop : int_loc_type, frame_map()->regname(opr)))));
2653
2654 scope_values->append(sv);
2655 return 1;
2656
2657 #ifdef X86
2658 } else if (opr->is_single_xmm()) {
2659 VMReg rname = opr->as_xmm_float_reg()->as_VMReg();
2660 LocationValue* sv = new LocationValue(Location::new_reg_loc(Location::normal, rname));
2661
2662 scope_values->append(sv);
2663 return 1;
2664 #endif
2665
2666 } else if (opr->is_single_fpu()) {
2667 #ifdef X86
2668 // the exact location of fpu stack values is only known
2669 // during fpu stack allocation, so the stack allocator object
2670 // must be present
2671 assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2672 assert(_fpu_stack_allocator != NULL, "must be present");
2673 opr = _fpu_stack_allocator->to_fpu_stack(opr);
2674 #endif
2675
2676 Location::Type loc_type = float_saved_as_double ? Location::float_in_dbl : Location::normal;
2677 VMReg rname = frame_map()->fpu_regname(opr->fpu_regnr());
2678 #ifndef __SOFTFP__
2679 #ifndef VM_LITTLE_ENDIAN
2680 // On S390 a (single precision) float value occupies only the high
2681 // word of the full double register. So when the double register is
2682 // stored to memory (e.g. by the RegisterSaver), then the float value
2683 // is found at offset 0. I.e. the code below is not needed on S390.
2684 #ifndef S390
2685 if (! float_saved_as_double) {
2686 // On big endian system, we may have an issue if float registers use only
2687 // the low half of the (same) double registers.
2688 // Both the float and the double could have the same regnr but would correspond
2689 // to two different addresses once saved.
2690
2691 // get next safely (no assertion checks)
2692 VMReg next = VMRegImpl::as_VMReg(1+rname->value());
2693 if (next->is_reg() &&
2694 (next->as_FloatRegister() == rname->as_FloatRegister())) {
2695 // the back-end does use the same numbering for the double and the float
2696 rname = next; // VMReg for the low bits, e.g. the real VMReg for the float
2697 }
2698 }
2699 #endif // !S390
2700 #endif
2701 #endif
2702 LocationValue* sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2703
2704 scope_values->append(sv);
2705 return 1;
2706
2707 } else {
2708 // double-size operands
2709
2710 ScopeValue* first;
2711 ScopeValue* second;
2712
2713 if (opr->is_double_stack()) {
2714 #ifdef _LP64
2715 Location loc1;
2716 Location::Type loc_type = opr->type() == T_LONG ? Location::lng : Location::dbl;
2717 if (!frame_map()->locations_for_slot(opr->double_stack_ix(), loc_type, &loc1, NULL)) {
2718 bailout("too large frame");
2719 }
2720 // Does this reverse on x86 vs. sparc?
2721 first = new LocationValue(loc1);
2722 second = _int_0_scope_value;
2723 #else
2724 Location loc1, loc2;
2725 if (!frame_map()->locations_for_slot(opr->double_stack_ix(), Location::normal, &loc1, &loc2)) {
2726 bailout("too large frame");
2727 }
2728 first = new LocationValue(loc1);
2729 second = new LocationValue(loc2);
2730 #endif // _LP64
2731
2732 } else if (opr->is_double_cpu()) {
2733 #ifdef _LP64
2734 VMReg rname_first = opr->as_register_lo()->as_VMReg();
2735 first = new LocationValue(Location::new_reg_loc(Location::lng, rname_first));
2736 second = _int_0_scope_value;
2737 #else
2738 VMReg rname_first = opr->as_register_lo()->as_VMReg();
2739 VMReg rname_second = opr->as_register_hi()->as_VMReg();
2740
2741 if (hi_word_offset_in_bytes < lo_word_offset_in_bytes) {
2742 // lo/hi and swapped relative to first and second, so swap them
2743 VMReg tmp = rname_first;
2744 rname_first = rname_second;
2745 rname_second = tmp;
2746 }
2747
2748 first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2749 second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2750 #endif //_LP64
2751
2752
2753 #ifdef X86
2754 } else if (opr->is_double_xmm()) {
2755 assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation");
2756 VMReg rname_first = opr->as_xmm_double_reg()->as_VMReg();
2757 # ifdef _LP64
2758 first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
2759 second = _int_0_scope_value;
2760 # else
2761 first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2762 // %%% This is probably a waste but we'll keep things as they were for now
2763 if (true) {
2764 VMReg rname_second = rname_first->next();
2765 second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2766 }
2767 # endif
2768 #endif
2769
2770 } else if (opr->is_double_fpu()) {
2771 // On SPARC, fpu_regnrLo/fpu_regnrHi represents the two halves of
2772 // the double as float registers in the native ordering. On X86,
2773 // fpu_regnrLo is a FPU stack slot whose VMReg represents
2774 // the low-order word of the double and fpu_regnrLo + 1 is the
2775 // name for the other half. *first and *second must represent the
2776 // least and most significant words, respectively.
2777
2778 #ifdef X86
2779 // the exact location of fpu stack values is only known
2780 // during fpu stack allocation, so the stack allocator object
2781 // must be present
2782 assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2783 assert(_fpu_stack_allocator != NULL, "must be present");
2784 opr = _fpu_stack_allocator->to_fpu_stack(opr);
2785
2786 assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrLo is used)");
2787 #endif
2788 #ifdef SPARC
2789 assert(opr->fpu_regnrLo() == opr->fpu_regnrHi() + 1, "assumed in calculation (only fpu_regnrHi is used)");
2790 #endif
2791 #ifdef ARM32
2792 assert(opr->fpu_regnrHi() == opr->fpu_regnrLo() + 1, "assumed in calculation (only fpu_regnrLo is used)");
2793 #endif
2794 #ifdef PPC32
2795 assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)");
2796 #endif
2797
2798 #ifdef VM_LITTLE_ENDIAN
2799 VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrLo());
2800 #else
2801 VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrHi());
2802 #endif
2803
2804 #ifdef _LP64
2805 first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
2806 second = _int_0_scope_value;
2807 #else
2808 first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2809 // %%% This is probably a waste but we'll keep things as they were for now
2810 if (true) {
2811 VMReg rname_second = rname_first->next();
2812 second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2813 }
2814 #endif
2815
2816 } else {
2817 ShouldNotReachHere();
2818 first = NULL;
2819 second = NULL;
2820 }
2821
2822 assert(first != NULL && second != NULL, "must be set");
2823 // The convention the interpreter uses is that the second local
2824 // holds the first raw word of the native double representation.
2825 // This is actually reasonable, since locals and stack arrays
2826 // grow downwards in all implementations.
2827 // (If, on some machine, the interpreter's Java locals or stack
2828 // were to grow upwards, the embedded doubles would be word-swapped.)
2829 scope_values->append(second);
2830 scope_values->append(first);
2831 return 2;
2832 }
2833 }
2834
2835
append_scope_value(int op_id,Value value,GrowableArray<ScopeValue * > * scope_values)2836 int LinearScan::append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values) {
2837 if (value != NULL) {
2838 LIR_Opr opr = value->operand();
2839 Constant* con = value->as_Constant();
2840
2841 assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands (or illegal if constant is optimized away)");
2842 assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
2843
2844 if (con != NULL && !con->is_pinned() && !opr->is_constant()) {
2845 // Unpinned constants may have a virtual operand for a part of the lifetime
2846 // or may be illegal when it was optimized away,
2847 // so always use a constant operand
2848 opr = LIR_OprFact::value_type(con->type());
2849 }
2850 assert(opr->is_virtual() || opr->is_constant(), "other cases not allowed here");
2851
2852 if (opr->is_virtual()) {
2853 LIR_OpVisitState::OprMode mode = LIR_OpVisitState::inputMode;
2854
2855 BlockBegin* block = block_of_op_with_id(op_id);
2856 if (block->number_of_sux() == 1 && op_id == block->last_lir_instruction_id()) {
2857 // generating debug information for the last instruction of a block.
2858 // if this instruction is a branch, spill moves are inserted before this branch
2859 // and so the wrong operand would be returned (spill moves at block boundaries are not
2860 // considered in the live ranges of intervals)
2861 // Solution: use the first op_id of the branch target block instead.
2862 if (block->lir()->instructions_list()->last()->as_OpBranch() != NULL) {
2863 if (block->live_out().at(opr->vreg_number())) {
2864 op_id = block->sux_at(0)->first_lir_instruction_id();
2865 mode = LIR_OpVisitState::outputMode;
2866 }
2867 }
2868 }
2869
2870 // Get current location of operand
2871 // The operand must be live because debug information is considered when building the intervals
2872 // if the interval is not live, color_lir_opr will cause an assertion failure
2873 opr = color_lir_opr(opr, op_id, mode);
2874 assert(!has_call(op_id) || opr->is_stack() || !is_caller_save(reg_num(opr)), "can not have caller-save register operands at calls");
2875
2876 // Append to ScopeValue array
2877 return append_scope_value_for_operand(opr, scope_values);
2878
2879 } else {
2880 assert(value->as_Constant() != NULL, "all other instructions have only virtual operands");
2881 assert(opr->is_constant(), "operand must be constant");
2882
2883 return append_scope_value_for_constant(opr, scope_values);
2884 }
2885 } else {
2886 // append a dummy value because real value not needed
2887 scope_values->append(_illegal_value);
2888 return 1;
2889 }
2890 }
2891
2892
compute_debug_info_for_scope(int op_id,IRScope * cur_scope,ValueStack * cur_state,ValueStack * innermost_state)2893 IRScopeDebugInfo* LinearScan::compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state) {
2894 IRScopeDebugInfo* caller_debug_info = NULL;
2895
2896 ValueStack* caller_state = cur_state->caller_state();
2897 if (caller_state != NULL) {
2898 // process recursively to compute outermost scope first
2899 caller_debug_info = compute_debug_info_for_scope(op_id, cur_scope->caller(), caller_state, innermost_state);
2900 }
2901
2902 // initialize these to null.
2903 // If we don't need deopt info or there are no locals, expressions or monitors,
2904 // then these get recorded as no information and avoids the allocation of 0 length arrays.
2905 GrowableArray<ScopeValue*>* locals = NULL;
2906 GrowableArray<ScopeValue*>* expressions = NULL;
2907 GrowableArray<MonitorValue*>* monitors = NULL;
2908
2909 // describe local variable values
2910 int nof_locals = cur_state->locals_size();
2911 if (nof_locals > 0) {
2912 locals = new GrowableArray<ScopeValue*>(nof_locals);
2913
2914 int pos = 0;
2915 while (pos < nof_locals) {
2916 assert(pos < cur_state->locals_size(), "why not?");
2917
2918 Value local = cur_state->local_at(pos);
2919 pos += append_scope_value(op_id, local, locals);
2920
2921 assert(locals->length() == pos, "must match");
2922 }
2923 assert(locals->length() == cur_scope->method()->max_locals(), "wrong number of locals");
2924 assert(locals->length() == cur_state->locals_size(), "wrong number of locals");
2925 } else if (cur_scope->method()->max_locals() > 0) {
2926 assert(cur_state->kind() == ValueStack::EmptyExceptionState, "should be");
2927 nof_locals = cur_scope->method()->max_locals();
2928 locals = new GrowableArray<ScopeValue*>(nof_locals);
2929 for(int i = 0; i < nof_locals; i++) {
2930 locals->append(_illegal_value);
2931 }
2932 }
2933
2934 // describe expression stack
2935 int nof_stack = cur_state->stack_size();
2936 if (nof_stack > 0) {
2937 expressions = new GrowableArray<ScopeValue*>(nof_stack);
2938
2939 int pos = 0;
2940 while (pos < nof_stack) {
2941 Value expression = cur_state->stack_at_inc(pos);
2942 append_scope_value(op_id, expression, expressions);
2943
2944 assert(expressions->length() == pos, "must match");
2945 }
2946 assert(expressions->length() == cur_state->stack_size(), "wrong number of stack entries");
2947 }
2948
2949 // describe monitors
2950 int nof_locks = cur_state->locks_size();
2951 if (nof_locks > 0) {
2952 int lock_offset = cur_state->caller_state() != NULL ? cur_state->caller_state()->total_locks_size() : 0;
2953 monitors = new GrowableArray<MonitorValue*>(nof_locks);
2954 for (int i = 0; i < nof_locks; i++) {
2955 monitors->append(location_for_monitor_index(lock_offset + i));
2956 }
2957 }
2958
2959 return new IRScopeDebugInfo(cur_scope, cur_state->bci(), locals, expressions, monitors, caller_debug_info);
2960 }
2961
2962
compute_debug_info(CodeEmitInfo * info,int op_id)2963 void LinearScan::compute_debug_info(CodeEmitInfo* info, int op_id) {
2964 TRACE_LINEAR_SCAN(3, tty->print_cr("creating debug information at op_id %d", op_id));
2965
2966 IRScope* innermost_scope = info->scope();
2967 ValueStack* innermost_state = info->stack();
2968
2969 assert(innermost_scope != NULL && innermost_state != NULL, "why is it missing?");
2970
2971 DEBUG_ONLY(check_stack_depth(info, innermost_state->stack_size()));
2972
2973 if (info->_scope_debug_info == NULL) {
2974 // compute debug information
2975 info->_scope_debug_info = compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state);
2976 } else {
2977 // debug information already set. Check that it is correct from the current point of view
2978 DEBUG_ONLY(assert_equal(info->_scope_debug_info, compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state)));
2979 }
2980 }
2981
2982
assign_reg_num(LIR_OpList * instructions,IntervalWalker * iw)2983 void LinearScan::assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw) {
2984 LIR_OpVisitState visitor;
2985 int num_inst = instructions->length();
2986 bool has_dead = false;
2987
2988 for (int j = 0; j < num_inst; j++) {
2989 LIR_Op* op = instructions->at(j);
2990 if (op == NULL) { // this can happen when spill-moves are removed in eliminate_spill_moves
2991 has_dead = true;
2992 continue;
2993 }
2994 int op_id = op->id();
2995
2996 // visit instruction to get list of operands
2997 visitor.visit(op);
2998
2999 // iterate all modes of the visitor and process all virtual operands
3000 for_each_visitor_mode(mode) {
3001 int n = visitor.opr_count(mode);
3002 for (int k = 0; k < n; k++) {
3003 LIR_Opr opr = visitor.opr_at(mode, k);
3004 if (opr->is_virtual_register()) {
3005 visitor.set_opr_at(mode, k, color_lir_opr(opr, op_id, mode));
3006 }
3007 }
3008 }
3009
3010 if (visitor.info_count() > 0) {
3011 // exception handling
3012 if (compilation()->has_exception_handlers()) {
3013 XHandlers* xhandlers = visitor.all_xhandler();
3014 int n = xhandlers->length();
3015 for (int k = 0; k < n; k++) {
3016 XHandler* handler = xhandlers->handler_at(k);
3017 if (handler->entry_code() != NULL) {
3018 assign_reg_num(handler->entry_code()->instructions_list(), NULL);
3019 }
3020 }
3021 } else {
3022 assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
3023 }
3024
3025 // compute oop map
3026 assert(iw != NULL, "needed for compute_oop_map");
3027 compute_oop_map(iw, visitor, op);
3028
3029 // compute debug information
3030 if (!use_fpu_stack_allocation()) {
3031 // compute debug information if fpu stack allocation is not needed.
3032 // when fpu stack allocation is needed, the debug information can not
3033 // be computed here because the exact location of fpu operands is not known
3034 // -> debug information is created inside the fpu stack allocator
3035 int n = visitor.info_count();
3036 for (int k = 0; k < n; k++) {
3037 compute_debug_info(visitor.info_at(k), op_id);
3038 }
3039 }
3040 }
3041
3042 #ifdef ASSERT
3043 // make sure we haven't made the op invalid.
3044 op->verify();
3045 #endif
3046
3047 // remove useless moves
3048 if (op->code() == lir_move) {
3049 assert(op->as_Op1() != NULL, "move must be LIR_Op1");
3050 LIR_Op1* move = (LIR_Op1*)op;
3051 LIR_Opr src = move->in_opr();
3052 LIR_Opr dst = move->result_opr();
3053 if (dst == src ||
3054 (!dst->is_pointer() && !src->is_pointer() &&
3055 src->is_same_register(dst))) {
3056 instructions->at_put(j, NULL);
3057 has_dead = true;
3058 }
3059 }
3060 }
3061
3062 if (has_dead) {
3063 // iterate all instructions of the block and remove all null-values.
