1 /*
2 * Copyright (c) 2002, 2020, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 // no precompiled headers
26 #include "classfile/vmSymbols.hpp"
27 #include "gc/shared/collectedHeap.hpp"
28 #include "gc/shared/threadLocalAllocBuffer.inline.hpp"
29 #include "interpreter/bytecodeHistogram.hpp"
30 #include "interpreter/bytecodeInterpreter.hpp"
31 #include "interpreter/bytecodeInterpreter.inline.hpp"
32 #include "interpreter/bytecodeInterpreterProfiling.hpp"
33 #include "interpreter/interpreter.hpp"
34 #include "interpreter/interpreterRuntime.hpp"
35 #include "logging/log.hpp"
36 #include "memory/resourceArea.hpp"
37 #include "oops/constantPool.inline.hpp"
38 #include "oops/cpCache.inline.hpp"
39 #include "oops/method.inline.hpp"
40 #include "oops/methodCounters.hpp"
41 #include "oops/objArrayKlass.hpp"
42 #include "oops/objArrayOop.inline.hpp"
43 #include "oops/oop.inline.hpp"
44 #include "oops/typeArrayOop.inline.hpp"
45 #include "prims/jvmtiExport.hpp"
46 #include "prims/jvmtiThreadState.hpp"
47 #include "runtime/atomic.hpp"
48 #include "runtime/biasedLocking.hpp"
49 #include "runtime/frame.inline.hpp"
50 #include "runtime/handles.inline.hpp"
51 #include "runtime/interfaceSupport.inline.hpp"
52 #include "runtime/orderAccess.hpp"
53 #include "runtime/sharedRuntime.hpp"
54 #include "runtime/threadCritical.hpp"
55 #include "utilities/exceptions.hpp"
56
57 // no precompiled headers
58 #ifdef CC_INTERP
59
60 /*
61 * USELABELS - If using GCC, then use labels for the opcode dispatching
62 * rather -then a switch statement. This improves performance because it
63 * gives us the opportunity to have the instructions that calculate the
64 * next opcode to jump to be intermixed with the rest of the instructions
65 * that implement the opcode (see UPDATE_PC_AND_TOS_AND_CONTINUE macro).
66 */
67 #undef USELABELS
68 #ifdef __GNUC__
69 /*
70 ASSERT signifies debugging. It is much easier to step thru bytecodes if we
71 don't use the computed goto approach.
72 */
73 #ifndef ASSERT
74 #define USELABELS
75 #endif
76 #endif
77
78 #undef CASE
79 #ifdef USELABELS
80 #define CASE(opcode) opc ## opcode
81 #define DEFAULT opc_default
82 #else
83 #define CASE(opcode) case Bytecodes:: opcode
84 #define DEFAULT default
85 #endif
86
87 /*
88 * PREFETCH_OPCCODE - Some compilers do better if you prefetch the next
89 * opcode before going back to the top of the while loop, rather then having
90 * the top of the while loop handle it. This provides a better opportunity
91 * for instruction scheduling. Some compilers just do this prefetch
92 * automatically. Some actually end up with worse performance if you
93 * force the prefetch. Solaris gcc seems to do better, but cc does worse.
94 */
95 #undef PREFETCH_OPCCODE
96 #define PREFETCH_OPCCODE
97
98 /*
99 Interpreter safepoint: it is expected that the interpreter will have no live
100 handles of its own creation live at an interpreter safepoint. Therefore we
101 run a HandleMarkCleaner and trash all handles allocated in the call chain
102 since the JavaCalls::call_helper invocation that initiated the chain.
103 There really shouldn't be any handles remaining to trash but this is cheap
104 in relation to a safepoint.
105 */
106 #define SAFEPOINT \
107 { \
108 /* zap freed handles rather than GC'ing them */ \
109 HandleMarkCleaner __hmc(THREAD); \
110 CALL_VM(SafepointMechanism::block_if_requested(THREAD), handle_exception); \
111 }
112
113 /*
114 * VM_JAVA_ERROR - Macro for throwing a java exception from
115 * the interpreter loop. Should really be a CALL_VM but there
116 * is no entry point to do the transition to vm so we just
117 * do it by hand here.
118 */
119 #define VM_JAVA_ERROR_NO_JUMP(name, msg, note_a_trap) \
120 DECACHE_STATE(); \
121 SET_LAST_JAVA_FRAME(); \
122 { \
123 InterpreterRuntime::note_a_trap(THREAD, istate->method(), BCI()); \
124 ThreadInVMfromJava trans(THREAD); \
125 Exceptions::_throw_msg(THREAD, __FILE__, __LINE__, name, msg); \
126 } \
127 RESET_LAST_JAVA_FRAME(); \
128 CACHE_STATE();
129
130 // Normal throw of a java error.
131 #define VM_JAVA_ERROR(name, msg, note_a_trap) \
132 VM_JAVA_ERROR_NO_JUMP(name, msg, note_a_trap) \
133 goto handle_exception;
134
135 #ifdef PRODUCT
136 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)
137 #else
138 #define DO_UPDATE_INSTRUCTION_COUNT(opcode) \
139 { \
140 BytecodeCounter::_counter_value++; \
141 BytecodeHistogram::_counters[(Bytecodes::Code)opcode]++; \
142 if (StopInterpreterAt && StopInterpreterAt == BytecodeCounter::_counter_value) os::breakpoint(); \
143 if (TraceBytecodes) { \
144 CALL_VM((void)InterpreterRuntime::trace_bytecode(THREAD, 0, \
145 topOfStack[Interpreter::expr_index_at(1)], \
146 topOfStack[Interpreter::expr_index_at(2)]), \
147 handle_exception); \
148 } \
149 }
150 #endif
151
152 #undef DEBUGGER_SINGLE_STEP_NOTIFY
153 #ifdef VM_JVMTI
154 /* NOTE: (kbr) This macro must be called AFTER the PC has been
155 incremented. JvmtiExport::at_single_stepping_point() may cause a
156 breakpoint opcode to get inserted at the current PC to allow the
157 debugger to coalesce single-step events.
158
159 As a result if we call at_single_stepping_point() we refetch opcode
160 to get the current opcode. This will override any other prefetching
161 that might have occurred.
162 */
163 #define DEBUGGER_SINGLE_STEP_NOTIFY() \
164 { \
165 if (_jvmti_interp_events) { \
166 if (JvmtiExport::should_post_single_step()) { \
167 DECACHE_STATE(); \
168 SET_LAST_JAVA_FRAME(); \
169 ThreadInVMfromJava trans(THREAD); \
170 JvmtiExport::at_single_stepping_point(THREAD, \
171 istate->method(), \
172 pc); \
173 RESET_LAST_JAVA_FRAME(); \
174 CACHE_STATE(); \
175 if (THREAD->pop_frame_pending() && \
176 !THREAD->pop_frame_in_process()) { \
177 goto handle_Pop_Frame; \
178 } \
179 if (THREAD->jvmti_thread_state() && \
180 THREAD->jvmti_thread_state()->is_earlyret_pending()) { \
181 goto handle_Early_Return; \
182 } \
183 opcode = *pc; \
184 } \
185 } \
186 }
187 #else
188 #define DEBUGGER_SINGLE_STEP_NOTIFY()
189 #endif
190
191 /*
192 * CONTINUE - Macro for executing the next opcode.
193 */
194 #undef CONTINUE
195 #ifdef USELABELS
196 // Have to do this dispatch this way in C++ because otherwise gcc complains about crossing an
197 // initialization (which is is the initialization of the table pointer...)
198 #define DISPATCH(opcode) goto *(void*)dispatch_table[opcode]
199 #define CONTINUE { \
200 opcode = *pc; \
201 DO_UPDATE_INSTRUCTION_COUNT(opcode); \
202 DEBUGGER_SINGLE_STEP_NOTIFY(); \
203 DISPATCH(opcode); \
204 }
205 #else
206 #ifdef PREFETCH_OPCCODE
207 #define CONTINUE { \
208 opcode = *pc; \
209 DO_UPDATE_INSTRUCTION_COUNT(opcode); \
210 DEBUGGER_SINGLE_STEP_NOTIFY(); \
211 continue; \
212 }
213 #else
214 #define CONTINUE { \
215 DO_UPDATE_INSTRUCTION_COUNT(opcode); \
216 DEBUGGER_SINGLE_STEP_NOTIFY(); \
217 continue; \
218 }
219 #endif
220 #endif
221
222
223 #define UPDATE_PC(opsize) {pc += opsize; }
224 /*
225 * UPDATE_PC_AND_TOS - Macro for updating the pc and topOfStack.
226 */
227 #undef UPDATE_PC_AND_TOS
228 #define UPDATE_PC_AND_TOS(opsize, stack) \
229 {pc += opsize; MORE_STACK(stack); }
230
231 /*
232 * UPDATE_PC_AND_TOS_AND_CONTINUE - Macro for updating the pc and topOfStack,
233 * and executing the next opcode. It's somewhat similar to the combination
234 * of UPDATE_PC_AND_TOS and CONTINUE, but with some minor optimizations.
235 */
236 #undef UPDATE_PC_AND_TOS_AND_CONTINUE
237 #ifdef USELABELS
238 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
239 pc += opsize; opcode = *pc; MORE_STACK(stack); \
240 DO_UPDATE_INSTRUCTION_COUNT(opcode); \
241 DEBUGGER_SINGLE_STEP_NOTIFY(); \
242 DISPATCH(opcode); \
243 }
244
245 #define UPDATE_PC_AND_CONTINUE(opsize) { \
246 pc += opsize; opcode = *pc; \
247 DO_UPDATE_INSTRUCTION_COUNT(opcode); \
248 DEBUGGER_SINGLE_STEP_NOTIFY(); \
249 DISPATCH(opcode); \
250 }
251 #else
252 #ifdef PREFETCH_OPCCODE
253 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
254 pc += opsize; opcode = *pc; MORE_STACK(stack); \
255 DO_UPDATE_INSTRUCTION_COUNT(opcode); \
256 DEBUGGER_SINGLE_STEP_NOTIFY(); \
257 goto do_continue; \
258 }
259
260 #define UPDATE_PC_AND_CONTINUE(opsize) { \
261 pc += opsize; opcode = *pc; \
262 DO_UPDATE_INSTRUCTION_COUNT(opcode); \
263 DEBUGGER_SINGLE_STEP_NOTIFY(); \
264 goto do_continue; \
265 }
266 #else
267 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
268 pc += opsize; MORE_STACK(stack); \
269 DO_UPDATE_INSTRUCTION_COUNT(opcode); \
270 DEBUGGER_SINGLE_STEP_NOTIFY(); \
271 goto do_continue; \
272 }
273
274 #define UPDATE_PC_AND_CONTINUE(opsize) { \
275 pc += opsize; \
276 DO_UPDATE_INSTRUCTION_COUNT(opcode); \
277 DEBUGGER_SINGLE_STEP_NOTIFY(); \
278 goto do_continue; \
279 }
280 #endif /* PREFETCH_OPCCODE */
281 #endif /* USELABELS */
282
283 // About to call a new method, update the save the adjusted pc and return to frame manager
284 #define UPDATE_PC_AND_RETURN(opsize) \
285 DECACHE_TOS(); \
286 istate->set_bcp(pc+opsize); \
287 return;
288
289
290 #define METHOD istate->method()
291 #define GET_METHOD_COUNTERS(res) \
292 res = METHOD->method_counters(); \
293 if (res == NULL) { \
294 CALL_VM(res = InterpreterRuntime::build_method_counters(THREAD, METHOD), handle_exception); \
295 }
296
297 #define OSR_REQUEST(res, branch_pc) \
298 CALL_VM(res=InterpreterRuntime::frequency_counter_overflow(THREAD, branch_pc), handle_exception);
299 /*
300 * For those opcodes that need to have a GC point on a backwards branch
301 */
302
303 // Backedge counting is kind of strange. The asm interpreter will increment
304 // the backedge counter as a separate counter but it does it's comparisons
305 // to the sum (scaled) of invocation counter and backedge count to make
306 // a decision. Seems kind of odd to sum them together like that
307
308 // skip is delta from current bcp/bci for target, branch_pc is pre-branch bcp
309
310
311 #define DO_BACKEDGE_CHECKS(skip, branch_pc) \
312 if ((skip) <= 0) { \
313 MethodCounters* mcs; \
314 GET_METHOD_COUNTERS(mcs); \
315 if (UseLoopCounter) { \
316 bool do_OSR = UseOnStackReplacement; \
317 mcs->backedge_counter()->increment(); \
318 if (ProfileInterpreter) { \
319 BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception); \
320 /* Check for overflow against MDO count. */ \
321 do_OSR = do_OSR \
322 && (mdo_last_branch_taken_count >= (uint)InvocationCounter::InterpreterBackwardBranchLimit)\
323 /* When ProfileInterpreter is on, the backedge_count comes */ \
324 /* from the methodDataOop, which value does not get reset on */ \
325 /* the call to frequency_counter_overflow(). To avoid */ \
326 /* excessive calls to the overflow routine while the method is */ \
327 /* being compiled, add a second test to make sure the overflow */ \
328 /* function is called only once every overflow_frequency. */ \
329 && (!(mdo_last_branch_taken_count & 1023)); \
330 } else { \
331 /* check for overflow of backedge counter */ \
332 do_OSR = do_OSR \
333 && mcs->invocation_counter()->reached_InvocationLimit(mcs->backedge_counter()); \
334 } \
335 if (do_OSR) { \
336 nmethod* osr_nmethod; \
337 OSR_REQUEST(osr_nmethod, branch_pc); \
338 if (osr_nmethod != NULL && osr_nmethod->is_in_use()) { \
339 intptr_t* buf; \
340 /* Call OSR migration with last java frame only, no checks. */ \
341 CALL_VM_NAKED_LJF(buf=SharedRuntime::OSR_migration_begin(THREAD)); \
342 istate->set_msg(do_osr); \
343 istate->set_osr_buf((address)buf); \
344 istate->set_osr_entry(osr_nmethod->osr_entry()); \
345 return; \
346 } \
347 } \
348 } /* UseCompiler ... */ \
349 SAFEPOINT; \
350 }
351
352 /*
353 * For those opcodes that need to have a GC point on a backwards branch
354 */
355
356 /*
357 * Macros for caching and flushing the interpreter state. Some local
358 * variables need to be flushed out to the frame before we do certain
359 * things (like pushing frames or becomming gc safe) and some need to
360 * be recached later (like after popping a frame). We could use one
361 * macro to cache or decache everything, but this would be less then
362 * optimal because we don't always need to cache or decache everything
363 * because some things we know are already cached or decached.
364 */
365 #undef DECACHE_TOS
366 #undef CACHE_TOS
367 #undef CACHE_PREV_TOS
368 #define DECACHE_TOS() istate->set_stack(topOfStack);
369
370 #define CACHE_TOS() topOfStack = (intptr_t *)istate->stack();
371
372 #undef DECACHE_PC
373 #undef CACHE_PC
374 #define DECACHE_PC() istate->set_bcp(pc);
375 #define CACHE_PC() pc = istate->bcp();
376 #define CACHE_CP() cp = istate->constants();
377 #define CACHE_LOCALS() locals = istate->locals();
378 #undef CACHE_FRAME
379 #define CACHE_FRAME()
380
381 // BCI() returns the current bytecode-index.
382 #undef BCI
383 #define BCI() ((int)(intptr_t)(pc - (intptr_t)istate->method()->code_base()))
384
385 /*
386 * CHECK_NULL - Macro for throwing a NullPointerException if the object
387 * passed is a null ref.
388 * On some architectures/platforms it should be possible to do this implicitly
389 */
390 #undef CHECK_NULL
391 #define CHECK_NULL(obj_) \
392 if ((obj_) == NULL) { \
393 VM_JAVA_ERROR(vmSymbols::java_lang_NullPointerException(), NULL, note_nullCheck_trap); \
394 } \
395 VERIFY_OOP(obj_)
396
397 #define VMdoubleConstZero() 0.0
398 #define VMdoubleConstOne() 1.0
399 #define VMlongConstZero() (max_jlong-max_jlong)
400 #define VMlongConstOne() ((max_jlong-max_jlong)+1)
401
402 /*
403 * Alignment
404 */
405 #define VMalignWordUp(val) (((uintptr_t)(val) + 3) & ~3)
406
407 // Decache the interpreter state that interpreter modifies directly (i.e. GC is indirect mod)
408 #define DECACHE_STATE() DECACHE_PC(); DECACHE_TOS();
409
410 // Reload interpreter state after calling the VM or a possible GC
411 #define CACHE_STATE() \
412 CACHE_TOS(); \
413 CACHE_PC(); \
414 CACHE_CP(); \
415 CACHE_LOCALS();
416
417 // Call the VM with last java frame only.
418 #define CALL_VM_NAKED_LJF(func) \
419 DECACHE_STATE(); \
420 SET_LAST_JAVA_FRAME(); \
421 func; \
422 RESET_LAST_JAVA_FRAME(); \
423 CACHE_STATE();
424
425 // Call the VM. Don't check for pending exceptions.
426 #define CALL_VM_NOCHECK(func) \
427 CALL_VM_NAKED_LJF(func) \
428 if (THREAD->pop_frame_pending() && \
429 !THREAD->pop_frame_in_process()) { \
430 goto handle_Pop_Frame; \
431 } \
432 if (THREAD->jvmti_thread_state() && \
433 THREAD->jvmti_thread_state()->is_earlyret_pending()) { \
434 goto handle_Early_Return; \
435 }
436
437 // Call the VM and check for pending exceptions
438 #define CALL_VM(func, label) { \
439 CALL_VM_NOCHECK(func); \
440 if (THREAD->has_pending_exception()) goto label; \
441 }
442
443 /*
444 * BytecodeInterpreter::run(interpreterState istate)
445 * BytecodeInterpreter::runWithChecks(interpreterState istate)
446 *
447 * The real deal. This is where byte codes actually get interpreted.
