1 /*
2  * Copyright (c) 2000, 2020, Oracle and/or its affiliates. All rights reserved.
3  * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This code is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 only, as
8  * published by the Free Software Foundation.
9  *
10  * This code is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * version 2 for more details (a copy is included in the LICENSE file that
14  * accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License version
17  * 2 along with this work; if not, write to the Free Software Foundation,
18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19  *
20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21  * or visit www.oracle.com if you need additional information or have any
22  * questions.
23  *
24  */
25 
26 #include "precompiled.hpp"
27 #include "asm/macroAssembler.inline.hpp"
28 #include "asm/assembler.hpp"
29 #include "c1/c1_CodeStubs.hpp"
30 #include "c1/c1_Compilation.hpp"
31 #include "c1/c1_LIRAssembler.hpp"
32 #include "c1/c1_MacroAssembler.hpp"
33 #include "c1/c1_Runtime1.hpp"
34 #include "c1/c1_ValueStack.hpp"
35 #include "ci/ciArrayKlass.hpp"
36 #include "ci/ciInstance.hpp"
37 #include "code/compiledIC.hpp"
38 #include "gc/shared/barrierSet.hpp"
39 #include "gc/shared/cardTableBarrierSet.hpp"
40 #include "gc/shared/collectedHeap.hpp"
41 #include "nativeInst_aarch64.hpp"
42 #include "oops/objArrayKlass.hpp"
43 #include "runtime/frame.inline.hpp"
44 #include "runtime/sharedRuntime.hpp"
45 #include "utilities/macros.hpp"
46 #include "vmreg_aarch64.inline.hpp"
47 
48 
49 
50 #ifndef PRODUCT
51 #define COMMENT(x)   do { __ block_comment(x); } while (0)
52 #else
53 #define COMMENT(x)
54 #endif
55 
56 NEEDS_CLEANUP // remove this definitions ?
57 const Register IC_Klass    = rscratch2;   // where the IC klass is cached
58 const Register SYNC_header = r0;   // synchronization header
59 const Register SHIFT_count = r0;   // where count for shift operations must be
60 
61 #define __ _masm->
62 
63 
select_different_registers(Register preserve,Register extra,Register & tmp1,Register & tmp2)64 static void select_different_registers(Register preserve,
65                                        Register extra,
66                                        Register &tmp1,
67                                        Register &tmp2) {
68   if (tmp1 == preserve) {
69     assert_different_registers(tmp1, tmp2, extra);
70     tmp1 = extra;
71   } else if (tmp2 == preserve) {
72     assert_different_registers(tmp1, tmp2, extra);
73     tmp2 = extra;
74   }
75   assert_different_registers(preserve, tmp1, tmp2);
76 }
77 
78 
79 
select_different_registers(Register preserve,Register extra,Register & tmp1,Register & tmp2,Register & tmp3)80 static void select_different_registers(Register preserve,
81                                        Register extra,
82                                        Register &tmp1,
83                                        Register &tmp2,
84                                        Register &tmp3) {
85   if (tmp1 == preserve) {
86     assert_different_registers(tmp1, tmp2, tmp3, extra);
87     tmp1 = extra;
88   } else if (tmp2 == preserve) {
89     assert_different_registers(tmp1, tmp2, tmp3, extra);
90     tmp2 = extra;
91   } else if (tmp3 == preserve) {
92     assert_different_registers(tmp1, tmp2, tmp3, extra);
93     tmp3 = extra;
94   }
95   assert_different_registers(preserve, tmp1, tmp2, tmp3);
96 }
97 
98 
is_small_constant(LIR_Opr opr)99 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { Unimplemented(); return false; }
100 
101 
receiverOpr()102 LIR_Opr LIR_Assembler::receiverOpr() {
103   return FrameMap::receiver_opr;
104 }
105 
osrBufferPointer()106 LIR_Opr LIR_Assembler::osrBufferPointer() {
107   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
108 }
109 
110 //--------------fpu register translations-----------------------
111 
112 
float_constant(float f)113 address LIR_Assembler::float_constant(float f) {
114   address const_addr = __ float_constant(f);
115   if (const_addr == NULL) {
116     bailout("const section overflow");
117     return __ code()->consts()->start();
118   } else {
119     return const_addr;
120   }
121 }
122 
123 
double_constant(double d)124 address LIR_Assembler::double_constant(double d) {
125   address const_addr = __ double_constant(d);
126   if (const_addr == NULL) {
127     bailout("const section overflow");
128     return __ code()->consts()->start();
129   } else {
130     return const_addr;
131   }
132 }
133 
int_constant(jlong n)134 address LIR_Assembler::int_constant(jlong n) {
135   address const_addr = __ long_constant(n);
136   if (const_addr == NULL) {
137     bailout("const section overflow");
138     return __ code()->consts()->start();
139   } else {
140     return const_addr;
141   }
142 }
143 
set_24bit_FPU()144 void LIR_Assembler::set_24bit_FPU() { Unimplemented(); }
145 
reset_FPU()146 void LIR_Assembler::reset_FPU() { Unimplemented(); }
147 
fpop()148 void LIR_Assembler::fpop() { Unimplemented(); }
149 
fxch(int i)150 void LIR_Assembler::fxch(int i) { Unimplemented(); }
151 
fld(int i)152 void LIR_Assembler::fld(int i) { Unimplemented(); }
153 
ffree(int i)154 void LIR_Assembler::ffree(int i) { Unimplemented(); }
155 
breakpoint()156 void LIR_Assembler::breakpoint() { Unimplemented(); }
157 
push(LIR_Opr opr)158 void LIR_Assembler::push(LIR_Opr opr) { Unimplemented(); }
159 
pop(LIR_Opr opr)160 void LIR_Assembler::pop(LIR_Opr opr) { Unimplemented(); }
161 
is_literal_address(LIR_Address * addr)162 bool LIR_Assembler::is_literal_address(LIR_Address* addr) { Unimplemented(); return false; }
163 //-------------------------------------------
164 
as_reg(LIR_Opr op)165 static Register as_reg(LIR_Opr op) {
166   return op->is_double_cpu() ? op->as_register_lo() : op->as_register();
167 }
168 
as_long(LIR_Opr data)169 static jlong as_long(LIR_Opr data) {
170   jlong result;
171   switch (data->type()) {
172   case T_INT:
173     result = (data->as_jint());
174     break;
175   case T_LONG:
176     result = (data->as_jlong());
177     break;
178   default:
179     ShouldNotReachHere();
180     result = 0;  // unreachable
181   }
182   return result;
183 }
184 
as_Address(LIR_Address * addr,Register tmp)185 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
186   Register base = addr->base()->as_pointer_register();
187   LIR_Opr opr = addr->index();
188   if (opr->is_cpu_register()) {
189     Register index;
190     if (opr->is_single_cpu())
191       index = opr->as_register();
192     else
193       index = opr->as_register_lo();
194     assert(addr->disp() == 0, "must be");
195     switch(opr->type()) {
196       case T_INT:
197         return Address(base, index, Address::sxtw(addr->scale()));
198       case T_LONG:
199         return Address(base, index, Address::lsl(addr->scale()));
200       default:
201         ShouldNotReachHere();
202       }
203   } else  {
204     intptr_t addr_offset = intptr_t(addr->disp());
205     if (Address::offset_ok_for_immed(addr_offset, addr->scale()))
206       return Address(base, addr_offset, Address::lsl(addr->scale()));
207     else {
208       __ mov(tmp, addr_offset);
209       return Address(base, tmp, Address::lsl(addr->scale()));
210     }
211   }
212   return Address();
213 }
214 
as_Address_hi(LIR_Address * addr)215 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
216   ShouldNotReachHere();
217   return Address();
218 }
219 
as_Address(LIR_Address * addr)220 Address LIR_Assembler::as_Address(LIR_Address* addr) {
221   return as_Address(addr, rscratch1);
222 }
223 
as_Address_lo(LIR_Address * addr)224 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
225   return as_Address(addr, rscratch1);  // Ouch
226   // FIXME: This needs to be much more clever.  See x86.
227 }
228 
229 // Ensure a valid Address (base + offset) to a stack-slot. If stack access is
230 // not encodable as a base + (immediate) offset, generate an explicit address
231 // calculation to hold the address in a temporary register.
stack_slot_address(int index,uint size,Register tmp,int adjust)232 Address LIR_Assembler::stack_slot_address(int index, uint size, Register tmp, int adjust) {
233   precond(size == 4 || size == 8);
234   Address addr = frame_map()->address_for_slot(index, adjust);
235   precond(addr.getMode() == Address::base_plus_offset);
236   precond(addr.base() == sp);
237   precond(addr.offset() > 0);
238   uint mask = size - 1;
239   assert((addr.offset() & mask) == 0, "scaled offsets only");
240   return __ legitimize_address(addr, size, tmp);
241 }
242 
osr_entry()243 void LIR_Assembler::osr_entry() {
244   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
245   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
246   ValueStack* entry_state = osr_entry->state();
247   int number_of_locks = entry_state->locks_size();
248 
249   // we jump here if osr happens with the interpreter
250   // state set up to continue at the beginning of the
251   // loop that triggered osr - in particular, we have
252   // the following registers setup:
253   //
254   // r2: osr buffer
255   //
256 
257   // build frame
258   ciMethod* m = compilation()->method();
259   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
260 
261   // OSR buffer is
262   //
263   // locals[nlocals-1..0]
264   // monitors[0..number_of_locks]
265   //
266   // locals is a direct copy of the interpreter frame so in the osr buffer
267   // so first slot in the local array is the last local from the interpreter
268   // and last slot is local[0] (receiver) from the interpreter
269   //
270   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
271   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
272   // in the interpreter frame (the method lock if a sync method)
273 
274   // Initialize monitors in the compiled activation.
275   //   r2: pointer to osr buffer
276   //
277   // All other registers are dead at this point and the locals will be
278   // copied into place by code emitted in the IR.
279 
280   Register OSR_buf = osrBufferPointer()->as_pointer_register();
281   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
282     int monitor_offset = BytesPerWord * method()->max_locals() +
283       (2 * BytesPerWord) * (number_of_locks - 1);
284     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
285     // the OSR buffer using 2 word entries: first the lock and then
286     // the oop.
287     for (int i = 0; i < number_of_locks; i++) {
288       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
289 #ifdef ASSERT
290       // verify the interpreter's monitor has a non-null object
291       {
292         Label L;
293         __ ldr(rscratch1, Address(OSR_buf, slot_offset + 1*BytesPerWord));
294         __ cbnz(rscratch1, L);
295         __ stop("locked object is NULL");
296         __ bind(L);
297       }
298 #endif
299       __ ldr(r19, Address(OSR_buf, slot_offset + 0));
300       __ str(r19, frame_map()->address_for_monitor_lock(i));
301       __ ldr(r19, Address(OSR_buf, slot_offset + 1*BytesPerWord));
302       __ str(r19, frame_map()->address_for_monitor_object(i));
303     }
304   }
305 }
306 
307 
308 // inline cache check; done before the frame is built.
check_icache()309 int LIR_Assembler::check_icache() {
310   Register receiver = FrameMap::receiver_opr->as_register();
311   Register ic_klass = IC_Klass;
312   int start_offset = __ offset();
313   __ inline_cache_check(receiver, ic_klass);
314 
315   // if icache check fails, then jump to runtime routine
316   // Note: RECEIVER must still contain the receiver!
317   Label dont;
318   __ br(Assembler::EQ, dont);
319   __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
320 
321   // We align the verified entry point unless the method body
322   // (including its inline cache check) will fit in a single 64-byte
323   // icache line.
324   if (! method()->is_accessor() || __ offset() - start_offset > 4 * 4) {
325     // force alignment after the cache check.
326     __ align(CodeEntryAlignment);
327   }
328 
329   __ bind(dont);
330   return start_offset;
331 }
332 
333 
jobject2reg(jobject o,Register reg)334 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
335   if (o == NULL) {
336     __ mov(reg, zr);
337   } else {
338     __ movoop(reg, o, /*immediate*/true);
339   }
340 }
341 
deoptimize_trap(CodeEmitInfo * info)342 void LIR_Assembler::deoptimize_trap(CodeEmitInfo *info) {
343   address target = NULL;
344   relocInfo::relocType reloc_type = relocInfo::none;
345 
346   switch (patching_id(info)) {
347   case PatchingStub::access_field_id:
348     target = Runtime1::entry_for(Runtime1::access_field_patching_id);
349     reloc_type = relocInfo::section_word_type;
350     break;
351   case PatchingStub::load_klass_id:
352     target = Runtime1::entry_for(Runtime1::load_klass_patching_id);
353     reloc_type = relocInfo::metadata_type;
354     break;
355   case PatchingStub::load_mirror_id:
356     target = Runtime1::entry_for(Runtime1::load_mirror_patching_id);
357     reloc_type = relocInfo::oop_type;
358     break;
359   case PatchingStub::load_appendix_id:
360     target = Runtime1::entry_for(Runtime1::load_appendix_patching_id);
361     reloc_type = relocInfo::oop_type;
362     break;
363   default: ShouldNotReachHere();
364   }
365 
366   __ far_call(RuntimeAddress(target));
367   add_call_info_here(info);
368 }
369 
jobject2reg_with_patching(Register reg,CodeEmitInfo * info)370 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
371   deoptimize_trap(info);
372 }
373 
374 
375 // This specifies the rsp decrement needed to build the frame
initial_frame_size_in_bytes() const376 int LIR_Assembler::initial_frame_size_in_bytes() const {
377   // if rounding, must let FrameMap know!