3064 int insert_point = 0;
3065 for (int j = 0; j < num_inst; j++) {
3066 LIR_Op* op = instructions->at(j);
3067 if (op != NULL) {
3068 if (insert_point != j) {
3069 instructions->at_put(insert_point, op);
3070 }
3071 insert_point++;
3072 }
3073 }
3074 instructions->trunc_to(insert_point);
3075 }
3076 }
3077
assign_reg_num()3078 void LinearScan::assign_reg_num() {
3079 TIME_LINEAR_SCAN(timer_assign_reg_num);
3080
3081 init_compute_debug_info();
3082 IntervalWalker* iw = init_compute_oop_maps();
3083
3084 int num_blocks = block_count();
3085 for (int i = 0; i < num_blocks; i++) {
3086 BlockBegin* block = block_at(i);
3087 assign_reg_num(block->lir()->instructions_list(), iw);
3088 }
3089 }
3090
3091
do_linear_scan()3092 void LinearScan::do_linear_scan() {
3093 NOT_PRODUCT(_total_timer.begin_method());
3094
3095 number_instructions();
3096
3097 NOT_PRODUCT(print_lir(1, "Before Register Allocation"));
3098
3099 compute_local_live_sets();
3100 compute_global_live_sets();
3101 CHECK_BAILOUT();
3102
3103 build_intervals();
3104 CHECK_BAILOUT();
3105 sort_intervals_before_allocation();
3106
3107 NOT_PRODUCT(print_intervals("Before Register Allocation"));
3108 NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_before_alloc));
3109
3110 allocate_registers();
3111 CHECK_BAILOUT();
3112
3113 resolve_data_flow();
3114 if (compilation()->has_exception_handlers()) {
3115 resolve_exception_handlers();
3116 }
3117 // fill in number of spill slots into frame_map
3118 propagate_spill_slots();
3119 CHECK_BAILOUT();
3120
3121 NOT_PRODUCT(print_intervals("After Register Allocation"));
3122 NOT_PRODUCT(print_lir(2, "LIR after register allocation:"));
3123
3124 sort_intervals_after_allocation();
3125
3126 DEBUG_ONLY(verify());
3127
3128 eliminate_spill_moves();
3129 assign_reg_num();
3130 CHECK_BAILOUT();
3131
3132 NOT_PRODUCT(print_lir(2, "LIR after assignment of register numbers:"));
3133 NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_after_asign));
3134
3135 { TIME_LINEAR_SCAN(timer_allocate_fpu_stack);
3136
3137 if (use_fpu_stack_allocation()) {
3138 allocate_fpu_stack(); // Only has effect on Intel
3139 NOT_PRODUCT(print_lir(2, "LIR after FPU stack allocation:"));
3140 }
3141 }
3142
3143 { TIME_LINEAR_SCAN(timer_optimize_lir);
3144
3145 EdgeMoveOptimizer::optimize(ir()->code());
3146 ControlFlowOptimizer::optimize(ir()->code());
3147 // check that cfg is still correct after optimizations
3148 ir()->verify();
3149 }
3150
3151 NOT_PRODUCT(print_lir(1, "Before Code Generation", false));
3152 NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_final));
3153 NOT_PRODUCT(_total_timer.end_method(this));
3154 }
3155
3156
3157 // ********** Printing functions
3158
3159 #ifndef PRODUCT
3160
print_timers(double total)3161 void LinearScan::print_timers(double total) {
3162 _total_timer.print(total);
3163 }
3164
print_statistics()3165 void LinearScan::print_statistics() {
3166 _stat_before_alloc.print("before allocation");
3167 _stat_after_asign.print("after assignment of register");
3168 _stat_final.print("after optimization");
3169 }
3170
print_bitmap(BitMap & b)3171 void LinearScan::print_bitmap(BitMap& b) {
3172 for (unsigned int i = 0; i < b.size(); i++) {
3173 if (b.at(i)) tty->print("%d ", i);
3174 }
3175 tty->cr();
3176 }
3177
print_intervals(const char * label)3178 void LinearScan::print_intervals(const char* label) {
3179 if (TraceLinearScanLevel >= 1) {
3180 int i;
3181 tty->cr();
3182 tty->print_cr("%s", label);
3183
3184 for (i = 0; i < interval_count(); i++) {
3185 Interval* interval = interval_at(i);
3186 if (interval != NULL) {
3187 interval->print();
3188 }
3189 }
3190
3191 tty->cr();
3192 tty->print_cr("--- Basic Blocks ---");
3193 for (i = 0; i < block_count(); i++) {
3194 BlockBegin* block = block_at(i);
3195 tty->print("B%d [%d, %d, %d, %d] ", block->block_id(), block->first_lir_instruction_id(), block->last_lir_instruction_id(), block->loop_index(), block->loop_depth());
3196 }
3197 tty->cr();
3198 tty->cr();
3199 }
3200
3201 if (PrintCFGToFile) {
3202 CFGPrinter::print_intervals(&_intervals, label);
3203 }
3204 }
3205
print_lir(int level,const char * label,bool hir_valid)3206 void LinearScan::print_lir(int level, const char* label, bool hir_valid) {
3207 if (TraceLinearScanLevel >= level) {
3208 tty->cr();
3209 tty->print_cr("%s", label);
3210 print_LIR(ir()->linear_scan_order());
3211 tty->cr();
3212 }
3213
3214 if (level == 1 && PrintCFGToFile) {
3215 CFGPrinter::print_cfg(ir()->linear_scan_order(), label, hir_valid, true);
3216 }
3217 }
3218
3219 #endif //PRODUCT
3220
3221
3222 // ********** verification functions for allocation
3223 // (check that all intervals have a correct register and that no registers are overwritten)
3224 #ifdef ASSERT
3225
verify()3226 void LinearScan::verify() {
3227 TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying intervals ******************************************"));
3228 verify_intervals();
3229
3230 TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that no oops are in fixed intervals ****************"));
3231 verify_no_oops_in_fixed_intervals();
3232
3233 TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that unpinned constants are not alive across block boundaries"));
3234 verify_constants();
3235
3236 TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying register allocation ********************************"));
3237 verify_registers();
3238
3239 TRACE_LINEAR_SCAN(2, tty->print_cr("********* no errors found **********************************************"));
3240 }
3241
verify_intervals()3242 void LinearScan::verify_intervals() {
3243 int len = interval_count();
3244 bool has_error = false;
3245
3246 for (int i = 0; i < len; i++) {
3247 Interval* i1 = interval_at(i);
3248 if (i1 == NULL) continue;
3249
3250 i1->check_split_children();
3251
3252 if (i1->reg_num() != i) {
3253 tty->print_cr("Interval %d is on position %d in list", i1->reg_num(), i); i1->print(); tty->cr();
3254 has_error = true;
3255 }
3256
3257 if (i1->reg_num() >= LIR_OprDesc::vreg_base && i1->type() == T_ILLEGAL) {
3258 tty->print_cr("Interval %d has no type assigned", i1->reg_num()); i1->print(); tty->cr();
3259 has_error = true;
3260 }
3261
3262 if (i1->assigned_reg() == any_reg) {
3263 tty->print_cr("Interval %d has no register assigned", i1->reg_num()); i1->print(); tty->cr();
3264 has_error = true;
3265 }
3266
3267 if (i1->assigned_reg() == i1->assigned_regHi()) {
3268 tty->print_cr("Interval %d: low and high register equal", i1->reg_num()); i1->print(); tty->cr();
3269 has_error = true;
3270 }
3271
3272 if (!is_processed_reg_num(i1->assigned_reg())) {
3273 tty->print_cr("Can not have an Interval for an ignored register"); i1->print(); tty->cr();
3274 has_error = true;
3275 }
3276
3277 // special intervals that are created in MoveResolver
3278 // -> ignore them because the range information has no meaning there
3279 if (i1->from() == 1 && i1->to() == 2) continue;
3280
3281 if (i1->first() == Range::end()) {
3282 tty->print_cr("Interval %d has no Range", i1->reg_num()); i1->print(); tty->cr();
3283 has_error = true;
3284 }
3285
3286 for (Range* r = i1->first(); r != Range::end(); r = r->next()) {
3287 if (r->from() >= r->to()) {
3288 tty->print_cr("Interval %d has zero length range", i1->reg_num()); i1->print(); tty->cr();
3289 has_error = true;
3290 }
3291 }
3292
3293 for (int j = i + 1; j < len; j++) {
3294 Interval* i2 = interval_at(j);
3295 if (i2 == NULL || (i2->from() == 1 && i2->to() == 2)) continue;
3296
3297 int r1 = i1->assigned_reg();
3298 int r1Hi = i1->assigned_regHi();
3299 int r2 = i2->assigned_reg();
3300 int r2Hi = i2->assigned_regHi();
3301 if ((r1 == r2 || r1 == r2Hi || (r1Hi != any_reg && (r1Hi == r2 || r1Hi == r2Hi))) && i1->intersects(i2)) {
3302 tty->print_cr("Intervals %d and %d overlap and have the same register assigned", i1->reg_num(), i2->reg_num());
3303 i1->print(); tty->cr();
3304 i2->print(); tty->cr();
3305 has_error = true;
3306 }
3307 }
3308 }
3309
3310 assert(has_error == false, "register allocation invalid");
3311 }
3312
3313
verify_no_oops_in_fixed_intervals()3314 void LinearScan::verify_no_oops_in_fixed_intervals() {
3315 Interval* fixed_intervals;
3316 Interval* other_intervals;
3317 create_unhandled_lists(&fixed_intervals, &other_intervals, is_precolored_cpu_interval, NULL);
3318
3319 // to ensure a walking until the last instruction id, add a dummy interval
3320 // with a high operation id
3321 other_intervals = new Interval(any_reg);
3322 other_intervals->add_range(max_jint - 2, max_jint - 1);
3323 IntervalWalker* iw = new IntervalWalker(this, fixed_intervals, other_intervals);
3324
3325 LIR_OpVisitState visitor;
3326 for (int i = 0; i < block_count(); i++) {
3327 BlockBegin* block = block_at(i);
3328
3329 LIR_OpList* instructions = block->lir()->instructions_list();
3330
3331 for (int j = 0; j < instructions->length(); j++) {
3332 LIR_Op* op = instructions->at(j);
3333 int op_id = op->id();
3334
3335 visitor.visit(op);
3336
3337 if (visitor.info_count() > 0) {
3338 iw->walk_before(op->id());
3339 bool check_live = true;
3340 if (op->code() == lir_move) {
3341 LIR_Op1* move = (LIR_Op1*)op;
3342 check_live = (move->patch_code() == lir_patch_none);
3343 }
3344 LIR_OpBranch* branch = op->as_OpBranch();
3345 if (branch != NULL && branch->stub() != NULL && branch->stub()->is_exception_throw_stub()) {
3346 // Don't bother checking the stub in this case since the
3347 // exception stub will never return to normal control flow.
3348 check_live = false;
3349 }
3350
3351 // Make sure none of the fixed registers is live across an
3352 // oopmap since we can't handle that correctly.
3353 if (check_live) {
3354 for (Interval* interval = iw->active_first(fixedKind);
3355 interval != Interval::end();
3356 interval = interval->next()) {
3357 if (interval->current_to() > op->id() + 1) {
3358 // This interval is live out of this op so make sure
3359 // that this interval represents some value that's
3360 // referenced by this op either as an input or output.
3361 bool ok = false;
3362 for_each_visitor_mode(mode) {
3363 int n = visitor.opr_count(mode);
3364 for (int k = 0; k < n; k++) {
3365 LIR_Opr opr = visitor.opr_at(mode, k);
3366 if (opr->is_fixed_cpu()) {
3367 if (interval_at(reg_num(opr)) == interval) {
3368 ok = true;
3369 break;
3370 }
3371 int hi = reg_numHi(opr);
3372 if (hi != -1 && interval_at(hi) == interval) {
3373 ok = true;
3374 break;
3375 }
3376 }
3377 }
3378 }
3379 assert(ok, "fixed intervals should never be live across an oopmap point");
3380 }
3381 }
3382 }
3383 }
3384
3385 // oop-maps at calls do not contain registers, so check is not needed
3386 if (!visitor.has_call()) {
3387
3388 for_each_visitor_mode(mode) {
3389 int n = visitor.opr_count(mode);
3390 for (int k = 0; k < n; k++) {
3391 LIR_Opr opr = visitor.opr_at(mode, k);
3392
3393 if (opr->is_fixed_cpu() && opr->is_oop()) {
3394 // operand is a non-virtual cpu register and contains an oop
3395 TRACE_LINEAR_SCAN(4, op->print_on(tty); tty->print("checking operand "); opr->print(); tty->cr());
3396
3397 Interval* interval = interval_at(reg_num(opr));
3398 assert(interval != NULL, "no interval");
3399
3400 if (mode == LIR_OpVisitState::inputMode) {
3401 if (interval->to() >= op_id + 1) {
3402 assert(interval->to() < op_id + 2 ||
3403 interval->has_hole_between(op_id, op_id + 2),
3404 "oop input operand live after instruction");
3405 }
3406 } else if (mode == LIR_OpVisitState::outputMode) {
3407 if (interval->from() <= op_id - 1) {
3408 assert(interval->has_hole_between(op_id - 1, op_id),
3409 "oop input operand live after instruction");
3410 }
3411 }
3412 }
3413 }
3414 }
3415 }
3416 }
3417 }
3418 }
3419
3420
verify_constants()3421 void LinearScan::verify_constants() {
3422 int num_regs = num_virtual_regs();
3423 int size = live_set_size();
3424 int num_blocks = block_count();
3425
3426 for (int i = 0; i < num_blocks; i++) {
3427 BlockBegin* block = block_at(i);
3428 ResourceBitMap live_at_edge = block->live_in();
3429
3430 // visit all registers where the live_at_edge bit is set
3431 for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
3432 TRACE_LINEAR_SCAN(4, tty->print("checking interval %d of block B%d", r, block->block_id()));
3433
3434 Value value = gen()->instruction_for_vreg(r);
3435
3436 assert(value != NULL, "all intervals live across block boundaries must have Value");
3437 assert(value->operand()->is_register() && value->operand()->is_virtual(), "value must have virtual operand");
3438 assert(value->operand()->vreg_number() == r, "register number must match");
3439 // TKR assert(value->as_Constant() == NULL || value->is_pinned(), "only pinned constants can be alive accross block boundaries");
3440 }
3441 }
3442 }
3443
3444
3445 class RegisterVerifier: public StackObj {
3446 private:
3447 LinearScan* _allocator;
3448 BlockList _work_list; // all blocks that must be processed
3449 IntervalsList _saved_states; // saved information of previous check
3450
3451 // simplified access to methods of LinearScan
compilation() const3452 Compilation* compilation() const { return _allocator->compilation(); }
interval_at(int reg_num) const3453 Interval* interval_at(int reg_num) const { return _allocator->interval_at(reg_num); }
reg_num(LIR_Opr opr) const3454 int reg_num(LIR_Opr opr) const { return _allocator->reg_num(opr); }
3455
3456 // currently, only registers are processed
state_size()3457 int state_size() { return LinearScan::nof_regs; }
3458
3459 // accessors
state_for_block(BlockBegin * block)3460 IntervalList* state_for_block(BlockBegin* block) { return _saved_states.at(block->block_id()); }
set_state_for_block(BlockBegin * block,IntervalList * saved_state)3461 void set_state_for_block(BlockBegin* block, IntervalList* saved_state) { _saved_states.at_put(block->block_id(), saved_state); }
add_to_work_list(BlockBegin * block)3462 void add_to_work_list(BlockBegin* block) { if (!_work_list.contains(block)) _work_list.append(block); }
3463
3464 // helper functions
3465 IntervalList* copy(IntervalList* input_state);
3466 void state_put(IntervalList* input_state, int reg, Interval* interval);
3467 bool check_state(IntervalList* input_state, int reg, Interval* interval);
3468
3469 void process_block(BlockBegin* block);
3470 void process_xhandler(XHandler* xhandler, IntervalList* input_state);
3471 void process_successor(BlockBegin* block, IntervalList* input_state);
3472 void process_operations(LIR_List* ops, IntervalList* input_state);
3473
3474 public:
RegisterVerifier(LinearScan * allocator)3475 RegisterVerifier(LinearScan* allocator)
3476 : _allocator(allocator)
3477 , _work_list(16)
3478 , _saved_states(BlockBegin::number_of_blocks(), BlockBegin::number_of_blocks(), NULL)
3479 { }
3480
3481 void verify(BlockBegin* start);
3482 };
3483
3484
3485 // entry function from LinearScan that starts the verification
verify_registers()3486 void LinearScan::verify_registers() {
3487 RegisterVerifier verifier(this);
3488 verifier.verify(block_at(0));
3489 }
3490
3491
verify(BlockBegin * start)3492 void RegisterVerifier::verify(BlockBegin* start) {
3493 // setup input registers (method arguments) for first block
3494 int input_state_len = state_size();
3495 IntervalList* input_state = new IntervalList(input_state_len, input_state_len, NULL);
3496 CallingConvention* args = compilation()->frame_map()->incoming_arguments();
3497 for (int n = 0; n < args->length(); n++) {
3498 LIR_Opr opr = args->at(n);
3499 if (opr->is_register()) {
3500 Interval* interval = interval_at(reg_num(opr));
3501
3502 if (interval->assigned_reg() < state_size()) {
3503 input_state->at_put(interval->assigned_reg(), interval);
3504 }
3505 if (interval->assigned_regHi() != LinearScan::any_reg && interval->assigned_regHi() < state_size()) {
3506 input_state->at_put(interval->assigned_regHi(), interval);
3507 }
3508 }
3509 }
3510
3511 set_state_for_block(start, input_state);
3512 add_to_work_list(start);
3513
3514 // main loop for verification
3515 do {
3516 BlockBegin* block = _work_list.at(0);
3517 _work_list.remove_at(0);
3518
3519 process_block(block);
3520 } while (!_work_list.is_empty());
3521 }
3522
process_block(BlockBegin * block)3523 void RegisterVerifier::process_block(BlockBegin* block) {
3524 TRACE_LINEAR_SCAN(2, tty->cr(); tty->print_cr("process_block B%d", block->block_id()));
3525
3526 // must copy state because it is modified
3527 IntervalList* input_state = copy(state_for_block(block));
3528
3529 if (TraceLinearScanLevel >= 4) {
3530 tty->print_cr("Input-State of intervals:");
3531 tty->print(" ");
3532 for (int i = 0; i < state_size(); i++) {
3533 if (input_state->at(i) != NULL) {
3534 tty->print(" %4d", input_state->at(i)->reg_num());
3535 } else {
3536 tty->print(" __");
3537 }
3538 }
3539 tty->cr();
3540 tty->cr();
3541 }
3542
3543 // process all operations of the block
3544 process_operations(block->lir(), input_state);
3545
3546 // iterate all successors
3547 for (int i = 0; i < block->number_of_sux(); i++) {
3548 process_successor(block->sux_at(i), input_state);
3549 }
3550 }
3551
process_xhandler(XHandler * xhandler,IntervalList * input_state)3552 void RegisterVerifier::process_xhandler(XHandler* xhandler, IntervalList* input_state) {
3553 TRACE_LINEAR_SCAN(2, tty->print_cr("process_xhandler B%d", xhandler->entry_block()->block_id()));
3554
3555 // must copy state because it is modified
3556 input_state = copy(input_state);
3557
3558 if (xhandler->entry_code() != NULL) {
3559 process_operations(xhandler->entry_code(), input_state);
3560 }
3561 process_successor(xhandler->entry_block(), input_state);
3562 }
3563
process_successor(BlockBegin * block,IntervalList * input_state)3564 void RegisterVerifier::process_successor(BlockBegin* block, IntervalList* input_state) {
3565 IntervalList* saved_state = state_for_block(block);
3566
3567 if (saved_state != NULL) {
3568 // this block was already processed before.
3569 // check if new input_state is consistent with saved_state
3570
3571 bool saved_state_correct = true;
3572 for (int i = 0; i < state_size(); i++) {
3573 if (input_state->at(i) != saved_state->at(i)) {
3574 // current input_state and previous saved_state assume a different
3575 // interval in this register -> assume that this register is invalid
3576 if (saved_state->at(i) != NULL) {
3577 // invalidate old calculation only if it assumed that
3578 // register was valid. when the register was already invalid,
3579 // then the old calculation was correct.