448 * Basically it's a big while loop that iterates until we return from
449 * the method passed in.
450 *
451 * The runWithChecks is used if JVMTI is enabled.
452 *
453 */
454 #if defined(VM_JVMTI)
455 void
runWithChecks(interpreterState istate)456 BytecodeInterpreter::runWithChecks(interpreterState istate) {
457 #else
458 void
459 BytecodeInterpreter::run(interpreterState istate) {
460 #endif
461
462 // In order to simplify some tests based on switches set at runtime
463 // we invoke the interpreter a single time after switches are enabled
464 // and set simpler to to test variables rather than method calls or complex
465 // boolean expressions.
466
467 static int initialized = 0;
468 static int checkit = 0;
469 static intptr_t* c_addr = NULL;
470 static intptr_t c_value;
471
472 if (checkit && *c_addr != c_value) {
473 os::breakpoint();
474 }
475 #ifdef VM_JVMTI
476 static bool _jvmti_interp_events = 0;
477 #endif
478
479 static int _compiling; // (UseCompiler || CountCompiledCalls)
480
481 #ifdef ASSERT
482 if (istate->_msg != initialize) {
483 assert(labs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + 1), "bad stack limit");
484 IA32_ONLY(assert(istate->_stack_limit == istate->_thread->last_Java_sp() + 1, "wrong"));
485 }
486 // Verify linkages.
487 interpreterState l = istate;
488 do {
489 assert(l == l->_self_link, "bad link");
490 l = l->_prev_link;
491 } while (l != NULL);
492 // Screwups with stack management usually cause us to overwrite istate
493 // save a copy so we can verify it.
494 interpreterState orig = istate;
495 #endif
496
497 register intptr_t* topOfStack = (intptr_t *)istate->stack(); /* access with STACK macros */
498 register address pc = istate->bcp();
499 register jubyte opcode;
500 register intptr_t* locals = istate->locals();
501 register ConstantPoolCache* cp = istate->constants(); // method()->constants()->cache()
502 #ifdef LOTS_OF_REGS
503 register JavaThread* THREAD = istate->thread();
504 #else
505 #undef THREAD
506 #define THREAD istate->thread()
507 #endif
508
509 #ifdef USELABELS
510 const static void* const opclabels_data[256] = {
511 /* 0x00 */ &&opc_nop, &&opc_aconst_null,&&opc_iconst_m1,&&opc_iconst_0,
512 /* 0x04 */ &&opc_iconst_1,&&opc_iconst_2, &&opc_iconst_3, &&opc_iconst_4,
513 /* 0x08 */ &&opc_iconst_5,&&opc_lconst_0, &&opc_lconst_1, &&opc_fconst_0,
514 /* 0x0C */ &&opc_fconst_1,&&opc_fconst_2, &&opc_dconst_0, &&opc_dconst_1,
515
516 /* 0x10 */ &&opc_bipush, &&opc_sipush, &&opc_ldc, &&opc_ldc_w,
517 /* 0x14 */ &&opc_ldc2_w, &&opc_iload, &&opc_lload, &&opc_fload,
518 /* 0x18 */ &&opc_dload, &&opc_aload, &&opc_iload_0,&&opc_iload_1,
519 /* 0x1C */ &&opc_iload_2,&&opc_iload_3,&&opc_lload_0,&&opc_lload_1,
520
521 /* 0x20 */ &&opc_lload_2,&&opc_lload_3,&&opc_fload_0,&&opc_fload_1,
522 /* 0x24 */ &&opc_fload_2,&&opc_fload_3,&&opc_dload_0,&&opc_dload_1,
523 /* 0x28 */ &&opc_dload_2,&&opc_dload_3,&&opc_aload_0,&&opc_aload_1,
524 /* 0x2C */ &&opc_aload_2,&&opc_aload_3,&&opc_iaload, &&opc_laload,
525
526 /* 0x30 */ &&opc_faload, &&opc_daload, &&opc_aaload, &&opc_baload,
527 /* 0x34 */ &&opc_caload, &&opc_saload, &&opc_istore, &&opc_lstore,
528 /* 0x38 */ &&opc_fstore, &&opc_dstore, &&opc_astore, &&opc_istore_0,
529 /* 0x3C */ &&opc_istore_1,&&opc_istore_2,&&opc_istore_3,&&opc_lstore_0,
530
531 /* 0x40 */ &&opc_lstore_1,&&opc_lstore_2,&&opc_lstore_3,&&opc_fstore_0,
532 /* 0x44 */ &&opc_fstore_1,&&opc_fstore_2,&&opc_fstore_3,&&opc_dstore_0,
533 /* 0x48 */ &&opc_dstore_1,&&opc_dstore_2,&&opc_dstore_3,&&opc_astore_0,
534 /* 0x4C */ &&opc_astore_1,&&opc_astore_2,&&opc_astore_3,&&opc_iastore,
535
536 /* 0x50 */ &&opc_lastore,&&opc_fastore,&&opc_dastore,&&opc_aastore,
537 /* 0x54 */ &&opc_bastore,&&opc_castore,&&opc_sastore,&&opc_pop,
538 /* 0x58 */ &&opc_pop2, &&opc_dup, &&opc_dup_x1, &&opc_dup_x2,
539 /* 0x5C */ &&opc_dup2, &&opc_dup2_x1,&&opc_dup2_x2,&&opc_swap,
540
541 /* 0x60 */ &&opc_iadd,&&opc_ladd,&&opc_fadd,&&opc_dadd,
542 /* 0x64 */ &&opc_isub,&&opc_lsub,&&opc_fsub,&&opc_dsub,
543 /* 0x68 */ &&opc_imul,&&opc_lmul,&&opc_fmul,&&opc_dmul,
544 /* 0x6C */ &&opc_idiv,&&opc_ldiv,&&opc_fdiv,&&opc_ddiv,
545
546 /* 0x70 */ &&opc_irem, &&opc_lrem, &&opc_frem,&&opc_drem,
547 /* 0x74 */ &&opc_ineg, &&opc_lneg, &&opc_fneg,&&opc_dneg,
548 /* 0x78 */ &&opc_ishl, &&opc_lshl, &&opc_ishr,&&opc_lshr,
549 /* 0x7C */ &&opc_iushr,&&opc_lushr,&&opc_iand,&&opc_land,
550
551 /* 0x80 */ &&opc_ior, &&opc_lor,&&opc_ixor,&&opc_lxor,
552 /* 0x84 */ &&opc_iinc,&&opc_i2l,&&opc_i2f, &&opc_i2d,
553 /* 0x88 */ &&opc_l2i, &&opc_l2f,&&opc_l2d, &&opc_f2i,
554 /* 0x8C */ &&opc_f2l, &&opc_f2d,&&opc_d2i, &&opc_d2l,
555
556 /* 0x90 */ &&opc_d2f, &&opc_i2b, &&opc_i2c, &&opc_i2s,
557 /* 0x94 */ &&opc_lcmp, &&opc_fcmpl,&&opc_fcmpg,&&opc_dcmpl,
558 /* 0x98 */ &&opc_dcmpg,&&opc_ifeq, &&opc_ifne, &&opc_iflt,
559 /* 0x9C */ &&opc_ifge, &&opc_ifgt, &&opc_ifle, &&opc_if_icmpeq,
560
561 /* 0xA0 */ &&opc_if_icmpne,&&opc_if_icmplt,&&opc_if_icmpge, &&opc_if_icmpgt,
562 /* 0xA4 */ &&opc_if_icmple,&&opc_if_acmpeq,&&opc_if_acmpne, &&opc_goto,
563 /* 0xA8 */ &&opc_jsr, &&opc_ret, &&opc_tableswitch,&&opc_lookupswitch,
564 /* 0xAC */ &&opc_ireturn, &&opc_lreturn, &&opc_freturn, &&opc_dreturn,
565
566 /* 0xB0 */ &&opc_areturn, &&opc_return, &&opc_getstatic, &&opc_putstatic,
567 /* 0xB4 */ &&opc_getfield, &&opc_putfield, &&opc_invokevirtual,&&opc_invokespecial,
568 /* 0xB8 */ &&opc_invokestatic,&&opc_invokeinterface,&&opc_invokedynamic,&&opc_new,
569 /* 0xBC */ &&opc_newarray, &&opc_anewarray, &&opc_arraylength, &&opc_athrow,
570
571 /* 0xC0 */ &&opc_checkcast, &&opc_instanceof, &&opc_monitorenter, &&opc_monitorexit,
572 /* 0xC4 */ &&opc_wide, &&opc_multianewarray, &&opc_ifnull, &&opc_ifnonnull,
573 /* 0xC8 */ &&opc_goto_w, &&opc_jsr_w, &&opc_breakpoint, &&opc_default,
574 /* 0xCC */ &&opc_default, &&opc_default, &&opc_default, &&opc_default,
575
576 /* 0xD0 */ &&opc_default, &&opc_default, &&opc_default, &&opc_default,
577 /* 0xD4 */ &&opc_default, &&opc_default, &&opc_default, &&opc_default,
578 /* 0xD8 */ &&opc_default, &&opc_default, &&opc_default, &&opc_default,
579 /* 0xDC */ &&opc_default, &&opc_default, &&opc_default, &&opc_default,
580
581 /* 0xE0 */ &&opc_default, &&opc_default, &&opc_default, &&opc_default,
582 /* 0xE4 */ &&opc_default, &&opc_default, &&opc_fast_aldc, &&opc_fast_aldc_w,
583 /* 0xE8 */ &&opc_return_register_finalizer,
584 &&opc_invokehandle, &&opc_default, &&opc_default,
585 /* 0xEC */ &&opc_default, &&opc_default, &&opc_default, &&opc_default,
586
587 /* 0xF0 */ &&opc_default, &&opc_default, &&opc_default, &&opc_default,
588 /* 0xF4 */ &&opc_default, &&opc_default, &&opc_default, &&opc_default,
589 /* 0xF8 */ &&opc_default, &&opc_default, &&opc_default, &&opc_default,
590 /* 0xFC */ &&opc_default, &&opc_default, &&opc_default, &&opc_default
591 };
592 register uintptr_t *dispatch_table = (uintptr_t*)&opclabels_data[0];
593 #endif /* USELABELS */
594
595 #ifdef ASSERT
596 // this will trigger a VERIFY_OOP on entry
597 if (istate->msg() != initialize && ! METHOD->is_static()) {
598 oop rcvr = LOCALS_OBJECT(0);
599 VERIFY_OOP(rcvr);
600 }
601 #endif
602
603 /* QQQ this should be a stack method so we don't know actual direction */
604 guarantee(istate->msg() == initialize ||
605 topOfStack >= istate->stack_limit() &&
606 topOfStack < istate->stack_base(),
607 "Stack top out of range");
608
609 #ifdef CC_INTERP_PROFILE
610 // MethodData's last branch taken count.
611 uint mdo_last_branch_taken_count = 0;
612 #else
613 const uint mdo_last_branch_taken_count = 0;
614 #endif
615
616 switch (istate->msg()) {
617 case initialize: {
618 if (initialized++) ShouldNotReachHere(); // Only one initialize call.
619 _compiling = (UseCompiler || CountCompiledCalls);
620 #ifdef VM_JVMTI
621 _jvmti_interp_events = JvmtiExport::can_post_interpreter_events();
622 #endif
623 return;
624 }
625 break;
626 case method_entry: {
627 THREAD->set_do_not_unlock();
628 // count invocations
629 assert(initialized, "Interpreter not initialized");
630 if (_compiling) {
631 MethodCounters* mcs;
632 GET_METHOD_COUNTERS(mcs);
633 #if COMPILER2_OR_JVMCI
634 if (ProfileInterpreter) {
635 METHOD->increment_interpreter_invocation_count(THREAD);
636 }
637 #endif
638 mcs->invocation_counter()->increment();
639 if (mcs->invocation_counter()->reached_InvocationLimit(mcs->backedge_counter())) {
640 CALL_VM((void)InterpreterRuntime::frequency_counter_overflow(THREAD, NULL), handle_exception);
641 // We no longer retry on a counter overflow.
642 }
643 // Get or create profile data. Check for pending (async) exceptions.
644 BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
645 SAFEPOINT;
646 }
647
648 if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
649 // initialize
650 os::breakpoint();
651 }
652
653 // Lock method if synchronized.
654 if (METHOD->is_synchronized()) {
655 // oop rcvr = locals[0].j.r;
656 oop rcvr;
657 if (METHOD->is_static()) {
658 rcvr = METHOD->constants()->pool_holder()->java_mirror();
659 } else {
660 rcvr = LOCALS_OBJECT(0);
661 VERIFY_OOP(rcvr);
662 }
663 // The initial monitor is ours for the taking.
664 // Monitor not filled in frame manager any longer as this caused race condition with biased locking.
665 BasicObjectLock* mon = &istate->monitor_base()[-1];
666 mon->set_obj(rcvr);
667 bool success = false;
668 uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
669 markOop mark = rcvr->mark();
670 intptr_t hash = (intptr_t) markOopDesc::no_hash;
671 // Implies UseBiasedLocking.
672 if (mark->has_bias_pattern()) {
673 uintptr_t thread_ident;
674 uintptr_t anticipated_bias_locking_value;
675 thread_ident = (uintptr_t)istate->thread();
676 anticipated_bias_locking_value =
677 (((uintptr_t)rcvr->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
678 ~((uintptr_t) markOopDesc::age_mask_in_place);
679
680 if (anticipated_bias_locking_value == 0) {
681 // Already biased towards this thread, nothing to do.
682 if (PrintBiasedLockingStatistics) {
683 (* BiasedLocking::biased_lock_entry_count_addr())++;
684 }
685 success = true;
686 } else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
687 // Try to revoke bias.
688 markOop header = rcvr->klass()->prototype_header();
689 if (hash != markOopDesc::no_hash) {
690 header = header->copy_set_hash(hash);
691 }
692 if (rcvr->cas_set_mark(header, mark) == mark) {
693 if (PrintBiasedLockingStatistics)
694 (*BiasedLocking::revoked_lock_entry_count_addr())++;
695 }
696 } else if ((anticipated_bias_locking_value & epoch_mask_in_place) != 0) {
697 // Try to rebias.
698 markOop new_header = (markOop) ( (intptr_t) rcvr->klass()->prototype_header() | thread_ident);
699 if (hash != markOopDesc::no_hash) {
700 new_header = new_header->copy_set_hash(hash);
701 }
702 if (rcvr->cas_set_mark(new_header, mark) == mark) {
703 if (PrintBiasedLockingStatistics) {
704 (* BiasedLocking::rebiased_lock_entry_count_addr())++;
705 }
706 } else {
707 CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
708 }
709 success = true;
710 } else {
711 // Try to bias towards thread in case object is anonymously biased.
712 markOop header = (markOop) ((uintptr_t) mark &
713 ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
714 (uintptr_t)markOopDesc::age_mask_in_place | epoch_mask_in_place));
715 if (hash != markOopDesc::no_hash) {
716 header = header->copy_set_hash(hash);
717 }
718 markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
719 // Debugging hint.
720 DEBUG_ONLY(mon->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
721 if (rcvr->cas_set_mark(new_header, header) == header) {
722 if (PrintBiasedLockingStatistics) {
723 (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
724 }
725 } else {
726 CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
727 }
728 success = true;
729 }
730 }
731
732 // Traditional lightweight locking.
733 if (!success) {
734 markOop displaced = rcvr->mark()->set_unlocked();
735 mon->lock()->set_displaced_header(displaced);
736 bool call_vm = UseHeavyMonitors;
737 if (call_vm || rcvr->cas_set_mark((markOop)mon, displaced) != displaced) {
738 // Is it simple recursive case?
739 if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
740 mon->lock()->set_displaced_header(NULL);
741 } else {
742 CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
743 }
744 }
745 }
746 }
747 THREAD->clr_do_not_unlock();
748
749 // Notify jvmti
750 #ifdef VM_JVMTI
751 if (_jvmti_interp_events) {
752 // Whenever JVMTI puts a thread in interp_only_mode, method
753 // entry/exit events are sent for that thread to track stack depth.
754 if (THREAD->is_interp_only_mode()) {
755 CALL_VM(InterpreterRuntime::post_method_entry(THREAD),
756 handle_exception);
757 }
758 }
759 #endif /* VM_JVMTI */
760
761 goto run;
762 }
763
764 case popping_frame: {
765 // returned from a java call to pop the frame, restart the call
766 // clear the message so we don't confuse ourselves later
767 assert(THREAD->pop_frame_in_process(), "wrong frame pop state");
768 istate->set_msg(no_request);
769 if (_compiling) {
770 // Set MDX back to the ProfileData of the invoke bytecode that will be
771 // restarted.
772 SET_MDX(NULL);
773 BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
774 }
775 THREAD->clr_pop_frame_in_process();
776 goto run;
777 }
778
779 case method_resume: {
780 if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
781 // resume
782 os::breakpoint();
783 }
784 // returned from a java call, continue executing.
785 if (THREAD->pop_frame_pending() && !THREAD->pop_frame_in_process()) {
786 goto handle_Pop_Frame;
787 }
788 if (THREAD->jvmti_thread_state() &&
789 THREAD->jvmti_thread_state()->is_earlyret_pending()) {
790 goto handle_Early_Return;
791 }
792
793 if (THREAD->has_pending_exception()) goto handle_exception;
794 // Update the pc by the saved amount of the invoke bytecode size
795 UPDATE_PC(istate->bcp_advance());
796
797 if (_compiling) {
798 // Get or create profile data. Check for pending (async) exceptions.