378 
379   // The frame_map records size in slots (32bit word)
380 
381   // subtract two words to account for return address and link
382   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
383 }
384 
385 
emit_exception_handler()386 int LIR_Assembler::emit_exception_handler() {
387   // if the last instruction is a call (typically to do a throw which
388   // is coming at the end after block reordering) the return address
389   // must still point into the code area in order to avoid assertion
390   // failures when searching for the corresponding bci => add a nop
391   // (was bug 5/14/1999 - gri)
392   __ nop();
393 
394   // generate code for exception handler
395   address handler_base = __ start_a_stub(exception_handler_size());
396   if (handler_base == NULL) {
397     // not enough space left for the handler
398     bailout("exception handler overflow");
399     return -1;
400   }
401 
402   int offset = code_offset();
403 
404   // the exception oop and pc are in r0, and r3
405   // no other registers need to be preserved, so invalidate them
406   __ invalidate_registers(false, true, true, false, true, true);
407 
408   // check that there is really an exception
409   __ verify_not_null_oop(r0);
410 
411   // search an exception handler (r0: exception oop, r3: throwing pc)
412   __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));  __ should_not_reach_here();
413   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
414   __ end_a_stub();
415 
416   return offset;
417 }
418 
419 
420 // Emit the code to remove the frame from the stack in the exception
421 // unwind path.
emit_unwind_handler()422 int LIR_Assembler::emit_unwind_handler() {
423 #ifndef PRODUCT
424   if (CommentedAssembly) {
425     _masm->block_comment("Unwind handler");
426   }
427 #endif
428 
429   int offset = code_offset();
430 
431   // Fetch the exception from TLS and clear out exception related thread state
432   __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset()));
433   __ str(zr, Address(rthread, JavaThread::exception_oop_offset()));
434   __ str(zr, Address(rthread, JavaThread::exception_pc_offset()));
435 
436   __ bind(_unwind_handler_entry);
437   __ verify_not_null_oop(r0);
438   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
439     __ mov(r19, r0);  // Preserve the exception
440   }
441 
442   // Preform needed unlocking
443   MonitorExitStub* stub = NULL;
444   if (method()->is_synchronized()) {
445     monitor_address(0, FrameMap::r0_opr);
446     stub = new MonitorExitStub(FrameMap::r0_opr, true, 0);
447     __ unlock_object(r5, r4, r0, *stub->entry());
448     __ bind(*stub->continuation());
449   }
450 
451   if (compilation()->env()->dtrace_method_probes()) {
452     __ mov(c_rarg0, rthread);
453     __ mov_metadata(c_rarg1, method()->constant_encoding());
454     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), c_rarg0, c_rarg1);
455   }
456 
457   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
458     __ mov(r0, r19);  // Restore the exception
459   }
460 
461   // remove the activation and dispatch to the unwind handler
462   __ block_comment("remove_frame and dispatch to the unwind handler");
463   __ remove_frame(initial_frame_size_in_bytes());
464   __ far_jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
465 
466   // Emit the slow path assembly
467   if (stub != NULL) {
468     stub->emit_code(this);
469   }
470 
471   return offset;
472 }
473 
474 
emit_deopt_handler()475 int LIR_Assembler::emit_deopt_handler() {
476   // if the last instruction is a call (typically to do a throw which
477   // is coming at the end after block reordering) the return address
478   // must still point into the code area in order to avoid assertion
479   // failures when searching for the corresponding bci => add a nop
480   // (was bug 5/14/1999 - gri)
481   __ nop();
482 
483   // generate code for exception handler
484   address handler_base = __ start_a_stub(deopt_handler_size());
485   if (handler_base == NULL) {
486     // not enough space left for the handler
487     bailout("deopt handler overflow");
488     return -1;
489   }
490 
491   int offset = code_offset();
492 
493   __ adr(lr, pc());
494   __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
495   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
496   __ end_a_stub();
497 
498   return offset;
499 }
500 
add_debug_info_for_branch(address adr,CodeEmitInfo * info)501 void LIR_Assembler::add_debug_info_for_branch(address adr, CodeEmitInfo* info) {
502   _masm->code_section()->relocate(adr, relocInfo::poll_type);
503   int pc_offset = code_offset();
504   flush_debug_info(pc_offset);
505   info->record_debug_info(compilation()->debug_info_recorder(), pc_offset);
506   if (info->exception_handlers() != NULL) {
507     compilation()->add_exception_handlers_for_pco(pc_offset, info->exception_handlers());
508   }
509 }
510 
return_op(LIR_Opr result)511 void LIR_Assembler::return_op(LIR_Opr result) {
512   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == r0, "word returns are in r0,");
513 
514   // Pop the stack before the safepoint code
515   __ remove_frame(initial_frame_size_in_bytes());
516 
517   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
518     __ reserved_stack_check();
519   }
520 
521   address polling_page(os::get_polling_page());
522   __ read_polling_page(rscratch1, polling_page, relocInfo::poll_return_type);
523   __ ret(lr);
524 }
525 
safepoint_poll(LIR_Opr tmp,CodeEmitInfo * info)526 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
527   address polling_page(os::get_polling_page());
528   guarantee(info != NULL, "Shouldn't be NULL");
529   assert(os::is_poll_address(polling_page), "should be");
530   __ get_polling_page(rscratch1, polling_page, relocInfo::poll_type);
531   add_debug_info_for_branch(info);  // This isn't just debug info:
532                                     // it's the oop map
533   __ read_polling_page(rscratch1, relocInfo::poll_type);
534   return __ offset();
535 }
536 
537 
move_regs(Register from_reg,Register to_reg)538 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
539   if (from_reg == r31_sp)
540     from_reg = sp;
541   if (to_reg == r31_sp)
542     to_reg = sp;
543   __ mov(to_reg, from_reg);
544 }
545 
swap_reg(Register a,Register b)546 void LIR_Assembler::swap_reg(Register a, Register b) { Unimplemented(); }
547 
548 
const2reg(LIR_Opr src,LIR_Opr dest,LIR_PatchCode patch_code,CodeEmitInfo * info)549 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
550   assert(src->is_constant(), "should not call otherwise");
551   assert(dest->is_register(), "should not call otherwise");
552   LIR_Const* c = src->as_constant_ptr();
553 
554   switch (c->type()) {
555     case T_INT: {
556       assert(patch_code == lir_patch_none, "no patching handled here");
557       __ movw(dest->as_register(), c->as_jint());
558       break;
559     }
560 
561     case T_ADDRESS: {
562       assert(patch_code == lir_patch_none, "no patching handled here");
563       __ mov(dest->as_register(), c->as_jint());
564       break;
565     }
566 
567     case T_LONG: {
568       assert(patch_code == lir_patch_none, "no patching handled here");
569       __ mov(dest->as_register_lo(), (intptr_t)c->as_jlong());
570       break;
571     }
572 
573     case T_OBJECT: {
574         if (patch_code == lir_patch_none) {
575           jobject2reg(c->as_jobject(), dest->as_register());
576         } else {
577           jobject2reg_with_patching(dest->as_register(), info);
578         }
579       break;
580     }
581 
582     case T_METADATA: {
583       if (patch_code != lir_patch_none) {
584         klass2reg_with_patching(dest->as_register(), info);
585       } else {
586         __ mov_metadata(dest->as_register(), c->as_metadata());
587       }
588       break;
589     }
590 
591     case T_FLOAT: {
592       if (__ operand_valid_for_float_immediate(c->as_jfloat())) {
593         __ fmovs(dest->as_float_reg(), (c->as_jfloat()));
594       } else {
595         __ adr(rscratch1, InternalAddress(float_constant(c->as_jfloat())));
596         __ ldrs(dest->as_float_reg(), Address(rscratch1));
597       }
598       break;
599     }
600 
601     case T_DOUBLE: {
602       if (__ operand_valid_for_float_immediate(c->as_jdouble())) {
603         __ fmovd(dest->as_double_reg(), (c->as_jdouble()));
604       } else {
605         __ adr(rscratch1, InternalAddress(double_constant(c->as_jdouble())));
606         __ ldrd(dest->as_double_reg(), Address(rscratch1));
607       }
608       break;
609     }
610 
611     default:
612       ShouldNotReachHere();
613   }
614 }
615 
const2stack(LIR_Opr src,LIR_Opr dest)616 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
617   LIR_Const* c = src->as_constant_ptr();
618   switch (c->type()) {
619   case T_OBJECT:
620     {
621       if (! c->as_jobject())
622         __ str(zr, frame_map()->address_for_slot(dest->single_stack_ix()));
623       else {
624         const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, NULL);
625         reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false);
626       }
627     }
628     break;
629   case T_ADDRESS:
630     {
631       const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, NULL);
632       reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false);
633     }
634   case T_INT:
635   case T_FLOAT:
636     {
637       Register reg = zr;
638       if (c->as_jint_bits() == 0)
639         __ strw(zr, frame_map()->address_for_slot(dest->single_stack_ix()));
640       else {
641         __ movw(rscratch1, c->as_jint_bits());
642         __ strw(rscratch1, frame_map()->address_for_slot(dest->single_stack_ix()));
643       }
644     }
645     break;
646   case T_LONG:
647   case T_DOUBLE:
648     {
649       Register reg = zr;
650       if (c->as_jlong_bits() == 0)
651         __ str(zr, frame_map()->address_for_slot(dest->double_stack_ix(),
652                                                  lo_word_offset_in_bytes));
653       else {
654         __ mov(rscratch1, (intptr_t)c->as_jlong_bits());
655         __ str(rscratch1, frame_map()->address_for_slot(dest->double_stack_ix(),
656                                                         lo_word_offset_in_bytes));
657       }
658     }
659     break;
660   default:
661     ShouldNotReachHere();
662   }
663 }
664 
const2mem(LIR_Opr src,LIR_Opr dest,BasicType type,CodeEmitInfo * info,bool wide)665 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
666   assert(src->is_constant(), "should not call otherwise");
667   LIR_Const* c = src->as_constant_ptr();
668   LIR_Address* to_addr = dest->as_address_ptr();
669 
670   void (Assembler::* insn)(Register Rt, const Address &adr);
671 
672   switch (type) {
673   case T_ADDRESS:
674     assert(c->as_jint() == 0, "should be");
675     insn = &Assembler::str;
676     break;
677   case T_LONG:
678     assert(c->as_jlong() == 0, "should be");
679     insn = &Assembler::str;
680     break;
681   case T_INT:
682     assert(c->as_jint() == 0, "should be");
683     insn = &Assembler::strw;
684     break;
685   case T_OBJECT:
686   case T_ARRAY:
687     assert(c->as_jobject() == 0, "should be");
688     if (UseCompressedOops && !wide) {
689       insn = &Assembler::strw;
690     } else {
691       insn = &Assembler::str;
692     }
693     break;
694   case T_CHAR:
695   case T_SHORT:
696     assert(c->as_jint() == 0, "should be");
697     insn = &Assembler::strh;
698     break;
699   case T_BOOLEAN:
700   case T_BYTE:
701     assert(c->as_jint() == 0, "should be");
702     insn = &Assembler::strb;
703     break;
704   default:
705     ShouldNotReachHere();
706     insn = &Assembler::str;  // unreachable
707   }
708 
709   if (info) add_debug_info_for_null_check_here(info);
710   (_masm->*insn)(zr, as_Address(to_addr, rscratch1));
711 }
712 
reg2reg(LIR_Opr src,LIR_Opr dest)713 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
714   assert(src->is_register(), "should not call otherwise");
715   assert(dest->is_register(), "should not call otherwise");
716 
717   // move between cpu-registers
718   if (dest->is_single_cpu()) {
719     if (src->type() == T_LONG) {
720       // Can do LONG -> OBJECT
721       move_regs(src->as_register_lo(), dest->as_register());
722       return;
723     }
724     assert(src->is_single_cpu(), "must match");
725     if (src->type() == T_OBJECT) {
726       __ verify_oop(src->as_register());
727     }
728     move_regs(src->as_register(), dest->as_register());
729 
730   } else if (dest->is_double_cpu()) {
731     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
732       // Surprising to me but we can see move of a long to t_object
733       __ verify_oop(src->as_register());
734       move_regs(src->as_register(), dest->as_register_lo());
735       return;
736     }
737     assert(src->is_double_cpu(), "must match");
738     Register f_lo = src->as_register_lo();
739     Register f_hi = src->as_register_hi();
740     Register t_lo = dest->as_register_lo();
741     Register t_hi = dest->as_register_hi();
742     assert(f_hi == f_lo, "must be same");
743     assert(t_hi == t_lo, "must be same");
744     move_regs(f_lo, t_lo);
745 
746   } else if (dest->is_single_fpu()) {
747     __ fmovs(dest->as_float_reg(), src->as_float_reg());
748 
749   } else if (dest->is_double_fpu()) {
750     __ fmovd(dest->as_double_reg(), src->as_double_reg());
751 
752   } else {
753     ShouldNotReachHere();
754   }
755 }
756 
reg2stack(LIR_Opr src,LIR_Opr dest,BasicType type,bool pop_fpu_stack)757 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
758   precond(src->is_register() && dest->is_stack());
759 
760   uint const c_sz32 = sizeof(uint32_t);
761   uint const c_sz64 = sizeof(uint64_t);
762 
763   if (src->is_single_cpu()) {
764     int index = dest->single_stack_ix();
765     if (type == T_ARRAY || type == T_OBJECT) {
766       __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1));
767       __ verify_oop(src->as_register());
768     } else if (type == T_METADATA || type == T_DOUBLE || type == T_ADDRESS) {
769       __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1));
770     } else {
771       __ strw(src->as_register(), stack_slot_address(index, c_sz32, rscratch1));
772     }
773 
774   } else if (src->is_double_cpu()) {
775     int index = dest->double_stack_ix();
776     Address dest_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes);
777     __ str(src->as_register_lo(), dest_addr_LO);
778 
779   } else if (src->is_single_fpu()) {
780     int index = dest->single_stack_ix();
781     __ strs(src->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1));
782 
783   } else if (src->is_double_fpu()) {
784     int index = dest->double_stack_ix();
785     __ strd(src->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1));
786 
787   } else {
788     ShouldNotReachHere();
789   }
790 }
791 
792 
reg2mem(LIR_Opr src,LIR_Opr dest,BasicType type,LIR_PatchCode patch_code,CodeEmitInfo * info,bool pop_fpu_stack,bool wide,bool)793 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
794   LIR_Address* to_addr = dest->as_address_ptr();
795   PatchingStub* patch = NULL;
796   Register compressed_src = rscratch1;
797 
798   if (patch_code != lir_patch_none) {
799     deoptimize_trap(info);
800     return;
801   }
802 
803   if (type == T_ARRAY || type == T_OBJECT) {
804     __ verify_oop(src->as_register());
805 
806     if (UseCompressedOops && !wide) {
807       __ encode_heap_oop(compressed_src, src->as_register());
808     } else {
809       compressed_src = src->as_register();
810     }
811   }
812 
813   int null_check_here = code_offset();
814   switch (type) {
815     case T_FLOAT: {
816       __ strs(src->as_float_reg(), as_Address(to_addr));
817       break;
818     }
819 
820     case T_DOUBLE: {
821       __ strd(src->as_double_reg(), as_Address(to_addr));
822       break;
823     }
824 
825     case T_ARRAY:   // fall through
826     case T_OBJECT:  // fall through
827       if (UseCompressedOops && !wide) {
828         __ strw(compressed_src, as_Address(to_addr, rscratch2));
829       } else {
830          __ str(compressed_src, as_Address(to_addr));
831       }
832       break;
833     case T_METADATA:
834       // We get here to store a method pointer to the stack to pass to
835       // a dtrace runtime call. This can't work on 64 bit with
836       // compressed klass ptrs: T_METADATA can be a compressed klass
837       // ptr or a 64 bit method pointer.