3580 saved_state_correct = false;
3581 saved_state->at_put(i, NULL);
3582
3583 TRACE_LINEAR_SCAN(4, tty->print_cr("process_successor B%d: invalidating slot %d", block->block_id(), i));
3584 }
3585 }
3586 }
3587
3588 if (saved_state_correct) {
3589 // already processed block with correct input_state
3590 TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: previous visit already correct", block->block_id()));
3591 } else {
3592 // must re-visit this block
3593 TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: must re-visit because input state changed", block->block_id()));
3594 add_to_work_list(block);
3595 }
3596
3597 } else {
3598 // block was not processed before, so set initial input_state
3599 TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: initial visit", block->block_id()));
3600
3601 set_state_for_block(block, copy(input_state));
3602 add_to_work_list(block);
3603 }
3604 }
3605
3606
copy(IntervalList * input_state)3607 IntervalList* RegisterVerifier::copy(IntervalList* input_state) {
3608 IntervalList* copy_state = new IntervalList(input_state->length());
3609 copy_state->appendAll(input_state);
3610 return copy_state;
3611 }
3612
state_put(IntervalList * input_state,int reg,Interval * interval)3613 void RegisterVerifier::state_put(IntervalList* input_state, int reg, Interval* interval) {
3614 if (reg != LinearScan::any_reg && reg < state_size()) {
3615 if (interval != NULL) {
3616 TRACE_LINEAR_SCAN(4, tty->print_cr(" reg[%d] = %d", reg, interval->reg_num()));
3617 } else if (input_state->at(reg) != NULL) {
3618 TRACE_LINEAR_SCAN(4, tty->print_cr(" reg[%d] = NULL", reg));
3619 }
3620
3621 input_state->at_put(reg, interval);
3622 }
3623 }
3624
check_state(IntervalList * input_state,int reg,Interval * interval)3625 bool RegisterVerifier::check_state(IntervalList* input_state, int reg, Interval* interval) {
3626 if (reg != LinearScan::any_reg && reg < state_size()) {
3627 if (input_state->at(reg) != interval) {
3628 tty->print_cr("!! Error in register allocation: register %d does not contain interval %d", reg, interval->reg_num());
3629 return true;
3630 }
3631 }
3632 return false;
3633 }
3634
process_operations(LIR_List * ops,IntervalList * input_state)3635 void RegisterVerifier::process_operations(LIR_List* ops, IntervalList* input_state) {
3636 // visit all instructions of the block
3637 LIR_OpVisitState visitor;
3638 bool has_error = false;
3639
3640 for (int i = 0; i < ops->length(); i++) {
3641 LIR_Op* op = ops->at(i);
3642 visitor.visit(op);
3643
3644 TRACE_LINEAR_SCAN(4, op->print_on(tty));
3645
3646 // check if input operands are correct
3647 int j;
3648 int n = visitor.opr_count(LIR_OpVisitState::inputMode);
3649 for (j = 0; j < n; j++) {
3650 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, j);
3651 if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3652 Interval* interval = interval_at(reg_num(opr));
3653 if (op->id() != -1) {
3654 interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::inputMode);
3655 }
3656
3657 has_error |= check_state(input_state, interval->assigned_reg(), interval->split_parent());
3658 has_error |= check_state(input_state, interval->assigned_regHi(), interval->split_parent());
3659
3660 // When an operand is marked with is_last_use, then the fpu stack allocator
3661 // removes the register from the fpu stack -> the register contains no value
3662 if (opr->is_last_use()) {
3663 state_put(input_state, interval->assigned_reg(), NULL);
3664 state_put(input_state, interval->assigned_regHi(), NULL);
3665 }
3666 }
3667 }
3668
3669 // invalidate all caller save registers at calls
3670 if (visitor.has_call()) {
3671 for (j = 0; j < FrameMap::nof_caller_save_cpu_regs(); j++) {
3672 state_put(input_state, reg_num(FrameMap::caller_save_cpu_reg_at(j)), NULL);
3673 }
3674 for (j = 0; j < FrameMap::nof_caller_save_fpu_regs; j++) {
3675 state_put(input_state, reg_num(FrameMap::caller_save_fpu_reg_at(j)), NULL);
3676 }
3677
3678 #ifdef X86
3679 int num_caller_save_xmm_regs = FrameMap::get_num_caller_save_xmms();
3680 for (j = 0; j < num_caller_save_xmm_regs; j++) {
3681 state_put(input_state, reg_num(FrameMap::caller_save_xmm_reg_at(j)), NULL);
3682 }
3683 #endif
3684 }
3685
3686 // process xhandler before output and temp operands
3687 XHandlers* xhandlers = visitor.all_xhandler();
3688 n = xhandlers->length();
3689 for (int k = 0; k < n; k++) {
3690 process_xhandler(xhandlers->handler_at(k), input_state);
3691 }
3692
3693 // set temp operands (some operations use temp operands also as output operands, so can't set them NULL)
3694 n = visitor.opr_count(LIR_OpVisitState::tempMode);
3695 for (j = 0; j < n; j++) {
3696 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, j);
3697 if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3698 Interval* interval = interval_at(reg_num(opr));
3699 if (op->id() != -1) {
3700 interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::tempMode);
3701 }
3702
3703 state_put(input_state, interval->assigned_reg(), interval->split_parent());
3704 state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3705 }
3706 }
3707
3708 // set output operands
3709 n = visitor.opr_count(LIR_OpVisitState::outputMode);
3710 for (j = 0; j < n; j++) {
3711 LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, j);
3712 if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3713 Interval* interval = interval_at(reg_num(opr));
3714 if (op->id() != -1) {
3715 interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::outputMode);
3716 }
3717
3718 state_put(input_state, interval->assigned_reg(), interval->split_parent());
3719 state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3720 }
3721 }
3722 }
3723 assert(has_error == false, "Error in register allocation");
3724 }
3725
3726 #endif // ASSERT
3727
3728
3729
3730 // **** Implementation of MoveResolver ******************************
3731
MoveResolver(LinearScan * allocator)3732 MoveResolver::MoveResolver(LinearScan* allocator) :
3733 _allocator(allocator),
3734 _multiple_reads_allowed(false),
3735 _mapping_from(8),
3736 _mapping_from_opr(8),
3737 _mapping_to(8),
3738 _insert_list(NULL),
3739 _insert_idx(-1),
3740 _insertion_buffer()
3741 {
3742 for (int i = 0; i < LinearScan::nof_regs; i++) {
3743 _register_blocked[i] = 0;
3744 }
3745 DEBUG_ONLY(check_empty());
3746 }
3747
3748
3749 #ifdef ASSERT
3750
check_empty()3751 void MoveResolver::check_empty() {
3752 assert(_mapping_from.length() == 0 && _mapping_from_opr.length() == 0 && _mapping_to.length() == 0, "list must be empty before and after processing");
3753 for (int i = 0; i < LinearScan::nof_regs; i++) {
3754 assert(register_blocked(i) == 0, "register map must be empty before and after processing");
3755 }
3756 assert(_multiple_reads_allowed == false, "must have default value");
3757 }
3758
verify_before_resolve()3759 void MoveResolver::verify_before_resolve() {
3760 assert(_mapping_from.length() == _mapping_from_opr.length(), "length must be equal");
3761 assert(_mapping_from.length() == _mapping_to.length(), "length must be equal");
3762 assert(_insert_list != NULL && _insert_idx != -1, "insert position not set");
3763
3764 int i, j;
3765 if (!_multiple_reads_allowed) {
3766 for (i = 0; i < _mapping_from.length(); i++) {
3767 for (j = i + 1; j < _mapping_from.length(); j++) {
3768 assert(_mapping_from.at(i) == NULL || _mapping_from.at(i) != _mapping_from.at(j), "cannot read from same interval twice");
3769 }
3770 }
3771 }
3772
3773 for (i = 0; i < _mapping_to.length(); i++) {
3774 for (j = i + 1; j < _mapping_to.length(); j++) {
3775 assert(_mapping_to.at(i) != _mapping_to.at(j), "cannot write to same interval twice");
3776 }
3777 }
3778
3779
3780 ResourceBitMap used_regs(LinearScan::nof_regs + allocator()->frame_map()->argcount() + allocator()->max_spills());
3781 if (!_multiple_reads_allowed) {
3782 for (i = 0; i < _mapping_from.length(); i++) {
3783 Interval* it = _mapping_from.at(i);
3784 if (it != NULL) {
3785 assert(!used_regs.at(it->assigned_reg()), "cannot read from same register twice");
3786 used_regs.set_bit(it->assigned_reg());
3787
3788 if (it->assigned_regHi() != LinearScan::any_reg) {
3789 assert(!used_regs.at(it->assigned_regHi()), "cannot read from same register twice");
3790 used_regs.set_bit(it->assigned_regHi());
3791 }
3792 }
3793 }
3794 }
3795
3796 used_regs.clear();
3797 for (i = 0; i < _mapping_to.length(); i++) {
3798 Interval* it = _mapping_to.at(i);
3799 assert(!used_regs.at(it->assigned_reg()), "cannot write to same register twice");
3800 used_regs.set_bit(it->assigned_reg());
3801
3802 if (it->assigned_regHi() != LinearScan::any_reg) {
3803 assert(!used_regs.at(it->assigned_regHi()), "cannot write to same register twice");
3804 used_regs.set_bit(it->assigned_regHi());
3805 }
3806 }
3807
3808 used_regs.clear();
3809 for (i = 0; i < _mapping_from.length(); i++) {
3810 Interval* it = _mapping_from.at(i);
3811 if (it != NULL && it->assigned_reg() >= LinearScan::nof_regs) {
3812 used_regs.set_bit(it->assigned_reg());
3813 }
3814 }
3815 for (i = 0; i < _mapping_to.length(); i++) {
3816 Interval* it = _mapping_to.at(i);
3817 assert(!used_regs.at(it->assigned_reg()) || it->assigned_reg() == _mapping_from.at(i)->assigned_reg(), "stack slots used in _mapping_from must be disjoint to _mapping_to");
3818 }
3819 }
3820
3821 #endif // ASSERT
3822
3823
3824 // mark assigned_reg and assigned_regHi of the interval as blocked
block_registers(Interval * it)3825 void MoveResolver::block_registers(Interval* it) {
3826 int reg = it->assigned_reg();
3827 if (reg < LinearScan::nof_regs) {
3828 assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3829 set_register_blocked(reg, 1);
3830 }
3831 reg = it->assigned_regHi();
3832 if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3833 assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3834 set_register_blocked(reg, 1);
3835 }
3836 }
3837
3838 // mark assigned_reg and assigned_regHi of the interval as unblocked
unblock_registers(Interval * it)3839 void MoveResolver::unblock_registers(Interval* it) {
3840 int reg = it->assigned_reg();
3841 if (reg < LinearScan::nof_regs) {
3842 assert(register_blocked(reg) > 0, "register already marked as unused");
3843 set_register_blocked(reg, -1);
3844 }
3845 reg = it->assigned_regHi();
3846 if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3847 assert(register_blocked(reg) > 0, "register already marked as unused");
3848 set_register_blocked(reg, -1);
3849 }
3850 }
3851
3852 // check if assigned_reg and assigned_regHi of the to-interval are not blocked (or only blocked by from)
save_to_process_move(Interval * from,Interval * to)3853 bool MoveResolver::save_to_process_move(Interval* from, Interval* to) {
3854 int from_reg = -1;
3855 int from_regHi = -1;
3856 if (from != NULL) {
3857 from_reg = from->assigned_reg();
3858 from_regHi = from->assigned_regHi();
3859 }
3860
3861 int reg = to->assigned_reg();
3862 if (reg < LinearScan::nof_regs) {
3863 if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3864 return false;
3865 }
3866 }
3867 reg = to->assigned_regHi();
3868 if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3869 if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3870 return false;
3871 }
3872 }
3873
3874 return true;
3875 }
3876
3877
create_insertion_buffer(LIR_List * list)3878 void MoveResolver::create_insertion_buffer(LIR_List* list) {
3879 assert(!_insertion_buffer.initialized(), "overwriting existing buffer");
3880 _insertion_buffer.init(list);
3881 }
3882
append_insertion_buffer()3883 void MoveResolver::append_insertion_buffer() {
3884 if (_insertion_buffer.initialized()) {
3885 _insertion_buffer.lir_list()->append(&_insertion_buffer);
3886 }
3887 assert(!_insertion_buffer.initialized(), "must be uninitialized now");
3888
3889 _insert_list = NULL;
3890 _insert_idx = -1;
3891 }
3892
insert_move(Interval * from_interval,Interval * to_interval)3893 void MoveResolver::insert_move(Interval* from_interval, Interval* to_interval) {
3894 assert(from_interval->reg_num() != to_interval->reg_num(), "from and to interval equal");
3895 assert(from_interval->type() == to_interval->type(), "move between different types");
3896 assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3897 assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3898
3899 LIR_Opr from_opr = get_virtual_register(from_interval);
3900 LIR_Opr to_opr = get_virtual_register(to_interval);
3901
3902 if (!_multiple_reads_allowed) {
3903 // the last_use flag is an optimization for FPU stack allocation. When the same
3904 // input interval is used in more than one move, then it is too difficult to determine
3905 // if this move is really the last use.
3906 from_opr = from_opr->make_last_use();
3907 }
3908 _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3909
3910 TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: inserted move from register %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3911 }
3912
insert_move(LIR_Opr from_opr,Interval * to_interval)3913 void MoveResolver::insert_move(LIR_Opr from_opr, Interval* to_interval) {
3914 assert(from_opr->type() == to_interval->type(), "move between different types");
3915 assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3916 assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3917
3918 LIR_Opr to_opr = get_virtual_register(to_interval);
3919 _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3920
3921 TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: inserted move from constant "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3922 }
3923
get_virtual_register(Interval * interval)3924 LIR_Opr MoveResolver::get_virtual_register(Interval* interval) {
3925 // Add a little fudge factor for the bailout since the bailout is only checked periodically. This allows us to hand out
3926 // a few extra registers before we really run out which helps to avoid to trip over assertions.
3927 int reg_num = interval->reg_num();
3928 if (reg_num + 20 >= LIR_OprDesc::vreg_max) {
3929 _allocator->bailout("out of virtual registers in linear scan");
3930 if (reg_num + 2 >= LIR_OprDesc::vreg_max) {
3931 // Wrap it around and continue until bailout really happens to avoid hitting assertions.
3932 reg_num = LIR_OprDesc::vreg_base;
3933 }
3934 }
3935 LIR_Opr vreg = LIR_OprFact::virtual_register(reg_num, interval->type());
3936 assert(vreg != LIR_OprFact::illegal(), "ran out of virtual registers");
3937 return vreg;
3938 }
3939
resolve_mappings()3940 void MoveResolver::resolve_mappings() {
3941 TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: resolving mappings for Block B%d, index %d", _insert_list->block() != NULL ? _insert_list->block()->block_id() : -1, _insert_idx));
3942 DEBUG_ONLY(verify_before_resolve());
3943
3944 // Block all registers that are used as input operands of a move.
3945 // When a register is blocked, no move to this register is emitted.
3946 // This is necessary for detecting cycles in moves.
3947 int i;
3948 for (i = _mapping_from.length() - 1; i >= 0; i--) {
3949 Interval* from_interval = _mapping_from.at(i);
3950 if (from_interval != NULL) {
3951 block_registers(from_interval);
3952 }
3953 }
3954
3955 int spill_candidate = -1;
3956 while (_mapping_from.length() > 0) {
3957 bool processed_interval = false;
3958
3959 for (i = _mapping_from.length() - 1; i >= 0; i--) {
3960 Interval* from_interval = _mapping_from.at(i);
3961 Interval* to_interval = _mapping_to.at(i);
3962
3963 if (save_to_process_move(from_interval, to_interval)) {
3964 // this inverval can be processed because target is free
3965 if (from_interval != NULL) {
3966 insert_move(from_interval, to_interval);
3967 unblock_registers(from_interval);
3968 } else {
3969 insert_move(_mapping_from_opr.at(i), to_interval);
3970 }
3971 _mapping_from.remove_at(i);
3972 _mapping_from_opr.remove_at(i);
3973 _mapping_to.remove_at(i);
3974
3975 processed_interval = true;
3976 } else if (from_interval != NULL && from_interval->assigned_reg() < LinearScan::nof_regs) {
3977 // this interval cannot be processed now because target is not free
3978 // it starts in a register, so it is a possible candidate for spilling
3979 spill_candidate = i;
3980 }
3981 }
3982
3983 if (!processed_interval) {
3984 // no move could be processed because there is a cycle in the move list
3985 // (e.g. r1 -> r2, r2 -> r1), so one interval must be spilled to memory
3986 guarantee(spill_candidate != -1, "no interval in register for spilling found");
3987
3988 // create a new spill interval and assign a stack slot to it
3989 Interval* from_interval = _mapping_from.at(spill_candidate);
3990 Interval* spill_interval = new Interval(-1);
3991 spill_interval->set_type(from_interval->type());
3992
3993 // add a dummy range because real position is difficult to calculate
3994 // Note: this range is a special case when the integrity of the allocation is checked
3995 spill_interval->add_range(1, 2);
3996
3997 // do not allocate a new spill slot for temporary interval, but
3998 // use spill slot assigned to from_interval. Otherwise moves from
3999 // one stack slot to another can happen (not allowed by LIR_Assembler
4000 int spill_slot = from_interval->canonical_spill_slot();
4001 if (spill_slot < 0) {
4002 spill_slot = allocator()->allocate_spill_slot(type2spill_size[spill_interval->type()] == 2);
4003 from_interval->set_canonical_spill_slot(spill_slot);
4004 }
4005 spill_interval->assign_reg(spill_slot);
4006 allocator()->append_interval(spill_interval);
4007
4008 TRACE_LINEAR_SCAN(4, tty->print_cr("created new Interval %d for spilling", spill_interval->reg_num()));
4009
4010 // insert a move from register to stack and update the mapping
4011 insert_move(from_interval, spill_interval);
4012 _mapping_from.at_put(spill_candidate, spill_interval);
4013 unblock_registers(from_interval);
4014 }
4015 }
4016
4017 // reset to default value
4018 _multiple_reads_allowed = false;
4019
4020 // check that all intervals have been processed
4021 DEBUG_ONLY(check_empty());
4022 }
4023
4024
set_insert_position(LIR_List * insert_list,int insert_idx)4025 void MoveResolver::set_insert_position(LIR_List* insert_list, int insert_idx) {
4026 TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: setting insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
4027 assert(_insert_list == NULL && _insert_idx == -1, "use move_insert_position instead of set_insert_position when data already set");
4028
4029 create_insertion_buffer(insert_list);
4030 _insert_list = insert_list;
4031 _insert_idx = insert_idx;
4032 }
4033
move_insert_position(LIR_List * insert_list,int insert_idx)4034 void MoveResolver::move_insert_position(LIR_List* insert_list, int insert_idx) {
4035 TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: moving insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
4036
4037 if (_insert_list != NULL && (insert_list != _insert_list || insert_idx != _insert_idx)) {
4038 // insert position changed -> resolve current mappings
4039 resolve_mappings();
4040 }
4041
4042 if (insert_list != _insert_list) {
4043 // block changed -> append insertion_buffer because it is
4044 // bound to a specific block and create a new insertion_buffer
4045 append_insertion_buffer();
4046 create_insertion_buffer(insert_list);
4047 }
4048
4049 _insert_list = insert_list;
4050 _insert_idx = insert_idx;
4051 }
4052
add_mapping(Interval * from_interval,Interval * to_interval)4053 void MoveResolver::add_mapping(Interval* from_interval, Interval* to_interval) {
4054 TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: adding mapping from %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
4055
4056 _mapping_from.append(from_interval);
4057 _mapping_from_opr.append(LIR_OprFact::illegalOpr);
4058 _mapping_to.append(to_interval);
4059 }
4060
4061
add_mapping(LIR_Opr from_opr,Interval * to_interval)4062 void MoveResolver::add_mapping(LIR_Opr from_opr, Interval* to_interval) {
4063 TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: adding mapping from "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
4064 assert(from_opr->is_constant(), "only for constants");
4065
4066 _mapping_from.append(NULL);
4067 _mapping_from_opr.append(from_opr);
4068 _mapping_to.append(to_interval);
4069 }
4070
resolve_and_append_moves()4071 void MoveResolver::resolve_and_append_moves() {
4072 if (has_mappings()) {
4073 resolve_mappings();
4074 }
4075 append_insertion_buffer();
4076 }
4077
4078
4079
4080 // **** Implementation of Range *************************************
4081
Range(int from,int to,Range * next)4082 Range::Range(int from, int to, Range* next) :
4083 _from(from),
4084 _to(to),
4085 _next(next)
4086 {
4087 }
4088
4089 // initialize sentinel
4090 Range* Range::_end = NULL;
initialize(Arena * arena)4091 void Range::initialize(Arena* arena) {
4092 _end = new (arena) Range(max_jint, max_jint, NULL);
4093 }
4094
intersects_at(Range * r2) const4095 int Range::intersects_at(Range* r2) const {
4096 const Range* r1 = this;
4097
4098 assert(r1 != NULL && r2 != NULL, "null ranges not allowed");
4099 assert(r1 != _end && r2 != _end, "empty ranges not allowed");
4100
4101 do {
4102 if (r1->from() < r2->from()) {
4103 if (r1->to() <= r2->from()) {
4104 r1 = r1->next(); if (r1 == _end) return -1;
4105 } else {
4106 return r2->from();
4107 }
4108 } else if (r2->from() < r1->from()) {
4109 if (r2->to() <= r1->from()) {
4110 r2 = r2->next(); if (r2 == _end) return -1;
4111 } else {
4112 return r1->from();
4113 }
4114 } else { // r1->from() == r2->from()
4115 if (r1->from() == r1->to()) {
4116 r1 = r1->next(); if (r1 == _end) return -1;
4117 } else if (r2->from() == r2->to()) {
4118 r2 = r2->next(); if (r2 == _end) return -1;
4119 } else {
4120 return r1->from();
4121 }
4122 }
4123 } while (true);
4124 }
4125
4126 #ifndef PRODUCT
print(outputStream * out) const4127 void Range::print(outputStream* out) const {
4128 out->print("[%d, %d[ ", _from, _to);
4129 }
4130 #endif
4131
4132
4133
4134 // **** Implementation of Interval **********************************
4135
4136 // initialize sentinel
4137 Interval* Interval::_end = NULL;
initialize(Arena * arena)4138 void Interval::initialize(Arena* arena) {
4139 Range::initialize(arena);
4140 _end = new (arena) Interval(-1);
4141 }
4142
Interval(int reg_num)4143 Interval::Interval(int reg_num) :
4144 _reg_num(reg_num),
4145 _type(T_ILLEGAL),
4146 _first(Range::end()),
4147 _use_pos_and_kinds(12),
4148 _current(Range::end()),
4149 _next(_end),
4150 _state(invalidState),
4151 _assigned_reg(LinearScan::any_reg),
4152 _assigned_regHi(LinearScan::any_reg),
4153 _cached_to(-1),
4154 _cached_opr(LIR_OprFact::illegalOpr),
4155 _cached_vm_reg(VMRegImpl::Bad()),
4156 _split_children(NULL),
4157 _canonical_spill_slot(-1),
4158 _insert_move_when_activated(false),
4159 _register_hint(NULL),
4160 _spill_state(noDefinitionFound),
4161 _spill_definition_pos(-1)
4162 {
4163 _split_parent = this;
4164 _current_split_child = this;
4165 }
4166
calc_to()4167 int Interval::calc_to() {
4168 assert(_first != Range::end(), "interval has no range");
4169
4170 Range* r = _first;
4171 while (r->next() != Range::end()) {
4172 r = r->next();
4173 }
4174 return r->to();
4175 }
4176
4177
4178 #ifdef ASSERT
4179 // consistency check of split-children
check_split_children()4180 void Interval::check_split_children() {
4181 if (_split_children != NULL && _split_children->length() > 0) {
4182 assert(is_split_parent(), "only split parents can have children");
4183
4184 for (int i = 0; i < _split_children->length(); i++) {
4185 Interval* i1 = _split_children->at(i);
4186
4187 assert(i1->split_parent() == this, "not a split child of this interval");
4188 assert(i1->type() == type(), "must be equal for all split children");
4189 assert(i1->canonical_spill_slot() == canonical_spill_slot(), "must be equal for all split children");
4190
4191 for (int j = i + 1; j < _split_children->length(); j++) {
4192 Interval* i2 = _split_children->at(j);
4193
4194 assert(i1->reg_num() != i2->reg_num(), "same register number");
4195
4196 if (i1->from() < i2->from()) {
4197 assert(i1->to() <= i2->from() && i1->to() < i2->to(), "intervals overlapping");
4198 } else {
4199 assert(i2->from() < i1->from(), "intervals start at same op_id");
4200 assert(i2->to() <= i1->from() && i2->to() < i1->to(), "intervals overlapping");
4201 }
4202 }
4203 }
4204 }
4205 }
4206 #endif // ASSERT
4207
register_hint(bool search_split_child) const4208 Interval* Interval::register_hint(bool search_split_child) const {
4209 if (!search_split_child) {
4210 return _register_hint;
4211 }
4212
4213 if (_register_hint != NULL) {
4214 assert(_register_hint->is_split_parent(), "ony split parents are valid hint registers");
4215
4216 if (_register_hint->assigned_reg() >= 0 && _register_hint->assigned_reg() < LinearScan::nof_regs) {
4217 return _register_hint;
4218
4219 } else if (_register_hint->_split_children != NULL && _register_hint->_split_children->length() > 0) {
4220 // search the first split child that has a register assigned
4221 int len = _register_hint->_split_children->length();
4222 for (int i = 0; i < len; i++) {
4223 Interval* cur = _register_hint->_split_children->at(i);
4224
4225 if (cur->assigned_reg() >= 0 && cur->assigned_reg() < LinearScan::nof_regs) {
4226 return cur;
4227 }
4228 }
4229 }
4230 }
4231
4232 // no hint interval found that has a register assigned
4233 return NULL;
4234 }
4235
4236
split_child_at_op_id(int op_id,LIR_OpVisitState::OprMode mode)4237 Interval* Interval::split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode) {
4238 assert(is_split_parent(), "can only be called for split parents");
4239 assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4240
4241 Interval* result;
4242 if (_split_children == NULL || _split_children->length() == 0) {
4243 result = this;
4244 } else {
4245 result = NULL;
4246 int len = _split_children->length();
4247
4248 // in outputMode, the end of the interval (op_id == cur->to()) is not valid
4249 int to_offset = (mode == LIR_OpVisitState::outputMode ? 0 : 1);
4250
4251 int i;
4252 for (i = 0; i < len; i++) {
4253 Interval* cur = _split_children->at(i);
4254 if (cur->from() <= op_id && op_id < cur->to() + to_offset) {
4255 if (i > 0) {
4256 // exchange current split child to start of list (faster access for next call)
4257 _split_children->at_put(i, _split_children->at(0));
4258 _split_children->at_put(0, cur);
4259 }
4260
4261 // interval found
4262 result = cur;
4263 break;
4264 }
4265 }
4266
4267 #ifdef ASSERT
4268 for (i = 0; i < len; i++) {
4269 Interval* tmp = _split_children->at(i);
4270 if (tmp != result && tmp->from() <= op_id && op_id < tmp->to() + to_offset) {
4271 tty->print_cr("two valid result intervals found for op_id %d: %d and %d", op_id, result->reg_num(), tmp->reg_num());
4272 result->print();
4273 tmp->print();
4274 assert(false, "two valid result intervals found");
4275 }
4276 }
4277 #endif
4278 }
4279
4280 assert(result != NULL, "no matching interval found");
4281 assert(result->covers(op_id, mode), "op_id not covered by interval");
4282
4283 return result;
4284 }
4285
4286
4287 // returns the last split child that ends before the given op_id
split_child_before_op_id(int op_id)4288 Interval* Interval::split_child_before_op_id(int op_id) {
4289 assert(op_id >= 0, "invalid op_id");
4290
4291 Interval* parent = split_parent();
4292 Interval* result = NULL;
4293
4294 assert(parent->_split_children != NULL, "no split children available");
4295 int len = parent->_split_children->length();
4296 assert(len > 0, "no split children available");
4297
4298 for (int i = len - 1; i >= 0; i--) {
4299 Interval* cur = parent->_split_children->at(i);
4300 if (cur->to() <= op_id && (result == NULL || result->to() < cur->to())) {
4301 result = cur;
4302 }
4303 }
4304
4305 assert(result != NULL, "no split child found");
4306 return result;
4307 }
4308
4309
4310 // Note: use positions are sorted descending -> first use has highest index
first_usage(IntervalUseKind min_use_kind) const4311 int Interval::first_usage(IntervalUseKind min_use_kind) const {
4312 assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4313
4314 for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4315 if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4316 return _use_pos_and_kinds.at(i);
4317 }
4318 }
4319 return max_jint;
4320 }
4321
next_usage(IntervalUseKind min_use_kind,int from) const4322 int Interval::next_usage(IntervalUseKind min_use_kind, int from) const {
4323 assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4324
4325 for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4326 if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4327 return _use_pos_and_kinds.at(i);
4328 }
4329 }
4330 return max_jint;
4331 }
4332
next_usage_exact(IntervalUseKind exact_use_kind,int from) const4333 int Interval::next_usage_exact(IntervalUseKind exact_use_kind, int from) const {
4334 assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4335
4336 for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4337 if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) == exact_use_kind) {
4338 return _use_pos_and_kinds.at(i);
4339 }
4340 }
4341 return max_jint;
4342 }
4343
previous_usage(IntervalUseKind min_use_kind,int from) const4344 int Interval::previous_usage(IntervalUseKind min_use_kind, int from) const {
4345 assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4346
4347 int prev = 0;
4348 for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4349 if (_use_pos_and_kinds.at(i) > from) {
4350 return prev;
4351 }
4352 if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4353 prev = _use_pos_and_kinds.at(i);
4354 }
4355 }
4356 return prev;
4357 }
4358
add_use_pos(int pos,IntervalUseKind use_kind)4359 void Interval::add_use_pos(int pos, IntervalUseKind use_kind) {
4360 assert(covers(pos, LIR_OpVisitState::inputMode), "use position not covered by live range");
4361
4362 // do not add use positions for precolored intervals because
4363 // they are never used
4364 if (use_kind != noUse && reg_num() >= LIR_OprDesc::vreg_base) {
4365 #ifdef ASSERT
4366 assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4367 for (int i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4368 assert(pos <= _use_pos_and_kinds.at(i), "already added a use-position with lower position");
4369 assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4370 if (i > 0) {
4371 assert(_use_pos_and_kinds.at(i) < _use_pos_and_kinds.at(i - 2), "not sorted descending");
4372 }
4373 }
4374 #endif
4375
4376 // Note: add_use is called in descending order, so list gets sorted
4377 // automatically by just appending new use positions
4378 int len = _use_pos_and_kinds.length();
4379 if (len == 0 || _use_pos_and_kinds.at(len - 2) > pos) {
4380 _use_pos_and_kinds.append(pos);
4381 _use_pos_and_kinds.append(use_kind);
4382 } else if (_use_pos_and_kinds.at(len - 1) < use_kind) {
4383 assert(_use_pos_and_kinds.at(len - 2) == pos, "list not sorted correctly");
4384 _use_pos_and_kinds.at_put(len - 1, use_kind);
4385 }
4386 }
4387 }
4388
add_range(int from,int to)4389 void Interval::add_range(int from, int to) {
4390 assert(from < to, "invalid range");
4391 assert(first() == Range::end() || to < first()->next()->from(), "not inserting at begin of interval");
4392 assert(from <= first()->to(), "not inserting at begin of interval");
4393
4394 if (first()->from() <= to) {
4395 // join intersecting ranges
4396 first()->set_from(MIN2(from, first()->from()));
4397 first()->set_to (MAX2(to, first()->to()));
4398 } else {
4399 // insert new range
4400 _first = new Range(from, to, first());
4401 }
4402 }
4403
new_split_child()4404 Interval* Interval::new_split_child() {
4405 // allocate new interval
4406 Interval* result = new Interval(-1);
4407 result->set_type(type());
4408
4409 Interval* parent = split_parent();
4410 result->_split_parent = parent;
4411 result->set_register_hint(parent);
4412
4413 // insert new interval in children-list of parent
4414 if (parent->_split_children == NULL) {
4415 assert(is_split_parent(), "list must be initialized at first split");
4416
4417 parent->_split_children = new IntervalList(4);
4418 parent->_split_children->append(this);
4419 }
4420 parent->_split_children->append(result);
4421
4422 return result;
4423 }
4424
4425 // split this interval at the specified position and return
4426 // the remainder as a new interval.