799 BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
800 }
801 goto run;
802 }
803
804 case deopt_resume2: {
805 // Returned from an opcode that will reexecute. Deopt was
806 // a result of a PopFrame request.
807 //
808
809 if (_compiling) {
810 // Get or create profile data. Check for pending (async) exceptions.
811 BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
812 }
813 goto run;
814 }
815
816 case deopt_resume: {
817 // Returned from an opcode that has completed. The stack has
818 // the result all we need to do is skip across the bytecode
819 // and continue (assuming there is no exception pending)
820 //
821 // compute continuation length
822 //
823 // Note: it is possible to deopt at a return_register_finalizer opcode
824 // because this requires entering the vm to do the registering. While the
825 // opcode is complete we can't advance because there are no more opcodes
826 // much like trying to deopt at a poll return. In that has we simply
827 // get out of here
828 //
829 if ( Bytecodes::code_at(METHOD, pc) == Bytecodes::_return_register_finalizer) {
830 // this will do the right thing even if an exception is pending.
831 goto handle_return;
832 }
833 UPDATE_PC(Bytecodes::length_at(METHOD, pc));
834 if (THREAD->has_pending_exception()) goto handle_exception;
835
836 if (_compiling) {
837 // Get or create profile data. Check for pending (async) exceptions.
838 BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
839 }
840 goto run;
841 }
842 case got_monitors: {
843 // continue locking now that we have a monitor to use
844 // we expect to find newly allocated monitor at the "top" of the monitor stack.
845 oop lockee = STACK_OBJECT(-1);
846 VERIFY_OOP(lockee);
847 // derefing's lockee ought to provoke implicit null check
848 // find a free monitor
849 BasicObjectLock* entry = (BasicObjectLock*) istate->stack_base();
850 assert(entry->obj() == NULL, "Frame manager didn't allocate the monitor");
851 entry->set_obj(lockee);
852 bool success = false;
853 uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
854
855 markOop mark = lockee->mark();
856 intptr_t hash = (intptr_t) markOopDesc::no_hash;
857 // implies UseBiasedLocking
858 if (mark->has_bias_pattern()) {
859 uintptr_t thread_ident;
860 uintptr_t anticipated_bias_locking_value;
861 thread_ident = (uintptr_t)istate->thread();
862 anticipated_bias_locking_value =
863 (((uintptr_t)lockee->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
864 ~((uintptr_t) markOopDesc::age_mask_in_place);
865
866 if (anticipated_bias_locking_value == 0) {
867 // already biased towards this thread, nothing to do
868 if (PrintBiasedLockingStatistics) {
869 (* BiasedLocking::biased_lock_entry_count_addr())++;
870 }
871 success = true;
872 } else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
873 // try revoke bias
874 markOop header = lockee->klass()->prototype_header();
875 if (hash != markOopDesc::no_hash) {
876 header = header->copy_set_hash(hash);
877 }
878 if (lockee->cas_set_mark(header, mark) == mark) {
879 if (PrintBiasedLockingStatistics) {
880 (*BiasedLocking::revoked_lock_entry_count_addr())++;
881 }
882 }
883 } else if ((anticipated_bias_locking_value & epoch_mask_in_place) !=0) {
884 // try rebias
885 markOop new_header = (markOop) ( (intptr_t) lockee->klass()->prototype_header() | thread_ident);
886 if (hash != markOopDesc::no_hash) {
887 new_header = new_header->copy_set_hash(hash);
888 }
889 if (lockee->cas_set_mark(new_header, mark) == mark) {
890 if (PrintBiasedLockingStatistics) {
891 (* BiasedLocking::rebiased_lock_entry_count_addr())++;
892 }
893 } else {
894 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
895 }
896 success = true;
897 } else {
898 // try to bias towards thread in case object is anonymously biased
899 markOop header = (markOop) ((uintptr_t) mark & ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
900 (uintptr_t)markOopDesc::age_mask_in_place | epoch_mask_in_place));
901 if (hash != markOopDesc::no_hash) {
902 header = header->copy_set_hash(hash);
903 }
904 markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
905 // debugging hint
906 DEBUG_ONLY(entry->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
907 if (lockee->cas_set_mark(new_header, header) == header) {
908 if (PrintBiasedLockingStatistics) {
909 (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
910 }
911 } else {
912 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
913 }
914 success = true;
915 }
916 }
917
918 // traditional lightweight locking
919 if (!success) {
920 markOop displaced = lockee->mark()->set_unlocked();
921 entry->lock()->set_displaced_header(displaced);
922 bool call_vm = UseHeavyMonitors;
923 if (call_vm || lockee->cas_set_mark((markOop)entry, displaced) != displaced) {
924 // Is it simple recursive case?
925 if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
926 entry->lock()->set_displaced_header(NULL);
927 } else {
928 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
929 }
930 }
931 }
932 UPDATE_PC_AND_TOS(1, -1);
933 goto run;
934 }
935 default: {
936 fatal("Unexpected message from frame manager");
937 }
938 }
939
940 run:
941
942 DO_UPDATE_INSTRUCTION_COUNT(*pc)
943 DEBUGGER_SINGLE_STEP_NOTIFY();
944 #ifdef PREFETCH_OPCCODE
945 opcode = *pc; /* prefetch first opcode */
946 #endif
947
948 #ifndef USELABELS
949 while (1)
950 #endif
951 {
952 #ifndef PREFETCH_OPCCODE
953 opcode = *pc;
954 #endif
955 // Seems like this happens twice per opcode. At worst this is only
956 // need at entry to the loop.
957 // DEBUGGER_SINGLE_STEP_NOTIFY();
958 /* Using this labels avoids double breakpoints when quickening and
959 * when returing from transition frames.
960 */
961 opcode_switch:
962 assert(istate == orig, "Corrupted istate");
963 /* QQQ Hmm this has knowledge of direction, ought to be a stack method */
964 assert(topOfStack >= istate->stack_limit(), "Stack overrun");
965 assert(topOfStack < istate->stack_base(), "Stack underrun");
966
967 #ifdef USELABELS
968 DISPATCH(opcode);
969 #else
970 switch (opcode)
971 #endif
972 {
973 CASE(_nop):
974 UPDATE_PC_AND_CONTINUE(1);
975
976 /* Push miscellaneous constants onto the stack. */
977
978 CASE(_aconst_null):
979 SET_STACK_OBJECT(NULL, 0);
980 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
981
982 #undef OPC_CONST_n
983 #define OPC_CONST_n(opcode, const_type, value) \
984 CASE(opcode): \
985 SET_STACK_ ## const_type(value, 0); \
986 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
987
988 OPC_CONST_n(_iconst_m1, INT, -1);
989 OPC_CONST_n(_iconst_0, INT, 0);
990 OPC_CONST_n(_iconst_1, INT, 1);
991 OPC_CONST_n(_iconst_2, INT, 2);
992 OPC_CONST_n(_iconst_3, INT, 3);
993 OPC_CONST_n(_iconst_4, INT, 4);
994 OPC_CONST_n(_iconst_5, INT, 5);
995 OPC_CONST_n(_fconst_0, FLOAT, 0.0);
996 OPC_CONST_n(_fconst_1, FLOAT, 1.0);
997 OPC_CONST_n(_fconst_2, FLOAT, 2.0);
998
999 #undef OPC_CONST2_n
1000 #define OPC_CONST2_n(opcname, value, key, kind) \
1001 CASE(_##opcname): \
1002 { \
1003 SET_STACK_ ## kind(VM##key##Const##value(), 1); \
1004 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2); \
1005 }
1006 OPC_CONST2_n(dconst_0, Zero, double, DOUBLE);
1007 OPC_CONST2_n(dconst_1, One, double, DOUBLE);
1008 OPC_CONST2_n(lconst_0, Zero, long, LONG);
1009 OPC_CONST2_n(lconst_1, One, long, LONG);
1010
1011 /* Load constant from constant pool: */
1012
1013 /* Push a 1-byte signed integer value onto the stack. */
1014 CASE(_bipush):
1015 SET_STACK_INT((jbyte)(pc[1]), 0);
1016 UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1017
1018 /* Push a 2-byte signed integer constant onto the stack. */
1019 CASE(_sipush):
1020 SET_STACK_INT((int16_t)Bytes::get_Java_u2(pc + 1), 0);
1021 UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
1022
1023 /* load from local variable */
1024
1025 CASE(_aload):
1026 VERIFY_OOP(LOCALS_OBJECT(pc[1]));
1027 SET_STACK_OBJECT(LOCALS_OBJECT(pc[1]), 0);
1028 UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1029
1030 CASE(_iload):
1031 CASE(_fload):
1032 SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
1033 UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1034
1035 CASE(_lload):
1036 SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(pc[1]), 1);
1037 UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
1038
1039 CASE(_dload):
1040 SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(pc[1]), 1);
1041 UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
1042
1043 #undef OPC_LOAD_n
1044 #define OPC_LOAD_n(num) \
1045 CASE(_aload_##num): \
1046 VERIFY_OOP(LOCALS_OBJECT(num)); \
1047 SET_STACK_OBJECT(LOCALS_OBJECT(num), 0); \
1048 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1); \
1049 \
1050 CASE(_iload_##num): \
1051 CASE(_fload_##num): \
1052 SET_STACK_SLOT(LOCALS_SLOT(num), 0); \
1053 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1); \
1054 \
1055 CASE(_lload_##num): \
1056 SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(num), 1); \
1057 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2); \
1058 CASE(_dload_##num): \
1059 SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(num), 1); \
1060 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1061
1062 OPC_LOAD_n(0);
1063 OPC_LOAD_n(1);
1064 OPC_LOAD_n(2);
1065 OPC_LOAD_n(3);
1066
1067 /* store to a local variable */
1068
1069 CASE(_astore):
1070 astore(topOfStack, -1, locals, pc[1]);
1071 UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1072
1073 CASE(_istore):
1074 CASE(_fstore):
1075 SET_LOCALS_SLOT(STACK_SLOT(-1), pc[1]);
1076 UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1077
1078 CASE(_lstore):
1079 SET_LOCALS_LONG(STACK_LONG(-1), pc[1]);
1080 UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1081
1082 CASE(_dstore):
1083 SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), pc[1]);
1084 UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1085
1086 CASE(_wide): {
1087 uint16_t reg = Bytes::get_Java_u2(pc + 2);
1088
1089 opcode = pc[1];
1090
1091 // Wide and it's sub-bytecode are counted as separate instructions. If we
1092 // don't account for this here, the bytecode trace skips the next bytecode.
1093 DO_UPDATE_INSTRUCTION_COUNT(opcode);
1094
1095 switch(opcode) {
1096 case Bytecodes::_aload:
1097 VERIFY_OOP(LOCALS_OBJECT(reg));
1098 SET_STACK_OBJECT(LOCALS_OBJECT(reg), 0);
1099 UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1100
1101 case Bytecodes::_iload:
1102 case Bytecodes::_fload:
1103 SET_STACK_SLOT(LOCALS_SLOT(reg), 0);
1104 UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1105
1106 case Bytecodes::_lload:
1107 SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1108 UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1109
1110 case Bytecodes::_dload:
1111 SET_STACK_DOUBLE_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1112 UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1113
1114 case Bytecodes::_astore:
1115 astore(topOfStack, -1, locals, reg);
1116 UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1117
1118 case Bytecodes::_istore:
1119 case Bytecodes::_fstore:
1120 SET_LOCALS_SLOT(STACK_SLOT(-1), reg);
1121 UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1122
1123 case Bytecodes::_lstore:
1124 SET_LOCALS_LONG(STACK_LONG(-1), reg);
1125 UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1126
1127 case Bytecodes::_dstore:
1128 SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), reg);
1129 UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1130
1131 case Bytecodes::_iinc: {
1132 int16_t offset = (int16_t)Bytes::get_Java_u2(pc+4);
1133 // Be nice to see what this generates.... QQQ
1134 SET_LOCALS_INT(LOCALS_INT(reg) + offset, reg);
1135 UPDATE_PC_AND_CONTINUE(6);
1136 }
1137 case Bytecodes::_ret:
1138 // Profile ret.
1139 BI_PROFILE_UPDATE_RET(/*bci=*/((int)(intptr_t)(LOCALS_ADDR(reg))));
1140 // Now, update the pc.
1141 pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(reg));
1142 UPDATE_PC_AND_CONTINUE(0);
1143 default:
1144 VM_JAVA_ERROR(vmSymbols::java_lang_InternalError(), "undefined opcode", note_no_trap);
1145 }
1146 }
1147
1148
1149 #undef OPC_STORE_n
1150 #define OPC_STORE_n(num) \
1151 CASE(_astore_##num): \
1152 astore(topOfStack, -1, locals, num); \
1153 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1); \
1154 CASE(_istore_##num): \
1155 CASE(_fstore_##num): \
1156 SET_LOCALS_SLOT(STACK_SLOT(-1), num); \
1157 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1158
1159 OPC_STORE_n(0);
1160 OPC_STORE_n(1);
1161 OPC_STORE_n(2);
1162 OPC_STORE_n(3);
1163
1164 #undef OPC_DSTORE_n
1165 #define OPC_DSTORE_n(num) \
1166 CASE(_dstore_##num): \
1167 SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), num); \
1168 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2); \
1169 CASE(_lstore_##num): \
1170 SET_LOCALS_LONG(STACK_LONG(-1), num); \
1171 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1172
1173 OPC_DSTORE_n(0);
1174 OPC_DSTORE_n(1);
1175 OPC_DSTORE_n(2);
1176 OPC_DSTORE_n(3);
1177
1178 /* stack pop, dup, and insert opcodes */
1179
1180
1181 CASE(_pop): /* Discard the top item on the stack */
1182 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1183
1184
1185 CASE(_pop2): /* Discard the top 2 items on the stack */
1186 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1187
1188
1189 CASE(_dup): /* Duplicate the top item on the stack */
1190 dup(topOfStack);
1191 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1192
1193 CASE(_dup2): /* Duplicate the top 2 items on the stack */
1194 dup2(topOfStack);
1195 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1196
1197 CASE(_dup_x1): /* insert top word two down */
1198 dup_x1(topOfStack);
1199 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1200
1201 CASE(_dup_x2): /* insert top word three down */
1202 dup_x2(topOfStack);
1203 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1204
1205 CASE(_dup2_x1): /* insert top 2 slots three down */
1206 dup2_x1(topOfStack);
1207 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1208
1209 CASE(_dup2_x2): /* insert top 2 slots four down */
1210 dup2_x2(topOfStack);
1211 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1212
1213 CASE(_swap): { /* swap top two elements on the stack */
1214 swap(topOfStack);
1215 UPDATE_PC_AND_CONTINUE(1);
1216 }
1217
1218 /* Perform various binary integer operations */
1219
1220 #undef OPC_INT_BINARY
1221 #define OPC_INT_BINARY(opcname, opname, test) \
1222 CASE(_i##opcname): \
1223 if (test && (STACK_INT(-1) == 0)) { \
1224 VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1225 "/ by zero", note_div0Check_trap); \
1226 } \
1227 SET_STACK_INT(VMint##opname(STACK_INT(-2), \
1228 STACK_INT(-1)), \
1229 -2); \
1230 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1); \
1231 CASE(_l##opcname): \
1232 { \
1233 if (test) { \
1234 jlong l1 = STACK_LONG(-1); \
1235 if (VMlongEqz(l1)) { \
1236 VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1237 "/ by long zero", note_div0Check_trap); \
1238 } \
1239 } \
1240 /* First long at (-1,-2) next long at (-3,-4) */ \
1241 SET_STACK_LONG(VMlong##opname(STACK_LONG(-3), \
1242 STACK_LONG(-1)), \
1243 -3); \
1244 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2); \
1245 }
1246