838       ShouldNotReachHere();
839       __ str(src->as_register(), as_Address(to_addr));
840       break;
841     case T_ADDRESS:
842       __ str(src->as_register(), as_Address(to_addr));
843       break;
844     case T_INT:
845       __ strw(src->as_register(), as_Address(to_addr));
846       break;
847 
848     case T_LONG: {
849       __ str(src->as_register_lo(), as_Address_lo(to_addr));
850       break;
851     }
852 
853     case T_BYTE:    // fall through
854     case T_BOOLEAN: {
855       __ strb(src->as_register(), as_Address(to_addr));
856       break;
857     }
858 
859     case T_CHAR:    // fall through
860     case T_SHORT:
861       __ strh(src->as_register(), as_Address(to_addr));
862       break;
863 
864     default:
865       ShouldNotReachHere();
866   }
867   if (info != NULL) {
868     add_debug_info_for_null_check(null_check_here, info);
869   }
870 }
871 
872 
stack2reg(LIR_Opr src,LIR_Opr dest,BasicType type)873 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
874   precond(src->is_stack() && dest->is_register());
875 
876   uint const c_sz32 = sizeof(uint32_t);
877   uint const c_sz64 = sizeof(uint64_t);
878 
879   if (dest->is_single_cpu()) {
880     int index = src->single_stack_ix();
881     if (type == T_ARRAY || type == T_OBJECT) {
882       __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1));
883       __ verify_oop(dest->as_register());
884     } else if (type == T_METADATA || type == T_ADDRESS) {
885       __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1));
886     } else {
887       __ ldrw(dest->as_register(), stack_slot_address(index, c_sz32, rscratch1));
888     }
889 
890   } else if (dest->is_double_cpu()) {
891     int index = src->double_stack_ix();
892     Address src_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes);
893     __ ldr(dest->as_register_lo(), src_addr_LO);
894 
895   } else if (dest->is_single_fpu()) {
896     int index = src->single_stack_ix();
897     __ ldrs(dest->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1));
898 
899   } else if (dest->is_double_fpu()) {
900     int index = src->double_stack_ix();
901     __ ldrd(dest->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1));
902 
903   } else {
904     ShouldNotReachHere();
905   }
906 }
907 
908 
klass2reg_with_patching(Register reg,CodeEmitInfo * info)909 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
910   address target = NULL;
911   relocInfo::relocType reloc_type = relocInfo::none;
912 
913   switch (patching_id(info)) {
914   case PatchingStub::access_field_id:
915     target = Runtime1::entry_for(Runtime1::access_field_patching_id);
916     reloc_type = relocInfo::section_word_type;
917     break;
918   case PatchingStub::load_klass_id:
919     target = Runtime1::entry_for(Runtime1::load_klass_patching_id);
920     reloc_type = relocInfo::metadata_type;
921     break;
922   case PatchingStub::load_mirror_id:
923     target = Runtime1::entry_for(Runtime1::load_mirror_patching_id);
924     reloc_type = relocInfo::oop_type;
925     break;
926   case PatchingStub::load_appendix_id:
927     target = Runtime1::entry_for(Runtime1::load_appendix_patching_id);
928     reloc_type = relocInfo::oop_type;
929     break;
930   default: ShouldNotReachHere();
931   }
932 
933   __ far_call(RuntimeAddress(target));
934   add_call_info_here(info);
935 }
936 
stack2stack(LIR_Opr src,LIR_Opr dest,BasicType type)937 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
938 
939   LIR_Opr temp;
940   if (type == T_LONG || type == T_DOUBLE)
941     temp = FrameMap::rscratch1_long_opr;
942   else
943     temp = FrameMap::rscratch1_opr;
944 
945   stack2reg(src, temp, src->type());
946   reg2stack(temp, dest, dest->type(), false);
947 }
948 
949 
mem2reg(LIR_Opr src,LIR_Opr dest,BasicType type,LIR_PatchCode patch_code,CodeEmitInfo * info,bool wide,bool)950 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
951   LIR_Address* addr = src->as_address_ptr();
952   LIR_Address* from_addr = src->as_address_ptr();
953 
954   if (addr->base()->type() == T_OBJECT) {
955     __ verify_oop(addr->base()->as_pointer_register());
956   }
957 
958   if (patch_code != lir_patch_none) {
959     deoptimize_trap(info);
960     return;
961   }
962 
963   if (info != NULL) {
964     add_debug_info_for_null_check_here(info);
965   }
966   int null_check_here = code_offset();
967   switch (type) {
968     case T_FLOAT: {
969       __ ldrs(dest->as_float_reg(), as_Address(from_addr));
970       break;
971     }
972 
973     case T_DOUBLE: {
974       __ ldrd(dest->as_double_reg(), as_Address(from_addr));
975       break;
976     }
977 
978     case T_ARRAY:   // fall through
979     case T_OBJECT:  // fall through
980       if (UseCompressedOops && !wide) {
981         __ ldrw(dest->as_register(), as_Address(from_addr));
982       } else {
983          __ ldr(dest->as_register(), as_Address(from_addr));
984       }
985       break;
986     case T_METADATA:
987       // We get here to store a method pointer to the stack to pass to
988       // a dtrace runtime call. This can't work on 64 bit with
989       // compressed klass ptrs: T_METADATA can be a compressed klass
990       // ptr or a 64 bit method pointer.
991       ShouldNotReachHere();
992       __ ldr(dest->as_register(), as_Address(from_addr));
993       break;
994     case T_ADDRESS:
995       // FIXME: OMG this is a horrible kludge.  Any offset from an
996       // address that matches klass_offset_in_bytes() will be loaded
997       // as a word, not a long.
998       if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
999         __ ldrw(dest->as_register(), as_Address(from_addr));
1000       } else {
1001         __ ldr(dest->as_register(), as_Address(from_addr));
1002       }
1003       break;
1004     case T_INT:
1005       __ ldrw(dest->as_register(), as_Address(from_addr));
1006       break;
1007 
1008     case T_LONG: {
1009       __ ldr(dest->as_register_lo(), as_Address_lo(from_addr));
1010       break;
1011     }
1012 
1013     case T_BYTE:
1014       __ ldrsb(dest->as_register(), as_Address(from_addr));
1015       break;
1016     case T_BOOLEAN: {
1017       __ ldrb(dest->as_register(), as_Address(from_addr));
1018       break;
1019     }
1020 
1021     case T_CHAR:
1022       __ ldrh(dest->as_register(), as_Address(from_addr));
1023       break;
1024     case T_SHORT:
1025       __ ldrsh(dest->as_register(), as_Address(from_addr));
1026       break;
1027 
1028     default:
1029       ShouldNotReachHere();
1030   }
1031 
1032   if (type == T_ARRAY || type == T_OBJECT) {
1033     if (UseCompressedOops && !wide) {
1034       __ decode_heap_oop(dest->as_register());
1035     }
1036     __ verify_oop(dest->as_register());
1037   } else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1038     if (UseCompressedClassPointers) {
1039       __ decode_klass_not_null(dest->as_register());
1040     }
1041   }
1042 }
1043 
1044 
array_element_size(BasicType type) const1045 int LIR_Assembler::array_element_size(BasicType type) const {
1046   int elem_size = type2aelembytes(type);
1047   return exact_log2(elem_size);
1048 }
1049 
1050 
emit_op3(LIR_Op3 * op)1051 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1052   switch (op->code()) {
1053   case lir_idiv:
1054   case lir_irem:
1055     arithmetic_idiv(op->code(),
1056                     op->in_opr1(),
1057                     op->in_opr2(),
1058                     op->in_opr3(),
1059                     op->result_opr(),
1060                     op->info());
1061     break;
1062   case lir_fmad:
1063     __ fmaddd(op->result_opr()->as_double_reg(),
1064               op->in_opr1()->as_double_reg(),
1065               op->in_opr2()->as_double_reg(),
1066               op->in_opr3()->as_double_reg());
1067     break;
1068   case lir_fmaf:
1069     __ fmadds(op->result_opr()->as_float_reg(),
1070               op->in_opr1()->as_float_reg(),
1071               op->in_opr2()->as_float_reg(),
1072               op->in_opr3()->as_float_reg());
1073     break;
1074   default:      ShouldNotReachHere(); break;
1075   }
1076 }
1077 
emit_opBranch(LIR_OpBranch * op)1078 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1079 #ifdef ASSERT
1080   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1081   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
1082   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1083 #endif
1084 
1085   if (op->cond() == lir_cond_always) {
1086     if (op->info() != NULL) add_debug_info_for_branch(op->info());
1087     __ b(*(op->label()));
1088   } else {
1089     Assembler::Condition acond;
1090     if (op->code() == lir_cond_float_branch) {
1091       bool is_unordered = (op->ublock() == op->block());
1092       // Assembler::EQ does not permit unordered branches, so we add
1093       // another branch here.  Likewise, Assembler::NE does not permit
1094       // ordered branches.