4427 //
4428 // when an interval is split, a bi-directional link is established between the original interval
4429 // (the split parent) and the intervals that are split off this interval (the split children)
4430 // When a split child is split again, the new created interval is also a direct child
4431 // of the original parent (there is no tree of split children stored, but a flat list)
4432 // All split children are spilled to the same stack slot (stored in _canonical_spill_slot)
4433 //
4434 // Note: The new interval has no valid reg_num
split(int split_pos)4435 Interval* Interval::split(int split_pos) {
4436 assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4437
4438 // allocate new interval
4439 Interval* result = new_split_child();
4440
4441 // split the ranges
4442 Range* prev = NULL;
4443 Range* cur = _first;
4444 while (cur != Range::end() && cur->to() <= split_pos) {
4445 prev = cur;
4446 cur = cur->next();
4447 }
4448 assert(cur != Range::end(), "split interval after end of last range");
4449
4450 if (cur->from() < split_pos) {
4451 result->_first = new Range(split_pos, cur->to(), cur->next());
4452 cur->set_to(split_pos);
4453 cur->set_next(Range::end());
4454
4455 } else {
4456 assert(prev != NULL, "split before start of first range");
4457 result->_first = cur;
4458 prev->set_next(Range::end());
4459 }
4460 result->_current = result->_first;
4461 _cached_to = -1; // clear cached value
4462
4463 // split list of use positions
4464 int total_len = _use_pos_and_kinds.length();
4465 int start_idx = total_len - 2;
4466 while (start_idx >= 0 && _use_pos_and_kinds.at(start_idx) < split_pos) {
4467 start_idx -= 2;
4468 }
4469
4470 intStack new_use_pos_and_kinds(total_len - start_idx);
4471 int i;
4472 for (i = start_idx + 2; i < total_len; i++) {
4473 new_use_pos_and_kinds.append(_use_pos_and_kinds.at(i));
4474 }
4475
4476 _use_pos_and_kinds.trunc_to(start_idx + 2);
4477 result->_use_pos_and_kinds = _use_pos_and_kinds;
4478 _use_pos_and_kinds = new_use_pos_and_kinds;
4479
4480 #ifdef ASSERT
4481 assert(_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4482 assert(result->_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4483 assert(_use_pos_and_kinds.length() + result->_use_pos_and_kinds.length() == total_len, "missed some entries");
4484
4485 for (i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4486 assert(_use_pos_and_kinds.at(i) < split_pos, "must be");
4487 assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4488 }
4489 for (i = 0; i < result->_use_pos_and_kinds.length(); i += 2) {
4490 assert(result->_use_pos_and_kinds.at(i) >= split_pos, "must be");
4491 assert(result->_use_pos_and_kinds.at(i + 1) >= firstValidKind && result->_use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4492 }
4493 #endif
4494
4495 return result;
4496 }
4497
4498 // split this interval at the specified position and return
4499 // the head as a new interval (the original interval is the tail)
4500 //
4501 // Currently, only the first range can be split, and the new interval
4502 // must not have split positions
split_from_start(int split_pos)4503 Interval* Interval::split_from_start(int split_pos) {
4504 assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4505 assert(split_pos > from() && split_pos < to(), "can only split inside interval");
4506 assert(split_pos > _first->from() && split_pos <= _first->to(), "can only split inside first range");
4507 assert(first_usage(noUse) > split_pos, "can not split when use positions are present");
4508
4509 // allocate new interval
4510 Interval* result = new_split_child();
4511
4512 // the new created interval has only one range (checked by assertion above),
4513 // so the splitting of the ranges is very simple
4514 result->add_range(_first->from(), split_pos);
4515
4516 if (split_pos == _first->to()) {
4517 assert(_first->next() != Range::end(), "must not be at end");
4518 _first = _first->next();
4519 } else {
4520 _first->set_from(split_pos);
4521 }
4522
4523 return result;
4524 }
4525
4526
4527 // returns true if the op_id is inside the interval
covers(int op_id,LIR_OpVisitState::OprMode mode) const4528 bool Interval::covers(int op_id, LIR_OpVisitState::OprMode mode) const {
4529 Range* cur = _first;
4530
4531 while (cur != Range::end() && cur->to() < op_id) {
4532 cur = cur->next();
4533 }
4534 if (cur != Range::end()) {
4535 assert(cur->to() != cur->next()->from(), "ranges not separated");
4536
4537 if (mode == LIR_OpVisitState::outputMode) {
4538 return cur->from() <= op_id && op_id < cur->to();
4539 } else {
4540 return cur->from() <= op_id && op_id <= cur->to();
4541 }
4542 }
4543 return false;
4544 }
4545
4546 // returns true if the interval has any hole between hole_from and hole_to
4547 // (even if the hole has only the length 1)
has_hole_between(int hole_from,int hole_to)4548 bool Interval::has_hole_between(int hole_from, int hole_to) {
4549 assert(hole_from < hole_to, "check");
4550 assert(from() <= hole_from && hole_to <= to(), "index out of interval");
4551
4552 Range* cur = _first;
4553 while (cur != Range::end()) {
4554 assert(cur->to() < cur->next()->from(), "no space between ranges");
4555
4556 // hole-range starts before this range -> hole
4557 if (hole_from < cur->from()) {
4558 return true;
4559
4560 // hole-range completely inside this range -> no hole
4561 } else if (hole_to <= cur->to()) {
4562 return false;
4563
4564 // overlapping of hole-range with this range -> hole
4565 } else if (hole_from <= cur->to()) {
4566 return true;
4567 }
4568
4569 cur = cur->next();
4570 }
4571
4572 return false;
4573 }
4574
4575 // Check if there is an intersection with any of the split children of 'interval'
intersects_any_children_of(Interval * interval) const4576 bool Interval::intersects_any_children_of(Interval* interval) const {
4577 if (interval->_split_children != NULL) {
4578 for (int i = 0; i < interval->_split_children->length(); i++) {
4579 if (intersects(interval->_split_children->at(i))) {
4580 return true;
4581 }
4582 }
4583 }
4584 return false;
4585 }
4586
4587
4588 #ifndef PRODUCT
print(outputStream * out) const4589 void Interval::print(outputStream* out) const {
4590 const char* SpillState2Name[] = { "no definition", "no spill store", "one spill store", "store at definition", "start in memory", "no optimization" };
4591 const char* UseKind2Name[] = { "N", "L", "S", "M" };
4592
4593 const char* type_name;
4594 LIR_Opr opr = LIR_OprFact::illegal();
4595 if (reg_num() < LIR_OprDesc::vreg_base) {
4596 type_name = "fixed";
4597 // need a temporary operand for fixed intervals because type() cannot be called
4598 #ifdef X86
4599 int last_xmm_reg = pd_last_xmm_reg;
4600 #ifdef _LP64
4601 if (UseAVX < 3) {
4602 last_xmm_reg = pd_first_xmm_reg + (pd_nof_xmm_regs_frame_map / 2) - 1;
4603 }
4604 #endif
4605 #endif
4606 if (assigned_reg() >= pd_first_cpu_reg && assigned_reg() <= pd_last_cpu_reg) {
4607 opr = LIR_OprFact::single_cpu(assigned_reg());
4608 } else if (assigned_reg() >= pd_first_fpu_reg && assigned_reg() <= pd_last_fpu_reg) {
4609 opr = LIR_OprFact::single_fpu(assigned_reg() - pd_first_fpu_reg);
4610 #ifdef X86
4611 } else if (assigned_reg() >= pd_first_xmm_reg && assigned_reg() <= last_xmm_reg) {
4612 opr = LIR_OprFact::single_xmm(assigned_reg() - pd_first_xmm_reg);
4613 #endif
4614 } else {
4615 ShouldNotReachHere();
4616 }
4617 } else {
4618 type_name = type2name(type());
4619 if (assigned_reg() != -1 &&
4620 (LinearScan::num_physical_regs(type()) == 1 || assigned_regHi() != -1)) {
4621 opr = LinearScan::calc_operand_for_interval(this);
4622 }
4623 }
4624
4625 out->print("%d %s ", reg_num(), type_name);
4626 if (opr->is_valid()) {
4627 out->print("\"");
4628 opr->print(out);
4629 out->print("\" ");
4630 }
4631 out->print("%d %d ", split_parent()->reg_num(), (register_hint(false) != NULL ? register_hint(false)->reg_num() : -1));
4632
4633 // print ranges
4634 Range* cur = _first;
4635 while (cur != Range::end()) {
4636 cur->print(out);
4637 cur = cur->next();
4638 assert(cur != NULL, "range list not closed with range sentinel");
4639 }
4640
4641 // print use positions
4642 int prev = 0;
4643 assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4644 for (int i =_use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4645 assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4646 assert(prev < _use_pos_and_kinds.at(i), "use positions not sorted");
4647
4648 out->print("%d %s ", _use_pos_and_kinds.at(i), UseKind2Name[_use_pos_and_kinds.at(i + 1)]);
4649 prev = _use_pos_and_kinds.at(i);
4650 }
4651
4652 out->print(" \"%s\"", SpillState2Name[spill_state()]);
4653 out->cr();
4654 }
4655 #endif
4656
4657
4658
4659 // **** Implementation of IntervalWalker ****************************
4660
IntervalWalker(LinearScan * allocator,Interval * unhandled_fixed_first,Interval * unhandled_any_first)4661 IntervalWalker::IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4662 : _compilation(allocator->compilation())
4663 , _allocator(allocator)
4664 {
4665 _unhandled_first[fixedKind] = unhandled_fixed_first;
4666 _unhandled_first[anyKind] = unhandled_any_first;
4667 _active_first[fixedKind] = Interval::end();
4668 _inactive_first[fixedKind] = Interval::end();
4669 _active_first[anyKind] = Interval::end();
4670 _inactive_first[anyKind] = Interval::end();
4671 _current_position = -1;
4672 _current = NULL;
4673 next_interval();
4674 }
4675
4676
4677 // append interval in order of current range from()
append_sorted(Interval ** list,Interval * interval)4678 void IntervalWalker::append_sorted(Interval** list, Interval* interval) {
4679 Interval* prev = NULL;
4680 Interval* cur = *list;
4681 while (cur->current_from() < interval->current_from()) {
4682 prev = cur; cur = cur->next();
4683 }
4684 if (prev == NULL) {
4685 *list = interval;
4686 } else {
4687 prev->set_next(interval);
4688 }
4689 interval->set_next(cur);
4690 }
4691
append_to_unhandled(Interval ** list,Interval * interval)4692 void IntervalWalker::append_to_unhandled(Interval** list, Interval* interval) {
4693 assert(interval->from() >= current()->current_from(), "cannot append new interval before current walk position");
4694
4695 Interval* prev = NULL;
4696 Interval* cur = *list;
4697 while (cur->from() < interval->from() || (cur->from() == interval->from() && cur->first_usage(noUse) < interval->first_usage(noUse))) {
4698 prev = cur; cur = cur->next();
4699 }
4700 if (prev == NULL) {
4701 *list = interval;
4702 } else {
4703 prev->set_next(interval);
4704 }
4705 interval->set_next(cur);
4706 }
4707
4708
remove_from_list(Interval ** list,Interval * i)4709 inline bool IntervalWalker::remove_from_list(Interval** list, Interval* i) {
4710 while (*list != Interval::end() && *list != i) {
4711 list = (*list)->next_addr();
4712 }
4713 if (*list != Interval::end()) {
4714 assert(*list == i, "check");
4715 *list = (*list)->next();
4716 return true;
4717 } else {
4718 return false;
4719 }
4720 }
4721
remove_from_list(Interval * i)4722 void IntervalWalker::remove_from_list(Interval* i) {
4723 bool deleted;
4724
4725 if (i->state() == activeState) {
4726 deleted = remove_from_list(active_first_addr(anyKind), i);
4727 } else {
4728 assert(i->state() == inactiveState, "invalid state");
4729 deleted = remove_from_list(inactive_first_addr(anyKind), i);
4730 }
4731
4732 assert(deleted, "interval has not been found in list");
4733 }
4734
4735
walk_to(IntervalState state,int from)4736 void IntervalWalker::walk_to(IntervalState state, int from) {
4737 assert (state == activeState || state == inactiveState, "wrong state");
4738 for_each_interval_kind(kind) {
4739 Interval** prev = state == activeState ? active_first_addr(kind) : inactive_first_addr(kind);
4740 Interval* next = *prev;
4741 while (next->current_from() <= from) {
4742 Interval* cur = next;
4743 next = cur->next();
4744
4745 bool range_has_changed = false;
4746 while (cur->current_to() <= from) {
4747 cur->next_range();
4748 range_has_changed = true;
4749 }
4750
4751 // also handle move from inactive list to active list
4752 range_has_changed = range_has_changed || (state == inactiveState && cur->current_from() <= from);
4753
4754 if (range_has_changed) {
4755 // remove cur from list
4756 *prev = next;
4757 if (cur->current_at_end()) {
4758 // move to handled state (not maintained as a list)
4759 cur->set_state(handledState);
4760 interval_moved(cur, kind, state, handledState);
4761 } else if (cur->current_from() <= from){
4762 // sort into active list
4763 append_sorted(active_first_addr(kind), cur);
4764 cur->set_state(activeState);
4765 if (*prev == cur) {
4766 assert(state == activeState, "check");
4767 prev = cur->next_addr();
4768 }
4769 interval_moved(cur, kind, state, activeState);
4770 } else {
4771 // sort into inactive list
4772 append_sorted(inactive_first_addr(kind), cur);
4773 cur->set_state(inactiveState);
4774 if (*prev == cur) {
4775 assert(state == inactiveState, "check");
4776 prev = cur->next_addr();
4777 }
4778 interval_moved(cur, kind, state, inactiveState);
4779 }
4780 } else {
4781 prev = cur->next_addr();
4782 continue;
4783 }
4784 }
4785 }
4786 }
4787
4788
next_interval()4789 void IntervalWalker::next_interval() {
4790 IntervalKind kind;
4791 Interval* any = _unhandled_first[anyKind];
4792 Interval* fixed = _unhandled_first[fixedKind];
4793
4794 if (any != Interval::end()) {
4795 // intervals may start at same position -> prefer fixed interval
4796 kind = fixed != Interval::end() && fixed->from() <= any->from() ? fixedKind : anyKind;
4797
4798 assert (kind == fixedKind && fixed->from() <= any->from() ||
4799 kind == anyKind && any->from() <= fixed->from(), "wrong interval!!!");
4800 assert(any == Interval::end() || fixed == Interval::end() || any->from() != fixed->from() || kind == fixedKind, "if fixed and any-Interval start at same position, fixed must be processed first");
4801
4802 } else if (fixed != Interval::end()) {
4803 kind = fixedKind;
4804 } else {
4805 _current = NULL; return;
4806 }
4807 _current_kind = kind;
4808 _current = _unhandled_first[kind];
4809 _unhandled_first[kind] = _current->next();
4810 _current->set_next(Interval::end());
4811 _current->rewind_range();
4812 }
4813
4814
walk_to(int lir_op_id)4815 void IntervalWalker::walk_to(int lir_op_id) {
4816 assert(_current_position <= lir_op_id, "can not walk backwards");
4817 while (current() != NULL) {
4818 bool is_active = current()->from() <= lir_op_id;
4819 int id = is_active ? current()->from() : lir_op_id;
4820
4821 TRACE_LINEAR_SCAN(2, if (_current_position < id) { tty->cr(); tty->print_cr("walk_to(%d) **************************************************************", id); })
4822
4823 // set _current_position prior to call of walk_to
4824 _current_position = id;
4825
4826 // call walk_to even if _current_position == id
4827 walk_to(activeState, id);
4828 walk_to(inactiveState, id);
4829
4830 if (is_active) {
4831 current()->set_state(activeState);
4832 if (activate_current()) {
4833 append_sorted(active_first_addr(current_kind()), current());
4834 interval_moved(current(), current_kind(), unhandledState, activeState);
4835 }
4836
4837 next_interval();
4838 } else {
4839 return;
4840 }
4841 }
4842 }
4843
interval_moved(Interval * interval,IntervalKind kind,IntervalState from,IntervalState to)4844 void IntervalWalker::interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to) {
4845 #ifndef PRODUCT
4846 if (TraceLinearScanLevel >= 4) {
4847 #define print_state(state) \
4848 switch(state) {\
4849 case unhandledState: tty->print("unhandled"); break;\
4850 case activeState: tty->print("active"); break;\
4851 case inactiveState: tty->print("inactive"); break;\
4852 case handledState: tty->print("handled"); break;\
4853 default: ShouldNotReachHere(); \
4854 }
4855
4856 print_state(from); tty->print(" to "); print_state(to);
4857 tty->fill_to(23);
4858 interval->print();
4859
4860 #undef print_state
4861 }
4862 #endif
4863 }
4864
4865
4866
4867 // **** Implementation of LinearScanWalker **************************
4868
LinearScanWalker(LinearScan * allocator,Interval * unhandled_fixed_first,Interval * unhandled_any_first)4869 LinearScanWalker::LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4870 : IntervalWalker(allocator, unhandled_fixed_first, unhandled_any_first)
4871 , _move_resolver(allocator)
4872 {
4873 for (int i = 0; i < LinearScan::nof_regs; i++) {
4874 _spill_intervals[i] = new IntervalList(2);
4875 }
4876 }
4877
4878
init_use_lists(bool only_process_use_pos)4879 inline void LinearScanWalker::init_use_lists(bool only_process_use_pos) {
4880 for (int i = _first_reg; i <= _last_reg; i++) {
4881 _use_pos[i] = max_jint;
4882
4883 if (!only_process_use_pos) {
4884 _block_pos[i] = max_jint;
4885 _spill_intervals[i]->clear();
4886 }
4887 }
4888 }
4889
exclude_from_use(int reg)4890 inline void LinearScanWalker::exclude_from_use(int reg) {
4891 assert(reg < LinearScan::nof_regs, "interval must have a register assigned (stack slots not allowed)");
4892 if (reg >= _first_reg && reg <= _last_reg) {
4893 _use_pos[reg] = 0;
4894 }
4895 }
exclude_from_use(Interval * i)4896 inline void LinearScanWalker::exclude_from_use(Interval* i) {
4897 assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4898
4899 exclude_from_use(i->assigned_reg());
4900 exclude_from_use(i->assigned_regHi());
4901 }
4902
set_use_pos(int reg,Interval * i,int use_pos,bool only_process_use_pos)4903 inline void LinearScanWalker::set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos) {
4904 assert(use_pos != 0, "must use exclude_from_use to set use_pos to 0");
4905
4906 if (reg >= _first_reg && reg <= _last_reg) {
4907 if (_use_pos[reg] > use_pos) {
4908 _use_pos[reg] = use_pos;
4909 }
4910 if (!only_process_use_pos) {
4911 _spill_intervals[reg]->append(i);
4912 }
4913 }
4914 }
set_use_pos(Interval * i,int use_pos,bool only_process_use_pos)4915 inline void LinearScanWalker::set_use_pos(Interval* i, int use_pos, bool only_process_use_pos) {
4916 assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4917 if (use_pos != -1) {
4918 set_use_pos(i->assigned_reg(), i, use_pos, only_process_use_pos);
4919 set_use_pos(i->assigned_regHi(), i, use_pos, only_process_use_pos);
4920 }
4921 }
4922
set_block_pos(int reg,Interval * i,int block_pos)4923 inline void LinearScanWalker::set_block_pos(int reg, Interval* i, int block_pos) {
4924 if (reg >= _first_reg && reg <= _last_reg) {
4925 if (_block_pos[reg] > block_pos) {
4926 _block_pos[reg] = block_pos;
4927 }
4928 if (_use_pos[reg] > block_pos) {
4929 _use_pos[reg] = block_pos;
4930 }
4931 }
4932 }
set_block_pos(Interval * i,int block_pos)4933 inline void LinearScanWalker::set_block_pos(Interval* i, int block_pos) {
4934 assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4935 if (block_pos != -1) {