1247 OPC_INT_BINARY(add, Add, 0);
1248 OPC_INT_BINARY(sub, Sub, 0);
1249 OPC_INT_BINARY(mul, Mul, 0);
1250 OPC_INT_BINARY(and, And, 0);
1251 OPC_INT_BINARY(or, Or, 0);
1252 OPC_INT_BINARY(xor, Xor, 0);
1253 OPC_INT_BINARY(div, Div, 1);
1254 OPC_INT_BINARY(rem, Rem, 1);
1255
1256
1257 /* Perform various binary floating number operations */
1258 /* On some machine/platforms/compilers div zero check can be implicit */
1259
1260 #undef OPC_FLOAT_BINARY
1261 #define OPC_FLOAT_BINARY(opcname, opname) \
1262 CASE(_d##opcname): { \
1263 SET_STACK_DOUBLE(VMdouble##opname(STACK_DOUBLE(-3), \
1264 STACK_DOUBLE(-1)), \
1265 -3); \
1266 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2); \
1267 } \
1268 CASE(_f##opcname): \
1269 SET_STACK_FLOAT(VMfloat##opname(STACK_FLOAT(-2), \
1270 STACK_FLOAT(-1)), \
1271 -2); \
1272 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1273
1274
1275 OPC_FLOAT_BINARY(add, Add);
1276 OPC_FLOAT_BINARY(sub, Sub);
1277 OPC_FLOAT_BINARY(mul, Mul);
1278 OPC_FLOAT_BINARY(div, Div);
1279 OPC_FLOAT_BINARY(rem, Rem);
1280
1281 /* Shift operations
1282 * Shift left int and long: ishl, lshl
1283 * Logical shift right int and long w/zero extension: iushr, lushr
1284 * Arithmetic shift right int and long w/sign extension: ishr, lshr
1285 */
1286
1287 #undef OPC_SHIFT_BINARY
1288 #define OPC_SHIFT_BINARY(opcname, opname) \
1289 CASE(_i##opcname): \
1290 SET_STACK_INT(VMint##opname(STACK_INT(-2), \
1291 STACK_INT(-1)), \
1292 -2); \
1293 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1); \
1294 CASE(_l##opcname): \
1295 { \
1296 SET_STACK_LONG(VMlong##opname(STACK_LONG(-2), \
1297 STACK_INT(-1)), \
1298 -2); \
1299 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1); \
1300 }
1301
1302 OPC_SHIFT_BINARY(shl, Shl);
1303 OPC_SHIFT_BINARY(shr, Shr);
1304 OPC_SHIFT_BINARY(ushr, Ushr);
1305
1306 /* Increment local variable by constant */
1307 CASE(_iinc):
1308 {
1309 // locals[pc[1]].j.i += (jbyte)(pc[2]);
1310 SET_LOCALS_INT(LOCALS_INT(pc[1]) + (jbyte)(pc[2]), pc[1]);
1311 UPDATE_PC_AND_CONTINUE(3);
1312 }
1313
1314 /* negate the value on the top of the stack */
1315
1316 CASE(_ineg):
1317 SET_STACK_INT(VMintNeg(STACK_INT(-1)), -1);
1318 UPDATE_PC_AND_CONTINUE(1);
1319
1320 CASE(_fneg):
1321 SET_STACK_FLOAT(VMfloatNeg(STACK_FLOAT(-1)), -1);
1322 UPDATE_PC_AND_CONTINUE(1);
1323
1324 CASE(_lneg):
1325 {
1326 SET_STACK_LONG(VMlongNeg(STACK_LONG(-1)), -1);
1327 UPDATE_PC_AND_CONTINUE(1);
1328 }
1329
1330 CASE(_dneg):
1331 {
1332 SET_STACK_DOUBLE(VMdoubleNeg(STACK_DOUBLE(-1)), -1);
1333 UPDATE_PC_AND_CONTINUE(1);
1334 }
1335
1336 /* Conversion operations */
1337
1338 CASE(_i2f): /* convert top of stack int to float */
1339 SET_STACK_FLOAT(VMint2Float(STACK_INT(-1)), -1);
1340 UPDATE_PC_AND_CONTINUE(1);
1341
1342 CASE(_i2l): /* convert top of stack int to long */
1343 {
1344 // this is ugly QQQ
1345 jlong r = VMint2Long(STACK_INT(-1));
1346 MORE_STACK(-1); // Pop
1347 SET_STACK_LONG(r, 1);
1348
1349 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1350 }
1351
1352 CASE(_i2d): /* convert top of stack int to double */
1353 {
1354 // this is ugly QQQ (why cast to jlong?? )
1355 jdouble r = (jlong)STACK_INT(-1);
1356 MORE_STACK(-1); // Pop
1357 SET_STACK_DOUBLE(r, 1);
1358
1359 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1360 }
1361
1362 CASE(_l2i): /* convert top of stack long to int */
1363 {
1364 jint r = VMlong2Int(STACK_LONG(-1));
1365 MORE_STACK(-2); // Pop
1366 SET_STACK_INT(r, 0);
1367 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1368 }
1369
1370 CASE(_l2f): /* convert top of stack long to float */
1371 {
1372 jlong r = STACK_LONG(-1);
1373 MORE_STACK(-2); // Pop
1374 SET_STACK_FLOAT(VMlong2Float(r), 0);
1375 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1376 }
1377
1378 CASE(_l2d): /* convert top of stack long to double */
1379 {
1380 jlong r = STACK_LONG(-1);
1381 MORE_STACK(-2); // Pop
1382 SET_STACK_DOUBLE(VMlong2Double(r), 1);
1383 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1384 }
1385
1386 CASE(_f2i): /* Convert top of stack float to int */
1387 SET_STACK_INT(SharedRuntime::f2i(STACK_FLOAT(-1)), -1);
1388 UPDATE_PC_AND_CONTINUE(1);
1389
1390 CASE(_f2l): /* convert top of stack float to long */
1391 {
1392 jlong r = SharedRuntime::f2l(STACK_FLOAT(-1));
1393 MORE_STACK(-1); // POP
1394 SET_STACK_LONG(r, 1);
1395 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1396 }
1397
1398 CASE(_f2d): /* convert top of stack float to double */
1399 {
1400 jfloat f;
1401 jdouble r;
1402 f = STACK_FLOAT(-1);
1403 r = (jdouble) f;
1404 MORE_STACK(-1); // POP
1405 SET_STACK_DOUBLE(r, 1);
1406 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1407 }
1408
1409 CASE(_d2i): /* convert top of stack double to int */
1410 {
1411 jint r1 = SharedRuntime::d2i(STACK_DOUBLE(-1));
1412 MORE_STACK(-2);
1413 SET_STACK_INT(r1, 0);
1414 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1415 }
1416
1417 CASE(_d2f): /* convert top of stack double to float */
1418 {
1419 jfloat r1 = VMdouble2Float(STACK_DOUBLE(-1));
1420 MORE_STACK(-2);
1421 SET_STACK_FLOAT(r1, 0);
1422 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1423 }
1424
1425 CASE(_d2l): /* convert top of stack double to long */
1426 {
1427 jlong r1 = SharedRuntime::d2l(STACK_DOUBLE(-1));
1428 MORE_STACK(-2);
1429 SET_STACK_LONG(r1, 1);
1430 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1431 }
1432
1433 CASE(_i2b):
1434 SET_STACK_INT(VMint2Byte(STACK_INT(-1)), -1);
1435 UPDATE_PC_AND_CONTINUE(1);
1436
1437 CASE(_i2c):
1438 SET_STACK_INT(VMint2Char(STACK_INT(-1)), -1);
1439 UPDATE_PC_AND_CONTINUE(1);
1440
1441 CASE(_i2s):
1442 SET_STACK_INT(VMint2Short(STACK_INT(-1)), -1);
1443 UPDATE_PC_AND_CONTINUE(1);
1444
1445 /* comparison operators */
1446
1447
1448 #define COMPARISON_OP(name, comparison) \
1449 CASE(_if_icmp##name): { \
1450 const bool cmp = (STACK_INT(-2) comparison STACK_INT(-1)); \
1451 int skip = cmp \
1452 ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3; \
1453 address branch_pc = pc; \
1454 /* Profile branch. */ \
1455 BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp); \
1456 UPDATE_PC_AND_TOS(skip, -2); \
1457 DO_BACKEDGE_CHECKS(skip, branch_pc); \
1458 CONTINUE; \
1459 } \
1460 CASE(_if##name): { \
1461 const bool cmp = (STACK_INT(-1) comparison 0); \
1462 int skip = cmp \
1463 ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3; \
1464 address branch_pc = pc; \
1465 /* Profile branch. */ \
1466 BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp); \
1467 UPDATE_PC_AND_TOS(skip, -1); \
1468 DO_BACKEDGE_CHECKS(skip, branch_pc); \
1469 CONTINUE; \
1470 }
1471
1472 #define COMPARISON_OP2(name, comparison) \
1473 COMPARISON_OP(name, comparison) \
1474 CASE(_if_acmp##name): { \
1475 const bool cmp = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1)); \
1476 int skip = cmp \
1477 ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3; \
1478 address branch_pc = pc; \
1479 /* Profile branch. */ \
1480 BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp); \
1481 UPDATE_PC_AND_TOS(skip, -2); \
1482 DO_BACKEDGE_CHECKS(skip, branch_pc); \
1483 CONTINUE; \
1484 }
1485
1486 #define NULL_COMPARISON_NOT_OP(name) \
1487 CASE(_if##name): { \
1488 const bool cmp = (!(STACK_OBJECT(-1) == NULL)); \
1489 int skip = cmp \
1490 ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3; \
1491 address branch_pc = pc; \
1492 /* Profile branch. */ \
1493 BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp); \
1494 UPDATE_PC_AND_TOS(skip, -1); \
1495 DO_BACKEDGE_CHECKS(skip, branch_pc); \
1496 CONTINUE; \
1497 }
1498
1499 #define NULL_COMPARISON_OP(name) \
1500 CASE(_if##name): { \
1501 const bool cmp = ((STACK_OBJECT(-1) == NULL)); \
1502 int skip = cmp \
1503 ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3; \
1504 address branch_pc = pc; \
1505 /* Profile branch. */ \
1506 BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp); \
1507 UPDATE_PC_AND_TOS(skip, -1); \
1508 DO_BACKEDGE_CHECKS(skip, branch_pc); \
1509 CONTINUE; \
1510 }
1511 COMPARISON_OP(lt, <);
1512 COMPARISON_OP(gt, >);
1513 COMPARISON_OP(le, <=);
1514 COMPARISON_OP(ge, >=);
1515 COMPARISON_OP2(eq, ==); /* include ref comparison */
1516 COMPARISON_OP2(ne, !=); /* include ref comparison */
1517 NULL_COMPARISON_OP(null);
1518 NULL_COMPARISON_NOT_OP(nonnull);
1519
1520 /* Goto pc at specified offset in switch table. */
1521
1522 CASE(_tableswitch): {
1523 jint* lpc = (jint*)VMalignWordUp(pc+1);
1524 int32_t key = STACK_INT(-1);
1525 int32_t low = Bytes::get_Java_u4((address)&lpc[1]);
1526 int32_t high = Bytes::get_Java_u4((address)&lpc[2]);
1527 int32_t skip;
1528 key -= low;
1529 if (((uint32_t) key > (uint32_t)(high - low))) {
1530 key = -1;
1531 skip = Bytes::get_Java_u4((address)&lpc[0]);
1532 } else {
1533 skip = Bytes::get_Java_u4((address)&lpc[key + 3]);
1534 }
1535 // Profile switch.
1536 BI_PROFILE_UPDATE_SWITCH(/*switch_index=*/key);
1537 // Does this really need a full backedge check (osr)?
1538 address branch_pc = pc;
1539 UPDATE_PC_AND_TOS(skip, -1);
1540 DO_BACKEDGE_CHECKS(skip, branch_pc);
1541 CONTINUE;
1542 }
1543
1544 /* Goto pc whose table entry matches specified key. */
1545
1546 CASE(_lookupswitch): {
1547 jint* lpc = (jint*)VMalignWordUp(pc+1);
1548 int32_t key = STACK_INT(-1);
1549 int32_t skip = Bytes::get_Java_u4((address) lpc); /* default amount */
1550 // Remember index.
1551 int index = -1;
1552 int newindex = 0;
1553 int32_t npairs = Bytes::get_Java_u4((address) &lpc[1]);
1554 while (--npairs >= 0) {
1555 lpc += 2;
1556 if (key == (int32_t)Bytes::get_Java_u4((address)lpc)) {
1557 skip = Bytes::get_Java_u4((address)&lpc[1]);
1558 index = newindex;
1559 break;
1560 }
1561 newindex += 1;
1562 }
1563 // Profile switch.
1564 BI_PROFILE_UPDATE_SWITCH(/*switch_index=*/index);
1565 address branch_pc = pc;
1566 UPDATE_PC_AND_TOS(skip, -1);
1567 DO_BACKEDGE_CHECKS(skip, branch_pc);
1568 CONTINUE;
1569 }
1570
1571 CASE(_fcmpl):
1572 CASE(_fcmpg):
1573 {
1574 SET_STACK_INT(VMfloatCompare(STACK_FLOAT(-2),
1575 STACK_FLOAT(-1),
1576 (opcode == Bytecodes::_fcmpl ? -1 : 1)),
1577 -2);
1578 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1579 }
1580
1581 CASE(_dcmpl):
1582 CASE(_dcmpg):
1583 {
1584 int r = VMdoubleCompare(STACK_DOUBLE(-3),
1585 STACK_DOUBLE(-1),
1586 (opcode == Bytecodes::_dcmpl ? -1 : 1));
1587 MORE_STACK(-4); // Pop
1588 SET_STACK_INT(r, 0);
1589 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1590 }
1591
1592 CASE(_lcmp):
1593 {
1594 int r = VMlongCompare(STACK_LONG(-3), STACK_LONG(-1));
1595 MORE_STACK(-4);
1596 SET_STACK_INT(r, 0);
1597 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1598 }
1599
1600
1601 /* Return from a method */
1602
1603 CASE(_areturn):
1604 CASE(_ireturn):
1605 CASE(_freturn):
1606 {
1607 // Allow a safepoint before returning to frame manager.
1608 SAFEPOINT;
1609
1610 goto handle_return;
1611 }
1612
1613 CASE(_lreturn):
1614 CASE(_dreturn):
1615 {
1616 // Allow a safepoint before returning to frame manager.
1617 SAFEPOINT;
1618 goto handle_return;
1619 }
1620
1621 CASE(_return_register_finalizer): {
1622
1623 oop rcvr = LOCALS_OBJECT(0);
1624 VERIFY_OOP(rcvr);
1625 if (rcvr->klass()->has_finalizer()) {
1626 CALL_VM(InterpreterRuntime::register_finalizer(THREAD, rcvr), handle_exception);
1627 }
1628 goto handle_return;
1629 }
1630 CASE(_return): {
1631
1632 // Allow a safepoint before returning to frame manager.
1633 SAFEPOINT;
1634 goto handle_return;
1635 }
1636
1637 /* Array access byte-codes */
1638
1639 /* Every array access byte-code starts out like this */
1640 // arrayOopDesc* arrObj = (arrayOopDesc*)STACK_OBJECT(arrayOff);
1641 #define ARRAY_INTRO(arrayOff) \
1642 arrayOop arrObj = (arrayOop)STACK_OBJECT(arrayOff); \
1643 jint index = STACK_INT(arrayOff + 1); \
1644 char message[jintAsStringSize]; \
1645 CHECK_NULL(arrObj); \
1646 if ((uint32_t)index >= (uint32_t)arrObj->length()) { \
1647 sprintf(message, "%d", index); \
1648 VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), \
1649 message, note_rangeCheck_trap); \
1650 }
1651
1652 /* 32-bit loads. These handle conversion from < 32-bit types */
1653 #define ARRAY_LOADTO32(T, T2, format, stackRes, extra) \
1654 { \
1655 ARRAY_INTRO(-2); \
1656 (void)extra; \
1657 SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), \
1658 -2); \
1659 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1); \
1660 }
1661
1662 /* 64-bit loads */
1663 #define ARRAY_LOADTO64(T,T2, stackRes, extra) \
1664 { \
1665 ARRAY_INTRO(-2); \
1666 SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), -1); \
1667 (void)extra; \
1668 UPDATE_PC_AND_CONTINUE(1); \
1669 }
1670
1671 CASE(_iaload):
1672 ARRAY_LOADTO32(T_INT, jint, "%d", STACK_INT, 0);
1673 CASE(_faload):
1674 ARRAY_LOADTO32(T_FLOAT, jfloat, "%f", STACK_FLOAT, 0);
1675 CASE(_aaload): {
1676 ARRAY_INTRO(-2);
1677 SET_STACK_OBJECT(((objArrayOop) arrObj)->obj_at(index), -2);
1678 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1679 }
1680 CASE(_baload):
1681 ARRAY_LOADTO32(T_BYTE, jbyte, "%d", STACK_INT, 0);
1682 CASE(_caload):
1683 ARRAY_LOADTO32(T_CHAR, jchar, "%d", STACK_INT, 0);
1684 CASE(_saload):
1685 ARRAY_LOADTO32(T_SHORT, jshort, "%d", STACK_INT, 0);
1686 CASE(_laload):
1687 ARRAY_LOADTO64(T_LONG, jlong, STACK_LONG, 0);
1688 CASE(_daload):
1689 ARRAY_LOADTO64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1690
1691 /* 32-bit stores. These handle conversion to < 32-bit types */
1692 #define ARRAY_STOREFROM32(T, T2, format, stackSrc, extra) \
1693 { \
1694 ARRAY_INTRO(-3); \
1695 (void)extra; \
1696 *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1697 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3); \
1698 }
1699
1700 /* 64-bit stores */
1701 #define ARRAY_STOREFROM64(T, T2, stackSrc, extra) \
1702 { \
1703 ARRAY_INTRO(-4); \
1704 (void)extra; \
1705 *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1706 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -4); \
1707 }
1708
1709 CASE(_iastore):
1710 ARRAY_STOREFROM32(T_INT, jint, "%d", STACK_INT, 0);
1711 CASE(_fastore):
1712 ARRAY_STOREFROM32(T_FLOAT, jfloat, "%f", STACK_FLOAT, 0);
1713 /*
1714 * This one looks different because of the assignability check
1715 */
1716 CASE(_aastore): {
1717 oop rhsObject = STACK_OBJECT(-1);
1718 VERIFY_OOP(rhsObject);
1719 ARRAY_INTRO( -3);
1720 // arrObj, index are set
1721 if (rhsObject != NULL) {
1722 /* Check assignability of rhsObject into arrObj */
1723 Klass* rhsKlass = rhsObject->klass(); // EBX (subclass)
1724 Klass* elemKlass = ObjArrayKlass::cast(arrObj->klass())->element_klass(); // superklass EAX
1725 //
1726 // Check for compatibilty. This check must not GC!!
1727 // Seems way more expensive now that we must dispatch
1728 //
1729 if (rhsKlass != elemKlass && !rhsKlass->is_subtype_of(elemKlass)) { // ebx->is...
1730 // Decrement counter if subtype check failed.
1731 BI_PROFILE_SUBTYPECHECK_FAILED(rhsKlass);
1732 VM_JAVA_ERROR(vmSymbols::java_lang_ArrayStoreException(), "", note_arrayCheck_trap);
1733 }
1734 // Profile checkcast with null_seen and receiver.
1735 BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/false, rhsKlass);
1736 } else {
1737 // Profile checkcast with null_seen and receiver.