1095       if ((is_unordered && op->cond() == lir_cond_equal)
1096           || (!is_unordered && op->cond() == lir_cond_notEqual))
1097         __ br(Assembler::VS, *(op->ublock()->label()));
1098       switch(op->cond()) {
1099       case lir_cond_equal:        acond = Assembler::EQ; break;
1100       case lir_cond_notEqual:     acond = Assembler::NE; break;
1101       case lir_cond_less:         acond = (is_unordered ? Assembler::LT : Assembler::LO); break;
1102       case lir_cond_lessEqual:    acond = (is_unordered ? Assembler::LE : Assembler::LS); break;
1103       case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::HS : Assembler::GE); break;
1104       case lir_cond_greater:      acond = (is_unordered ? Assembler::HI : Assembler::GT); break;
1105       default:                    ShouldNotReachHere();
1106         acond = Assembler::EQ;  // unreachable
1107       }
1108     } else {
1109       switch (op->cond()) {
1110         case lir_cond_equal:        acond = Assembler::EQ; break;
1111         case lir_cond_notEqual:     acond = Assembler::NE; break;
1112         case lir_cond_less:         acond = Assembler::LT; break;
1113         case lir_cond_lessEqual:    acond = Assembler::LE; break;
1114         case lir_cond_greaterEqual: acond = Assembler::GE; break;
1115         case lir_cond_greater:      acond = Assembler::GT; break;
1116         case lir_cond_belowEqual:   acond = Assembler::LS; break;
1117         case lir_cond_aboveEqual:   acond = Assembler::HS; break;
1118         default:                    ShouldNotReachHere();
1119           acond = Assembler::EQ;  // unreachable
1120       }
1121     }
1122     __ br(acond,*(op->label()));
1123   }
1124 }
1125 
1126 
1127 
emit_opConvert(LIR_OpConvert * op)1128 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1129   LIR_Opr src  = op->in_opr();
1130   LIR_Opr dest = op->result_opr();
1131 
1132   switch (op->bytecode()) {
1133     case Bytecodes::_i2f:
1134       {
1135         __ scvtfws(dest->as_float_reg(), src->as_register());
1136         break;
1137       }
1138     case Bytecodes::_i2d:
1139       {
1140         __ scvtfwd(dest->as_double_reg(), src->as_register());
1141         break;
1142       }
1143     case Bytecodes::_l2d:
1144       {
1145         __ scvtfd(dest->as_double_reg(), src->as_register_lo());
1146         break;
1147       }
1148     case Bytecodes::_l2f:
1149       {
1150         __ scvtfs(dest->as_float_reg(), src->as_register_lo());
1151         break;
1152       }
1153     case Bytecodes::_f2d:
1154       {
1155         __ fcvts(dest->as_double_reg(), src->as_float_reg());
1156         break;
1157       }
1158     case Bytecodes::_d2f:
1159       {
1160         __ fcvtd(dest->as_float_reg(), src->as_double_reg());
1161         break;
1162       }
1163     case Bytecodes::_i2c:
1164       {
1165         __ ubfx(dest->as_register(), src->as_register(), 0, 16);
1166         break;
1167       }
1168     case Bytecodes::_i2l:
1169       {
1170         __ sxtw(dest->as_register_lo(), src->as_register());
1171         break;
1172       }
1173     case Bytecodes::_i2s:
1174       {
1175         __ sxth(dest->as_register(), src->as_register());
1176         break;
1177       }
1178     case Bytecodes::_i2b:
1179       {
1180         __ sxtb(dest->as_register(), src->as_register());
1181         break;
1182       }
1183     case Bytecodes::_l2i:
1184       {
1185         _masm->block_comment("FIXME: This could be a no-op");
1186         __ uxtw(dest->as_register(), src->as_register_lo());
1187         break;
1188       }
1189     case Bytecodes::_d2l:
1190       {
1191         __ fcvtzd(dest->as_register_lo(), src->as_double_reg());
1192         break;
1193       }
1194     case Bytecodes::_f2i:
1195       {
1196         __ fcvtzsw(dest->as_register(), src->as_float_reg());
1197         break;
1198       }
1199     case Bytecodes::_f2l:
1200       {
1201         __ fcvtzs(dest->as_register_lo(), src->as_float_reg());
1202         break;
1203       }
1204     case Bytecodes::_d2i:
1205       {
1206         __ fcvtzdw(dest->as_register(), src->as_double_reg());
1207         break;
1208       }
1209     default: ShouldNotReachHere();
1210   }
1211 }
1212 
emit_alloc_obj(LIR_OpAllocObj * op)1213 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1214   if (op->init_check()) {
1215     __ ldrb(rscratch1, Address(op->klass()->as_register(),
1216                                InstanceKlass::init_state_offset()));
1217     __ cmpw(rscratch1, InstanceKlass::fully_initialized);
1218     add_debug_info_for_null_check_here(op->stub()->info());
1219     __ br(Assembler::NE, *op->stub()->entry());
1220   }
1221   __ allocate_object(op->obj()->as_register(),
1222                      op->tmp1()->as_register(),
1223                      op->tmp2()->as_register(),
1224                      op->header_size(),
1225                      op->object_size(),
1226                      op->klass()->as_register(),
1227                      *op->stub()->entry());
1228   __ bind(*op->stub()->continuation());
1229 }
1230 
emit_alloc_array(LIR_OpAllocArray * op)1231 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1232   Register len =  op->len()->as_register();
1233   __ uxtw(len, len);
1234 
1235   if (UseSlowPath ||
1236       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
1237       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
1238     __ b(*op->stub()->entry());
1239   } else {
1240     Register tmp1 = op->tmp1()->as_register();
1241     Register tmp2 = op->tmp2()->as_register();
1242     Register tmp3 = op->tmp3()->as_register();
1243     if (len == tmp1) {
1244       tmp1 = tmp3;
1245     } else if (len == tmp2) {
1246       tmp2 = tmp3;
1247     } else if (len == tmp3) {
1248       // everything is ok
1249     } else {
1250       __ mov(tmp3, len);
1251     }
1252     __ allocate_array(op->obj()->as_register(),
1253                       len,
1254                       tmp1,
1255                       tmp2,
1256                       arrayOopDesc::header_size(op->type()),
1257                       array_element_size(op->type()),
1258                       op->klass()->as_register(),
1259                       *op->stub()->entry());
1260   }
1261   __ bind(*op->stub()->continuation());
1262 }
1263 
type_profile_helper(Register mdo,ciMethodData * md,ciProfileData * data,Register recv,Label * update_done)1264 void LIR_Assembler::type_profile_helper(Register mdo,
1265                                         ciMethodData *md, ciProfileData *data,
1266                                         Register recv, Label* update_done) {
1267   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1268     Label next_test;
1269     // See if the receiver is receiver[n].
1270     __ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1271     __ ldr(rscratch1, Address(rscratch2));
1272     __ cmp(recv, rscratch1);
1273     __ br(Assembler::NE, next_test);
1274     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1275     __ addptr(data_addr, DataLayout::counter_increment);
1276     __ b(*update_done);
1277     __ bind(next_test);
1278   }
1279 
1280   // Didn't find receiver; find next empty slot and fill it in
1281   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1282     Label next_test;
1283     __ lea(rscratch2,
1284            Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1285     Address recv_addr(rscratch2);
1286     __ ldr(rscratch1, recv_addr);
1287     __ cbnz(rscratch1, next_test);
1288     __ str(recv, recv_addr);
1289     __ mov(rscratch1, DataLayout::counter_increment);
1290     __ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))));
1291     __ str(rscratch1, Address(rscratch2));
1292     __ b(*update_done);
1293     __ bind(next_test);
1294   }
1295 }
1296 
emit_typecheck_helper(LIR_OpTypeCheck * op,Label * success,Label * failure,Label * obj_is_null)1297 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1298   // we always need a stub for the failure case.
1299   CodeStub* stub = op->stub();
1300   Register obj = op->object()->as_register();
1301   Register k_RInfo = op->tmp1()->as_register();
1302   Register klass_RInfo = op->tmp2()->as_register();
1303   Register dst = op->result_opr()->as_register();
1304   ciKlass* k = op->klass();
1305   Register Rtmp1 = noreg;
1306 
1307   // check if it needs to be profiled
1308   ciMethodData* md;
1309   ciProfileData* data;
1310 
1311   const bool should_profile = op->should_profile();
1312 
1313   if (should_profile) {
1314     ciMethod* method = op->profiled_method();
1315     assert(method != NULL, "Should have method");
1316     int bci = op->profiled_bci();
1317     md = method->method_data_or_null();
1318     assert(md != NULL, "Sanity");
1319     data = md->bci_to_data(bci);
1320     assert(data != NULL,                "need data for type check");
1321     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1322   }
1323   Label profile_cast_success, profile_cast_failure;
1324   Label *success_target = should_profile ? &profile_cast_success : success;
1325   Label *failure_target = should_profile ? &profile_cast_failure : failure;
1326 
1327   if (obj == k_RInfo) {
1328     k_RInfo = dst;
1329   } else if (obj == klass_RInfo) {
1330     klass_RInfo = dst;
1331   }
1332   if (k->is_loaded() && !UseCompressedClassPointers) {
1333     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1334   } else {
1335     Rtmp1 = op->tmp3()->as_register();
1336     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1337   }
1338 
1339   assert_different_registers(obj, k_RInfo, klass_RInfo);
1340 
1341     if (should_profile) {
1342       Label not_null;
1343       __ cbnz(obj, not_null);
1344       // Object is null; update MDO and exit
1345       Register mdo  = klass_RInfo;
1346       __ mov_metadata(mdo, md->constant_encoding());
1347       Address data_addr
1348         = __ form_address(rscratch2, mdo,
1349                           md->byte_offset_of_slot(data, DataLayout::flags_offset()),
1350                           0);
1351       __ ldrb(rscratch1, data_addr);
1352       __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant());
1353       __ strb(rscratch1, data_addr);
1354       __ b(*obj_is_null);
1355       __ bind(not_null);
1356     } else {
1357       __ cbz(obj, *obj_is_null);
1358     }
1359 
1360   if (!k->is_loaded()) {
1361     klass2reg_with_patching(k_RInfo, op->info_for_patch());
1362   } else {
1363     __ mov_metadata(k_RInfo, k->constant_encoding());
1364   }
1365   __ verify_oop(obj);
1366 
1367   if (op->fast_check()) {
1368     // get object class
1369     // not a safepoint as obj null check happens earlier
1370     __ load_klass(rscratch1, obj);
1371     __ cmp( rscratch1, k_RInfo);
1372 
1373     __ br(Assembler::NE, *failure_target);
1374     // successful cast, fall through to profile or jump
1375   } else {
1376     // get object class
1377     // not a safepoint as obj null check happens earlier
1378     __ load_klass(klass_RInfo, obj);
1379     if (k->is_loaded()) {
1380       // See if we get an immediate positive hit
1381       __ ldr(rscratch1, Address(klass_RInfo, int64_t(k->super_check_offset())));
1382       __ cmp(k_RInfo, rscratch1);
1383       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1384         __ br(Assembler::NE, *failure_target);
1385         // successful cast, fall through to profile or jump
1386       } else {
1387         // See if we get an immediate positive hit
1388         __ br(Assembler::EQ, *success_target);
1389         // check for self
1390         __ cmp(klass_RInfo, k_RInfo);
1391         __ br(Assembler::EQ, *success_target);
1392 
1393         __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
1394         __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1395         __ ldr(klass_RInfo, Address(__ post(sp, 2 * wordSize)));
1396         // result is a boolean
1397         __ cbzw(klass_RInfo, *failure_target);
1398         // successful cast, fall through to profile or jump
1399       }
1400     } else {
1401       // perform the fast part of the checking logic
1402       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1403       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1404       __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
1405       __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1406       __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize)));
1407       // result is a boolean
1408       __ cbz(k_RInfo, *failure_target);
1409       // successful cast, fall through to profile or jump
1410     }
1411   }
1412   if (should_profile) {
1413     Register mdo  = klass_RInfo, recv = k_RInfo;
1414     __ bind(profile_cast_success);
1415     __ mov_metadata(mdo, md->constant_encoding());
1416     __ load_klass(recv, obj);
1417     Label update_done;
1418     type_profile_helper(mdo, md, data, recv, success);
1419     __ b(*success);
1420 
1421     __ bind(profile_cast_failure);
1422     __ mov_metadata(mdo, md->constant_encoding());
1423     Address counter_addr
1424       = __ form_address(rscratch2, mdo,
1425                         md->byte_offset_of_slot(data, CounterData::count_offset()),
1426                         0);
1427     __ ldr(rscratch1, counter_addr);
1428     __ sub(rscratch1, rscratch1, DataLayout::counter_increment);
1429     __ str(rscratch1, counter_addr);
1430     __ b(*failure);
1431   }
1432   __ b(*success);
1433 }
1434 
1435 
emit_opTypeCheck(LIR_OpTypeCheck * op)1436 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1437   const bool should_profile = op->should_profile();
1438 
1439   LIR_Code code = op->code();
1440   if (code == lir_store_check) {
1441     Register value = op->object()->as_register();
1442     Register array = op->array()->as_register();
1443     Register k_RInfo = op->tmp1()->as_register();
1444     Register klass_RInfo = op->tmp2()->as_register();
1445     Register Rtmp1 = op->tmp3()->as_register();
1446 
1447     CodeStub* stub = op->stub();