4936 set_block_pos(i->assigned_reg(), i, block_pos);
4937 set_block_pos(i->assigned_regHi(), i, block_pos);
4938 }
4939 }
4940
4941
free_exclude_active_fixed()4942 void LinearScanWalker::free_exclude_active_fixed() {
4943 Interval* list = active_first(fixedKind);
4944 while (list != Interval::end()) {
4945 assert(list->assigned_reg() < LinearScan::nof_regs, "active interval must have a register assigned");
4946 exclude_from_use(list);
4947 list = list->next();
4948 }
4949 }
4950
free_exclude_active_any()4951 void LinearScanWalker::free_exclude_active_any() {
4952 Interval* list = active_first(anyKind);
4953 while (list != Interval::end()) {
4954 exclude_from_use(list);
4955 list = list->next();
4956 }
4957 }
4958
free_collect_inactive_fixed(Interval * cur)4959 void LinearScanWalker::free_collect_inactive_fixed(Interval* cur) {
4960 Interval* list = inactive_first(fixedKind);
4961 while (list != Interval::end()) {
4962 if (cur->to() <= list->current_from()) {
4963 assert(list->current_intersects_at(cur) == -1, "must not intersect");
4964 set_use_pos(list, list->current_from(), true);
4965 } else {
4966 set_use_pos(list, list->current_intersects_at(cur), true);
4967 }
4968 list = list->next();
4969 }
4970 }
4971
free_collect_inactive_any(Interval * cur)4972 void LinearScanWalker::free_collect_inactive_any(Interval* cur) {
4973 Interval* list = inactive_first(anyKind);
4974 while (list != Interval::end()) {
4975 set_use_pos(list, list->current_intersects_at(cur), true);
4976 list = list->next();
4977 }
4978 }
4979
spill_exclude_active_fixed()4980 void LinearScanWalker::spill_exclude_active_fixed() {
4981 Interval* list = active_first(fixedKind);
4982 while (list != Interval::end()) {
4983 exclude_from_use(list);
4984 list = list->next();
4985 }
4986 }
4987
spill_block_inactive_fixed(Interval * cur)4988 void LinearScanWalker::spill_block_inactive_fixed(Interval* cur) {
4989 Interval* list = inactive_first(fixedKind);
4990 while (list != Interval::end()) {
4991 if (cur->to() > list->current_from()) {
4992 set_block_pos(list, list->current_intersects_at(cur));
4993 } else {
4994 assert(list->current_intersects_at(cur) == -1, "invalid optimization: intervals intersect");
4995 }
4996
4997 list = list->next();
4998 }
4999 }
5000
spill_collect_active_any()5001 void LinearScanWalker::spill_collect_active_any() {
5002 Interval* list = active_first(anyKind);
5003 while (list != Interval::end()) {
5004 set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
5005 list = list->next();
5006 }
5007 }
5008
spill_collect_inactive_any(Interval * cur)5009 void LinearScanWalker::spill_collect_inactive_any(Interval* cur) {
5010 Interval* list = inactive_first(anyKind);
5011 while (list != Interval::end()) {
5012 if (list->current_intersects(cur)) {
5013 set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
5014 }
5015 list = list->next();
5016 }
5017 }
5018
5019
insert_move(int op_id,Interval * src_it,Interval * dst_it)5020 void LinearScanWalker::insert_move(int op_id, Interval* src_it, Interval* dst_it) {
5021 // output all moves here. When source and target are equal, the move is
5022 // optimized away later in assign_reg_nums
5023
5024 op_id = (op_id + 1) & ~1;
5025 BlockBegin* op_block = allocator()->block_of_op_with_id(op_id);
5026 assert(op_id > 0 && allocator()->block_of_op_with_id(op_id - 2) == op_block, "cannot insert move at block boundary");
5027
5028 // calculate index of instruction inside instruction list of current block
5029 // the minimal index (for a block with no spill moves) can be calculated because the
5030 // numbering of instructions is known.
5031 // When the block already contains spill moves, the index must be increased until the
5032 // correct index is reached.
5033 LIR_OpList* list = op_block->lir()->instructions_list();
5034 int index = (op_id - list->at(0)->id()) / 2;
5035 assert(list->at(index)->id() <= op_id, "error in calculation");
5036
5037 while (list->at(index)->id() != op_id) {
5038 index++;
5039 assert(0 <= index && index < list->length(), "index out of bounds");
5040 }
5041 assert(1 <= index && index < list->length(), "index out of bounds");
5042 assert(list->at(index)->id() == op_id, "error in calculation");
5043
5044 // insert new instruction before instruction at position index
5045 _move_resolver.move_insert_position(op_block->lir(), index - 1);
5046 _move_resolver.add_mapping(src_it, dst_it);
5047 }
5048
5049
find_optimal_split_pos(BlockBegin * min_block,BlockBegin * max_block,int max_split_pos)5050 int LinearScanWalker::find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos) {
5051 int from_block_nr = min_block->linear_scan_number();
5052 int to_block_nr = max_block->linear_scan_number();
5053
5054 assert(0 <= from_block_nr && from_block_nr < block_count(), "out of range");
5055 assert(0 <= to_block_nr && to_block_nr < block_count(), "out of range");
5056 assert(from_block_nr < to_block_nr, "must cross block boundary");
5057
5058 // Try to split at end of max_block. If this would be after
5059 // max_split_pos, then use the begin of max_block
5060 int optimal_split_pos = max_block->last_lir_instruction_id() + 2;
5061 if (optimal_split_pos > max_split_pos) {
5062 optimal_split_pos = max_block->first_lir_instruction_id();
5063 }
5064
5065 int min_loop_depth = max_block->loop_depth();
5066 for (int i = to_block_nr - 1; i >= from_block_nr; i--) {
5067 BlockBegin* cur = block_at(i);
5068
5069 if (cur->loop_depth() < min_loop_depth) {
5070 // block with lower loop-depth found -> split at the end of this block
5071 min_loop_depth = cur->loop_depth();
5072 optimal_split_pos = cur->last_lir_instruction_id() + 2;
5073 }
5074 }
5075 assert(optimal_split_pos > allocator()->max_lir_op_id() || allocator()->is_block_begin(optimal_split_pos), "algorithm must move split pos to block boundary");
5076
5077 return optimal_split_pos;
5078 }
5079
5080
find_optimal_split_pos(Interval * it,int min_split_pos,int max_split_pos,bool do_loop_optimization)5081 int LinearScanWalker::find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization) {
5082 int optimal_split_pos = -1;
5083 if (min_split_pos == max_split_pos) {
5084 // trivial case, no optimization of split position possible
5085 TRACE_LINEAR_SCAN(4, tty->print_cr(" min-pos and max-pos are equal, no optimization possible"));
5086 optimal_split_pos = min_split_pos;
5087
5088 } else {
5089 assert(min_split_pos < max_split_pos, "must be true then");
5090 assert(min_split_pos > 0, "cannot access min_split_pos - 1 otherwise");
5091
5092 // reason for using min_split_pos - 1: when the minimal split pos is exactly at the
5093 // beginning of a block, then min_split_pos is also a possible split position.
5094 // Use the block before as min_block, because then min_block->last_lir_instruction_id() + 2 == min_split_pos
5095 BlockBegin* min_block = allocator()->block_of_op_with_id(min_split_pos - 1);
5096
5097 // reason for using max_split_pos - 1: otherwise there would be an assertion failure
5098 // when an interval ends at the end of the last block of the method
5099 // (in this case, max_split_pos == allocator()->max_lir_op_id() + 2, and there is no
5100 // block at this op_id)
5101 BlockBegin* max_block = allocator()->block_of_op_with_id(max_split_pos - 1);
5102
5103 assert(min_block->linear_scan_number() <= max_block->linear_scan_number(), "invalid order");
5104 if (min_block == max_block) {
5105 // split position cannot be moved to block boundary, so split as late as possible
5106 TRACE_LINEAR_SCAN(4, tty->print_cr(" cannot move split pos to block boundary because min_pos and max_pos are in same block"));
5107 optimal_split_pos = max_split_pos;
5108
5109 } else if (it->has_hole_between(max_split_pos - 1, max_split_pos) && !allocator()->is_block_begin(max_split_pos)) {
5110 // Do not move split position if the interval has a hole before max_split_pos.
5111 // Intervals resulting from Phi-Functions have more than one definition (marked
5112 // as mustHaveRegister) with a hole before each definition. When the register is needed
5113 // for the second definition, an earlier reloading is unnecessary.
5114 TRACE_LINEAR_SCAN(4, tty->print_cr(" interval has hole just before max_split_pos, so splitting at max_split_pos"));
5115 optimal_split_pos = max_split_pos;
5116
5117 } else {
5118 // seach optimal block boundary between min_split_pos and max_split_pos
5119 TRACE_LINEAR_SCAN(4, tty->print_cr(" moving split pos to optimal block boundary between block B%d and B%d", min_block->block_id(), max_block->block_id()));
5120
5121 if (do_loop_optimization) {
5122 // Loop optimization: if a loop-end marker is found between min- and max-position,
5123 // then split before this loop
5124 int loop_end_pos = it->next_usage_exact(loopEndMarker, min_block->last_lir_instruction_id() + 2);
5125 TRACE_LINEAR_SCAN(4, tty->print_cr(" loop optimization: loop end found at pos %d", loop_end_pos));
5126
5127 assert(loop_end_pos > min_split_pos, "invalid order");
5128 if (loop_end_pos < max_split_pos) {
5129 // loop-end marker found between min- and max-position
5130 // if it is not the end marker for the same loop as the min-position, then move
5131 // the max-position to this loop block.
5132 // Desired result: uses tagged as shouldHaveRegister inside a loop cause a reloading
5133 // of the interval (normally, only mustHaveRegister causes a reloading)
5134 BlockBegin* loop_block = allocator()->block_of_op_with_id(loop_end_pos);
5135
5136 TRACE_LINEAR_SCAN(4, tty->print_cr(" interval is used in loop that ends in block B%d, so trying to move max_block back from B%d to B%d", loop_block->block_id(), max_block->block_id(), loop_block->block_id()));
5137 assert(loop_block != min_block, "loop_block and min_block must be different because block boundary is needed between");
5138
5139 optimal_split_pos = find_optimal_split_pos(min_block, loop_block, loop_block->last_lir_instruction_id() + 2);
5140 if (optimal_split_pos == loop_block->last_lir_instruction_id() + 2) {
5141 optimal_split_pos = -1;
5142 TRACE_LINEAR_SCAN(4, tty->print_cr(" loop optimization not necessary"));
5143 } else {
5144 TRACE_LINEAR_SCAN(4, tty->print_cr(" loop optimization successful"));
5145 }
5146 }
5147 }
5148
5149 if (optimal_split_pos == -1) {
5150 // not calculated by loop optimization
5151 optimal_split_pos = find_optimal_split_pos(min_block, max_block, max_split_pos);
5152 }
5153 }
5154 }
5155 TRACE_LINEAR_SCAN(4, tty->print_cr(" optimal split position: %d", optimal_split_pos));
5156
5157 return optimal_split_pos;
5158 }
5159
5160
5161 /*
5162 split an interval at the optimal position between min_split_pos and
5163 max_split_pos in two parts:
5164 1) the left part has already a location assigned
5165 2) the right part is sorted into to the unhandled-list
5166 */
split_before_usage(Interval * it,int min_split_pos,int max_split_pos)5167 void LinearScanWalker::split_before_usage(Interval* it, int min_split_pos, int max_split_pos) {
5168 TRACE_LINEAR_SCAN(2, tty->print ("----- splitting interval: "); it->print());
5169 TRACE_LINEAR_SCAN(2, tty->print_cr(" between %d and %d", min_split_pos, max_split_pos));
5170
5171 assert(it->from() < min_split_pos, "cannot split at start of interval");
5172 assert(current_position() < min_split_pos, "cannot split before current position");
5173 assert(min_split_pos <= max_split_pos, "invalid order");
5174 assert(max_split_pos <= it->to(), "cannot split after end of interval");
5175
5176 int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, true);
5177
5178 assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5179 assert(optimal_split_pos <= it->to(), "cannot split after end of interval");
5180 assert(optimal_split_pos > it->from(), "cannot split at start of interval");
5181
5182 if (optimal_split_pos == it->to() && it->next_usage(mustHaveRegister, min_split_pos) == max_jint) {
5183 // the split position would be just before the end of the interval
5184 // -> no split at all necessary
5185 TRACE_LINEAR_SCAN(4, tty->print_cr(" no split necessary because optimal split position is at end of interval"));
5186 return;
5187 }
5188
5189 // must calculate this before the actual split is performed and before split position is moved to odd op_id
5190 bool move_necessary = !allocator()->is_block_begin(optimal_split_pos) && !it->has_hole_between(optimal_split_pos - 1, optimal_split_pos);
5191
5192 if (!allocator()->is_block_begin(optimal_split_pos)) {
5193 // move position before actual instruction (odd op_id)
5194 optimal_split_pos = (optimal_split_pos - 1) | 1;
5195 }
5196
5197 TRACE_LINEAR_SCAN(4, tty->print_cr(" splitting at position %d", optimal_split_pos));
5198 assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5199 assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5200
5201 Interval* split_part = it->split(optimal_split_pos);
5202
5203 allocator()->append_interval(split_part);
5204 allocator()->copy_register_flags(it, split_part);
5205 split_part->set_insert_move_when_activated(move_necessary);
5206 append_to_unhandled(unhandled_first_addr(anyKind), split_part);
5207
5208 TRACE_LINEAR_SCAN(2, tty->print_cr(" split interval in two parts (insert_move_when_activated: %d)", move_necessary));
5209 TRACE_LINEAR_SCAN(2, tty->print (" "); it->print());
5210 TRACE_LINEAR_SCAN(2, tty->print (" "); split_part->print());
5211 }
5212
5213 /*
5214 split an interval at the optimal position between min_split_pos and
5215 max_split_pos in two parts:
5216 1) the left part has already a location assigned
5217 2) the right part is always on the stack and therefore ignored in further processing
5218 */
split_for_spilling(Interval * it)5219 void LinearScanWalker::split_for_spilling(Interval* it) {
5220 // calculate allowed range of splitting position
5221 int max_split_pos = current_position();
5222 int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, max_split_pos) + 1, it->from());
5223
5224 TRACE_LINEAR_SCAN(2, tty->print ("----- splitting and spilling interval: "); it->print());
5225 TRACE_LINEAR_SCAN(2, tty->print_cr(" between %d and %d", min_split_pos, max_split_pos));
5226
5227 assert(it->state() == activeState, "why spill interval that is not active?");
5228 assert(it->from() <= min_split_pos, "cannot split before start of interval");
5229 assert(min_split_pos <= max_split_pos, "invalid order");
5230 assert(max_split_pos < it->to(), "cannot split at end end of interval");
5231 assert(current_position() < it->to(), "interval must not end before current position");
5232
5233 if (min_split_pos == it->from()) {
5234 // the whole interval is never used, so spill it entirely to memory
5235 TRACE_LINEAR_SCAN(2, tty->print_cr(" spilling entire interval because split pos is at beginning of interval"));
5236 assert(it->first_usage(shouldHaveRegister) > current_position(), "interval must not have use position before current_position");
5237
5238 allocator()->assign_spill_slot(it);
5239 allocator()->change_spill_state(it, min_split_pos);
5240
5241 // Also kick parent intervals out of register to memory when they have no use
5242 // position. This avoids short interval in register surrounded by intervals in
5243 // memory -> avoid useless moves from memory to register and back
5244 Interval* parent = it;
5245 while (parent != NULL && parent->is_split_child()) {
5246 parent = parent->split_child_before_op_id(parent->from());
5247
5248 if (parent->assigned_reg() < LinearScan::nof_regs) {
5249 if (parent->first_usage(shouldHaveRegister) == max_jint) {
5250 // parent is never used, so kick it out of its assigned register
5251 TRACE_LINEAR_SCAN(4, tty->print_cr(" kicking out interval %d out of its register because it is never used", parent->reg_num()));
5252 allocator()->assign_spill_slot(parent);
5253 } else {
5254 // do not go further back because the register is actually used by the interval
5255 parent = NULL;
5256 }
5257 }
5258 }
5259
5260 } else {
5261 // search optimal split pos, split interval and spill only the right hand part
5262 int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, false);
5263
5264 assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5265 assert(optimal_split_pos < it->to(), "cannot split at end of interval");
5266 assert(optimal_split_pos >= it->from(), "cannot split before start of interval");
5267
5268 if (!allocator()->is_block_begin(optimal_split_pos)) {
5269 // move position before actual instruction (odd op_id)
5270 optimal_split_pos = (optimal_split_pos - 1) | 1;
5271 }
5272
5273 TRACE_LINEAR_SCAN(4, tty->print_cr(" splitting at position %d", optimal_split_pos));
5274 assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5275 assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5276
5277 Interval* spilled_part = it->split(optimal_split_pos);
5278 allocator()->append_interval(spilled_part);
5279 allocator()->assign_spill_slot(spilled_part);
5280 allocator()->change_spill_state(spilled_part, optimal_split_pos);
5281
5282 if (!allocator()->is_block_begin(optimal_split_pos)) {
5283 TRACE_LINEAR_SCAN(4, tty->print_cr(" inserting move from interval %d to %d", it->reg_num(), spilled_part->reg_num()));
5284 insert_move(optimal_split_pos, it, spilled_part);
5285 }
5286
5287 // the current_split_child is needed later when moves are inserted for reloading
5288 assert(spilled_part->current_split_child() == it, "overwriting wrong current_split_child");
5289 spilled_part->make_current_split_child();
5290
5291 TRACE_LINEAR_SCAN(2, tty->print_cr(" split interval in two parts"));
5292 TRACE_LINEAR_SCAN(2, tty->print (" "); it->print());
5293 TRACE_LINEAR_SCAN(2, tty->print (" "); spilled_part->print());
5294 }
5295 }
5296
5297
split_stack_interval(Interval * it)5298 void LinearScanWalker::split_stack_interval(Interval* it) {
5299 int min_split_pos = current_position() + 1;
5300 int max_split_pos = MIN2(it->first_usage(shouldHaveRegister), it->to());
5301
5302 split_before_usage(it, min_split_pos, max_split_pos);
5303 }
5304
split_when_partial_register_available(Interval * it,int register_available_until)5305 void LinearScanWalker::split_when_partial_register_available(Interval* it, int register_available_until) {
5306 int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, register_available_until), it->from() + 1);
5307 int max_split_pos = register_available_until;
5308
5309 split_before_usage(it, min_split_pos, max_split_pos);
5310 }
5311
split_and_spill_interval(Interval * it)5312 void LinearScanWalker::split_and_spill_interval(Interval* it) {
5313 assert(it->state() == activeState || it->state() == inactiveState, "other states not allowed");
5314
5315 int current_pos = current_position();
5316 if (it->state() == inactiveState) {
5317 // the interval is currently inactive, so no spill slot is needed for now.