1738 BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/true, NULL);
1739 }
1740 ((objArrayOop) arrObj)->obj_at_put(index, rhsObject);
1741 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1742 }
1743 CASE(_bastore): {
1744 ARRAY_INTRO(-3);
1745 int item = STACK_INT(-1);
1746 // if it is a T_BOOLEAN array, mask the stored value to 0/1
1747 if (arrObj->klass() == Universe::boolArrayKlassObj()) {
1748 item &= 1;
1749 } else {
1750 assert(arrObj->klass() == Universe::byteArrayKlassObj(),
1751 "should be byte array otherwise");
1752 }
1753 ((typeArrayOop)arrObj)->byte_at_put(index, item);
1754 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1755 }
1756 CASE(_castore):
1757 ARRAY_STOREFROM32(T_CHAR, jchar, "%d", STACK_INT, 0);
1758 CASE(_sastore):
1759 ARRAY_STOREFROM32(T_SHORT, jshort, "%d", STACK_INT, 0);
1760 CASE(_lastore):
1761 ARRAY_STOREFROM64(T_LONG, jlong, STACK_LONG, 0);
1762 CASE(_dastore):
1763 ARRAY_STOREFROM64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1764
1765 CASE(_arraylength):
1766 {
1767 arrayOop ary = (arrayOop) STACK_OBJECT(-1);
1768 CHECK_NULL(ary);
1769 SET_STACK_INT(ary->length(), -1);
1770 UPDATE_PC_AND_CONTINUE(1);
1771 }
1772
1773 /* monitorenter and monitorexit for locking/unlocking an object */
1774
1775 CASE(_monitorenter): {
1776 oop lockee = STACK_OBJECT(-1);
1777 // derefing's lockee ought to provoke implicit null check
1778 CHECK_NULL(lockee);
1779 // find a free monitor or one already allocated for this object
1780 // if we find a matching object then we need a new monitor
1781 // since this is recursive enter
1782 BasicObjectLock* limit = istate->monitor_base();
1783 BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1784 BasicObjectLock* entry = NULL;
1785 while (most_recent != limit ) {
1786 if (most_recent->obj() == NULL) entry = most_recent;
1787 else if (most_recent->obj() == lockee) break;
1788 most_recent++;
1789 }
1790 if (entry != NULL) {
1791 entry->set_obj(lockee);
1792 int success = false;
1793 uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
1794
1795 markOop mark = lockee->mark();
1796 intptr_t hash = (intptr_t) markOopDesc::no_hash;
1797 // implies UseBiasedLocking
1798 if (mark->has_bias_pattern()) {
1799 uintptr_t thread_ident;
1800 uintptr_t anticipated_bias_locking_value;
1801 thread_ident = (uintptr_t)istate->thread();
1802 anticipated_bias_locking_value =
1803 (((uintptr_t)lockee->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
1804 ~((uintptr_t) markOopDesc::age_mask_in_place);
1805
1806 if (anticipated_bias_locking_value == 0) {
1807 // already biased towards this thread, nothing to do
1808 if (PrintBiasedLockingStatistics) {
1809 (* BiasedLocking::biased_lock_entry_count_addr())++;
1810 }
1811 success = true;
1812 }
1813 else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
1814 // try revoke bias
1815 markOop header = lockee->klass()->prototype_header();
1816 if (hash != markOopDesc::no_hash) {
1817 header = header->copy_set_hash(hash);
1818 }
1819 if (lockee->cas_set_mark(header, mark) == mark) {
1820 if (PrintBiasedLockingStatistics)
1821 (*BiasedLocking::revoked_lock_entry_count_addr())++;
1822 }
1823 }
1824 else if ((anticipated_bias_locking_value & epoch_mask_in_place) !=0) {
1825 // try rebias
1826 markOop new_header = (markOop) ( (intptr_t) lockee->klass()->prototype_header() | thread_ident);
1827 if (hash != markOopDesc::no_hash) {
1828 new_header = new_header->copy_set_hash(hash);
1829 }
1830 if (lockee->cas_set_mark(new_header, mark) == mark) {
1831 if (PrintBiasedLockingStatistics)
1832 (* BiasedLocking::rebiased_lock_entry_count_addr())++;
1833 }
1834 else {
1835 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1836 }
1837 success = true;
1838 }
1839 else {
1840 // try to bias towards thread in case object is anonymously biased
1841 markOop header = (markOop) ((uintptr_t) mark & ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
1842 (uintptr_t)markOopDesc::age_mask_in_place |
1843 epoch_mask_in_place));
1844 if (hash != markOopDesc::no_hash) {
1845 header = header->copy_set_hash(hash);
1846 }
1847 markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
1848 // debugging hint
1849 DEBUG_ONLY(entry->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
1850 if (lockee->cas_set_mark(new_header, header) == header) {
1851 if (PrintBiasedLockingStatistics)
1852 (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
1853 }
1854 else {
1855 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1856 }
1857 success = true;
1858 }
1859 }
1860
1861 // traditional lightweight locking
1862 if (!success) {
1863 markOop displaced = lockee->mark()->set_unlocked();
1864 entry->lock()->set_displaced_header(displaced);
1865 bool call_vm = UseHeavyMonitors;
1866 if (call_vm || lockee->cas_set_mark((markOop)entry, displaced) != displaced) {
1867 // Is it simple recursive case?
1868 if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
1869 entry->lock()->set_displaced_header(NULL);
1870 } else {
1871 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1872 }
1873 }
1874 }
1875 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1876 } else {
1877 istate->set_msg(more_monitors);
1878 UPDATE_PC_AND_RETURN(0); // Re-execute
1879 }
1880 }
1881
1882 CASE(_monitorexit): {
1883 oop lockee = STACK_OBJECT(-1);
1884 CHECK_NULL(lockee);
1885 // derefing's lockee ought to provoke implicit null check
1886 // find our monitor slot
1887 BasicObjectLock* limit = istate->monitor_base();
1888 BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1889 while (most_recent != limit ) {
1890 if ((most_recent)->obj() == lockee) {
1891 BasicLock* lock = most_recent->lock();
1892 markOop header = lock->displaced_header();
1893 most_recent->set_obj(NULL);
1894 if (!lockee->mark()->has_bias_pattern()) {
1895 bool call_vm = UseHeavyMonitors;
1896 // If it isn't recursive we either must swap old header or call the runtime
1897 if (header != NULL || call_vm) {
1898 markOop old_header = markOopDesc::encode(lock);
1899 if (call_vm || lockee->cas_set_mark(header, old_header) != old_header) {
1900 // restore object for the slow case
1901 most_recent->set_obj(lockee);
1902 CALL_VM(InterpreterRuntime::monitorexit(THREAD, most_recent), handle_exception);
1903 }
1904 }
1905 }
1906 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1907 }
1908 most_recent++;
1909 }
1910 // Need to throw illegal monitor state exception
1911 CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception);
1912 ShouldNotReachHere();
1913 }
1914
1915 /* All of the non-quick opcodes. */
1916
1917 /* -Set clobbersCpIndex true if the quickened opcode clobbers the
1918 * constant pool index in the instruction.
1919 */
1920 CASE(_getfield):
1921 CASE(_getstatic):
1922 {
1923 u2 index;
1924 ConstantPoolCacheEntry* cache;
1925 index = Bytes::get_native_u2(pc+1);
1926
1927 // QQQ Need to make this as inlined as possible. Probably need to
1928 // split all the bytecode cases out so c++ compiler has a chance
1929 // for constant prop to fold everything possible away.
1930
1931 cache = cp->entry_at(index);
1932 if (!cache->is_resolved((Bytecodes::Code)opcode)) {
1933 CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
1934 handle_exception);
1935 cache = cp->entry_at(index);
1936 }
1937
1938 #ifdef VM_JVMTI
1939 if (_jvmti_interp_events) {
1940 int *count_addr;
1941 oop obj;
1942 // Check to see if a field modification watch has been set
1943 // before we take the time to call into the VM.
1944 count_addr = (int *)JvmtiExport::get_field_access_count_addr();
1945 if ( *count_addr > 0 ) {
1946 if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1947 obj = (oop)NULL;
1948 } else {
1949 obj = (oop) STACK_OBJECT(-1);
1950 VERIFY_OOP(obj);
1951 }
1952 CALL_VM(InterpreterRuntime::post_field_access(THREAD,
1953 obj,
1954 cache),
1955 handle_exception);
1956 }
1957 }
1958 #endif /* VM_JVMTI */
1959
1960 oop obj;
1961 if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1962 Klass* k = cache->f1_as_klass();
1963 obj = k->java_mirror();
1964 MORE_STACK(1); // Assume single slot push
1965 } else {
1966 obj = (oop) STACK_OBJECT(-1);
1967 CHECK_NULL(obj);
1968 }
1969
1970 //
1971 // Now store the result on the stack
1972 //
1973 TosState tos_type = cache->flag_state();
1974 int field_offset = cache->f2_as_index();
1975 if (cache->is_volatile()) {
1976 if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
1977 OrderAccess::fence();
1978 }
1979 if (tos_type == atos) {
1980 VERIFY_OOP(obj->obj_field_acquire(field_offset));
1981 SET_STACK_OBJECT(obj->obj_field_acquire(field_offset), -1);
1982 } else if (tos_type == itos) {
1983 SET_STACK_INT(obj->int_field_acquire(field_offset), -1);
1984 } else if (tos_type == ltos) {
1985 SET_STACK_LONG(obj->long_field_acquire(field_offset), 0);
1986 MORE_STACK(1);
1987 } else if (tos_type == btos || tos_type == ztos) {
1988 SET_STACK_INT(obj->byte_field_acquire(field_offset), -1);
1989 } else if (tos_type == ctos) {
1990 SET_STACK_INT(obj->char_field_acquire(field_offset), -1);
1991 } else if (tos_type == stos) {
1992 SET_STACK_INT(obj->short_field_acquire(field_offset), -1);
1993 } else if (tos_type == ftos) {
1994 SET_STACK_FLOAT(obj->float_field_acquire(field_offset), -1);
1995 } else {
1996 SET_STACK_DOUBLE(obj->double_field_acquire(field_offset), 0);
1997 MORE_STACK(1);
1998 }
1999 } else {
2000 if (tos_type == atos) {
2001 VERIFY_OOP(obj->obj_field(field_offset));
2002 SET_STACK_OBJECT(obj->obj_field(field_offset), -1);
2003 } else if (tos_type == itos) {
2004 SET_STACK_INT(obj->int_field(field_offset), -1);
2005 } else if (tos_type == ltos) {
2006 SET_STACK_LONG(obj->long_field(field_offset), 0);
2007 MORE_STACK(1);
2008 } else if (tos_type == btos || tos_type == ztos) {
2009 SET_STACK_INT(obj->byte_field(field_offset), -1);
2010 } else if (tos_type == ctos) {
2011 SET_STACK_INT(obj->char_field(field_offset), -1);
2012 } else if (tos_type == stos) {
2013 SET_STACK_INT(obj->short_field(field_offset), -1);
2014 } else if (tos_type == ftos) {
2015 SET_STACK_FLOAT(obj->float_field(field_offset), -1);
2016 } else {
2017 SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
2018 MORE_STACK(1);
2019 }
2020 }
2021
2022 UPDATE_PC_AND_CONTINUE(3);
2023 }
2024
2025 CASE(_putfield):
2026 CASE(_putstatic):
2027 {
2028 u2 index = Bytes::get_native_u2(pc+1);
2029 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2030 if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2031 CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2032 handle_exception);
2033 cache = cp->entry_at(index);
2034 }
2035
2036 #ifdef VM_JVMTI
2037 if (_jvmti_interp_events) {
2038 int *count_addr;
2039 oop obj;
2040 // Check to see if a field modification watch has been set
2041 // before we take the time to call into the VM.
2042 count_addr = (int *)JvmtiExport::get_field_modification_count_addr();
2043 if ( *count_addr > 0 ) {
2044 if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
2045 obj = (oop)NULL;
2046 }
2047 else {
2048 if (cache->is_long() || cache->is_double()) {
2049 obj = (oop) STACK_OBJECT(-3);
2050 } else {
2051 obj = (oop) STACK_OBJECT(-2);
2052 }
2053 VERIFY_OOP(obj);
2054 }
2055
2056 CALL_VM(InterpreterRuntime::post_field_modification(THREAD,
2057 obj,
2058 cache,
2059 (jvalue *)STACK_SLOT(-1)),
2060 handle_exception);
2061 }
2062 }
2063 #endif /* VM_JVMTI */
2064
2065 // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2066 // out so c++ compiler has a chance for constant prop to fold everything possible away.
2067
2068 oop obj;
2069 int count;
2070 TosState tos_type = cache->flag_state();
2071
2072 count = -1;
2073 if (tos_type == ltos || tos_type == dtos) {
2074 --count;
2075 }
2076 if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
2077 Klass* k = cache->f1_as_klass();
2078 obj = k->java_mirror();
2079 } else {
2080 --count;
2081 obj = (oop) STACK_OBJECT(count);
2082 CHECK_NULL(obj);
2083 }
2084
2085 //
2086 // Now store the result
2087 //
2088 int field_offset = cache->f2_as_index();
2089 if (cache->is_volatile()) {
2090 if (tos_type == itos) {
2091 obj->release_int_field_put(field_offset, STACK_INT(-1));
2092 } else if (tos_type == atos) {
2093 VERIFY_OOP(STACK_OBJECT(-1));
2094 obj->release_obj_field_put(field_offset, STACK_OBJECT(-1));
2095 } else if (tos_type == btos) {
2096 obj->release_byte_field_put(field_offset, STACK_INT(-1));
2097 } else if (tos_type == ztos) {
2098 int bool_field = STACK_INT(-1); // only store LSB
2099 obj->release_byte_field_put(field_offset, (bool_field & 1));
2100 } else if (tos_type == ltos) {
2101 obj->release_long_field_put(field_offset, STACK_LONG(-1));
2102 } else if (tos_type == ctos) {
2103 obj->release_char_field_put(field_offset, STACK_INT(-1));
2104 } else if (tos_type == stos) {
2105 obj->release_short_field_put(field_offset, STACK_INT(-1));
2106 } else if (tos_type == ftos) {
2107 obj->release_float_field_put(field_offset, STACK_FLOAT(-1));
2108 } else {
2109 obj->release_double_field_put(field_offset, STACK_DOUBLE(-1));
2110 }
2111 OrderAccess::storeload();
2112 } else {
2113 if (tos_type == itos) {
2114 obj->int_field_put(field_offset, STACK_INT(-1));
2115 } else if (tos_type == atos) {
2116 VERIFY_OOP(STACK_OBJECT(-1));
2117 obj->obj_field_put(field_offset, STACK_OBJECT(-1));
2118 } else if (tos_type == btos) {
2119 obj->byte_field_put(field_offset, STACK_INT(-1));
2120 } else if (tos_type == ztos) {
2121 int bool_field = STACK_INT(-1); // only store LSB
2122 obj->byte_field_put(field_offset, (bool_field & 1));
2123 } else if (tos_type == ltos) {
2124 obj->long_field_put(field_offset, STACK_LONG(-1));
2125 } else if (tos_type == ctos) {
2126 obj->char_field_put(field_offset, STACK_INT(-1));
2127 } else if (tos_type == stos) {
2128 obj->short_field_put(field_offset, STACK_INT(-1));
2129 } else if (tos_type == ftos) {
2130 obj->float_field_put(field_offset, STACK_FLOAT(-1));
2131 } else {
2132 obj->double_field_put(field_offset, STACK_DOUBLE(-1));
2133 }
2134 }
2135
2136 UPDATE_PC_AND_TOS_AND_CONTINUE(3, count);
2137 }
2138
2139 CASE(_new): {
2140 u2 index = Bytes::get_Java_u2(pc+1);
2141 ConstantPool* constants = istate->method()->constants();
2142 if (!constants->tag_at(index).is_unresolved_klass()) {
2143 // Make sure klass is initialized and doesn't have a finalizer
2144 Klass* entry = constants->resolved_klass_at(index);
2145 InstanceKlass* ik = InstanceKlass::cast(entry);
2146 if (ik->is_initialized() && ik->can_be_fastpath_allocated() ) {
2147 size_t obj_size = ik->size_helper();
2148 oop result = NULL;
2149 // If the TLAB isn't pre-zeroed then we'll have to do it
2150 bool need_zero = !ZeroTLAB;
2151 if (UseTLAB) {
2152 result = (oop) THREAD->tlab().allocate(obj_size);
2153 }
2154 // Disable non-TLAB-based fast-path, because profiling requires that all
2155 // allocations go through InterpreterRuntime::_new() if THREAD->tlab().allocate
2156 // returns NULL.
2157 #ifndef CC_INTERP_PROFILE
2158 if (result == NULL) {
2159 need_zero = true;
2160 // Try allocate in shared eden
2161 retry:
2162 HeapWord* compare_to = *Universe::heap()->top_addr();
2163 HeapWord* new_top = compare_to + obj_size;
2164 if (new_top <= *Universe::heap()->end_addr()) {
2165 if (Atomic::cmpxchg(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) {
2166 goto retry;
2167 }
2168 result = (oop) compare_to;
2169 }
2170 }
2171 #endif
2172 if (result != NULL) {
2173 // Initialize object (if nonzero size and need) and then the header
2174 if (need_zero ) {
2175 HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize;
2176 obj_size -= sizeof(oopDesc) / oopSize;
2177 if (obj_size > 0 ) {
2178 memset(to_zero, 0, obj_size * HeapWordSize);
2179 }
2180 }
2181 if (UseBiasedLocking) {
2182 result->set_mark(ik->prototype_header());
2183 } else {
2184 result->set_mark(markOopDesc::prototype());
2185 }
2186 result->set_klass_gap(0);
2187 result->set_klass(ik);
2188 // Must prevent reordering of stores for object initialization
2189 // with stores that publish the new object.