1448 
1449     // check if it needs to be profiled
1450     ciMethodData* md;
1451     ciProfileData* data;
1452 
1453     if (should_profile) {
1454       ciMethod* method = op->profiled_method();
1455       assert(method != NULL, "Should have method");
1456       int bci = op->profiled_bci();
1457       md = method->method_data_or_null();
1458       assert(md != NULL, "Sanity");
1459       data = md->bci_to_data(bci);
1460       assert(data != NULL,                "need data for type check");
1461       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1462     }
1463     Label profile_cast_success, profile_cast_failure, done;
1464     Label *success_target = should_profile ? &profile_cast_success : &done;
1465     Label *failure_target = should_profile ? &profile_cast_failure : stub->entry();
1466 
1467     if (should_profile) {
1468       Label not_null;
1469       __ cbnz(value, not_null);
1470       // Object is null; update MDO and exit
1471       Register mdo  = klass_RInfo;
1472       __ mov_metadata(mdo, md->constant_encoding());
1473       Address data_addr
1474         = __ form_address(rscratch2, mdo,
1475                           md->byte_offset_of_slot(data, DataLayout::flags_offset()),
1476                           0);
1477       __ ldrb(rscratch1, data_addr);
1478       __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant());
1479       __ strb(rscratch1, data_addr);
1480       __ b(done);
1481       __ bind(not_null);
1482     } else {
1483       __ cbz(value, done);
1484     }
1485 
1486     add_debug_info_for_null_check_here(op->info_for_exception());
1487     __ load_klass(k_RInfo, array);
1488     __ load_klass(klass_RInfo, value);
1489 
1490     // get instance klass (it's already uncompressed)
1491     __ ldr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1492     // perform the fast part of the checking logic
1493     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1494     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1495     __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
1496     __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1497     __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize)));
1498     // result is a boolean
1499     __ cbzw(k_RInfo, *failure_target);
1500     // fall through to the success case
1501 
1502     if (should_profile) {
1503       Register mdo  = klass_RInfo, recv = k_RInfo;
1504       __ bind(profile_cast_success);
1505       __ mov_metadata(mdo, md->constant_encoding());
1506       __ load_klass(recv, value);
1507       Label update_done;
1508       type_profile_helper(mdo, md, data, recv, &done);
1509       __ b(done);
1510 
1511       __ bind(profile_cast_failure);
1512       __ mov_metadata(mdo, md->constant_encoding());
1513       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1514       __ lea(rscratch2, counter_addr);
1515       __ ldr(rscratch1, Address(rscratch2));
1516       __ sub(rscratch1, rscratch1, DataLayout::counter_increment);
1517       __ str(rscratch1, Address(rscratch2));
1518       __ b(*stub->entry());
1519     }
1520 
1521     __ bind(done);
1522   } else if (code == lir_checkcast) {
1523     Register obj = op->object()->as_register();
1524     Register dst = op->result_opr()->as_register();
1525     Label success;
1526     emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1527     __ bind(success);
1528     if (dst != obj) {
1529       __ mov(dst, obj);
1530     }
1531   } else if (code == lir_instanceof) {
1532     Register obj = op->object()->as_register();
1533     Register dst = op->result_opr()->as_register();
1534     Label success, failure, done;
1535     emit_typecheck_helper(op, &success, &failure, &failure);
1536     __ bind(failure);
1537     __ mov(dst, zr);
1538     __ b(done);
1539     __ bind(success);
1540     __ mov(dst, 1);
1541     __ bind(done);
1542   } else {
1543     ShouldNotReachHere();
1544   }
1545 }
1546 
casw(Register addr,Register newval,Register cmpval)1547 void LIR_Assembler::casw(Register addr, Register newval, Register cmpval) {
1548   __ cmpxchg(addr, cmpval, newval, Assembler::word, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1);
1549   __ cset(rscratch1, Assembler::NE);
1550   __ membar(__ AnyAny);
1551 }
1552 
casl(Register addr,Register newval,Register cmpval)1553 void LIR_Assembler::casl(Register addr, Register newval, Register cmpval) {
1554   __ cmpxchg(addr, cmpval, newval, Assembler::xword, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1);
1555   __ cset(rscratch1, Assembler::NE);
1556   __ membar(__ AnyAny);
1557 }
1558 
1559 
emit_compare_and_swap(LIR_OpCompareAndSwap * op)1560 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1561   assert(VM_Version::supports_cx8(), "wrong machine");
1562   Register addr;
1563   if (op->addr()->is_register()) {
1564     addr = as_reg(op->addr());
1565   } else {
1566     assert(op->addr()->is_address(), "what else?");
1567     LIR_Address* addr_ptr = op->addr()->as_address_ptr();
1568     assert(addr_ptr->disp() == 0, "need 0 disp");
1569     assert(addr_ptr->index() == LIR_OprDesc::illegalOpr(), "need 0 index");
1570     addr = as_reg(addr_ptr->base());
1571   }
1572   Register newval = as_reg(op->new_value());
1573   Register cmpval = as_reg(op->cmp_value());
1574   Label succeed, fail, around;
1575 
1576   if (op->code() == lir_cas_obj) {
1577     if (UseCompressedOops) {
1578       Register t1 = op->tmp1()->as_register();
1579       assert(op->tmp1()->is_valid(), "must be");
1580       __ encode_heap_oop(t1, cmpval);
1581       cmpval = t1;
1582       __ encode_heap_oop(rscratch2, newval);
1583       newval = rscratch2;
1584       casw(addr, newval, cmpval);
1585     } else {
1586       casl(addr, newval, cmpval);
1587     }
1588   } else if (op->code() == lir_cas_int) {
1589     casw(addr, newval, cmpval);
1590   } else {
1591     casl(addr, newval, cmpval);
1592   }
1593 }
1594 
1595 
cmove(LIR_Condition condition,LIR_Opr opr1,LIR_Opr opr2,LIR_Opr result,BasicType type)1596 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1597 
1598   Assembler::Condition acond, ncond;
1599   switch (condition) {
1600   case lir_cond_equal:        acond = Assembler::EQ; ncond = Assembler::NE; break;
1601   case lir_cond_notEqual:     acond = Assembler::NE; ncond = Assembler::EQ; break;
1602   case lir_cond_less:         acond = Assembler::LT; ncond = Assembler::GE; break;
1603   case lir_cond_lessEqual:    acond = Assembler::LE; ncond = Assembler::GT; break;
1604   case lir_cond_greaterEqual: acond = Assembler::GE; ncond = Assembler::LT; break;
1605   case lir_cond_greater:      acond = Assembler::GT; ncond = Assembler::LE; break;
1606   case lir_cond_belowEqual:
1607   case lir_cond_aboveEqual:
1608   default:                    ShouldNotReachHere();
1609     acond = Assembler::EQ; ncond = Assembler::NE;  // unreachable
1610   }
1611 
1612   assert(result->is_single_cpu() || result->is_double_cpu(),
1613          "expect single register for result");
1614   if (opr1->is_constant() && opr2->is_constant()
1615       && opr1->type() == T_INT && opr2->type() == T_INT) {
1616     jint val1 = opr1->as_jint();
1617     jint val2 = opr2->as_jint();
1618     if (val1 == 0 && val2 == 1) {
1619       __ cset(result->as_register(), ncond);
1620       return;
1621     } else if (val1 == 1 && val2 == 0) {
1622       __ cset(result->as_register(), acond);
1623       return;
1624     }
1625   }
1626 
1627   if (opr1->is_constant() && opr2->is_constant()
1628       && opr1->type() == T_LONG && opr2->type() == T_LONG) {
1629     jlong val1 = opr1->as_jlong();
1630     jlong val2 = opr2->as_jlong();
1631     if (val1 == 0 && val2 == 1) {
1632       __ cset(result->as_register_lo(), ncond);
1633       return;
1634     } else if (val1 == 1 && val2 == 0) {
1635       __ cset(result->as_register_lo(), acond);
1636       return;
1637     }
1638   }
1639 
1640   if (opr1->is_stack()) {
1641     stack2reg(opr1, FrameMap::rscratch1_opr, result->type());
1642     opr1 = FrameMap::rscratch1_opr;
1643   } else if (opr1->is_constant()) {
1644     LIR_Opr tmp
1645       = opr1->type() == T_LONG ? FrameMap::rscratch1_long_opr : FrameMap::rscratch1_opr;
1646     const2reg(opr1, tmp, lir_patch_none, NULL);
1647     opr1 = tmp;
1648   }
1649 
1650   if (opr2->is_stack()) {
1651     stack2reg(opr2, FrameMap::rscratch2_opr, result->type());
1652     opr2 = FrameMap::rscratch2_opr;
1653   } else if (opr2->is_constant()) {
1654     LIR_Opr tmp
1655       = opr2->type() == T_LONG ? FrameMap::rscratch2_long_opr : FrameMap::rscratch2_opr;
1656     const2reg(opr2, tmp, lir_patch_none, NULL);
1657     opr2 = tmp;
1658   }
1659 
1660   if (result->type() == T_LONG)
1661     __ csel(result->as_register_lo(), opr1->as_register_lo(), opr2->as_register_lo(), acond);
1662   else
1663     __ csel(result->as_register(), opr1->as_register(), opr2->as_register(), acond);
1664 }
1665 
arith_op(LIR_Code code,LIR_Opr left,LIR_Opr right,LIR_Opr dest,CodeEmitInfo * info,bool pop_fpu_stack)1666 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1667   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
1668 
1669   if (left->is_single_cpu()) {
1670     Register lreg = left->as_register();
1671     Register dreg = as_reg(dest);
1672 
1673     if (right->is_single_cpu()) {
1674       // cpu register - cpu register
1675 
1676       assert(left->type() == T_INT && right->type() == T_INT && dest->type() == T_INT,
1677              "should be");
1678       Register rreg = right->as_register();
1679       switch (code) {
1680       case lir_add: __ addw (dest->as_register(), lreg, rreg); break;
1681       case lir_sub: __ subw (dest->as_register(), lreg, rreg); break;
1682       case lir_mul: __ mulw (dest->as_register(), lreg, rreg); break;
1683       default:      ShouldNotReachHere();
1684       }
1685 
1686     } else if (right->is_double_cpu()) {
1687       Register rreg = right->as_register_lo();
1688       // single_cpu + double_cpu: can happen with obj+long
1689       assert(code == lir_add || code == lir_sub, "mismatched arithmetic op");
1690       switch (code) {
1691       case lir_add: __ add(dreg, lreg, rreg); break;
1692       case lir_sub: __ sub(dreg, lreg, rreg); break;
1693       default: ShouldNotReachHere();
1694       }
1695     } else if (right->is_constant()) {
1696       // cpu register - constant
1697       jlong c;
1698 
1699       // FIXME.  This is fugly: we really need to factor all this logic.
1700       switch(right->type()) {
1701       case T_LONG:
1702         c = right->as_constant_ptr()->as_jlong();
1703         break;
1704       case T_INT:
1705       case T_ADDRESS:
1706         c = right->as_constant_ptr()->as_jint();
1707         break;
1708       default:
1709         ShouldNotReachHere();
1710         c = 0;  // unreachable
1711         break;
1712       }
1713 
1714       assert(code == lir_add || code == lir_sub, "mismatched arithmetic op");
1715       if (c == 0 && dreg == lreg) {
1716         COMMENT("effective nop elided");
1717         return;
1718       }
1719       switch(left->type()) {
1720       case T_INT:
1721         switch (code) {
1722         case lir_add: __ addw(dreg, lreg, c); break;
1723         case lir_sub: __ subw(dreg, lreg, c); break;
1724         default: ShouldNotReachHere();
1725         }
1726         break;
1727       case T_OBJECT:
1728       case T_ADDRESS:
1729         switch (code) {
1730         case lir_add: __ add(dreg, lreg, c); break;
1731         case lir_sub: __ sub(dreg, lreg, c); break;
1732         default: ShouldNotReachHere();
1733         }
1734         break;
1735         ShouldNotReachHere();
1736       }
1737     } else {
1738       ShouldNotReachHere();
1739     }
1740 
1741   } else if (left->is_double_cpu()) {
1742     Register lreg_lo = left->as_register_lo();
1743 
1744     if (right->is_double_cpu()) {
1745       // cpu register - cpu register
1746       Register rreg_lo = right->as_register_lo();
1747       switch (code) {
1748       case lir_add: __ add (dest->as_register_lo(), lreg_lo, rreg_lo); break;
1749       case lir_sub: __ sub (dest->as_register_lo(), lreg_lo, rreg_lo); break;
1750       case lir_mul: __ mul (dest->as_register_lo(), lreg_lo, rreg_lo); break;
1751       case lir_div: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, false, rscratch1); break;
1752       case lir_rem: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, true, rscratch1); break;
1753       default:
1754         ShouldNotReachHere();
1755       }
1756 
1757     } else if (right->is_constant()) {
1758       jlong c = right->as_constant_ptr()->as_jlong();
1759       Register dreg = as_reg(dest);
1760       switch (code) {
1761         case lir_add:
1762         case lir_sub:
1763           if (c == 0 && dreg == lreg_lo) {
1764             COMMENT("effective nop elided");
1765             return;
1766           }
1767           code == lir_add ? __ add(dreg, lreg_lo, c) : __ sub(dreg, lreg_lo, c);
1768           break;
1769         case lir_div:
1770           assert(c > 0 && is_power_of_2_long(c), "divisor must be power-of-2 constant");
1771           if (c == 1) {
1772             // move lreg_lo to dreg if divisor is 1
1773             __ mov(dreg, lreg_lo);
1774           } else {
1775             unsigned int shift = exact_log2_long(c);
1776             // use rscratch1 as intermediate result register
1777             __ asr(rscratch1, lreg_lo, 63);
1778             __ add(rscratch1, lreg_lo, rscratch1, Assembler::LSR, 64 - shift);
1779             __ asr(dreg, rscratch1, shift);
1780           }
1781           break;
1782         case lir_rem:
1783           assert(c > 0 && is_power_of_2_long(c), "divisor must be power-of-2 constant");
1784           if (c == 1) {
1785             // move 0 to dreg if divisor is 1
1786             __ mov(dreg, zr);
1787           } else {
1788             // use rscratch1 as intermediate result register
1789             __ negs(rscratch1, lreg_lo);