5318 // when the split part is activated, the interval has a new chance to get a register,
5319 // so in the best case no stack slot is necessary
5320 assert(it->has_hole_between(current_pos - 1, current_pos + 1), "interval can not be inactive otherwise");
5321 split_before_usage(it, current_pos + 1, current_pos + 1);
5322
5323 } else {
5324 // search the position where the interval must have a register and split
5325 // at the optimal position before.
5326 // The new created part is added to the unhandled list and will get a register
5327 // when it is activated
5328 int min_split_pos = current_pos + 1;
5329 int max_split_pos = MIN2(it->next_usage(mustHaveRegister, min_split_pos), it->to());
5330
5331 split_before_usage(it, min_split_pos, max_split_pos);
5332
5333 assert(it->next_usage(mustHaveRegister, current_pos) == max_jint, "the remaining part is spilled to stack and therefore has no register");
5334 split_for_spilling(it);
5335 }
5336 }
5337
5338
find_free_reg(int reg_needed_until,int interval_to,int hint_reg,int ignore_reg,bool * need_split)5339 int LinearScanWalker::find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5340 int min_full_reg = any_reg;
5341 int max_partial_reg = any_reg;
5342
5343 for (int i = _first_reg; i <= _last_reg; i++) {
5344 if (i == ignore_reg) {
5345 // this register must be ignored
5346
5347 } else if (_use_pos[i] >= interval_to) {
5348 // this register is free for the full interval
5349 if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5350 min_full_reg = i;
5351 }
5352 } else if (_use_pos[i] > reg_needed_until) {
5353 // this register is at least free until reg_needed_until
5354 if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5355 max_partial_reg = i;
5356 }
5357 }
5358 }
5359
5360 if (min_full_reg != any_reg) {
5361 return min_full_reg;
5362 } else if (max_partial_reg != any_reg) {
5363 *need_split = true;
5364 return max_partial_reg;
5365 } else {
5366 return any_reg;
5367 }
5368 }
5369
find_free_double_reg(int reg_needed_until,int interval_to,int hint_reg,bool * need_split)5370 int LinearScanWalker::find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5371 assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5372
5373 int min_full_reg = any_reg;
5374 int max_partial_reg = any_reg;
5375
5376 for (int i = _first_reg; i < _last_reg; i+=2) {
5377 if (_use_pos[i] >= interval_to && _use_pos[i + 1] >= interval_to) {
5378 // this register is free for the full interval
5379 if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5380 min_full_reg = i;
5381 }
5382 } else if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5383 // this register is at least free until reg_needed_until
5384 if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5385 max_partial_reg = i;
5386 }
5387 }
5388 }
5389
5390 if (min_full_reg != any_reg) {
5391 return min_full_reg;
5392 } else if (max_partial_reg != any_reg) {
5393 *need_split = true;
5394 return max_partial_reg;
5395 } else {
5396 return any_reg;
5397 }
5398 }
5399
5400
alloc_free_reg(Interval * cur)5401 bool LinearScanWalker::alloc_free_reg(Interval* cur) {
5402 TRACE_LINEAR_SCAN(2, tty->print("trying to find free register for "); cur->print());
5403
5404 init_use_lists(true);
5405 free_exclude_active_fixed();
5406 free_exclude_active_any();
5407 free_collect_inactive_fixed(cur);
5408 free_collect_inactive_any(cur);
5409 assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5410
5411 // _use_pos contains the start of the next interval that has this register assigned
5412 // (either as a fixed register or a normal allocated register in the past)
5413 // only intervals overlapping with cur are processed, non-overlapping invervals can be ignored safely
5414 TRACE_LINEAR_SCAN(4, tty->print_cr(" state of registers:"));
5415 TRACE_LINEAR_SCAN(4, for (int i = _first_reg; i <= _last_reg; i++) tty->print_cr(" reg %d: use_pos: %d", i, _use_pos[i]));
5416
5417 int hint_reg, hint_regHi;
5418 Interval* register_hint = cur->register_hint();
5419 if (register_hint != NULL) {
5420 hint_reg = register_hint->assigned_reg();
5421 hint_regHi = register_hint->assigned_regHi();
5422
5423 if (allocator()->is_precolored_cpu_interval(register_hint)) {
5424 assert(hint_reg != any_reg && hint_regHi == any_reg, "must be for fixed intervals");
5425 hint_regHi = hint_reg + 1; // connect e.g. eax-edx
5426 }
5427 TRACE_LINEAR_SCAN(4, tty->print(" hint registers %d, %d from interval ", hint_reg, hint_regHi); register_hint->print());
5428
5429 } else {
5430 hint_reg = any_reg;
5431 hint_regHi = any_reg;
5432 }
5433 assert(hint_reg == any_reg || hint_reg != hint_regHi, "hint reg and regHi equal");
5434 assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned to interval");
5435
5436 // the register must be free at least until this position
5437 int reg_needed_until = cur->from() + 1;
5438 int interval_to = cur->to();
5439
5440 bool need_split = false;
5441 int split_pos;
5442 int reg;
5443 int regHi = any_reg;
5444
5445 if (_adjacent_regs) {
5446 reg = find_free_double_reg(reg_needed_until, interval_to, hint_reg, &need_split);
5447 regHi = reg + 1;
5448 if (reg == any_reg) {
5449 return false;
5450 }
5451 split_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5452
5453 } else {
5454 reg = find_free_reg(reg_needed_until, interval_to, hint_reg, any_reg, &need_split);
5455 if (reg == any_reg) {
5456 return false;
5457 }
5458 split_pos = _use_pos[reg];
5459
5460 if (_num_phys_regs == 2) {
5461 regHi = find_free_reg(reg_needed_until, interval_to, hint_regHi, reg, &need_split);
5462
5463 if (_use_pos[reg] < interval_to && regHi == any_reg) {
5464 // do not split interval if only one register can be assigned until the split pos
5465 // (when one register is found for the whole interval, split&spill is only
5466 // performed for the hi register)
5467 return false;
5468
5469 } else if (regHi != any_reg) {
5470 split_pos = MIN2(split_pos, _use_pos[regHi]);
5471
5472 // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5473 if (reg > regHi) {
5474 int temp = reg;
5475 reg = regHi;
5476 regHi = temp;
5477 }
5478 }
5479 }
5480 }
5481
5482 cur->assign_reg(reg, regHi);
5483 TRACE_LINEAR_SCAN(2, tty->print_cr("selected register %d, %d", reg, regHi));
5484
5485 assert(split_pos > 0, "invalid split_pos");
5486 if (need_split) {
5487 // register not available for full interval, so split it
5488 split_when_partial_register_available(cur, split_pos);
5489 }
5490
5491 // only return true if interval is completely assigned
5492 return _num_phys_regs == 1 || regHi != any_reg;
5493 }
5494
5495
find_locked_reg(int reg_needed_until,int interval_to,int ignore_reg,bool * need_split)5496 int LinearScanWalker::find_locked_reg(int reg_needed_until, int interval_to, int ignore_reg, bool* need_split) {
5497 int max_reg = any_reg;
5498
5499 for (int i = _first_reg; i <= _last_reg; i++) {
5500 if (i == ignore_reg) {
5501 // this register must be ignored
5502
5503 } else if (_use_pos[i] > reg_needed_until) {
5504 if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) {
5505 max_reg = i;
5506 }
5507 }
5508 }
5509
5510 if (max_reg != any_reg && _block_pos[max_reg] <= interval_to) {
5511 *need_split = true;
5512 }
5513
5514 return max_reg;
5515 }
5516
find_locked_double_reg(int reg_needed_until,int interval_to,bool * need_split)5517 int LinearScanWalker::find_locked_double_reg(int reg_needed_until, int interval_to, bool* need_split) {
5518 assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5519
5520 int max_reg = any_reg;
5521
5522 for (int i = _first_reg; i < _last_reg; i+=2) {
5523 if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5524 if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) {
5525 max_reg = i;
5526 }
5527 }
5528 }
5529
5530 if (max_reg != any_reg &&
5531 (_block_pos[max_reg] <= interval_to || _block_pos[max_reg + 1] <= interval_to)) {
5532 *need_split = true;
5533 }
5534
5535 return max_reg;
5536 }
5537
split_and_spill_intersecting_intervals(int reg,int regHi)5538 void LinearScanWalker::split_and_spill_intersecting_intervals(int reg, int regHi) {
5539 assert(reg != any_reg, "no register assigned");
5540
5541 for (int i = 0; i < _spill_intervals[reg]->length(); i++) {
5542 Interval* it = _spill_intervals[reg]->at(i);
5543 remove_from_list(it);
5544 split_and_spill_interval(it);
5545 }
5546
5547 if (regHi != any_reg) {
5548 IntervalList* processed = _spill_intervals[reg];
5549 for (int i = 0; i < _spill_intervals[regHi]->length(); i++) {
5550 Interval* it = _spill_intervals[regHi]->at(i);
5551 if (processed->find(it) == -1) {
5552 remove_from_list(it);
5553 split_and_spill_interval(it);
5554 }
5555 }
5556 }
5557 }
5558
5559
5560 // Split an Interval and spill it to memory so that cur can be placed in a register
alloc_locked_reg(Interval * cur)5561 void LinearScanWalker::alloc_locked_reg(Interval* cur) {
5562 TRACE_LINEAR_SCAN(2, tty->print("need to split and spill to get register for "); cur->print());
5563
5564 // collect current usage of registers
5565 init_use_lists(false);
5566 spill_exclude_active_fixed();
5567 assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5568 spill_block_inactive_fixed(cur);
5569 spill_collect_active_any();
5570 spill_collect_inactive_any(cur);
5571
5572 #ifndef PRODUCT
5573 if (TraceLinearScanLevel >= 4) {
5574 tty->print_cr(" state of registers:");
5575 for (int i = _first_reg; i <= _last_reg; i++) {
5576 tty->print(" reg %d: use_pos: %d, block_pos: %d, intervals: ", i, _use_pos[i], _block_pos[i]);
5577 for (int j = 0; j < _spill_intervals[i]->length(); j++) {
5578 tty->print("%d ", _spill_intervals[i]->at(j)->reg_num());
5579 }
5580 tty->cr();
5581 }
5582 }
5583 #endif
5584
5585 // the register must be free at least until this position
5586 int reg_needed_until = MIN2(cur->first_usage(mustHaveRegister), cur->from() + 1);
5587 int interval_to = cur->to();
5588 assert (reg_needed_until > 0 && reg_needed_until < max_jint, "interval has no use");
5589
5590 int split_pos = 0;
5591 int use_pos = 0;
5592 bool need_split = false;
5593 int reg, regHi;
5594
5595 if (_adjacent_regs) {
5596 reg = find_locked_double_reg(reg_needed_until, interval_to, &need_split);
5597 regHi = reg + 1;
5598
5599 if (reg != any_reg) {
5600 use_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5601 split_pos = MIN2(_block_pos[reg], _block_pos[regHi]);
5602 }
5603 } else {
5604 reg = find_locked_reg(reg_needed_until, interval_to, cur->assigned_reg(), &need_split);
5605 regHi = any_reg;
5606
5607 if (reg != any_reg) {
5608 use_pos = _use_pos[reg];
5609 split_pos = _block_pos[reg];
5610
5611 if (_num_phys_regs == 2) {
5612 if (cur->assigned_reg() != any_reg) {
5613 regHi = reg;
5614 reg = cur->assigned_reg();
5615 } else {
5616 regHi = find_locked_reg(reg_needed_until, interval_to, reg, &need_split);
5617 if (regHi != any_reg) {
5618 use_pos = MIN2(use_pos, _use_pos[regHi]);
5619 split_pos = MIN2(split_pos, _block_pos[regHi]);
5620 }
5621 }
5622
5623 if (regHi != any_reg && reg > regHi) {
5624 // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5625 int temp = reg;
5626 reg = regHi;
5627 regHi = temp;
5628 }
5629 }
5630 }
5631 }
5632
5633 if (reg == any_reg || (_num_phys_regs == 2 && regHi == any_reg) || use_pos <= cur->first_usage(mustHaveRegister)) {
5634 // the first use of cur is later than the spilling position -> spill cur
5635 TRACE_LINEAR_SCAN(4, tty->print_cr("able to spill current interval. first_usage(register): %d, use_pos: %d", cur->first_usage(mustHaveRegister), use_pos));
5636
5637 if (cur->first_usage(mustHaveRegister) <= cur->from() + 1) {
5638 assert(false, "cannot spill interval that is used in first instruction (possible reason: no register found)");
5639 // assign a reasonable register and do a bailout in product mode to avoid errors
5640 allocator()->assign_spill_slot(cur);
5641 BAILOUT("LinearScan: no register found");
5642 }
5643
5644 split_and_spill_interval(cur);
5645 } else {
5646 TRACE_LINEAR_SCAN(4, tty->print_cr("decided to use register %d, %d", reg, regHi));
5647 assert(reg != any_reg && (_num_phys_regs == 1 || regHi != any_reg), "no register found");
5648 assert(split_pos > 0, "invalid split_pos");
5649 assert(need_split == false || split_pos > cur->from(), "splitting interval at from");
5650
5651 cur->assign_reg(reg, regHi);
5652 if (need_split) {
5653 // register not available for full interval, so split it
5654 split_when_partial_register_available(cur, split_pos);
5655 }
5656
5657 // perform splitting and spilling for all affected intervalls
5658 split_and_spill_intersecting_intervals(reg, regHi);
5659 }
5660 }
5661
no_allocation_possible(Interval * cur)5662 bool LinearScanWalker::no_allocation_possible(Interval* cur) {
5663 #ifdef X86
5664 // fast calculation of intervals that can never get a register because the
5665 // the next instruction is a call that blocks all registers
5666 // Note: this does not work if callee-saved registers are available (e.g. on Sparc)
5667
5668 // check if this interval is the result of a split operation
5669 // (an interval got a register until this position)
5670 int pos = cur->from();
5671 if ((pos & 1) == 1) {
5672 // the current instruction is a call that blocks all registers
5673 if (pos < allocator()->max_lir_op_id() && allocator()->has_call(pos + 1)) {
5674 TRACE_LINEAR_SCAN(4, tty->print_cr(" free register cannot be available because all registers blocked by following call"));
5675
5676 // safety check that there is really no register available
5677 assert(alloc_free_reg(cur) == false, "found a register for this interval");
5678 return true;
5679 }
5680
5681 }
5682 #endif
5683 return false;
5684 }
5685
init_vars_for_alloc(Interval * cur)5686 void LinearScanWalker::init_vars_for_alloc(Interval* cur) {
5687 BasicType type = cur->type();
5688 _num_phys_regs = LinearScan::num_physical_regs(type);
5689 _adjacent_regs = LinearScan::requires_adjacent_regs(type);
5690
5691 if (pd_init_regs_for_alloc(cur)) {
5692 // the appropriate register range was selected.
5693 } else if (type == T_FLOAT || type == T_DOUBLE) {
5694 _first_reg = pd_first_fpu_reg;
5695 _last_reg = pd_last_fpu_reg;
5696 } else {
5697 _first_reg = pd_first_cpu_reg;
5698 _last_reg = FrameMap::last_cpu_reg();
5699 }
5700
5701 assert(0 <= _first_reg && _first_reg < LinearScan::nof_regs, "out of range");
5702 assert(0 <= _last_reg && _last_reg < LinearScan::nof_regs, "out of range");
5703 }
5704
5705
is_move(LIR_Op * op,Interval * from,Interval * to)5706 bool LinearScanWalker::is_move(LIR_Op* op, Interval* from, Interval* to) {
5707 if (op->code() != lir_move) {
5708 return false;
5709 }
5710 assert(op->as_Op1() != NULL, "move must be LIR_Op1");
5711
5712 LIR_Opr in = ((LIR_Op1*)op)->in_opr();
5713 LIR_Opr res = ((LIR_Op1*)op)->result_opr();
5714 return in->is_virtual() && res->is_virtual() && in->vreg_number() == from->reg_num() && res->vreg_number() == to->reg_num();
5715 }
5716
5717 // optimization (especially for phi functions of nested loops):
5718 // assign same spill slot to non-intersecting intervals
combine_spilled_intervals(Interval * cur)5719 void LinearScanWalker::combine_spilled_intervals(Interval* cur) {
5720 if (cur->is_split_child()) {
5721 // optimization is only suitable for split parents
5722 return;
5723 }
5724
5725 Interval* register_hint = cur->register_hint(false);
5726 if (register_hint == NULL) {
5727 // cur is not the target of a move, otherwise register_hint would be set
5728 return;
5729 }
5730 assert(register_hint->is_split_parent(), "register hint must be split parent");
5731
5732 if (cur->spill_state() != noOptimization || register_hint->spill_state() != noOptimization) {
5733 // combining the stack slots for intervals where spill move optimization is applied
5734 // is not benefitial and would cause problems
5735 return;
5736 }
5737
5738 int begin_pos = cur->from();
5739 int end_pos = cur->to();
5740 if (end_pos > allocator()->max_lir_op_id() || (begin_pos & 1) != 0 || (end_pos & 1) != 0) {
5741 // safety check that lir_op_with_id is allowed
5742 return;
5743 }
5744
5745 if (!is_move(allocator()->lir_op_with_id(begin_pos), register_hint, cur) || !is_move(allocator()->lir_op_with_id(end_pos), cur, register_hint)) {
5746 // cur and register_hint are not connected with two moves
5747 return;
5748 }
5749
5750 Interval* begin_hint = register_hint->split_child_at_op_id(begin_pos, LIR_OpVisitState::inputMode);
5751 Interval* end_hint = register_hint->split_child_at_op_id(end_pos, LIR_OpVisitState::outputMode);
5752 if (begin_hint == end_hint || begin_hint->to() != begin_pos || end_hint->from() != end_pos) {
5753 // register_hint must be split, otherwise the re-writing of use positions does not work
5754 return;
5755 }
5756
5757 assert(begin_hint->assigned_reg() != any_reg, "must have register assigned");
5758 assert(end_hint->assigned_reg() == any_reg, "must not have register assigned");
5759 assert(cur->first_usage(mustHaveRegister) == begin_pos, "must have use position at begin of interval because of move");
5760 assert(end_hint->first_usage(mustHaveRegister) == end_pos, "must have use position at begin of interval because of move");
5761
5762 if (begin_hint->assigned_reg() < LinearScan::nof_regs) {
5763 // register_hint is not spilled at begin_pos, so it would not be benefitial to immediately spill cur
5764 return;
5765 }
5766 assert(register_hint->canonical_spill_slot() != -1, "must be set when part of interval was spilled");
5767 assert(!cur->intersects(register_hint), "cur should not intersect register_hint");
5768
5769 if (cur->intersects_any_children_of(register_hint)) {
5770 // Bail out if cur intersects any split children of register_hint, which have the same spill slot as their parent. An overlap of two intervals with
5771 // the same spill slot could result in a situation where both intervals are spilled at the same time to the same stack location which is not correct.