2190 OrderAccess::storestore();
2191 SET_STACK_OBJECT(result, 0);
2192 UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2193 }
2194 }
2195 }
2196 // Slow case allocation
2197 CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
2198 handle_exception);
2199 // Must prevent reordering of stores for object initialization
2200 // with stores that publish the new object.
2201 OrderAccess::storestore();
2202 SET_STACK_OBJECT(THREAD->vm_result(), 0);
2203 THREAD->set_vm_result(NULL);
2204 UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2205 }
2206 CASE(_anewarray): {
2207 u2 index = Bytes::get_Java_u2(pc+1);
2208 jint size = STACK_INT(-1);
2209 CALL_VM(InterpreterRuntime::anewarray(THREAD, METHOD->constants(), index, size),
2210 handle_exception);
2211 // Must prevent reordering of stores for object initialization
2212 // with stores that publish the new object.
2213 OrderAccess::storestore();
2214 SET_STACK_OBJECT(THREAD->vm_result(), -1);
2215 THREAD->set_vm_result(NULL);
2216 UPDATE_PC_AND_CONTINUE(3);
2217 }
2218 CASE(_multianewarray): {
2219 jint dims = *(pc+3);
2220 jint size = STACK_INT(-1);
2221 // stack grows down, dimensions are up!
2222 jint *dimarray =
2223 (jint*)&topOfStack[dims * Interpreter::stackElementWords+
2224 Interpreter::stackElementWords-1];
2225 //adjust pointer to start of stack element
2226 CALL_VM(InterpreterRuntime::multianewarray(THREAD, dimarray),
2227 handle_exception);
2228 // Must prevent reordering of stores for object initialization
2229 // with stores that publish the new object.
2230 OrderAccess::storestore();
2231 SET_STACK_OBJECT(THREAD->vm_result(), -dims);
2232 THREAD->set_vm_result(NULL);
2233 UPDATE_PC_AND_TOS_AND_CONTINUE(4, -(dims-1));
2234 }
2235 CASE(_checkcast):
2236 if (STACK_OBJECT(-1) != NULL) {
2237 VERIFY_OOP(STACK_OBJECT(-1));
2238 u2 index = Bytes::get_Java_u2(pc+1);
2239 // Constant pool may have actual klass or unresolved klass. If it is
2240 // unresolved we must resolve it.
2241 if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2242 CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2243 }
2244 Klass* klassOf = (Klass*) METHOD->constants()->resolved_klass_at(index);
2245 Klass* objKlass = STACK_OBJECT(-1)->klass(); // ebx
2246 //
2247 // Check for compatibilty. This check must not GC!!
2248 // Seems way more expensive now that we must dispatch.
2249 //
2250 if (objKlass != klassOf && !objKlass->is_subtype_of(klassOf)) {
2251 // Decrement counter at checkcast.
2252 BI_PROFILE_SUBTYPECHECK_FAILED(objKlass);
2253 ResourceMark rm(THREAD);
2254 char* message = SharedRuntime::generate_class_cast_message(
2255 objKlass, klassOf);
2256 VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message, note_classCheck_trap);
2257 }
2258 // Profile checkcast with null_seen and receiver.
2259 BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/false, objKlass);
2260 } else {
2261 // Profile checkcast with null_seen and receiver.
2262 BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/true, NULL);
2263 }
2264 UPDATE_PC_AND_CONTINUE(3);
2265
2266 CASE(_instanceof):
2267 if (STACK_OBJECT(-1) == NULL) {
2268 SET_STACK_INT(0, -1);
2269 // Profile instanceof with null_seen and receiver.
2270 BI_PROFILE_UPDATE_INSTANCEOF(/*null_seen=*/true, NULL);
2271 } else {
2272 VERIFY_OOP(STACK_OBJECT(-1));
2273 u2 index = Bytes::get_Java_u2(pc+1);
2274 // Constant pool may have actual klass or unresolved klass. If it is
2275 // unresolved we must resolve it.
2276 if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2277 CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2278 }
2279 Klass* klassOf = (Klass*) METHOD->constants()->resolved_klass_at(index);
2280 Klass* objKlass = STACK_OBJECT(-1)->klass();
2281 //
2282 // Check for compatibilty. This check must not GC!!
2283 // Seems way more expensive now that we must dispatch.
2284 //
2285 if ( objKlass == klassOf || objKlass->is_subtype_of(klassOf)) {
2286 SET_STACK_INT(1, -1);
2287 } else {
2288 SET_STACK_INT(0, -1);
2289 // Decrement counter at checkcast.
2290 BI_PROFILE_SUBTYPECHECK_FAILED(objKlass);
2291 }
2292 // Profile instanceof with null_seen and receiver.
2293 BI_PROFILE_UPDATE_INSTANCEOF(/*null_seen=*/false, objKlass);
2294 }
2295 UPDATE_PC_AND_CONTINUE(3);
2296
2297 CASE(_ldc_w):
2298 CASE(_ldc):
2299 {
2300 u2 index;
2301 bool wide = false;
2302 int incr = 2; // frequent case
2303 if (opcode == Bytecodes::_ldc) {
2304 index = pc[1];
2305 } else {
2306 index = Bytes::get_Java_u2(pc+1);
2307 incr = 3;
2308 wide = true;
2309 }
2310
2311 ConstantPool* constants = METHOD->constants();
2312 switch (constants->tag_at(index).value()) {
2313 case JVM_CONSTANT_Integer:
2314 SET_STACK_INT(constants->int_at(index), 0);
2315 break;
2316
2317 case JVM_CONSTANT_Float:
2318 SET_STACK_FLOAT(constants->float_at(index), 0);
2319 break;
2320
2321 case JVM_CONSTANT_String:
2322 {
2323 oop result = constants->resolved_references()->obj_at(index);
2324 if (result == NULL) {
2325 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception);
2326 SET_STACK_OBJECT(THREAD->vm_result(), 0);
2327 THREAD->set_vm_result(NULL);
2328 } else {
2329 VERIFY_OOP(result);
2330 SET_STACK_OBJECT(result, 0);
2331 }
2332 break;
2333 }
2334
2335 case JVM_CONSTANT_Class:
2336 VERIFY_OOP(constants->resolved_klass_at(index)->java_mirror());
2337 SET_STACK_OBJECT(constants->resolved_klass_at(index)->java_mirror(), 0);
2338 break;
2339
2340 case JVM_CONSTANT_UnresolvedClass:
2341 case JVM_CONSTANT_UnresolvedClassInError:
2342 CALL_VM(InterpreterRuntime::ldc(THREAD, wide), handle_exception);
2343 SET_STACK_OBJECT(THREAD->vm_result(), 0);
2344 THREAD->set_vm_result(NULL);
2345 break;
2346
2347 case JVM_CONSTANT_Dynamic:
2348 {
2349 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception);
2350 oop result = THREAD->vm_result();
2351 VERIFY_OOP(result);
2352
2353 jvalue value;
2354 BasicType type = java_lang_boxing_object::get_value(result, &value);
2355 switch (type) {
2356 case T_FLOAT: SET_STACK_FLOAT(value.f, 0); break;
2357 case T_INT: SET_STACK_INT(value.i, 0); break;
2358 case T_SHORT: SET_STACK_INT(value.s, 0); break;
2359 case T_BYTE: SET_STACK_INT(value.b, 0); break;
2360 case T_CHAR: SET_STACK_INT(value.c, 0); break;
2361 case T_BOOLEAN: SET_STACK_INT(value.z, 0); break;
2362 default: ShouldNotReachHere();
2363 }
2364
2365 break;
2366 }
2367
2368 default: ShouldNotReachHere();
2369 }
2370 UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2371 }
2372
2373 CASE(_ldc2_w):
2374 {
2375 u2 index = Bytes::get_Java_u2(pc+1);
2376
2377 ConstantPool* constants = METHOD->constants();
2378 switch (constants->tag_at(index).value()) {
2379
2380 case JVM_CONSTANT_Long:
2381 SET_STACK_LONG(constants->long_at(index), 1);
2382 break;
2383
2384 case JVM_CONSTANT_Double:
2385 SET_STACK_DOUBLE(constants->double_at(index), 1);
2386 break;
2387
2388 case JVM_CONSTANT_Dynamic:
2389 {
2390 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception);
2391 oop result = THREAD->vm_result();
2392 VERIFY_OOP(result);
2393
2394 jvalue value;
2395 BasicType type = java_lang_boxing_object::get_value(result, &value);
2396 switch (type) {
2397 case T_DOUBLE: SET_STACK_DOUBLE(value.d, 1); break;
2398 case T_LONG: SET_STACK_LONG(value.j, 1); break;
2399 default: ShouldNotReachHere();
2400 }
2401
2402 break;
2403 }
2404
2405 default: ShouldNotReachHere();
2406 }
2407 UPDATE_PC_AND_TOS_AND_CONTINUE(3, 2);
2408 }
2409
2410 CASE(_fast_aldc_w):
2411 CASE(_fast_aldc): {
2412 u2 index;
2413 int incr;
2414 if (opcode == Bytecodes::_fast_aldc) {
2415 index = pc[1];
2416 incr = 2;
2417 } else {
2418 index = Bytes::get_native_u2(pc+1);
2419 incr = 3;
2420 }
2421
2422 // We are resolved if the resolved_references array contains a non-null object (CallSite, etc.)
2423 // This kind of CP cache entry does not need to match the flags byte, because
2424 // there is a 1-1 relation between bytecode type and CP entry type.
2425 ConstantPool* constants = METHOD->constants();
2426 oop result = constants->resolved_references()->obj_at(index);
2427 if (result == NULL) {
2428 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode),
2429 handle_exception);
2430 result = THREAD->vm_result();
2431 }
2432 if (result == Universe::the_null_sentinel())
2433 result = NULL;
2434
2435 VERIFY_OOP(result);
2436 SET_STACK_OBJECT(result, 0);
2437 UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2438 }
2439
2440 CASE(_invokedynamic): {
2441
2442 u4 index = Bytes::get_native_u4(pc+1);
2443 ConstantPoolCacheEntry* cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2444
2445 // We are resolved if the resolved_references array contains a non-null object (CallSite, etc.)
2446 // This kind of CP cache entry does not need to match the flags byte, because
2447 // there is a 1-1 relation between bytecode type and CP entry type.
2448 if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2449 CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2450 handle_exception);
2451 cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2452 }
2453
2454 Method* method = cache->f1_as_method();
2455 if (VerifyOops) method->verify();
2456
2457 if (cache->has_appendix()) {
2458 ConstantPool* constants = METHOD->constants();
2459 SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
2460 MORE_STACK(1);
2461 }
2462
2463 istate->set_msg(call_method);
2464 istate->set_callee(method);
2465 istate->set_callee_entry_point(method->from_interpreted_entry());
2466 istate->set_bcp_advance(5);
2467
2468 // Invokedynamic has got a call counter, just like an invokestatic -> increment!
2469 BI_PROFILE_UPDATE_CALL();
2470
2471 UPDATE_PC_AND_RETURN(0); // I'll be back...
2472 }
2473
2474 CASE(_invokehandle): {
2475
2476 u2 index = Bytes::get_native_u2(pc+1);
2477 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2478
2479 if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2480 CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2481 handle_exception);
2482 cache = cp->entry_at(index);
2483 }
2484
2485 Method* method = cache->f1_as_method();
2486 if (VerifyOops) method->verify();
2487
2488 if (cache->has_appendix()) {
2489 ConstantPool* constants = METHOD->constants();
2490 SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
2491 MORE_STACK(1);
2492 }
2493
2494 istate->set_msg(call_method);
2495 istate->set_callee(method);
2496 istate->set_callee_entry_point(method->from_interpreted_entry());
2497 istate->set_bcp_advance(3);
2498
2499 // Invokehandle has got a call counter, just like a final call -> increment!
2500 BI_PROFILE_UPDATE_FINALCALL();
2501
2502 UPDATE_PC_AND_RETURN(0); // I'll be back...
2503 }
2504
2505 CASE(_invokeinterface): {
2506 u2 index = Bytes::get_native_u2(pc+1);
2507
2508 // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2509 // out so c++ compiler has a chance for constant prop to fold everything possible away.
2510
2511 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2512 if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2513 CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2514 handle_exception);
2515 cache = cp->entry_at(index);
2516 }
2517
2518 istate->set_msg(call_method);
2519
2520 // Special case of invokeinterface called for virtual method of
2521 // java.lang.Object. See cpCache.cpp for details.
2522 Method* callee = NULL;
2523 if (cache->is_forced_virtual()) {
2524 CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2525 if (cache->is_vfinal()) {
2526 callee = cache->f2_as_vfinal_method();
2527 // Profile 'special case of invokeinterface' final call.
2528 BI_PROFILE_UPDATE_FINALCALL();
2529 } else {
2530 // Get receiver.
2531 int parms = cache->parameter_size();
2532 // Same comments as invokevirtual apply here.
2533 oop rcvr = STACK_OBJECT(-parms);
2534 VERIFY_OOP(rcvr);
2535 Klass* rcvrKlass = rcvr->klass();
2536 callee = (Method*) rcvrKlass->method_at_vtable(cache->f2_as_index());
2537 // Profile 'special case of invokeinterface' virtual call.
2538 BI_PROFILE_UPDATE_VIRTUALCALL(rcvrKlass);
2539 }
2540 } else if (cache->is_vfinal()) {
2541 // private interface method invocations
2542 //
2543 // Ensure receiver class actually implements
2544 // the resolved interface class. The link resolver
2545 // does this, but only for the first time this
2546 // interface is being called.
2547 int parms = cache->parameter_size();
2548 oop rcvr = STACK_OBJECT(-parms);
2549 CHECK_NULL(rcvr);
2550 Klass* recv_klass = rcvr->klass();
2551 Klass* resolved_klass = cache->f1_as_klass();
2552 if (!recv_klass->is_subtype_of(resolved_klass)) {
2553 ResourceMark rm(THREAD);
2554 char buf[200];
2555 jio_snprintf(buf, sizeof(buf), "Class %s does not implement the requested interface %s",
2556 recv_klass->external_name(),
2557 resolved_klass->external_name());
2558 VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), buf, note_no_trap);
2559 }
2560 callee = cache->f2_as_vfinal_method();
2561 }
2562 if (callee != NULL) {
2563 istate->set_callee(callee);
2564 istate->set_callee_entry_point(callee->from_interpreted_entry());
2565 #ifdef VM_JVMTI
2566 if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2567 istate->set_callee_entry_point(callee->interpreter_entry());
2568 }
2569 #endif /* VM_JVMTI */
2570 istate->set_bcp_advance(5);
2571 UPDATE_PC_AND_RETURN(0); // I'll be back...
2572 }
2573
2574 // this could definitely be cleaned up QQQ
2575 Method *interface_method = cache->f2_as_interface_method();
2576 InstanceKlass* iclass = interface_method->method_holder();
2577
2578 // get receiver
2579 int parms = cache->parameter_size();
2580 oop rcvr = STACK_OBJECT(-parms);
2581 CHECK_NULL(rcvr);
2582 InstanceKlass* int2 = (InstanceKlass*) rcvr->klass();
2583
2584 // Receiver subtype check against resolved interface klass (REFC).
2585 {
2586 Klass* refc = cache->f1_as_klass();
2587 itableOffsetEntry* scan;
2588 for (scan = (itableOffsetEntry*) int2->start_of_itable();
2589 scan->interface_klass() != NULL;
2590 scan++) {
2591 if (scan->interface_klass() == refc) {
2592 break;
2593 }
2594 }
2595 // Check that the entry is non-null. A null entry means
2596 // that the receiver class doesn't implement the
2597 // interface, and wasn't the same as when the caller was
2598 // compiled.
2599 if (scan->interface_klass() == NULL) {
2600 VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), "", note_no_trap);
2601 }
2602 }
2603
2604 itableOffsetEntry* ki = (itableOffsetEntry*) int2->start_of_itable();
2605 int i;
2606 for ( i = 0 ; i < int2->itable_length() ; i++, ki++ ) {
2607 if (ki->interface_klass() == iclass) break;
2608 }
2609 // If the interface isn't found, this class doesn't implement this
2610 // interface. The link resolver checks this but only for the first
2611 // time this interface is called.
2612 if (i == int2->itable_length()) {
2613 CALL_VM(InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose(THREAD, rcvr->klass(), iclass),
2614 handle_exception);
2615 }
2616 int mindex = interface_method->itable_index();
2617
2618 itableMethodEntry* im = ki->first_method_entry(rcvr->klass());
2619 callee = im[mindex].method();
2620 if (callee == NULL) {
2621 CALL_VM(InterpreterRuntime::throw_AbstractMethodErrorVerbose(THREAD, rcvr->klass(), interface_method),
2622 handle_exception);
2623 }
2624
2625 // Profile virtual call.
2626 BI_PROFILE_UPDATE_VIRTUALCALL(rcvr->klass());
2627
2628 istate->set_callee(callee);
2629 istate->set_callee_entry_point(callee->from_interpreted_entry());
2630 #ifdef VM_JVMTI
2631 if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2632 istate->set_callee_entry_point(callee->interpreter_entry());
2633 }
2634 #endif /* VM_JVMTI */
2635 istate->set_bcp_advance(5);
2636 UPDATE_PC_AND_RETURN(0); // I'll be back...
2637 }
2638
2639 CASE(_invokevirtual):
2640 CASE(_invokespecial):
2641 CASE(_invokestatic): {
2642 u2 index = Bytes::get_native_u2(pc+1);
2643
2644 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2645 // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2646 // out so c++ compiler has a chance for constant prop to fold everything possible away.