1790             __ andr(dreg, lreg_lo, c - 1);
1791             __ andr(rscratch1, rscratch1, c - 1);
1792             __ csneg(dreg, dreg, rscratch1, Assembler::MI);
1793           }
1794           break;
1795         default:
1796           ShouldNotReachHere();
1797       }
1798     } else {
1799       ShouldNotReachHere();
1800     }
1801   } else if (left->is_single_fpu()) {
1802     assert(right->is_single_fpu(), "right hand side of float arithmetics needs to be float register");
1803     switch (code) {
1804     case lir_add: __ fadds (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1805     case lir_sub: __ fsubs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1806     case lir_mul_strictfp: // fall through
1807     case lir_mul: __ fmuls (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1808     case lir_div_strictfp: // fall through
1809     case lir_div: __ fdivs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1810     default:
1811       ShouldNotReachHere();
1812     }
1813   } else if (left->is_double_fpu()) {
1814     if (right->is_double_fpu()) {
1815       // fpu register - fpu register
1816       switch (code) {
1817       case lir_add: __ faddd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1818       case lir_sub: __ fsubd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1819       case lir_mul_strictfp: // fall through
1820       case lir_mul: __ fmuld (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1821       case lir_div_strictfp: // fall through
1822       case lir_div: __ fdivd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1823       default:
1824         ShouldNotReachHere();
1825       }
1826     } else {
1827       if (right->is_constant()) {
1828         ShouldNotReachHere();
1829       }
1830       ShouldNotReachHere();
1831     }
1832   } else if (left->is_single_stack() || left->is_address()) {
1833     assert(left == dest, "left and dest must be equal");
1834     ShouldNotReachHere();
1835   } else {
1836     ShouldNotReachHere();
1837   }
1838 }
1839 
arith_fpu_implementation(LIR_Code code,int left_index,int right_index,int dest_index,bool pop_fpu_stack)1840 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) { Unimplemented(); }
1841 
1842 
intrinsic_op(LIR_Code code,LIR_Opr value,LIR_Opr unused,LIR_Opr dest,LIR_Op * op)1843 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
1844   switch(code) {
1845   case lir_abs : __ fabsd(dest->as_double_reg(), value->as_double_reg()); break;
1846   case lir_sqrt: __ fsqrtd(dest->as_double_reg(), value->as_double_reg()); break;
1847   default      : ShouldNotReachHere();
1848   }
1849 }
1850 
logic_op(LIR_Code code,LIR_Opr left,LIR_Opr right,LIR_Opr dst)1851 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
1852 
1853   assert(left->is_single_cpu() || left->is_double_cpu(), "expect single or double register");
1854   Register Rleft = left->is_single_cpu() ? left->as_register() :
1855                                            left->as_register_lo();
1856    if (dst->is_single_cpu()) {
1857      Register Rdst = dst->as_register();
1858      if (right->is_constant()) {
1859        switch (code) {
1860          case lir_logic_and: __ andw (Rdst, Rleft, right->as_jint()); break;
1861          case lir_logic_or:  __ orrw (Rdst, Rleft, right->as_jint()); break;
1862          case lir_logic_xor: __ eorw (Rdst, Rleft, right->as_jint()); break;
1863          default: ShouldNotReachHere(); break;
1864        }
1865      } else {
1866        Register Rright = right->is_single_cpu() ? right->as_register() :
1867                                                   right->as_register_lo();
1868        switch (code) {
1869          case lir_logic_and: __ andw (Rdst, Rleft, Rright); break;
1870          case lir_logic_or:  __ orrw (Rdst, Rleft, Rright); break;
1871          case lir_logic_xor: __ eorw (Rdst, Rleft, Rright); break;
1872          default: ShouldNotReachHere(); break;
1873        }
1874      }
1875    } else {
1876      Register Rdst = dst->as_register_lo();
1877      if (right->is_constant()) {
1878        switch (code) {
1879          case lir_logic_and: __ andr (Rdst, Rleft, right->as_jlong()); break;
1880          case lir_logic_or:  __ orr (Rdst, Rleft, right->as_jlong()); break;
1881          case lir_logic_xor: __ eor (Rdst, Rleft, right->as_jlong()); break;
1882          default: ShouldNotReachHere(); break;
1883        }
1884      } else {
1885        Register Rright = right->is_single_cpu() ? right->as_register() :
1886                                                   right->as_register_lo();
1887        switch (code) {
1888          case lir_logic_and: __ andr (Rdst, Rleft, Rright); break;
1889          case lir_logic_or:  __ orr (Rdst, Rleft, Rright); break;
1890          case lir_logic_xor: __ eor (Rdst, Rleft, Rright); break;
1891          default: ShouldNotReachHere(); break;
1892        }
1893      }
1894    }
1895 }
1896 
1897 
1898 
arithmetic_idiv(LIR_Code code,LIR_Opr left,LIR_Opr right,LIR_Opr illegal,LIR_Opr result,CodeEmitInfo * info)1899 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr illegal, LIR_Opr result, CodeEmitInfo* info) {
1900 
1901   // opcode check
1902   assert((code == lir_idiv) || (code == lir_irem), "opcode must be idiv or irem");
1903   bool is_irem = (code == lir_irem);
1904 
1905   // operand check
1906   assert(left->is_single_cpu(),   "left must be register");
1907   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
1908   assert(result->is_single_cpu(), "result must be register");
1909   Register lreg = left->as_register();
1910   Register dreg = result->as_register();
1911 
1912   // power-of-2 constant check and codegen
1913   if (right->is_constant()) {
1914     int c = right->as_constant_ptr()->as_jint();
1915     assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant");
1916     if (is_irem) {
1917       if (c == 1) {
1918         // move 0 to dreg if divisor is 1
1919         __ movw(dreg, zr);
1920       } else {
1921         // use rscratch1 as intermediate result register
1922         __ negsw(rscratch1, lreg);
1923         __ andw(dreg, lreg, c - 1);
1924         __ andw(rscratch1, rscratch1, c - 1);
1925         __ csnegw(dreg, dreg, rscratch1, Assembler::MI);
1926       }
1927     } else {
1928       if (c == 1) {
1929         // move lreg to dreg if divisor is 1
1930         __ movw(dreg, lreg);
1931       } else {
1932         unsigned int shift = exact_log2(c);
1933         // use rscratch1 as intermediate result register
1934         __ asrw(rscratch1, lreg, 31);
1935         __ addw(rscratch1, lreg, rscratch1, Assembler::LSR, 32 - shift);
1936         __ asrw(dreg, rscratch1, shift);
1937       }
1938     }
1939   } else {
1940     Register rreg = right->as_register();
1941     __ corrected_idivl(dreg, lreg, rreg, is_irem, rscratch1);
1942   }
1943 }
1944 
1945 
comp_op(LIR_Condition condition,LIR_Opr opr1,LIR_Opr opr2,LIR_Op2 * op)1946 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1947   if (opr1->is_constant() && opr2->is_single_cpu()) {
1948     // tableswitch
1949     Register reg = as_reg(opr2);
1950     struct tableswitch &table = switches[opr1->as_constant_ptr()->as_jint()];
1951     __ tableswitch(reg, table._first_key, table._last_key, table._branches, table._after);
1952   } else if (opr1->is_single_cpu() || opr1->is_double_cpu()) {
1953     Register reg1 = as_reg(opr1);
1954     if (opr2->is_single_cpu()) {
1955       // cpu register - cpu register
1956       Register reg2 = opr2->as_register();
1957       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
1958         __ cmpoop(reg1, reg2);
1959       } else {
1960         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
1961         __ cmpw(reg1, reg2);
1962       }
1963       return;
1964     }
1965     if (opr2->is_double_cpu()) {
1966       // cpu register - cpu register
1967       Register reg2 = opr2->as_register_lo();
1968       __ cmp(reg1, reg2);
1969       return;
1970     }
1971 
1972     if (opr2->is_constant()) {
1973       bool is_32bit = false; // width of register operand
1974       jlong imm;
1975 
1976       switch(opr2->type()) {
1977       case T_INT:
1978         imm = opr2->as_constant_ptr()->as_jint();
1979         is_32bit = true;
1980         break;
1981       case T_LONG:
1982         imm = opr2->as_constant_ptr()->as_jlong();
1983         break;
1984       case T_ADDRESS:
1985         imm = opr2->as_constant_ptr()->as_jint();
1986         break;
1987       case T_METADATA:
1988         imm = (intptr_t)(opr2->as_constant_ptr()->as_metadata());
1989         break;
1990       case T_OBJECT:
1991       case T_ARRAY:
1992         jobject2reg(opr2->as_constant_ptr()->as_jobject(), rscratch1);
1993         __ cmpoop(reg1, rscratch1);
1994         return;
1995       default:
1996         ShouldNotReachHere();
1997         imm = 0;  // unreachable
1998         break;
1999       }
2000 
2001       if (Assembler::operand_valid_for_add_sub_immediate(imm)) {
2002         if (is_32bit)
2003           __ cmpw(reg1, imm);
2004         else
2005           __ cmp(reg1, imm);
2006         return;
2007       } else {
2008         __ mov(rscratch1, imm);
2009         if (is_32bit)
2010           __ cmpw(reg1, rscratch1);
2011         else
2012           __ cmp(reg1, rscratch1);
2013         return;
2014       }
2015     } else
2016       ShouldNotReachHere();
2017   } else if (opr1->is_single_fpu()) {
2018     FloatRegister reg1 = opr1->as_float_reg();
2019     assert(opr2->is_single_fpu(), "expect single float register");
2020     FloatRegister reg2 = opr2->as_float_reg();
2021     __ fcmps(reg1, reg2);
2022   } else if (opr1->is_double_fpu()) {
2023     FloatRegister reg1 = opr1->as_double_reg();
2024     assert(opr2->is_double_fpu(), "expect double float register");
2025     FloatRegister reg2 = opr2->as_double_reg();
2026     __ fcmpd(reg1, reg2);
2027   } else {
2028     ShouldNotReachHere();
2029   }
2030 }
2031 
comp_fl2i(LIR_Code code,LIR_Opr left,LIR_Opr right,LIR_Opr dst,LIR_Op2 * op)2032 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
2033   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2034     bool is_unordered_less = (code == lir_ucmp_fd2i);
2035     if (left->is_single_fpu()) {
2036       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
2037     } else if (left->is_double_fpu()) {
2038       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
2039     } else {
2040       ShouldNotReachHere();
2041     }
2042   } else if (code == lir_cmp_l2i) {
2043     Label done;
2044     __ cmp(left->as_register_lo(), right->as_register_lo());
2045     __ mov(dst->as_register(), (uint64_t)-1L);
2046     __ br(Assembler::LT, done);
2047     __ csinc(dst->as_register(), zr, zr, Assembler::EQ);
2048     __ bind(done);
2049   } else {
2050     ShouldNotReachHere();
2051   }
2052 }
2053 
2054 
align_call(LIR_Code code)2055 void LIR_Assembler::align_call(LIR_Code code) {  }
2056 
2057 
call(LIR_OpJavaCall * op,relocInfo::relocType rtype)2058 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2059   address call = __ trampoline_call(Address(op->addr(), rtype));
2060   if (call == NULL) {
2061     bailout("trampoline stub overflow");
2062     return;
2063   }
2064   add_call_info(code_offset(), op->info());
2065 }
2066 
2067 
ic_call(LIR_OpJavaCall * op)2068 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2069   address call = __ ic_call(op->addr());
2070   if (call == NULL) {
2071     bailout("trampoline stub overflow");
2072     return;
2073   }
2074   add_call_info(code_offset(), op->info());
2075 }
2076 
2077 
2078 /* Currently, vtable-dispatch is only enabled for sparc platforms */
vtable_call(LIR_OpJavaCall * op)2079 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
2080   ShouldNotReachHere();
2081 }
2082 
2083 
emit_static_call_stub()2084 void LIR_Assembler::emit_static_call_stub() {
2085   address call_pc = __ pc();
2086   address stub = __ start_a_stub(call_stub_size());
2087   if (stub == NULL) {
2088     bailout("static call stub overflow");
2089     return;
2090   }
2091 
2092   int start = __ offset();
2093 
2094   __ relocate(static_stub_Relocation::spec(call_pc));
2095   __ emit_static_call_stub();
2096 
2097   assert(__ offset() - start + CompiledStaticCall::to_trampoline_stub_size()
2098         <= call_stub_size(), "stub too big");
2099   __ end_a_stub();
2100 }
2101 
2102 
throw_op(LIR_Opr exceptionPC,LIR_Opr exceptionOop,CodeEmitInfo * info)2103 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2104   assert(exceptionOop->as_register() == r0, "must match");
2105   assert(exceptionPC->as_register() == r3, "must match");
2106 
2107   // exception object is not added to oop map by LinearScan
2108   // (LinearScan assumes that no oops are in fixed registers)
2109   info->add_register_oop(exceptionOop);
2110   Runtime1::StubID unwind_id;
2111 
2112   // get current pc information
2113   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2114   if (compilation()->debug_info_recorder()->last_pc_offset() == __ offset()) {
2115     // As no instructions have been generated yet for this LIR node it's
2116     // possible that an oop map already exists for the current offset.
2117     // In that case insert an dummy NOP here to ensure all oop map PCs
2118     // are unique. See JDK-8237483.
2119     __ nop();
2120   }
2121   int pc_for_athrow_offset = __ offset();
2122   InternalAddress pc_for_athrow(__ pc());
2123   __ adr(exceptionPC->as_register(), pc_for_athrow);
2124   add_call_info(pc_for_athrow_offset, info); // for exception handler
2125 
2126   __ verify_not_null_oop(r0);
2127   // search an exception handler (r0: exception oop, r3: throwing pc)
2128   if (compilation()->has_fpu_code()) {
2129     unwind_id = Runtime1::handle_exception_id;
2130   } else {
2131     unwind_id = Runtime1::handle_exception_nofpu_id;
2132   }
2133   __ far_call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2134 
2135   // FIXME: enough room for two byte trap   ????