5772 return;
5773 }
5774
5775 // modify intervals such that cur gets the same stack slot as register_hint
5776 // delete use positions to prevent the intervals to get a register at beginning
5777 cur->set_canonical_spill_slot(register_hint->canonical_spill_slot());
5778 cur->remove_first_use_pos();
5779 end_hint->remove_first_use_pos();
5780 }
5781
5782
5783 // allocate a physical register or memory location to an interval
activate_current()5784 bool LinearScanWalker::activate_current() {
5785 Interval* cur = current();
5786 bool result = true;
5787
5788 TRACE_LINEAR_SCAN(2, tty->print ("+++++ activating interval "); cur->print());
5789 TRACE_LINEAR_SCAN(4, tty->print_cr(" split_parent: %d, insert_move_when_activated: %d", cur->split_parent()->reg_num(), cur->insert_move_when_activated()));
5790
5791 if (cur->assigned_reg() >= LinearScan::nof_regs) {
5792 // activating an interval that has a stack slot assigned -> split it at first use position
5793 // used for method parameters
5794 TRACE_LINEAR_SCAN(4, tty->print_cr(" interval has spill slot assigned (method parameter) -> split it before first use"));
5795
5796 split_stack_interval(cur);
5797 result = false;
5798
5799 } else if (allocator()->gen()->is_vreg_flag_set(cur->reg_num(), LIRGenerator::must_start_in_memory)) {
5800 // activating an interval that must start in a stack slot, but may get a register later
5801 // used for lir_roundfp: rounding is done by store to stack and reload later
5802 TRACE_LINEAR_SCAN(4, tty->print_cr(" interval must start in stack slot -> split it before first use"));
5803 assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned");
5804
5805 allocator()->assign_spill_slot(cur);
5806 split_stack_interval(cur);
5807 result = false;
5808
5809 } else if (cur->assigned_reg() == any_reg) {
5810 // interval has not assigned register -> normal allocation
5811 // (this is the normal case for most intervals)
5812 TRACE_LINEAR_SCAN(4, tty->print_cr(" normal allocation of register"));
5813
5814 // assign same spill slot to non-intersecting intervals
5815 combine_spilled_intervals(cur);
5816
5817 init_vars_for_alloc(cur);
5818 if (no_allocation_possible(cur) || !alloc_free_reg(cur)) {
5819 // no empty register available.
5820 // split and spill another interval so that this interval gets a register
5821 alloc_locked_reg(cur);
5822 }
5823
5824 // spilled intervals need not be move to active-list
5825 if (cur->assigned_reg() >= LinearScan::nof_regs) {
5826 result = false;
5827 }
5828 }
5829
5830 // load spilled values that become active from stack slot to register
5831 if (cur->insert_move_when_activated()) {
5832 assert(cur->is_split_child(), "must be");
5833 assert(cur->current_split_child() != NULL, "must be");
5834 assert(cur->current_split_child()->reg_num() != cur->reg_num(), "cannot insert move between same interval");
5835 TRACE_LINEAR_SCAN(4, tty->print_cr("Inserting move from interval %d to %d because insert_move_when_activated is set", cur->current_split_child()->reg_num(), cur->reg_num()));
5836
5837 insert_move(cur->from(), cur->current_split_child(), cur);
5838 }
5839 cur->make_current_split_child();
5840
5841 return result; // true = interval is moved to active list
5842 }
5843
5844
5845 // Implementation of EdgeMoveOptimizer
5846
EdgeMoveOptimizer()5847 EdgeMoveOptimizer::EdgeMoveOptimizer() :
5848 _edge_instructions(4),
5849 _edge_instructions_idx(4)
5850 {
5851 }
5852
optimize(BlockList * code)5853 void EdgeMoveOptimizer::optimize(BlockList* code) {
5854 EdgeMoveOptimizer optimizer = EdgeMoveOptimizer();
5855
5856 // ignore the first block in the list (index 0 is not processed)
5857 for (int i = code->length() - 1; i >= 1; i--) {
5858 BlockBegin* block = code->at(i);
5859
5860 if (block->number_of_preds() > 1 && !block->is_set(BlockBegin::exception_entry_flag)) {
5861 optimizer.optimize_moves_at_block_end(block);
5862 }
5863 if (block->number_of_sux() == 2) {
5864 optimizer.optimize_moves_at_block_begin(block);
5865 }
5866 }
5867 }
5868
5869
5870 // clear all internal data structures
init_instructions()5871 void EdgeMoveOptimizer::init_instructions() {
5872 _edge_instructions.clear();
5873 _edge_instructions_idx.clear();
5874 }
5875
5876 // append a lir-instruction-list and the index of the current operation in to the list
append_instructions(LIR_OpList * instructions,int instructions_idx)5877 void EdgeMoveOptimizer::append_instructions(LIR_OpList* instructions, int instructions_idx) {
5878 _edge_instructions.append(instructions);
5879 _edge_instructions_idx.append(instructions_idx);
5880 }
5881
5882 // return the current operation of the given edge (predecessor or successor)
instruction_at(int edge)5883 LIR_Op* EdgeMoveOptimizer::instruction_at(int edge) {
5884 LIR_OpList* instructions = _edge_instructions.at(edge);
5885 int idx = _edge_instructions_idx.at(edge);
5886
5887 if (idx < instructions->length()) {
5888 return instructions->at(idx);
5889 } else {
5890 return NULL;
5891 }
5892 }
5893
5894 // removes the current operation of the given edge (predecessor or successor)
remove_cur_instruction(int edge,bool decrement_index)5895 void EdgeMoveOptimizer::remove_cur_instruction(int edge, bool decrement_index) {
5896 LIR_OpList* instructions = _edge_instructions.at(edge);
5897 int idx = _edge_instructions_idx.at(edge);
5898 instructions->remove_at(idx);
5899
5900 if (decrement_index) {
5901 _edge_instructions_idx.at_put(edge, idx - 1);
5902 }
5903 }
5904
5905
operations_different(LIR_Op * op1,LIR_Op * op2)5906 bool EdgeMoveOptimizer::operations_different(LIR_Op* op1, LIR_Op* op2) {
5907 if (op1 == NULL || op2 == NULL) {
5908 // at least one block is already empty -> no optimization possible
5909 return true;
5910 }
5911
5912 if (op1->code() == lir_move && op2->code() == lir_move) {
5913 assert(op1->as_Op1() != NULL, "move must be LIR_Op1");
5914 assert(op2->as_Op1() != NULL, "move must be LIR_Op1");
5915 LIR_Op1* move1 = (LIR_Op1*)op1;
5916 LIR_Op1* move2 = (LIR_Op1*)op2;
5917 if (move1->info() == move2->info() && move1->in_opr() == move2->in_opr() && move1->result_opr() == move2->result_opr()) {
5918 // these moves are exactly equal and can be optimized
5919 return false;
5920 }
5921
5922 } else if (op1->code() == lir_fxch && op2->code() == lir_fxch) {
5923 assert(op1->as_Op1() != NULL, "fxch must be LIR_Op1");
5924 assert(op2->as_Op1() != NULL, "fxch must be LIR_Op1");
5925 LIR_Op1* fxch1 = (LIR_Op1*)op1;
5926 LIR_Op1* fxch2 = (LIR_Op1*)op2;
5927 if (fxch1->in_opr()->as_jint() == fxch2->in_opr()->as_jint()) {
5928 // equal FPU stack operations can be optimized
5929 return false;
5930 }
5931
5932 } else if (op1->code() == lir_fpop_raw && op2->code() == lir_fpop_raw) {
5933 // equal FPU stack operations can be optimized
5934 return false;
5935 }
5936
5937 // no optimization possible
5938 return true;
5939 }
5940
optimize_moves_at_block_end(BlockBegin * block)5941 void EdgeMoveOptimizer::optimize_moves_at_block_end(BlockBegin* block) {
5942 TRACE_LINEAR_SCAN(4, tty->print_cr("optimizing moves at end of block B%d", block->block_id()));
5943
5944 if (block->is_predecessor(block)) {
5945 // currently we can't handle this correctly.
5946 return;
5947 }
5948
5949 init_instructions();
5950 int num_preds = block->number_of_preds();
5951 assert(num_preds > 1, "do not call otherwise");
5952 assert(!block->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
5953
5954 // setup a list with the lir-instructions of all predecessors
5955 int i;
5956 for (i = 0; i < num_preds; i++) {
5957 BlockBegin* pred = block->pred_at(i);
5958 LIR_OpList* pred_instructions = pred->lir()->instructions_list();
5959
5960 if (pred->number_of_sux() != 1) {
5961 // this can happen with switch-statements where multiple edges are between
5962 // the same blocks.
5963 return;
5964 }
5965
5966 assert(pred->number_of_sux() == 1, "can handle only one successor");
5967 assert(pred->sux_at(0) == block, "invalid control flow");
5968 assert(pred_instructions->last()->code() == lir_branch, "block with successor must end with branch");
5969 assert(pred_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
5970 assert(pred_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
5971
5972 if (pred_instructions->last()->info() != NULL) {
5973 // can not optimize instructions when debug info is needed
5974 return;
5975 }
5976
5977 // ignore the unconditional branch at the end of the block
5978 append_instructions(pred_instructions, pred_instructions->length() - 2);
5979 }
5980
5981
5982 // process lir-instructions while all predecessors end with the same instruction
5983 while (true) {
5984 LIR_Op* op = instruction_at(0);
5985 for (i = 1; i < num_preds; i++) {
5986 if (operations_different(op, instruction_at(i))) {
5987 // these instructions are different and cannot be optimized ->
5988 // no further optimization possible
5989 return;
5990 }
5991 }
5992
5993 TRACE_LINEAR_SCAN(4, tty->print("found instruction that is equal in all %d predecessors: ", num_preds); op->print());
5994
5995 // insert the instruction at the beginning of the current block
5996 block->lir()->insert_before(1, op);
5997
5998 // delete the instruction at the end of all predecessors
5999 for (i = 0; i < num_preds; i++) {
6000 remove_cur_instruction(i, true);
6001 }
6002 }
6003 }
6004
6005
optimize_moves_at_block_begin(BlockBegin * block)6006 void EdgeMoveOptimizer::optimize_moves_at_block_begin(BlockBegin* block) {
6007 TRACE_LINEAR_SCAN(4, tty->print_cr("optimization moves at begin of block B%d", block->block_id()));
6008
6009 init_instructions();
6010 int num_sux = block->number_of_sux();
6011
6012 LIR_OpList* cur_instructions = block->lir()->instructions_list();
6013
6014 assert(num_sux == 2, "method should not be called otherwise");
6015 assert(cur_instructions->last()->code() == lir_branch, "block with successor must end with branch");
6016 assert(cur_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
6017 assert(cur_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
6018
6019 if (cur_instructions->last()->info() != NULL) {
6020 // can no optimize instructions when debug info is needed
6021 return;
6022 }
6023
6024 LIR_Op* branch = cur_instructions->at(cur_instructions->length() - 2);
6025 if (branch->info() != NULL || (branch->code() != lir_branch && branch->code() != lir_cond_float_branch)) {
6026 // not a valid case for optimization
6027 // currently, only blocks that end with two branches (conditional branch followed
6028 // by unconditional branch) are optimized
6029 return;
6030 }
6031
6032 // now it is guaranteed that the block ends with two branch instructions.
6033 // the instructions are inserted at the end of the block before these two branches
6034 int insert_idx = cur_instructions->length() - 2;
6035
6036 int i;
6037 #ifdef ASSERT
6038 for (i = insert_idx - 1; i >= 0; i--) {
6039 LIR_Op* op = cur_instructions->at(i);
6040 if ((op->code() == lir_branch || op->code() == lir_cond_float_branch) && ((LIR_OpBranch*)op)->block() != NULL) {
6041 assert(false, "block with two successors can have only two branch instructions");
6042 }
6043 }
6044 #endif
6045
6046 // setup a list with the lir-instructions of all successors
6047 for (i = 0; i < num_sux; i++) {
6048 BlockBegin* sux = block->sux_at(i);
6049 LIR_OpList* sux_instructions = sux->lir()->instructions_list();
6050
6051 assert(sux_instructions->at(0)->code() == lir_label, "block must start with label");
6052
6053 if (sux->number_of_preds() != 1) {
6054 // this can happen with switch-statements where multiple edges are between
6055 // the same blocks.
6056 return;
6057 }
6058 assert(sux->pred_at(0) == block, "invalid control flow");
6059 assert(!sux->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
6060
6061 // ignore the label at the beginning of the block
6062 append_instructions(sux_instructions, 1);
6063 }
6064
6065 // process lir-instructions while all successors begin with the same instruction
6066 while (true) {
6067 LIR_Op* op = instruction_at(0);
6068 for (i = 1; i < num_sux; i++) {
6069 if (operations_different(op, instruction_at(i))) {
6070 // these instructions are different and cannot be optimized ->
6071 // no further optimization possible
6072 return;
6073 }
6074 }
6075
6076 TRACE_LINEAR_SCAN(4, tty->print("----- found instruction that is equal in all %d successors: ", num_sux); op->print());
6077
6078 // insert instruction at end of current block
6079 block->lir()->insert_before(insert_idx, op);
6080 insert_idx++;
6081
6082 // delete the instructions at the beginning of all successors
6083 for (i = 0; i < num_sux; i++) {
6084 remove_cur_instruction(i, false);
6085 }
6086 }
6087 }
6088
6089
6090 // Implementation of ControlFlowOptimizer
6091
ControlFlowOptimizer()6092 ControlFlowOptimizer::ControlFlowOptimizer() :
6093 _original_preds(4)
6094 {
6095 }
6096
optimize(BlockList * code)6097 void ControlFlowOptimizer::optimize(BlockList* code) {
6098 ControlFlowOptimizer optimizer = ControlFlowOptimizer();
6099
6100 // push the OSR entry block to the end so that we're not jumping over it.
6101 BlockBegin* osr_entry = code->at(0)->end()->as_Base()->osr_entry();
6102 if (osr_entry) {
6103 int index = osr_entry->linear_scan_number();
6104 assert(code->at(index) == osr_entry, "wrong index");
6105 code->remove_at(index);
6106 code->append(osr_entry);
6107 }
6108
6109 optimizer.reorder_short_loops(code);
6110 optimizer.delete_empty_blocks(code);
6111 optimizer.delete_unnecessary_jumps(code);
6112 optimizer.delete_jumps_to_return(code);
6113 }
6114
reorder_short_loop(BlockList * code,BlockBegin * header_block,int header_idx)6115 void ControlFlowOptimizer::reorder_short_loop(BlockList* code, BlockBegin* header_block, int header_idx) {
6116 int i = header_idx + 1;
6117 int max_end = MIN2(header_idx + ShortLoopSize, code->length());
6118 while (i < max_end && code->at(i)->loop_depth() >= header_block->loop_depth()) {
6119 i++;
6120 }
6121
6122 if (i == code->length() || code->at(i)->loop_depth() < header_block->loop_depth()) {
6123 int end_idx = i - 1;
6124 BlockBegin* end_block = code->at(end_idx);
6125
6126 if (end_block->number_of_sux() == 1 && end_block->sux_at(0) == header_block) {
6127 // short loop from header_idx to end_idx found -> reorder blocks such that
6128 // the header_block is the last block instead of the first block of the loop
6129 TRACE_LINEAR_SCAN(1, tty->print_cr("Reordering short loop: length %d, header B%d, end B%d",
6130 end_idx - header_idx + 1,
6131 header_block->block_id(), end_block->block_id()));
6132
6133 for (int j = header_idx; j < end_idx; j++) {
6134 code->at_put(j, code->at(j + 1));
6135 }
6136 code->at_put(end_idx, header_block);
6137
6138 // correct the flags so that any loop alignment occurs in the right place.
6139 assert(code->at(end_idx)->is_set(BlockBegin::backward_branch_target_flag), "must be backward branch target");
6140 code->at(end_idx)->clear(BlockBegin::backward_branch_target_flag);
6141 code->at(header_idx)->set(BlockBegin::backward_branch_target_flag);
6142 }
6143 }
6144 }
6145
reorder_short_loops(BlockList * code)6146 void ControlFlowOptimizer::reorder_short_loops(BlockList* code) {
6147 for (int i = code->length() - 1; i >= 0; i--) {
6148 BlockBegin* block = code->at(i);
6149
6150 if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) {
6151 reorder_short_loop(code, block, i);
6152 }
6153 }
6154
6155 DEBUG_ONLY(verify(code));
6156 }
6157
6158 // only blocks with exactly one successor can be deleted. Such blocks
6159 // must always end with an unconditional branch to this successor
can_delete_block(BlockBegin * block)6160 bool ControlFlowOptimizer::can_delete_block(BlockBegin* block) {
6161 if (block->number_of_sux() != 1 || block->number_of_exception_handlers() != 0 || block->is_entry_block()) {
6162 return false;
6163 }
6164
6165 LIR_OpList* instructions = block->lir()->instructions_list();
6166
6167 assert(instructions->length() >= 2, "block must have label and branch");
6168 assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6169 assert(instructions->last()->as_OpBranch() != NULL, "last instrcution must always be a branch");
6170 assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "branch must be unconditional");
6171 assert(instructions->last()->as_OpBranch()->block() == block->sux_at(0), "branch target must be the successor");
6172
6173 // block must have exactly one successor
6174
6175 if (instructions->length() == 2 && instructions->last()->info() == NULL) {
6176 return true;
6177 }
6178 return false;
6179 }
6180
6181 // substitute branch targets in all branch-instructions of this blocks
substitute_branch_target(BlockBegin * block,BlockBegin * target_from,BlockBegin * target_to)6182 void ControlFlowOptimizer::substitute_branch_target(BlockBegin* block, BlockBegin* target_from, BlockBegin* target_to) {
6183 TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting empty block: substituting from B%d to B%d inside B%d", target_from->block_id(), target_to->block_id(), block->block_id()));
6184
6185 LIR_OpList* instructions = block->lir()->instructions_list();
6186
6187 assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6188 for (int i = instructions->length() - 1; i >= 1; i--) {
6189 LIR_Op* op = instructions->at(i);
6190
6191 if (op->code() == lir_branch || op->code() == lir_cond_float_branch) {
6192 assert(op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6193 LIR_OpBranch* branch = (LIR_OpBranch*)op;
6194
6195 if (branch->block() == target_from) {
6196 branch->change_block(target_to);
6197 }
6198 if (branch->ublock() == target_from) {
6199 branch->change_ublock(target_to);
6200 }
6201 }
6202 }
6203 }
6204
delete_empty_blocks(BlockList * code)6205 void ControlFlowOptimizer::delete_empty_blocks(BlockList* code) {
6206 int old_pos = 0;
6207 int new_pos = 0;
6208 int num_blocks = code->length();
6209
6210 while (old_pos < num_blocks) {
6211 BlockBegin* block = code->at(old_pos);
6212
6213 if (can_delete_block(block)) {
6214 BlockBegin* new_target = block->sux_at(0);
6215
6216 // propagate backward branch target flag for correct code alignment
6217 if (block->is_set(BlockBegin::backward_branch_target_flag)) {
6218 new_target->set(BlockBegin::backward_branch_target_flag);
6219 }
6220
6221 // collect a list with all predecessors that contains each predecessor only once
6222 // the predecessors of cur are changed during the substitution, so a copy of the
6223 // predecessor list is necessary
6224 int j;
6225 _original_preds.clear();
6226 for (j = block->number_of_preds() - 1; j >= 0; j--) {
6227 BlockBegin* pred = block->pred_at(j);
6228 if (_original_preds.find(pred) == -1) {
6229 _original_preds.append(pred);
6230 }
6231 }
6232
6233 for (j = _original_preds.length() - 1; j >= 0; j--) {
6234 BlockBegin* pred = _original_preds.at(j);
6235 substitute_branch_target(pred, block, new_target);
6236 pred->substitute_sux(block, new_target);
6237 }
6238 } else {
6239 // adjust position of this block in the block list if blocks before
6240 // have been deleted
6241 if (new_pos != old_pos) {
6242 code->at_put(new_pos, code->at(old_pos));
6243 }
6244 new_pos++;
6245 }
6246 old_pos++;
6247 }
6248 code->trunc_to(new_pos);
6249
6250 DEBUG_ONLY(verify(code));
6251 }
6252
delete_unnecessary_jumps(BlockList * code)6253 void ControlFlowOptimizer::delete_unnecessary_jumps(BlockList* code) {
6254 // skip the last block because there a branch is always necessary
6255 for (int i = code->length() - 2; i >= 0; i--) {
6256 BlockBegin* block = code->at(i);
6257 LIR_OpList* instructions = block->lir()->instructions_list();
6258
6259 LIR_Op* last_op = instructions->last();
6260 if (last_op->code() == lir_branch) {
6261 assert(last_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6262 LIR_OpBranch* last_branch = (LIR_OpBranch*)last_op;
6263
6264 assert(last_branch->block() != NULL, "last branch must always have a block as target");
6265 assert(last_branch->label() == last_branch->block()->label(), "must be equal");
6266
6267 if (last_branch->info() == NULL) {
6268 if (last_branch->block() == code->at(i + 1)) {
6269
6270 TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting unconditional branch at end of block B%d", block->block_id()));
6271
6272 // delete last branch instruction
6273 instructions->trunc_to(instructions->length() - 1);
6274
6275 } else {
6276 LIR_Op* prev_op = instructions->at(instructions->length() - 2);
6277 if (prev_op->code() == lir_branch || prev_op->code() == lir_cond_float_branch) {
6278 assert(prev_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6279 LIR_OpBranch* prev_branch = (LIR_OpBranch*)prev_op;
6280
6281 if (prev_branch->stub() == NULL) {
6282
6283 LIR_Op2* prev_cmp = NULL;
6284 // There might be a cmove inserted for profiling which depends on the same
6285 // compare. If we change the condition of the respective compare, we have
6286 // to take care of this cmove as well.