2647
2648 if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2649 CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2650 handle_exception);
2651 cache = cp->entry_at(index);
2652 }
2653
2654 istate->set_msg(call_method);
2655 {
2656 Method* callee;
2657 if ((Bytecodes::Code)opcode == Bytecodes::_invokevirtual) {
2658 CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2659 if (cache->is_vfinal()) {
2660 callee = cache->f2_as_vfinal_method();
2661 // Profile final call.
2662 BI_PROFILE_UPDATE_FINALCALL();
2663 } else {
2664 // get receiver
2665 int parms = cache->parameter_size();
2666 // this works but needs a resourcemark and seems to create a vtable on every call:
2667 // Method* callee = rcvr->klass()->vtable()->method_at(cache->f2_as_index());
2668 //
2669 // this fails with an assert
2670 // InstanceKlass* rcvrKlass = InstanceKlass::cast(STACK_OBJECT(-parms)->klass());
2671 // but this works
2672 oop rcvr = STACK_OBJECT(-parms);
2673 VERIFY_OOP(rcvr);
2674 Klass* rcvrKlass = rcvr->klass();
2675 /*
2676 Executing this code in java.lang.String:
2677 public String(char value[]) {
2678 this.count = value.length;
2679 this.value = (char[])value.clone();
2680 }
2681
2682 a find on rcvr->klass() reports:
2683 {type array char}{type array class}
2684 - klass: {other class}
2685
2686 but using InstanceKlass::cast(STACK_OBJECT(-parms)->klass()) causes in assertion failure
2687 because rcvr->klass()->is_instance_klass() == 0
2688 However it seems to have a vtable in the right location. Huh?
2689 Because vtables have the same offset for ArrayKlass and InstanceKlass.
2690 */
2691 callee = (Method*) rcvrKlass->method_at_vtable(cache->f2_as_index());
2692 // Profile virtual call.
2693 BI_PROFILE_UPDATE_VIRTUALCALL(rcvrKlass);
2694 }
2695 } else {
2696 if ((Bytecodes::Code)opcode == Bytecodes::_invokespecial) {
2697 CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2698 }
2699 callee = cache->f1_as_method();
2700
2701 // Profile call.
2702 BI_PROFILE_UPDATE_CALL();
2703 }
2704
2705 istate->set_callee(callee);
2706 istate->set_callee_entry_point(callee->from_interpreted_entry());
2707 #ifdef VM_JVMTI
2708 if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2709 istate->set_callee_entry_point(callee->interpreter_entry());
2710 }
2711 #endif /* VM_JVMTI */
2712 istate->set_bcp_advance(3);
2713 UPDATE_PC_AND_RETURN(0); // I'll be back...
2714 }
2715 }
2716
2717 /* Allocate memory for a new java object. */
2718
2719 CASE(_newarray): {
2720 BasicType atype = (BasicType) *(pc+1);
2721 jint size = STACK_INT(-1);
2722 CALL_VM(InterpreterRuntime::newarray(THREAD, atype, size),
2723 handle_exception);
2724 // Must prevent reordering of stores for object initialization
2725 // with stores that publish the new object.
2726 OrderAccess::storestore();
2727 SET_STACK_OBJECT(THREAD->vm_result(), -1);
2728 THREAD->set_vm_result(NULL);
2729
2730 UPDATE_PC_AND_CONTINUE(2);
2731 }
2732
2733 /* Throw an exception. */
2734
2735 CASE(_athrow): {
2736 oop except_oop = STACK_OBJECT(-1);
2737 CHECK_NULL(except_oop);
2738 // set pending_exception so we use common code
2739 THREAD->set_pending_exception(except_oop, NULL, 0);
2740 goto handle_exception;
2741 }
2742
2743 /* goto and jsr. They are exactly the same except jsr pushes
2744 * the address of the next instruction first.
2745 */
2746
2747 CASE(_jsr): {
2748 /* push bytecode index on stack */
2749 SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 3), 0);
2750 MORE_STACK(1);
2751 /* FALL THROUGH */
2752 }
2753
2754 CASE(_goto):
2755 {
2756 int16_t offset = (int16_t)Bytes::get_Java_u2(pc + 1);
2757 // Profile jump.
2758 BI_PROFILE_UPDATE_JUMP();
2759 address branch_pc = pc;
2760 UPDATE_PC(offset);
2761 DO_BACKEDGE_CHECKS(offset, branch_pc);
2762 CONTINUE;
2763 }
2764
2765 CASE(_jsr_w): {
2766 /* push return address on the stack */
2767 SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 5), 0);
2768 MORE_STACK(1);
2769 /* FALL THROUGH */
2770 }
2771
2772 CASE(_goto_w):
2773 {
2774 int32_t offset = Bytes::get_Java_u4(pc + 1);
2775 // Profile jump.
2776 BI_PROFILE_UPDATE_JUMP();
2777 address branch_pc = pc;
2778 UPDATE_PC(offset);
2779 DO_BACKEDGE_CHECKS(offset, branch_pc);
2780 CONTINUE;
2781 }
2782
2783 /* return from a jsr or jsr_w */
2784
2785 CASE(_ret): {
2786 // Profile ret.
2787 BI_PROFILE_UPDATE_RET(/*bci=*/((int)(intptr_t)(LOCALS_ADDR(pc[1]))));
2788 // Now, update the pc.
2789 pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(pc[1]));
2790 UPDATE_PC_AND_CONTINUE(0);
2791 }
2792
2793 /* debugger breakpoint */
2794
2795 CASE(_breakpoint): {
2796 Bytecodes::Code original_bytecode;
2797 DECACHE_STATE();
2798 SET_LAST_JAVA_FRAME();
2799 original_bytecode = InterpreterRuntime::get_original_bytecode_at(THREAD,
2800 METHOD, pc);
2801 RESET_LAST_JAVA_FRAME();
2802 CACHE_STATE();
2803 if (THREAD->has_pending_exception()) goto handle_exception;
2804 CALL_VM(InterpreterRuntime::_breakpoint(THREAD, METHOD, pc),
2805 handle_exception);
2806
2807 opcode = (jubyte)original_bytecode;
2808 goto opcode_switch;
2809 }
2810
2811 DEFAULT:
2812 fatal("Unimplemented opcode %d = %s", opcode,
2813 Bytecodes::name((Bytecodes::Code)opcode));
2814 goto finish;
2815
2816 } /* switch(opc) */
2817
2818
2819 #ifdef USELABELS
2820 check_for_exception:
2821 #endif
2822 {
2823 if (!THREAD->has_pending_exception()) {
2824 CONTINUE;
2825 }
2826 /* We will be gcsafe soon, so flush our state. */
2827 DECACHE_PC();
2828 goto handle_exception;
2829 }
2830 do_continue: ;
2831
2832 } /* while (1) interpreter loop */
2833
2834
2835 // An exception exists in the thread state see whether this activation can handle it
2836 handle_exception: {
2837
2838 HandleMarkCleaner __hmc(THREAD);
2839 Handle except_oop(THREAD, THREAD->pending_exception());
2840 // Prevent any subsequent HandleMarkCleaner in the VM
2841 // from freeing the except_oop handle.
2842 HandleMark __hm(THREAD);
2843
2844 THREAD->clear_pending_exception();
2845 assert(except_oop() != NULL, "No exception to process");
2846 intptr_t continuation_bci;
2847 // expression stack is emptied
2848 topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2849 CALL_VM(continuation_bci = (intptr_t)InterpreterRuntime::exception_handler_for_exception(THREAD, except_oop()),
2850 handle_exception);
2851
2852 except_oop = Handle(THREAD, THREAD->vm_result());
2853 THREAD->set_vm_result(NULL);
2854 if (continuation_bci >= 0) {
2855 // Place exception on top of stack
2856 SET_STACK_OBJECT(except_oop(), 0);
2857 MORE_STACK(1);
2858 pc = METHOD->code_base() + continuation_bci;
2859 if (log_is_enabled(Info, exceptions)) {
2860 ResourceMark rm(THREAD);
2861 stringStream tempst;
2862 tempst.print("interpreter method <%s>\n"
2863 " at bci %d, continuing at %d for thread " INTPTR_FORMAT,
2864 METHOD->print_value_string(),
2865 (int)(istate->bcp() - METHOD->code_base()),
2866 (int)continuation_bci, p2i(THREAD));
2867 Exceptions::log_exception(except_oop, tempst.as_string());
2868 }
2869 // for AbortVMOnException flag
2870 Exceptions::debug_check_abort(except_oop);
2871
2872 // Update profiling data.
2873 BI_PROFILE_ALIGN_TO_CURRENT_BCI();
2874 goto run;
2875 }
2876 if (log_is_enabled(Info, exceptions)) {
2877 ResourceMark rm;
2878 stringStream tempst;
2879 tempst.print("interpreter method <%s>\n"
2880 " at bci %d, unwinding for thread " INTPTR_FORMAT,
2881 METHOD->print_value_string(),
2882 (int)(istate->bcp() - METHOD->code_base()),
2883 p2i(THREAD));
2884 Exceptions::log_exception(except_oop, tempst.as_string());
2885 }
2886 // for AbortVMOnException flag
2887 Exceptions::debug_check_abort(except_oop);
2888
2889 // No handler in this activation, unwind and try again
2890 THREAD->set_pending_exception(except_oop(), NULL, 0);
2891 goto handle_return;
2892 } // handle_exception:
2893
2894 // Return from an interpreter invocation with the result of the interpretation
2895 // on the top of the Java Stack (or a pending exception)
2896
2897 handle_Pop_Frame: {
2898
2899 // We don't really do anything special here except we must be aware
2900 // that we can get here without ever locking the method (if sync).
2901 // Also we skip the notification of the exit.
2902
2903 istate->set_msg(popping_frame);
2904 // Clear pending so while the pop is in process
2905 // we don't start another one if a call_vm is done.
2906 THREAD->clr_pop_frame_pending();
2907 // Let interpreter (only) see the we're in the process of popping a frame
2908 THREAD->set_pop_frame_in_process();
2909
2910 goto handle_return;
2911
2912 } // handle_Pop_Frame
2913
2914 // ForceEarlyReturn ends a method, and returns to the caller with a return value
2915 // given by the invoker of the early return.
2916 handle_Early_Return: {
2917
2918 istate->set_msg(early_return);
2919
2920 // Clear expression stack.
2921 topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2922
2923 JvmtiThreadState *ts = THREAD->jvmti_thread_state();
2924
2925 // Push the value to be returned.
2926 switch (istate->method()->result_type()) {
2927 case T_BOOLEAN:
2928 case T_SHORT:
2929 case T_BYTE:
2930 case T_CHAR:
2931 case T_INT:
2932 SET_STACK_INT(ts->earlyret_value().i, 0);
2933 MORE_STACK(1);
2934 break;
2935 case T_LONG:
2936 SET_STACK_LONG(ts->earlyret_value().j, 1);
2937 MORE_STACK(2);
2938 break;
2939 case T_FLOAT:
2940 SET_STACK_FLOAT(ts->earlyret_value().f, 0);
2941 MORE_STACK(1);
2942 break;
2943 case T_DOUBLE:
2944 SET_STACK_DOUBLE(ts->earlyret_value().d, 1);
2945 MORE_STACK(2);
2946 break;
2947 case T_ARRAY:
2948 case T_OBJECT:
2949 SET_STACK_OBJECT(ts->earlyret_oop(), 0);
2950 MORE_STACK(1);
2951 break;
2952 }
2953
2954 ts->clr_earlyret_value();
2955 ts->set_earlyret_oop(NULL);
2956 ts->clr_earlyret_pending();
2957
2958 // Fall through to handle_return.
2959
2960 } // handle_Early_Return
2961
2962 handle_return: {
2963 // A storestore barrier is required to order initialization of
2964 // final fields with publishing the reference to the object that
2965 // holds the field. Without the barrier the value of final fields
2966 // can be observed to change.
2967 OrderAccess::storestore();
2968
2969 DECACHE_STATE();
2970
2971 bool suppress_error = istate->msg() == popping_frame || istate->msg() == early_return;
2972 bool suppress_exit_event = THREAD->has_pending_exception() || istate->msg() == popping_frame;
2973 Handle original_exception(THREAD, THREAD->pending_exception());
2974 Handle illegal_state_oop(THREAD, NULL);
2975
2976 // We'd like a HandleMark here to prevent any subsequent HandleMarkCleaner
2977 // in any following VM entries from freeing our live handles, but illegal_state_oop
2978 // isn't really allocated yet and so doesn't become live until later and
2979 // in unpredicatable places. Instead we must protect the places where we enter the
2980 // VM. It would be much simpler (and safer) if we could allocate a real handle with
2981 // a NULL oop in it and then overwrite the oop later as needed. This isn't
2982 // unfortunately isn't possible.
2983
2984 THREAD->clear_pending_exception();
2985
2986 //
2987 // As far as we are concerned we have returned. If we have a pending exception
2988 // that will be returned as this invocation's result. However if we get any
2989 // exception(s) while checking monitor state one of those IllegalMonitorStateExceptions
2990 // will be our final result (i.e. monitor exception trumps a pending exception).
2991 //
2992
2993 // If we never locked the method (or really passed the point where we would have),
2994 // there is no need to unlock it (or look for other monitors), since that
2995 // could not have happened.
2996
2997 if (THREAD->do_not_unlock()) {
2998
2999 // Never locked, reset the flag now because obviously any caller must
3000 // have passed their point of locking for us to have gotten here.
3001
3002 THREAD->clr_do_not_unlock();
3003 } else {
3004 // At this point we consider that we have returned. We now check that the
3005 // locks were properly block structured. If we find that they were not
3006 // used properly we will return with an illegal monitor exception.
3007 // The exception is checked by the caller not the callee since this
3008 // checking is considered to be part of the invocation and therefore
3009 // in the callers scope (JVM spec 8.13).
3010 //
3011 // Another weird thing to watch for is if the method was locked
3012 // recursively and then not exited properly. This means we must
3013 // examine all the entries in reverse time(and stack) order and
3014 // unlock as we find them. If we find the method monitor before
3015 // we are at the initial entry then we should throw an exception.
3016 // It is not clear the template based interpreter does this
3017 // correctly
3018
3019 BasicObjectLock* base = istate->monitor_base();
3020 BasicObjectLock* end = (BasicObjectLock*) istate->stack_base();
3021 bool method_unlock_needed = METHOD->is_synchronized();
3022 // We know the initial monitor was used for the method don't check that
3023 // slot in the loop
3024 if (method_unlock_needed) base--;
3025
3026 // Check all the monitors to see they are unlocked. Install exception if found to be locked.
3027 while (end < base) {
3028 oop lockee = end->obj();
3029 if (lockee != NULL) {
3030 BasicLock* lock = end->lock();
3031 markOop header = lock->displaced_header();
3032 end->set_obj(NULL);
3033
3034 if (!lockee->mark()->has_bias_pattern()) {
3035 // If it isn't recursive we either must swap old header or call the runtime
3036 if (header != NULL) {
3037 markOop old_header = markOopDesc::encode(lock);
3038 if (lockee->cas_set_mark(header, old_header) != old_header) {
3039 // restore object for the slow case
3040 end->set_obj(lockee);
3041 {
3042 // Prevent any HandleMarkCleaner from freeing our live handles
3043 HandleMark __hm(THREAD);
3044 CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, end));
3045 }
3046 }
3047 }
3048 }
3049 // One error is plenty
3050 if (illegal_state_oop() == NULL && !suppress_error) {
3051 {
3052 // Prevent any HandleMarkCleaner from freeing our live handles
3053 HandleMark __hm(THREAD);
3054 CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
3055 }
3056 assert(THREAD->has_pending_exception(), "Lost our exception!");
3057 illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3058 THREAD->clear_pending_exception();
3059 }
3060 }
3061 end++;
3062 }
3063 // Unlock the method if needed
3064 if (method_unlock_needed) {
3065 if (base->obj() == NULL) {
3066 // The method is already unlocked this is not good.
3067 if (illegal_state_oop() == NULL && !suppress_error) {
3068 {
3069 // Prevent any HandleMarkCleaner from freeing our live handles
3070 HandleMark __hm(THREAD);
3071 CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
3072 }
3073 assert(THREAD->has_pending_exception(), "Lost our exception!");
3074 illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3075 THREAD->clear_pending_exception();
3076 }
3077 } else {
3078 //
3079 // The initial monitor is always used for the method
3080 // However if that slot is no longer the oop for the method it was unlocked
3081 // and reused by something that wasn't unlocked!
3082 //
3083 // deopt can come in with rcvr dead because c2 knows
3084 // its value is preserved in the monitor. So we can't use locals[0] at all
3085 // and must use first monitor slot.
3086 //
3087 oop rcvr = base->obj();
3088 if (rcvr == NULL) {
3089 if (!suppress_error) {
3090 VM_JAVA_ERROR_NO_JUMP(vmSymbols::java_lang_NullPointerException(), "", note_nullCheck_trap);
3091 illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3092 THREAD->clear_pending_exception();
3093 }
3094 } else if (UseHeavyMonitors) {
3095 {
3096 // Prevent any HandleMarkCleaner from freeing our live handles.
3097 HandleMark __hm(THREAD);
3098 CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
3099 }
3100 if (THREAD->has_pending_exception()) {
3101 if (!suppress_error) illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3102 THREAD->clear_pending_exception();
3103 }
3104 } else {
3105 BasicLock* lock = base->lock();
3106 markOop header = lock->displaced_header();
3107 base->set_obj(NULL);
3108
3109 if (!rcvr->mark()->has_bias_pattern()) {
3110 base->set_obj(NULL);
3111 // If it isn't recursive we either must swap old header or call the runtime
3112 if (header != NULL) {
3113 markOop old_header = markOopDesc::encode(lock);
3114 if (rcvr->cas_set_mark(header, old_header) != old_header) {
3115 // restore object for the slow case
3116 base->set_obj(rcvr);
3117 {
3118 // Prevent any HandleMarkCleaner from freeing our live handles
3119 HandleMark __hm(THREAD);
3120 CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
3121 }
3122 if (THREAD->has_pending_exception()) {
3123 if (!suppress_error) illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3124 THREAD->clear_pending_exception();
3125 }
3126 }
3127 }
3128 }
3129 }
3130 }
3131 }
3132 }
3133 // Clear the do_not_unlock flag now.