2136   __ nop();
2137 }
2138 
2139 
unwind_op(LIR_Opr exceptionOop)2140 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2141   assert(exceptionOop->as_register() == r0, "must match");
2142 
2143   __ b(_unwind_handler_entry);
2144 }
2145 
2146 
shift_op(LIR_Code code,LIR_Opr left,LIR_Opr count,LIR_Opr dest,LIR_Opr tmp)2147 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2148   Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo();
2149   Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo();
2150 
2151   switch (left->type()) {
2152     case T_INT: {
2153       switch (code) {
2154       case lir_shl:  __ lslvw (dreg, lreg, count->as_register()); break;
2155       case lir_shr:  __ asrvw (dreg, lreg, count->as_register()); break;
2156       case lir_ushr: __ lsrvw (dreg, lreg, count->as_register()); break;
2157       default:
2158         ShouldNotReachHere();
2159         break;
2160       }
2161       break;
2162     case T_LONG:
2163     case T_ADDRESS:
2164     case T_OBJECT:
2165       switch (code) {
2166       case lir_shl:  __ lslv (dreg, lreg, count->as_register()); break;
2167       case lir_shr:  __ asrv (dreg, lreg, count->as_register()); break;
2168       case lir_ushr: __ lsrv (dreg, lreg, count->as_register()); break;
2169       default:
2170         ShouldNotReachHere();
2171         break;
2172       }
2173       break;
2174     default:
2175       ShouldNotReachHere();
2176       break;
2177     }
2178   }
2179 }
2180 
2181 
shift_op(LIR_Code code,LIR_Opr left,jint count,LIR_Opr dest)2182 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2183   Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo();
2184   Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo();
2185 
2186   switch (left->type()) {
2187     case T_INT: {
2188       switch (code) {
2189       case lir_shl:  __ lslw (dreg, lreg, count); break;
2190       case lir_shr:  __ asrw (dreg, lreg, count); break;
2191       case lir_ushr: __ lsrw (dreg, lreg, count); break;
2192       default:
2193         ShouldNotReachHere();
2194         break;
2195       }
2196       break;
2197     case T_LONG:
2198     case T_ADDRESS:
2199     case T_OBJECT:
2200       switch (code) {
2201       case lir_shl:  __ lsl (dreg, lreg, count); break;
2202       case lir_shr:  __ asr (dreg, lreg, count); break;
2203       case lir_ushr: __ lsr (dreg, lreg, count); break;
2204       default:
2205         ShouldNotReachHere();
2206         break;
2207       }
2208       break;
2209     default:
2210       ShouldNotReachHere();
2211       break;
2212     }
2213   }
2214 }
2215 
2216 
store_parameter(Register r,int offset_from_rsp_in_words)2217 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
2218   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2219   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2220   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2221   __ str (r, Address(sp, offset_from_rsp_in_bytes));
2222 }
2223 
2224 
store_parameter(jint c,int offset_from_rsp_in_words)2225 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
2226   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2227   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2228   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2229   __ mov (rscratch1, c);
2230   __ str (rscratch1, Address(sp, offset_from_rsp_in_bytes));
2231 }
2232 
2233 
store_parameter(jobject o,int offset_from_rsp_in_words)2234 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
2235   ShouldNotReachHere();
2236   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2237   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2238   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2239   __ lea(rscratch1, __ constant_oop_address(o));
2240   __ str(rscratch1, Address(sp, offset_from_rsp_in_bytes));
2241 }
2242 
2243 
2244 // This code replaces a call to arraycopy; no exception may
2245 // be thrown in this code, they must be thrown in the System.arraycopy
2246 // activation frame; we could save some checks if this would not be the case
emit_arraycopy(LIR_OpArrayCopy * op)2247 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2248   ciArrayKlass* default_type = op->expected_type();
2249   Register src = op->src()->as_register();
2250   Register dst = op->dst()->as_register();
2251   Register src_pos = op->src_pos()->as_register();
2252   Register dst_pos = op->dst_pos()->as_register();
2253   Register length  = op->length()->as_register();
2254   Register tmp = op->tmp()->as_register();
2255 
2256   CodeStub* stub = op->stub();
2257   int flags = op->flags();
2258   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
2259   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
2260 
2261   // if we don't know anything, just go through the generic arraycopy
2262   if (default_type == NULL // || basic_type == T_OBJECT
2263       ) {
2264     Label done;
2265     assert(src == r1 && src_pos == r2, "mismatch in calling convention");
2266 
2267     // Save the arguments in case the generic arraycopy fails and we
2268     // have to fall back to the JNI stub
2269     __ stp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
2270     __ stp(length,  src_pos, Address(sp, 2*BytesPerWord));
2271     __ str(src,              Address(sp, 4*BytesPerWord));
2272 
2273     address copyfunc_addr = StubRoutines::generic_arraycopy();
2274     assert(copyfunc_addr != NULL, "generic arraycopy stub required");
2275 
2276     // The arguments are in java calling convention so we shift them
2277     // to C convention
2278     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
2279     __ mov(c_rarg0, j_rarg0);
2280     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
2281     __ mov(c_rarg1, j_rarg1);
2282     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
2283     __ mov(c_rarg2, j_rarg2);
2284     assert_different_registers(c_rarg3, j_rarg4);
2285     __ mov(c_rarg3, j_rarg3);
2286     __ mov(c_rarg4, j_rarg4);
2287 #ifndef PRODUCT
2288     if (PrintC1Statistics) {
2289       __ incrementw(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
2290     }
2291 #endif
2292     __ far_call(RuntimeAddress(copyfunc_addr));
2293 
2294     __ cbz(r0, *stub->continuation());
2295 
2296     // Reload values from the stack so they are where the stub
2297     // expects them.
2298     __ ldp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
2299     __ ldp(length,  src_pos, Address(sp, 2*BytesPerWord));
2300     __ ldr(src,              Address(sp, 4*BytesPerWord));
2301 
2302     // r0 is -1^K where K == partial copied count
2303     __ eonw(rscratch1, r0, zr);
2304     // adjust length down and src/end pos up by partial copied count
2305     __ subw(length, length, rscratch1);
2306     __ addw(src_pos, src_pos, rscratch1);
2307     __ addw(dst_pos, dst_pos, rscratch1);
2308     __ b(*stub->entry());
2309 
2310     __ bind(*stub->continuation());
2311     return;
2312   }
2313 
2314   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
2315 
2316   int elem_size = type2aelembytes(basic_type);
2317   int scale = exact_log2(elem_size);
2318 
2319   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
2320   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
2321   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
2322   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
2323 
2324   // test for NULL
2325   if (flags & LIR_OpArrayCopy::src_null_check) {
2326     __ cbz(src, *stub->entry());
2327   }
2328   if (flags & LIR_OpArrayCopy::dst_null_check) {
2329     __ cbz(dst, *stub->entry());
2330   }
2331 
2332   // If the compiler was not able to prove that exact type of the source or the destination
2333   // of the arraycopy is an array type, check at runtime if the source or the destination is
2334   // an instance type.
2335   if (flags & LIR_OpArrayCopy::type_check) {
2336     if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) {
2337       __ load_klass(tmp, dst);
2338       __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset())));
2339       __ cmpw(rscratch1, Klass::_lh_neutral_value);
2340       __ br(Assembler::GE, *stub->entry());
2341     }
2342 
2343     if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) {
2344       __ load_klass(tmp, src);
2345       __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset())));
2346       __ cmpw(rscratch1, Klass::_lh_neutral_value);
2347       __ br(Assembler::GE, *stub->entry());
2348     }
2349   }
2350 
2351   // check if negative
2352   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
2353     __ cmpw(src_pos, 0);
2354     __ br(Assembler::LT, *stub->entry());
2355   }
2356   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
2357     __ cmpw(dst_pos, 0);
2358     __ br(Assembler::LT, *stub->entry());
2359   }
2360 
2361   if (flags & LIR_OpArrayCopy::length_positive_check) {
2362     __ cmpw(length, 0);
2363     __ br(Assembler::LT, *stub->entry());
2364   }
2365 
2366   if (flags & LIR_OpArrayCopy::src_range_check) {
2367     __ addw(tmp, src_pos, length);
2368     __ ldrw(rscratch1, src_length_addr);
2369     __ cmpw(tmp, rscratch1);
2370     __ br(Assembler::HI, *stub->entry());
2371   }
2372   if (flags & LIR_OpArrayCopy::dst_range_check) {
2373     __ addw(tmp, dst_pos, length);
2374     __ ldrw(rscratch1, dst_length_addr);
2375     __ cmpw(tmp, rscratch1);
2376     __ br(Assembler::HI, *stub->entry());
2377   }
2378 
2379   if (flags & LIR_OpArrayCopy::type_check) {
2380     // We don't know the array types are compatible
2381     if (basic_type != T_OBJECT) {
2382       // Simple test for basic type arrays
2383       if (UseCompressedClassPointers) {
2384         __ ldrw(tmp, src_klass_addr);
2385         __ ldrw(rscratch1, dst_klass_addr);
2386         __ cmpw(tmp, rscratch1);
2387       } else {
2388         __ ldr(tmp, src_klass_addr);
2389         __ ldr(rscratch1, dst_klass_addr);
2390         __ cmp(tmp, rscratch1);
2391       }
2392       __ br(Assembler::NE, *stub->entry());
2393     } else {
2394       // For object arrays, if src is a sub class of dst then we can
2395       // safely do the copy.
2396       Label cont, slow;
2397 
2398 #define PUSH(r1, r2)                                    \
2399       stp(r1, r2, __ pre(sp, -2 * wordSize));
2400 
2401 #define POP(r1, r2)                                     \
2402       ldp(r1, r2, __ post(sp, 2 * wordSize));
2403 
2404       __ PUSH(src, dst);
2405 
2406       __ load_klass(src, src);
2407       __ load_klass(dst, dst);
2408 
2409       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
2410 
2411       __ PUSH(src, dst);
2412       __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
2413       __ POP(src, dst);
2414 
2415       __ cbnz(src, cont);
2416 
2417       __ bind(slow);
2418       __ POP(src, dst);
2419 
2420       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
2421       if (copyfunc_addr != NULL) { // use stub if available
2422         // src is not a sub class of dst so we have to do a
2423         // per-element check.
2424 
2425         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
2426         if ((flags & mask) != mask) {
2427           // Check that at least both of them object arrays.
2428           assert(flags & mask, "one of the two should be known to be an object array");
2429 
2430           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2431             __ load_klass(tmp, src);
2432           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2433             __ load_klass(tmp, dst);
2434           }
2435           int lh_offset = in_bytes(Klass::layout_helper_offset());
2436           Address klass_lh_addr(tmp, lh_offset);
2437           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2438           __ ldrw(rscratch1, klass_lh_addr);
2439           __ mov(rscratch2, objArray_lh);
2440           __ eorw(rscratch1, rscratch1, rscratch2);
2441           __ cbnzw(rscratch1, *stub->entry());
2442         }
2443 
2444        // Spill because stubs can use any register they like and it's
2445        // easier to restore just those that we care about.
2446         __ stp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
2447         __ stp(length,  src_pos, Address(sp, 2*BytesPerWord));
2448         __ str(src,              Address(sp, 4*BytesPerWord));
2449 
2450         __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale)));
2451         __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type));
2452         assert_different_registers(c_rarg0, dst, dst_pos, length);
2453         __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale)));
2454         __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type));
2455         assert_different_registers(c_rarg1, dst, length);
2456         __ uxtw(c_rarg2, length);
2457         assert_different_registers(c_rarg2, dst);
2458 
2459         __ load_klass(c_rarg4, dst);
2460         __ ldr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
2461         __ ldrw(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
2462         __ far_call(RuntimeAddress(copyfunc_addr));
2463 
2464 #ifndef PRODUCT
2465         if (PrintC1Statistics) {
2466           Label failed;
2467           __ cbnz(r0, failed);
2468           __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
2469           __ bind(failed);
2470         }
2471 #endif
2472 
2473         __ cbz(r0, *stub->continuation());
2474 
2475 #ifndef PRODUCT
2476         if (PrintC1Statistics) {
2477           __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
2478         }
2479 #endif
2480         assert_different_registers(dst, dst_pos, length, src_pos, src, r0, rscratch1);
2481 
2482         // Restore previously spilled arguments
2483         __ ldp(dst,     dst_pos, Address(sp, 0*BytesPerWord));
2484         __ ldp(length,  src_pos, Address(sp, 2*BytesPerWord));
2485         __ ldr(src,              Address(sp, 4*BytesPerWord));
2486 
2487         // return value is -1^K where K is partial copied count
2488         __ eonw(rscratch1, r0, zr);
2489         // adjust length down and src/end pos up by partial copied count
2490         __ subw(length, length, rscratch1);
2491         __ addw(src_pos, src_pos, rscratch1);
2492         __ addw(dst_pos, dst_pos, rscratch1);
2493       }
2494 
2495       __ b(*stub->entry());
2496 
2497       __ bind(cont);
2498       __ POP(src, dst);
2499     }
2500   }
2501 
2502 #ifdef ASSERT
2503   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2504     // Sanity check the known type with the incoming class.  For the
2505     // primitive case the types must match exactly with src.klass and
2506     // dst.klass each exactly matching the default type.  For the
2507     // object array case, if no type check is needed then either the
2508     // dst type is exactly the expected type and the src type is a
2509     // subtype which we can't check or src is the same array as dst
2510     // but not necessarily exactly of type default_type.