6287 LIR_Op2* prev_cmove = NULL;
6288
6289 for(int j = instructions->length() - 3; j >= 0 && prev_cmp == NULL; j--) {
6290 prev_op = instructions->at(j);
6291 // check for the cmove
6292 if (prev_op->code() == lir_cmove) {
6293 assert(prev_op->as_Op2() != NULL, "cmove must be of type LIR_Op2");
6294 prev_cmove = (LIR_Op2*)prev_op;
6295 assert(prev_branch->cond() == prev_cmove->condition(), "should be the same");
6296 }
6297 if (prev_op->code() == lir_cmp) {
6298 assert(prev_op->as_Op2() != NULL, "branch must be of type LIR_Op2");
6299 prev_cmp = (LIR_Op2*)prev_op;
6300 assert(prev_branch->cond() == prev_cmp->condition(), "should be the same");
6301 }
6302 }
6303 // Guarantee because it is dereferenced below.
6304 guarantee(prev_cmp != NULL, "should have found comp instruction for branch");
6305 if (prev_branch->block() == code->at(i + 1) && prev_branch->info() == NULL) {
6306
6307 TRACE_LINEAR_SCAN(3, tty->print_cr("Negating conditional branch and deleting unconditional branch at end of block B%d", block->block_id()));
6308
6309 // eliminate a conditional branch to the immediate successor
6310 prev_branch->change_block(last_branch->block());
6311 prev_branch->negate_cond();
6312 prev_cmp->set_condition(prev_branch->cond());
6313 instructions->trunc_to(instructions->length() - 1);
6314 // if we do change the condition, we have to change the cmove as well
6315 if (prev_cmove != NULL) {
6316 prev_cmove->set_condition(prev_branch->cond());
6317 LIR_Opr t = prev_cmove->in_opr1();
6318 prev_cmove->set_in_opr1(prev_cmove->in_opr2());
6319 prev_cmove->set_in_opr2(t);
6320 }
6321 }
6322 }
6323 }
6324 }
6325 }
6326 }
6327 }
6328
6329 DEBUG_ONLY(verify(code));
6330 }
6331
delete_jumps_to_return(BlockList * code)6332 void ControlFlowOptimizer::delete_jumps_to_return(BlockList* code) {
6333 #ifdef ASSERT
6334 ResourceBitMap return_converted(BlockBegin::number_of_blocks());
6335 #endif
6336
6337 for (int i = code->length() - 1; i >= 0; i--) {
6338 BlockBegin* block = code->at(i);
6339 LIR_OpList* cur_instructions = block->lir()->instructions_list();
6340 LIR_Op* cur_last_op = cur_instructions->last();
6341
6342 assert(cur_instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6343 if (cur_instructions->length() == 2 && cur_last_op->code() == lir_return) {
6344 // the block contains only a label and a return
6345 // if a predecessor ends with an unconditional jump to this block, then the jump
6346 // can be replaced with a return instruction
6347 //
6348 // Note: the original block with only a return statement cannot be deleted completely
6349 // because the predecessors might have other (conditional) jumps to this block
6350 // -> this may lead to unnecesary return instructions in the final code
6351
6352 assert(cur_last_op->info() == NULL, "return instructions do not have debug information");
6353 assert(block->number_of_sux() == 0 ||
6354 (return_converted.at(block->block_id()) && block->number_of_sux() == 1),
6355 "blocks that end with return must not have successors");
6356
6357 assert(cur_last_op->as_Op1() != NULL, "return must be LIR_Op1");
6358 LIR_Opr return_opr = ((LIR_Op1*)cur_last_op)->in_opr();
6359
6360 for (int j = block->number_of_preds() - 1; j >= 0; j--) {
6361 BlockBegin* pred = block->pred_at(j);
6362 LIR_OpList* pred_instructions = pred->lir()->instructions_list();
6363 LIR_Op* pred_last_op = pred_instructions->last();
6364
6365 if (pred_last_op->code() == lir_branch) {
6366 assert(pred_last_op->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
6367 LIR_OpBranch* pred_last_branch = (LIR_OpBranch*)pred_last_op;
6368
6369 if (pred_last_branch->block() == block && pred_last_branch->cond() == lir_cond_always && pred_last_branch->info() == NULL) {
6370 // replace the jump to a return with a direct return
6371 // Note: currently the edge between the blocks is not deleted
6372 pred_instructions->at_put(pred_instructions->length() - 1, new LIR_Op1(lir_return, return_opr));
6373 #ifdef ASSERT
6374 return_converted.set_bit(pred->block_id());
6375 #endif
6376 }
6377 }
6378 }
6379 }
6380 }
6381 }
6382
6383
6384 #ifdef ASSERT
verify(BlockList * code)6385 void ControlFlowOptimizer::verify(BlockList* code) {
6386 for (int i = 0; i < code->length(); i++) {
6387 BlockBegin* block = code->at(i);
6388 LIR_OpList* instructions = block->lir()->instructions_list();
6389
6390 int j;
6391 for (j = 0; j < instructions->length(); j++) {
6392 LIR_OpBranch* op_branch = instructions->at(j)->as_OpBranch();
6393
6394 if (op_branch != NULL) {
6395 assert(op_branch->block() == NULL || code->find(op_branch->block()) != -1, "branch target not valid");
6396 assert(op_branch->ublock() == NULL || code->find(op_branch->ublock()) != -1, "branch target not valid");
6397 }
6398 }
6399
6400 for (j = 0; j < block->number_of_sux() - 1; j++) {
6401 BlockBegin* sux = block->sux_at(j);
6402 assert(code->find(sux) != -1, "successor not valid");
6403 }
6404
6405 for (j = 0; j < block->number_of_preds() - 1; j++) {
6406 BlockBegin* pred = block->pred_at(j);
6407 assert(code->find(pred) != -1, "successor not valid");
6408 }
6409 }
6410 }
6411 #endif
6412
6413
6414 #ifndef PRODUCT
6415
6416 // Implementation of LinearStatistic
6417
counter_name(int counter_idx)6418 const char* LinearScanStatistic::counter_name(int counter_idx) {
6419 switch (counter_idx) {
6420 case counter_method: return "compiled methods";
6421 case counter_fpu_method: return "methods using fpu";
6422 case counter_loop_method: return "methods with loops";
6423 case counter_exception_method:return "methods with xhandler";
6424
6425 case counter_loop: return "loops";
6426 case counter_block: return "blocks";
6427 case counter_loop_block: return "blocks inside loop";
6428 case counter_exception_block: return "exception handler entries";
6429 case counter_interval: return "intervals";
6430 case counter_fixed_interval: return "fixed intervals";
6431 case counter_range: return "ranges";
6432 case counter_fixed_range: return "fixed ranges";
6433 case counter_use_pos: return "use positions";
6434 case counter_fixed_use_pos: return "fixed use positions";
6435 case counter_spill_slots: return "spill slots";
6436
6437 // counter for classes of lir instructions
6438 case counter_instruction: return "total instructions";
6439 case counter_label: return "labels";
6440 case counter_entry: return "method entries";
6441 case counter_return: return "method returns";
6442 case counter_call: return "method calls";
6443 case counter_move: return "moves";
6444 case counter_cmp: return "compare";
6445 case counter_cond_branch: return "conditional branches";
6446 case counter_uncond_branch: return "unconditional branches";
6447 case counter_stub_branch: return "branches to stub";
6448 case counter_alu: return "artithmetic + logic";
6449 case counter_alloc: return "allocations";
6450 case counter_sync: return "synchronisation";
6451 case counter_throw: return "throw";
6452 case counter_unwind: return "unwind";
6453 case counter_typecheck: return "type+null-checks";
6454 case counter_fpu_stack: return "fpu-stack";
6455 case counter_misc_inst: return "other instructions";
6456 case counter_other_inst: return "misc. instructions";
6457
6458 // counter for different types of moves
6459 case counter_move_total: return "total moves";
6460 case counter_move_reg_reg: return "register->register";
6461 case counter_move_reg_stack: return "register->stack";
6462 case counter_move_stack_reg: return "stack->register";
6463 case counter_move_stack_stack:return "stack->stack";
6464 case counter_move_reg_mem: return "register->memory";
6465 case counter_move_mem_reg: return "memory->register";
6466 case counter_move_const_any: return "constant->any";
6467
6468 case blank_line_1: return "";
6469 case blank_line_2: return "";
6470
6471 default: ShouldNotReachHere(); return "";
6472 }
6473 }
6474
base_counter(int counter_idx)6475 LinearScanStatistic::Counter LinearScanStatistic::base_counter(int counter_idx) {
6476 if (counter_idx == counter_fpu_method || counter_idx == counter_loop_method || counter_idx == counter_exception_method) {
6477 return counter_method;
6478 } else if (counter_idx == counter_loop_block || counter_idx == counter_exception_block) {
6479 return counter_block;
6480 } else if (counter_idx >= counter_instruction && counter_idx <= counter_other_inst) {
6481 return counter_instruction;
6482 } else if (counter_idx >= counter_move_total && counter_idx <= counter_move_const_any) {
6483 return counter_move_total;
6484 }
6485 return invalid_counter;
6486 }
6487
LinearScanStatistic()6488 LinearScanStatistic::LinearScanStatistic() {
6489 for (int i = 0; i < number_of_counters; i++) {
6490 _counters_sum[i] = 0;
6491 _counters_max[i] = -1;
6492 }
6493
6494 }
6495
6496 // add the method-local numbers to the total sum
sum_up(LinearScanStatistic & method_statistic)6497 void LinearScanStatistic::sum_up(LinearScanStatistic &method_statistic) {
6498 for (int i = 0; i < number_of_counters; i++) {
6499 _counters_sum[i] += method_statistic._counters_sum[i];
6500 _counters_max[i] = MAX2(_counters_max[i], method_statistic._counters_sum[i]);
6501 }
6502 }
6503
print(const char * title)6504 void LinearScanStatistic::print(const char* title) {
6505 if (CountLinearScan || TraceLinearScanLevel > 0) {
6506 tty->cr();
6507 tty->print_cr("***** LinearScan statistic - %s *****", title);
6508
6509 for (int i = 0; i < number_of_counters; i++) {
6510 if (_counters_sum[i] > 0 || _counters_max[i] >= 0) {
6511 tty->print("%25s: %8d", counter_name(i), _counters_sum[i]);
6512
6513 LinearScanStatistic::Counter cntr = base_counter(i);
6514 if (cntr != invalid_counter) {
6515 tty->print(" (%5.1f%%) ", _counters_sum[i] * 100.0 / _counters_sum[cntr]);
6516 } else {
6517 tty->print(" ");
6518 }
6519
6520 if (_counters_max[i] >= 0) {
6521 tty->print("%8d", _counters_max[i]);
6522 }
6523 }
6524 tty->cr();
6525 }
6526 }
6527 }
6528
collect(LinearScan * allocator)6529 void LinearScanStatistic::collect(LinearScan* allocator) {
6530 inc_counter(counter_method);
6531 if (allocator->has_fpu_registers()) {
6532 inc_counter(counter_fpu_method);
6533 }
6534 if (allocator->num_loops() > 0) {
6535 inc_counter(counter_loop_method);
6536 }
6537 inc_counter(counter_loop, allocator->num_loops());
6538 inc_counter(counter_spill_slots, allocator->max_spills());
6539
6540 int i;
6541 for (i = 0; i < allocator->interval_count(); i++) {
6542 Interval* cur = allocator->interval_at(i);
6543
6544 if (cur != NULL) {
6545 inc_counter(counter_interval);
6546 inc_counter(counter_use_pos, cur->num_use_positions());
6547 if (LinearScan::is_precolored_interval(cur)) {
6548 inc_counter(counter_fixed_interval);
6549 inc_counter(counter_fixed_use_pos, cur->num_use_positions());
6550 }
6551
6552 Range* range = cur->first();
6553 while (range != Range::end()) {
6554 inc_counter(counter_range);
6555 if (LinearScan::is_precolored_interval(cur)) {
6556 inc_counter(counter_fixed_range);
6557 }
6558 range = range->next();
6559 }
6560 }
6561 }
6562
6563 bool has_xhandlers = false;
6564 // Note: only count blocks that are in code-emit order
6565 for (i = 0; i < allocator->ir()->code()->length(); i++) {
6566 BlockBegin* cur = allocator->ir()->code()->at(i);
6567
6568 inc_counter(counter_block);
6569 if (cur->loop_depth() > 0) {
6570 inc_counter(counter_loop_block);
6571 }
6572 if (cur->is_set(BlockBegin::exception_entry_flag)) {
6573 inc_counter(counter_exception_block);
6574 has_xhandlers = true;
6575 }
6576
6577 LIR_OpList* instructions = cur->lir()->instructions_list();
6578 for (int j = 0; j < instructions->length(); j++) {
6579 LIR_Op* op = instructions->at(j);
6580
6581 inc_counter(counter_instruction);
6582
6583 switch (op->code()) {
6584 case lir_label: inc_counter(counter_label); break;
6585 case lir_std_entry:
6586 case lir_osr_entry: inc_counter(counter_entry); break;
6587 case lir_return: inc_counter(counter_return); break;
6588
6589 case lir_rtcall:
6590 case lir_static_call:
6591 case lir_optvirtual_call:
6592 case lir_virtual_call: inc_counter(counter_call); break;
6593
6594 case lir_move: {
6595 inc_counter(counter_move);
6596 inc_counter(counter_move_total);
6597
6598 LIR_Opr in = op->as_Op1()->in_opr();
6599 LIR_Opr res = op->as_Op1()->result_opr();
6600 if (in->is_register()) {
6601 if (res->is_register()) {
6602 inc_counter(counter_move_reg_reg);
6603 } else if (res->is_stack()) {
6604 inc_counter(counter_move_reg_stack);
6605 } else if (res->is_address()) {
6606 inc_counter(counter_move_reg_mem);
6607 } else {
6608 ShouldNotReachHere();
6609 }
6610 } else if (in->is_stack()) {
6611 if (res->is_register()) {
6612 inc_counter(counter_move_stack_reg);
6613 } else {
6614 inc_counter(counter_move_stack_stack);
6615 }
6616 } else if (in->is_address()) {
6617 assert(res->is_register(), "must be");
6618 inc_counter(counter_move_mem_reg);
6619 } else if (in->is_constant()) {
6620 inc_counter(counter_move_const_any);
6621 } else {
6622 ShouldNotReachHere();
6623 }
6624 break;
6625 }
6626
6627 case lir_cmp: inc_counter(counter_cmp); break;
6628
6629 case lir_branch:
6630 case lir_cond_float_branch: {
6631 LIR_OpBranch* branch = op->as_OpBranch();
6632 if (branch->block() == NULL) {
6633 inc_counter(counter_stub_branch);
6634 } else if (branch->cond() == lir_cond_always) {
6635 inc_counter(counter_uncond_branch);
6636 } else {
6637 inc_counter(counter_cond_branch);
6638 }
6639 break;
6640 }
6641
6642 case lir_neg:
6643 case lir_add:
6644 case lir_sub:
6645 case lir_mul:
6646 case lir_mul_strictfp:
6647 case lir_div:
6648 case lir_div_strictfp:
6649 case lir_rem:
6650 case lir_sqrt:
6651 case lir_abs:
6652 case lir_log10:
6653 case lir_logic_and:
6654 case lir_logic_or:
6655 case lir_logic_xor:
6656 case lir_shl:
6657 case lir_shr:
6658 case lir_ushr: inc_counter(counter_alu); break;
6659
6660 case lir_alloc_object:
6661 case lir_alloc_array: inc_counter(counter_alloc); break;
6662
6663 case lir_monaddr:
6664 case lir_lock:
6665 case lir_unlock: inc_counter(counter_sync); break;
6666
6667 case lir_throw: inc_counter(counter_throw); break;
6668
6669 case lir_unwind: inc_counter(counter_unwind); break;
6670
6671 case lir_null_check:
6672 case lir_leal:
6673 case lir_instanceof:
6674 case lir_checkcast:
6675 case lir_store_check: inc_counter(counter_typecheck); break;
6676
6677 case lir_fpop_raw:
6678 case lir_fxch:
6679 case lir_fld: inc_counter(counter_fpu_stack); break;
6680
6681 case lir_nop:
6682 case lir_push:
6683 case lir_pop:
6684 case lir_convert:
6685 case lir_roundfp:
6686 case lir_cmove: inc_counter(counter_misc_inst); break;
6687
6688 default: inc_counter(counter_other_inst); break;
6689 }
6690 }
6691 }
6692
6693 if (has_xhandlers) {
6694 inc_counter(counter_exception_method);
6695 }
6696 }
6697
compute(LinearScan * allocator,LinearScanStatistic & global_statistic)6698 void LinearScanStatistic::compute(LinearScan* allocator, LinearScanStatistic &global_statistic) {
6699 if (CountLinearScan || TraceLinearScanLevel > 0) {
6700
6701 LinearScanStatistic local_statistic = LinearScanStatistic();
6702
6703 local_statistic.collect(allocator);
6704 global_statistic.sum_up(local_statistic);
6705
6706 if (TraceLinearScanLevel > 2) {
6707 local_statistic.print("current local statistic");
6708 }
6709 }
6710 }
6711
6712
6713 // Implementation of LinearTimers
6714
LinearScanTimers()6715 LinearScanTimers::LinearScanTimers() {
6716 for (int i = 0; i < number_of_timers; i++) {
6717 timer(i)->reset();
6718 }
6719 }
6720
timer_name(int idx)6721 const char* LinearScanTimers::timer_name(int idx) {
6722 switch (idx) {
6723 case timer_do_nothing: return "Nothing (Time Check)";
6724 case timer_number_instructions: return "Number Instructions";
6725 case timer_compute_local_live_sets: return "Local Live Sets";
6726 case timer_compute_global_live_sets: return "Global Live Sets";
6727 case timer_build_intervals: return "Build Intervals";
6728 case timer_sort_intervals_before: return "Sort Intervals Before";
6729 case timer_allocate_registers: return "Allocate Registers";
6730 case timer_resolve_data_flow: return "Resolve Data Flow";
6731 case timer_sort_intervals_after: return "Sort Intervals After";
6732 case timer_eliminate_spill_moves: return "Spill optimization";
6733 case timer_assign_reg_num: return "Assign Reg Num";
6734 case timer_allocate_fpu_stack: return "Allocate FPU Stack";
6735 case timer_optimize_lir: return "Optimize LIR";
6736 default: ShouldNotReachHere(); return "";
6737 }
6738 }
6739
begin_method()6740 void LinearScanTimers::begin_method() {
6741 if (TimeEachLinearScan) {
6742 // reset all timers to measure only current method
6743 for (int i = 0; i < number_of_timers; i++) {
6744 timer(i)->reset();
6745 }
6746 }
6747 }
6748
end_method(LinearScan * allocator)6749 void LinearScanTimers::end_method(LinearScan* allocator) {
6750 if (TimeEachLinearScan) {
6751
6752 double c = timer(timer_do_nothing)->seconds();
6753 double total = 0;
6754 for (int i = 1; i < number_of_timers; i++) {
6755 total += timer(i)->seconds() - c;
6756 }
6757
6758 if (total >= 0.0005) {
6759 // print all information in one line for automatic processing
6760 tty->print("@"); allocator->compilation()->method()->print_name();
6761
6762 tty->print("@ %d ", allocator->compilation()->method()->code_size());
6763 tty->print("@ %d ", allocator->block_at(allocator->block_count() - 1)->last_lir_instruction_id() / 2);
6764 tty->print("@ %d ", allocator->block_count());
6765 tty->print("@ %d ", allocator->num_virtual_regs());
6766 tty->print("@ %d ", allocator->interval_count());
6767 tty->print("@ %d ", allocator->_num_calls);
6768 tty->print("@ %d ", allocator->num_loops());
6769
6770 tty->print("@ %6.6f ", total);
6771 for (int i = 1; i < number_of_timers; i++) {
6772 tty->print("@ %4.1f ", ((timer(i)->seconds() - c) / total) * 100);
6773 }
6774 tty->cr();
6775 }
6776 }
6777 }
6778
print(double total_time)6779 void LinearScanTimers::print(double total_time) {
6780 if (TimeLinearScan) {
6781 // correction value: sum of dummy-timer that only measures the time that
6782 // is necesary to start and stop itself
6783 double c = timer(timer_do_nothing)->seconds();
6784
6785 for (int i = 0; i < number_of_timers; i++) {
6786 double t = timer(i)->seconds();
6787 tty->print_cr(" %25s: %6.3f s (%4.1f%%) corrected: %6.3f s (%4.1f%%)", timer_name(i), t, (t / total_time) * 100.0, t - c, (t - c) / (total_time - 2 * number_of_timers * c) * 100);
6788 }
6789 }
6790 }
6791
6792 #endif // #ifndef PRODUCT
6793