3134 THREAD->clr_do_not_unlock();
3135
3136 //
3137 // Notify jvmti/jvmdi
3138 //
3139 // NOTE: we do not notify a method_exit if we have a pending exception,
3140 // including an exception we generate for unlocking checks. In the former
3141 // case, JVMDI has already been notified by our call for the exception handler
3142 // and in both cases as far as JVMDI is concerned we have already returned.
3143 // If we notify it again JVMDI will be all confused about how many frames
3144 // are still on the stack (4340444).
3145 //
3146 // NOTE Further! It turns out the the JVMTI spec in fact expects to see
3147 // method_exit events whenever we leave an activation unless it was done
3148 // for popframe. This is nothing like jvmdi. However we are passing the
3149 // tests at the moment (apparently because they are jvmdi based) so rather
3150 // than change this code and possibly fail tests we will leave it alone
3151 // (with this note) in anticipation of changing the vm and the tests
3152 // simultaneously.
3153
3154
3155 //
3156 suppress_exit_event = suppress_exit_event || illegal_state_oop() != NULL;
3157
3158
3159
3160 #ifdef VM_JVMTI
3161 if (_jvmti_interp_events) {
3162 // Whenever JVMTI puts a thread in interp_only_mode, method
3163 // entry/exit events are sent for that thread to track stack depth.
3164 if ( !suppress_exit_event && THREAD->is_interp_only_mode() ) {
3165 {
3166 // Prevent any HandleMarkCleaner from freeing our live handles
3167 HandleMark __hm(THREAD);
3168 CALL_VM_NOCHECK(InterpreterRuntime::post_method_exit(THREAD));
3169 }
3170 }
3171 }
3172 #endif /* VM_JVMTI */
3173
3174 //
3175 // See if we are returning any exception
3176 // A pending exception that was pending prior to a possible popping frame
3177 // overrides the popping frame.
3178 //
3179 assert(!suppress_error || (suppress_error && illegal_state_oop() == NULL), "Error was not suppressed");
3180 if (illegal_state_oop() != NULL || original_exception() != NULL) {
3181 // Inform the frame manager we have no result.
3182 istate->set_msg(throwing_exception);
3183 if (illegal_state_oop() != NULL)
3184 THREAD->set_pending_exception(illegal_state_oop(), NULL, 0);
3185 else
3186 THREAD->set_pending_exception(original_exception(), NULL, 0);
3187 UPDATE_PC_AND_RETURN(0);
3188 }
3189
3190 if (istate->msg() == popping_frame) {
3191 // Make it simpler on the assembly code and set the message for the frame pop.
3192 // returns
3193 if (istate->prev() == NULL) {
3194 // We must be returning to a deoptimized frame (because popframe only happens between
3195 // two interpreted frames). We need to save the current arguments in C heap so that
3196 // the deoptimized frame when it restarts can copy the arguments to its expression
3197 // stack and re-execute the call. We also have to notify deoptimization that this
3198 // has occurred and to pick the preserved args copy them to the deoptimized frame's
3199 // java expression stack. Yuck.
3200 //
3201 THREAD->popframe_preserve_args(in_ByteSize(METHOD->size_of_parameters() * wordSize),
3202 LOCALS_SLOT(METHOD->size_of_parameters() - 1));
3203 THREAD->set_popframe_condition_bit(JavaThread::popframe_force_deopt_reexecution_bit);
3204 }
3205 } else {
3206 istate->set_msg(return_from_method);
3207 }
3208
3209 // Normal return
3210 // Advance the pc and return to frame manager
3211 UPDATE_PC_AND_RETURN(1);
3212 } /* handle_return: */
3213
3214 // This is really a fatal error return
3215
3216 finish:
3217 DECACHE_TOS();
3218 DECACHE_PC();
3219
3220 return;
3221 }
3222
3223 /*
3224 * All the code following this point is only produced once and is not present
3225 * in the JVMTI version of the interpreter
3226 */
3227
3228 #ifndef VM_JVMTI
3229
3230 // This constructor should only be used to contruct the object to signal
3231 // interpreter initialization. All other instances should be created by
3232 // the frame manager.
3233 BytecodeInterpreter::BytecodeInterpreter(messages msg) {
3234 if (msg != initialize) ShouldNotReachHere();
3235 _msg = msg;
3236 _self_link = this;
3237 _prev_link = NULL;
3238 }
3239
3240 // Inline static functions for Java Stack and Local manipulation
3241
3242 // The implementations are platform dependent. We have to worry about alignment
3243 // issues on some machines which can change on the same platform depending on
3244 // whether it is an LP64 machine also.
3245 address BytecodeInterpreter::stack_slot(intptr_t *tos, int offset) {
3246 return (address) tos[Interpreter::expr_index_at(-offset)];
3247 }
3248
3249 jint BytecodeInterpreter::stack_int(intptr_t *tos, int offset) {
3250 return *((jint*) &tos[Interpreter::expr_index_at(-offset)]);
3251 }
3252
3253 jfloat BytecodeInterpreter::stack_float(intptr_t *tos, int offset) {
3254 return *((jfloat *) &tos[Interpreter::expr_index_at(-offset)]);
3255 }
3256
3257 oop BytecodeInterpreter::stack_object(intptr_t *tos, int offset) {
3258 return cast_to_oop(tos [Interpreter::expr_index_at(-offset)]);
3259 }
3260
3261 jdouble BytecodeInterpreter::stack_double(intptr_t *tos, int offset) {
3262 return ((VMJavaVal64*) &tos[Interpreter::expr_index_at(-offset)])->d;
3263 }
3264
3265 jlong BytecodeInterpreter::stack_long(intptr_t *tos, int offset) {
3266 return ((VMJavaVal64 *) &tos[Interpreter::expr_index_at(-offset)])->l;
3267 }
3268
3269 // only used for value types
3270 void BytecodeInterpreter::set_stack_slot(intptr_t *tos, address value,
3271 int offset) {
3272 *((address *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3273 }
3274
3275 void BytecodeInterpreter::set_stack_int(intptr_t *tos, int value,
3276 int offset) {
3277 *((jint *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3278 }
3279
3280 void BytecodeInterpreter::set_stack_float(intptr_t *tos, jfloat value,
3281 int offset) {
3282 *((jfloat *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3283 }
3284
3285 void BytecodeInterpreter::set_stack_object(intptr_t *tos, oop value,
3286 int offset) {
3287 *((oop *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3288 }
3289
3290 // needs to be platform dep for the 32 bit platforms.
3291 void BytecodeInterpreter::set_stack_double(intptr_t *tos, jdouble value,
3292 int offset) {
3293 ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d = value;
3294 }
3295
3296 void BytecodeInterpreter::set_stack_double_from_addr(intptr_t *tos,
3297 address addr, int offset) {
3298 (((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d =
3299 ((VMJavaVal64*)addr)->d);
3300 }
3301
3302 void BytecodeInterpreter::set_stack_long(intptr_t *tos, jlong value,
3303 int offset) {
3304 ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
3305 ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l = value;
3306 }
3307
3308 void BytecodeInterpreter::set_stack_long_from_addr(intptr_t *tos,
3309 address addr, int offset) {
3310 ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
3311 ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l =
3312 ((VMJavaVal64*)addr)->l;
3313 }
3314
3315 // Locals
3316
3317 address BytecodeInterpreter::locals_slot(intptr_t* locals, int offset) {
3318 return (address)locals[Interpreter::local_index_at(-offset)];
3319 }
3320 jint BytecodeInterpreter::locals_int(intptr_t* locals, int offset) {
3321 return (jint)locals[Interpreter::local_index_at(-offset)];
3322 }
3323 jfloat BytecodeInterpreter::locals_float(intptr_t* locals, int offset) {
3324 return (jfloat)locals[Interpreter::local_index_at(-offset)];
3325 }
3326 oop BytecodeInterpreter::locals_object(intptr_t* locals, int offset) {
3327 return cast_to_oop(locals[Interpreter::local_index_at(-offset)]);
3328 }
3329 jdouble BytecodeInterpreter::locals_double(intptr_t* locals, int offset) {
3330 return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d;
3331 }
3332 jlong BytecodeInterpreter::locals_long(intptr_t* locals, int offset) {
3333 return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l;
3334 }
3335
3336 // Returns the address of locals value.
3337 address BytecodeInterpreter::locals_long_at(intptr_t* locals, int offset) {
3338 return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
3339 }
3340 address BytecodeInterpreter::locals_double_at(intptr_t* locals, int offset) {
3341 return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
3342 }
3343
3344 // Used for local value or returnAddress
3345 void BytecodeInterpreter::set_locals_slot(intptr_t *locals,
3346 address value, int offset) {
3347 *((address*)&locals[Interpreter::local_index_at(-offset)]) = value;
3348 }
3349 void BytecodeInterpreter::set_locals_int(intptr_t *locals,
3350 jint value, int offset) {
3351 *((jint *)&locals[Interpreter::local_index_at(-offset)]) = value;
3352 }
3353 void BytecodeInterpreter::set_locals_float(intptr_t *locals,
3354 jfloat value, int offset) {
3355 *((jfloat *)&locals[Interpreter::local_index_at(-offset)]) = value;
3356 }
3357 void BytecodeInterpreter::set_locals_object(intptr_t *locals,
3358 oop value, int offset) {
3359 *((oop *)&locals[Interpreter::local_index_at(-offset)]) = value;
3360 }
3361 void BytecodeInterpreter::set_locals_double(intptr_t *locals,
3362 jdouble value, int offset) {
3363 ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = value;
3364 }
3365 void BytecodeInterpreter::set_locals_long(intptr_t *locals,
3366 jlong value, int offset) {
3367 ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = value;
3368 }
3369 void BytecodeInterpreter::set_locals_double_from_addr(intptr_t *locals,
3370 address addr, int offset) {
3371 ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = ((VMJavaVal64*)addr)->d;
3372 }
3373 void BytecodeInterpreter::set_locals_long_from_addr(intptr_t *locals,
3374 address addr, int offset) {
3375 ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = ((VMJavaVal64*)addr)->l;
3376 }
3377
3378 void BytecodeInterpreter::astore(intptr_t* tos, int stack_offset,
3379 intptr_t* locals, int locals_offset) {
3380 intptr_t value = tos[Interpreter::expr_index_at(-stack_offset)];
3381 locals[Interpreter::local_index_at(-locals_offset)] = value;
3382 }
3383
3384
3385 void BytecodeInterpreter::copy_stack_slot(intptr_t *tos, int from_offset,
3386 int to_offset) {
3387 tos[Interpreter::expr_index_at(-to_offset)] =
3388 (intptr_t)tos[Interpreter::expr_index_at(-from_offset)];
3389 }
3390
3391 void BytecodeInterpreter::dup(intptr_t *tos) {
3392 copy_stack_slot(tos, -1, 0);
3393 }
3394 void BytecodeInterpreter::dup2(intptr_t *tos) {
3395 copy_stack_slot(tos, -2, 0);
3396 copy_stack_slot(tos, -1, 1);
3397 }
3398
3399 void BytecodeInterpreter::dup_x1(intptr_t *tos) {
3400 /* insert top word two down */
3401 copy_stack_slot(tos, -1, 0);
3402 copy_stack_slot(tos, -2, -1);
3403 copy_stack_slot(tos, 0, -2);
3404 }
3405
3406 void BytecodeInterpreter::dup_x2(intptr_t *tos) {
3407 /* insert top word three down */
3408 copy_stack_slot(tos, -1, 0);
3409 copy_stack_slot(tos, -2, -1);
3410 copy_stack_slot(tos, -3, -2);
3411 copy_stack_slot(tos, 0, -3);
3412 }
3413 void BytecodeInterpreter::dup2_x1(intptr_t *tos) {
3414 /* insert top 2 slots three down */
3415 copy_stack_slot(tos, -1, 1);
3416 copy_stack_slot(tos, -2, 0);
3417 copy_stack_slot(tos, -3, -1);
3418 copy_stack_slot(tos, 1, -2);
3419 copy_stack_slot(tos, 0, -3);
3420 }
3421 void BytecodeInterpreter::dup2_x2(intptr_t *tos) {
3422 /* insert top 2 slots four down */
3423 copy_stack_slot(tos, -1, 1);
3424 copy_stack_slot(tos, -2, 0);
3425 copy_stack_slot(tos, -3, -1);
3426 copy_stack_slot(tos, -4, -2);
3427 copy_stack_slot(tos, 1, -3);
3428 copy_stack_slot(tos, 0, -4);
3429 }
3430
3431
3432 void BytecodeInterpreter::swap(intptr_t *tos) {
3433 // swap top two elements
3434 intptr_t val = tos[Interpreter::expr_index_at(1)];
3435 // Copy -2 entry to -1
3436 copy_stack_slot(tos, -2, -1);
3437 // Store saved -1 entry into -2
3438 tos[Interpreter::expr_index_at(2)] = val;
3439 }
3440 // --------------------------------------------------------------------------------
3441 // Non-product code
3442 #ifndef PRODUCT
3443
3444 const char* BytecodeInterpreter::C_msg(BytecodeInterpreter::messages msg) {
3445 switch (msg) {
3446 case BytecodeInterpreter::no_request: return("no_request");
3447 case BytecodeInterpreter::initialize: return("initialize");
3448 // status message to C++ interpreter
3449 case BytecodeInterpreter::method_entry: return("method_entry");
3450 case BytecodeInterpreter::method_resume: return("method_resume");
3451 case BytecodeInterpreter::got_monitors: return("got_monitors");
3452 case BytecodeInterpreter::rethrow_exception: return("rethrow_exception");
3453 // requests to frame manager from C++ interpreter
3454 case BytecodeInterpreter::call_method: return("call_method");
3455 case BytecodeInterpreter::return_from_method: return("return_from_method");
3456 case BytecodeInterpreter::more_monitors: return("more_monitors");
3457 case BytecodeInterpreter::throwing_exception: return("throwing_exception");
3458 case BytecodeInterpreter::popping_frame: return("popping_frame");
3459 case BytecodeInterpreter::do_osr: return("do_osr");
3460 // deopt
3461 case BytecodeInterpreter::deopt_resume: return("deopt_resume");
3462 case BytecodeInterpreter::deopt_resume2: return("deopt_resume2");
3463 default: return("BAD MSG");
3464 }
3465 }
3466 void
3467 BytecodeInterpreter::print() {
3468 tty->print_cr("thread: " INTPTR_FORMAT, (uintptr_t) this->_thread);
3469 tty->print_cr("bcp: " INTPTR_FORMAT, (uintptr_t) this->_bcp);
3470 tty->print_cr("locals: " INTPTR_FORMAT, (uintptr_t) this->_locals);
3471 tty->print_cr("constants: " INTPTR_FORMAT, (uintptr_t) this->_constants);
3472 {
3473 ResourceMark rm;
3474 char *method_name = _method->name_and_sig_as_C_string();
3475 tty->print_cr("method: " INTPTR_FORMAT "[ %s ]", (uintptr_t) this->_method, method_name);
3476 }
3477 tty->print_cr("mdx: " INTPTR_FORMAT, (uintptr_t) this->_mdx);
3478 tty->print_cr("stack: " INTPTR_FORMAT, (uintptr_t) this->_stack);
3479 tty->print_cr("msg: %s", C_msg(this->_msg));
3480 tty->print_cr("result_to_call._callee: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee);
3481 tty->print_cr("result_to_call._callee_entry_point: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee_entry_point);
3482 tty->print_cr("result_to_call._bcp_advance: %d ", this->_result._to_call._bcp_advance);
3483 tty->print_cr("osr._osr_buf: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_buf);
3484 tty->print_cr("osr._osr_entry: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_entry);
3485 tty->print_cr("prev_link: " INTPTR_FORMAT, (uintptr_t) this->_prev_link);
3486 tty->print_cr("native_mirror: " INTPTR_FORMAT, (uintptr_t) p2i(this->_oop_temp));
3487 tty->print_cr("stack_base: " INTPTR_FORMAT, (uintptr_t) this->_stack_base);
3488 tty->print_cr("stack_limit: " INTPTR_FORMAT, (uintptr_t) this->_stack_limit);
3489 tty->print_cr("monitor_base: " INTPTR_FORMAT, (uintptr_t) this->_monitor_base);
3490 #ifdef SPARC
3491 tty->print_cr("last_Java_pc: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_pc);
3492 tty->print_cr("frame_bottom: " INTPTR_FORMAT, (uintptr_t) this->_frame_bottom);
3493 tty->print_cr("&native_fresult: " INTPTR_FORMAT, (uintptr_t) &this->_native_fresult);
3494 tty->print_cr("native_lresult: " INTPTR_FORMAT, (uintptr_t) this->_native_lresult);
3495 #endif
3496 #if !defined(ZERO) && defined(PPC)
3497 tty->print_cr("last_Java_fp: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_fp);
3498 #endif // !ZERO
3499 tty->print_cr("self_link: " INTPTR_FORMAT, (uintptr_t) this->_self_link);
3500 }
3501
3502 extern "C" {
3503 void PI(uintptr_t arg) {
3504 ((BytecodeInterpreter*)arg)->print();
3505 }
3506 }
3507 #endif // PRODUCT
3508
3509 #endif // JVMTI
3510 #endif // CC_INTERP
3511