2511     Label known_ok, halt;
2512     __ mov_metadata(tmp, default_type->constant_encoding());
2513     if (UseCompressedClassPointers) {
2514       __ encode_klass_not_null(tmp);
2515     }
2516 
2517     if (basic_type != T_OBJECT) {
2518 
2519       if (UseCompressedClassPointers) {
2520         __ ldrw(rscratch1, dst_klass_addr);
2521         __ cmpw(tmp, rscratch1);
2522       } else {
2523         __ ldr(rscratch1, dst_klass_addr);
2524         __ cmp(tmp, rscratch1);
2525       }
2526       __ br(Assembler::NE, halt);
2527       if (UseCompressedClassPointers) {
2528         __ ldrw(rscratch1, src_klass_addr);
2529         __ cmpw(tmp, rscratch1);
2530       } else {
2531         __ ldr(rscratch1, src_klass_addr);
2532         __ cmp(tmp, rscratch1);
2533       }
2534       __ br(Assembler::EQ, known_ok);
2535     } else {
2536       if (UseCompressedClassPointers) {
2537         __ ldrw(rscratch1, dst_klass_addr);
2538         __ cmpw(tmp, rscratch1);
2539       } else {
2540         __ ldr(rscratch1, dst_klass_addr);
2541         __ cmp(tmp, rscratch1);
2542       }
2543       __ br(Assembler::EQ, known_ok);
2544       __ cmp(src, dst);
2545       __ br(Assembler::EQ, known_ok);
2546     }
2547     __ bind(halt);
2548     __ stop("incorrect type information in arraycopy");
2549     __ bind(known_ok);
2550   }
2551 #endif
2552 
2553 #ifndef PRODUCT
2554   if (PrintC1Statistics) {
2555     __ incrementw(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
2556   }
2557 #endif
2558 
2559   __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale)));
2560   __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type));
2561   assert_different_registers(c_rarg0, dst, dst_pos, length);
2562   __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale)));
2563   __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type));
2564   assert_different_registers(c_rarg1, dst, length);
2565   __ uxtw(c_rarg2, length);
2566   assert_different_registers(c_rarg2, dst);
2567 
2568   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
2569   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
2570   const char *name;
2571   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
2572 
2573  CodeBlob *cb = CodeCache::find_blob(entry);
2574  if (cb) {
2575    __ far_call(RuntimeAddress(entry));
2576  } else {
2577    __ call_VM_leaf(entry, 3);
2578  }
2579 
2580   __ bind(*stub->continuation());
2581 }
2582 
2583 
2584 
2585 
emit_lock(LIR_OpLock * op)2586 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2587   Register obj = op->obj_opr()->as_register();  // may not be an oop
2588   Register hdr = op->hdr_opr()->as_register();
2589   Register lock = op->lock_opr()->as_register();
2590   if (!UseFastLocking) {
2591     __ b(*op->stub()->entry());
2592   } else if (op->code() == lir_lock) {
2593     Register scratch = noreg;
2594     if (UseBiasedLocking) {
2595       scratch = op->scratch_opr()->as_register();
2596     }
2597     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2598     // add debug info for NullPointerException only if one is possible
2599     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
2600     if (op->info() != NULL) {
2601       add_debug_info_for_null_check(null_check_offset, op->info());
2602     }
2603     // done
2604   } else if (op->code() == lir_unlock) {
2605     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2606     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
2607   } else {
2608     Unimplemented();
2609   }
2610   __ bind(*op->stub()->continuation());
2611 }
2612 
2613 
emit_profile_call(LIR_OpProfileCall * op)2614 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2615   ciMethod* method = op->profiled_method();
2616   int bci          = op->profiled_bci();
2617   ciMethod* callee = op->profiled_callee();
2618 
2619   // Update counter for all call types
2620   ciMethodData* md = method->method_data_or_null();
2621   assert(md != NULL, "Sanity");
2622   ciProfileData* data = md->bci_to_data(bci);
2623   assert(data != NULL && data->is_CounterData(), "need CounterData for calls");
2624   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2625   Register mdo  = op->mdo()->as_register();
2626   __ mov_metadata(mdo, md->constant_encoding());
2627   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
2628   // Perform additional virtual call profiling for invokevirtual and
2629   // invokeinterface bytecodes
2630   if (op->should_profile_receiver_type()) {
2631     assert(op->recv()->is_single_cpu(), "recv must be allocated");
2632     Register recv = op->recv()->as_register();
2633     assert_different_registers(mdo, recv);
2634     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2635     ciKlass* known_klass = op->known_holder();
2636     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
2637       // We know the type that will be seen at this call site; we can
2638       // statically update the MethodData* rather than needing to do
2639       // dynamic tests on the receiver type
2640 
2641       // NOTE: we should probably put a lock around this search to
2642       // avoid collisions by concurrent compilations
2643       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2644       uint i;
2645       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2646         ciKlass* receiver = vc_data->receiver(i);
2647         if (known_klass->equals(receiver)) {
2648           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
2649           __ addptr(data_addr, DataLayout::counter_increment);
2650           return;
2651         }
2652       }
2653 
2654       // Receiver type not found in profile data; select an empty slot
2655 
2656       // Note that this is less efficient than it should be because it
2657       // always does a write to the receiver part of the
2658       // VirtualCallData rather than just the first time
2659       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2660         ciKlass* receiver = vc_data->receiver(i);
2661         if (receiver == NULL) {
2662           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
2663           __ mov_metadata(rscratch1, known_klass->constant_encoding());
2664           __ lea(rscratch2, recv_addr);
2665           __ str(rscratch1, Address(rscratch2));
2666           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
2667           __ addptr(data_addr, DataLayout::counter_increment);
2668           return;
2669         }
2670       }
2671     } else {
2672       __ load_klass(recv, recv);
2673       Label update_done;
2674       type_profile_helper(mdo, md, data, recv, &update_done);
2675       // Receiver did not match any saved receiver and there is no empty row for it.
2676       // Increment total counter to indicate polymorphic case.
2677       __ addptr(counter_addr, DataLayout::counter_increment);
2678 
2679       __ bind(update_done);
2680     }
2681   } else {
2682     // Static call
2683     __ addptr(counter_addr, DataLayout::counter_increment);
2684   }
2685 }
2686 
2687 
emit_delay(LIR_OpDelay *)2688 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
2689   Unimplemented();
2690 }
2691 
2692 
monitor_address(int monitor_no,LIR_Opr dst)2693 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
2694   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
2695 }
2696 
emit_updatecrc32(LIR_OpUpdateCRC32 * op)2697 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
2698   assert(op->crc()->is_single_cpu(),  "crc must be register");
2699   assert(op->val()->is_single_cpu(),  "byte value must be register");
2700   assert(op->result_opr()->is_single_cpu(), "result must be register");
2701   Register crc = op->crc()->as_register();
2702   Register val = op->val()->as_register();
2703   Register res = op->result_opr()->as_register();
2704 
2705   assert_different_registers(val, crc, res);
2706   uint64_t offset;
2707   __ adrp(res, ExternalAddress(StubRoutines::crc_table_addr()), offset);
2708   if (offset) __ add(res, res, offset);
2709 
2710   __ mvnw(crc, crc); // ~crc
2711   __ update_byte_crc32(crc, val, res);
2712   __ mvnw(res, crc); // ~crc
2713 }
2714 
emit_profile_type(LIR_OpProfileType * op)2715 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
2716   COMMENT("emit_profile_type {");
2717   Register obj = op->obj()->as_register();
2718   Register tmp = op->tmp()->as_pointer_register();
2719   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
2720   ciKlass* exact_klass = op->exact_klass();
2721   intptr_t current_klass = op->current_klass();
2722   bool not_null = op->not_null();
2723   bool no_conflict = op->no_conflict();
2724 
2725   Label update, next, none;
2726 
2727   bool do_null = !not_null;
2728   bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
2729   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
2730 
2731   assert(do_null || do_update, "why are we here?");
2732   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
2733   assert(mdo_addr.base() != rscratch1, "wrong register");
2734 
2735   __ verify_oop(obj);
2736 
2737   if (tmp != obj) {
2738     __ mov(tmp, obj);
2739   }
2740   if (do_null) {
2741     __ cbnz(tmp, update);
2742     if (!TypeEntries::was_null_seen(current_klass)) {
2743       __ ldr(rscratch2, mdo_addr);
2744       __ orr(rscratch2, rscratch2, TypeEntries::null_seen);
2745       __ str(rscratch2, mdo_addr);
2746     }
2747     if (do_update) {
2748 #ifndef ASSERT
2749       __ b(next);
2750     }
2751 #else
2752       __ b(next);
2753     }
2754   } else {
2755     __ cbnz(tmp, update);
2756     __ stop("unexpected null obj");
2757 #endif
2758   }
2759 
2760   __ bind(update);
2761 
2762   if (do_update) {
2763 #ifdef ASSERT
2764     if (exact_klass != NULL) {
2765       Label ok;
2766       __ load_klass(tmp, tmp);
2767       __ mov_metadata(rscratch1, exact_klass->constant_encoding());
2768       __ eor(rscratch1, tmp, rscratch1);
2769       __ cbz(rscratch1, ok);
2770       __ stop("exact klass and actual klass differ");
2771       __ bind(ok);
2772     }
2773 #endif
2774     if (!no_conflict) {
2775       if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
2776         if (exact_klass != NULL) {
2777           __ mov_metadata(tmp, exact_klass->constant_encoding());
2778         } else {
2779           __ load_klass(tmp, tmp);
2780         }
2781 
2782         __ ldr(rscratch2, mdo_addr);
2783         __ eor(tmp, tmp, rscratch2);
2784         __ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
2785         // klass seen before, nothing to do. The unknown bit may have been
2786         // set already but no need to check.
2787         __ cbz(rscratch1, next);
2788 
2789         __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore.
2790 
2791         if (TypeEntries::is_type_none(current_klass)) {
2792           __ cbz(rscratch2, none);
2793           __ cmp(rscratch2, TypeEntries::null_seen);
2794           __ br(Assembler::EQ, none);
2795           // There is a chance that the checks above (re-reading profiling
2796           // data from memory) fail if another thread has just set the
2797           // profiling to this obj's klass
2798           __ dmb(Assembler::ISHLD);
2799           __ ldr(rscratch2, mdo_addr);
2800           __ eor(tmp, tmp, rscratch2);
2801           __ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
2802           __ cbz(rscratch1, next);
2803         }
2804       } else {
2805         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
2806                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
2807 
2808         __ ldr(tmp, mdo_addr);
2809         __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore.
2810       }
2811 
2812       // different than before. Cannot keep accurate profile.
2813       __ ldr(rscratch2, mdo_addr);
2814       __ orr(rscratch2, rscratch2, TypeEntries::type_unknown);
2815       __ str(rscratch2, mdo_addr);
2816 
2817       if (TypeEntries::is_type_none(current_klass)) {
2818         __ b(next);
2819 
2820         __ bind(none);
2821         // first time here. Set profile type.
2822         __ str(tmp, mdo_addr);
2823       }
2824     } else {
2825       // There's a single possible klass at this profile point
2826       assert(exact_klass != NULL, "should be");
2827       if (TypeEntries::is_type_none(current_klass)) {
2828         __ mov_metadata(tmp, exact_klass->constant_encoding());
2829         __ ldr(rscratch2, mdo_addr);
2830         __ eor(tmp, tmp, rscratch2);
2831         __ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
2832         __ cbz(rscratch1, next);
2833 #ifdef ASSERT
2834         {
2835           Label ok;
2836           __ ldr(rscratch1, mdo_addr);
2837           __ cbz(rscratch1, ok);
2838           __ cmp(rscratch1, TypeEntries::null_seen);
2839           __ br(Assembler::EQ, ok);
2840           // may have been set by another thread
2841           __ dmb(Assembler::ISHLD);
2842           __ mov_metadata(rscratch1, exact_klass->constant_encoding());
2843           __ ldr(rscratch2, mdo_addr);
2844           __ eor(rscratch2, rscratch1, rscratch2);
2845           __ andr(rscratch2, rscratch2, TypeEntries::type_mask);
2846           __ cbz(rscratch2, ok);
2847 
2848           __ stop("unexpected profiling mismatch");
2849           __ bind(ok);
2850         }
2851 #endif
2852         // first time here. Set profile type.
2853         __ str(tmp, mdo_addr);
2854       } else {
2855         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
2856                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
2857 
2858         __ ldr(tmp, mdo_addr);
2859         __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore.
2860 
2861         __ orr(tmp, tmp, TypeEntries::type_unknown);
2862         __ str(tmp, mdo_addr);
2863         // FIXME: Write barrier needed here?
2864       }
2865     }
2866 
2867     __ bind(next);
2868   }
2869   COMMENT("} emit_profile_type");
2870 }
2871 
2872 
align_backward_branch_target()2873 void LIR_Assembler::align_backward_branch_target() {
2874 }
2875 
2876 
negate(LIR_Opr left,LIR_Opr dest,LIR_Opr tmp)2877 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
2878   // tmp must be unused
2879   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2880 
2881   if (left->is_single_cpu()) {
2882     assert(dest->is_single_cpu(), "expect single result reg");
2883     __ negw(dest->as_register(), left->as_register());
2884   } else if (left->is_double_cpu()) {
2885     assert(dest->is_double_cpu(), "expect double result reg");
2886     __ neg(dest->as_register_lo(), left->as_register_lo());
2887   } else if (left->is_single_fpu()) {
2888     assert(dest->is_single_fpu(), "expect single float result reg");
2889     __ fnegs(dest->as_float_reg(), left->as_float_reg());
2890   } else {
2891     assert(left->is_double_fpu(), "expect double float operand reg");
2892     assert(dest->is_double_fpu(), "expect double float result reg");
2893     __ fnegd(dest->as_double_reg(), left->as_double_reg());
2894   }
2895 }
2896 
2897 
leal(LIR_Opr addr,LIR_Opr dest,LIR_PatchCode patch_code,CodeEmitInfo * info)2898 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
2899 #if INCLUDE_SHENANDOAHGC
2900   if (UseShenandoahGC && patch_code != lir_patch_none) {
2901     deoptimize_trap(info);
2902     return;
2903   }
2904 #endif
2905   assert(patch_code == lir_patch_none, "Patch code not supported");
2906   __ lea(dest->as_register_lo(), as_Address(addr->as_address_ptr()));
2907 }
2908 
2909 
rt_call(LIR_Opr result,address dest,const LIR_OprList * args,LIR_Opr tmp,CodeEmitInfo * info)2910 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
2911   assert(!tmp->is_valid(), "don't need temporary");
2912 
2913   CodeBlob *cb = CodeCache::find_blob(dest);
2914   if (cb) {
2915     __ far_call(RuntimeAddress(dest));
2916   } else {
2917     __ mov(rscratch1, RuntimeAddress(dest));
2918     __ blr(rscratch1);
2919   }
2920 
2921   if (info != NULL) {
2922     add_call_info_here(info);
2923   }
2924   __ maybe_isb();
2925 }
2926 
volatile_move_op(LIR_Opr src,LIR_Opr dest,BasicType type,CodeEmitInfo * info)2927 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
2928   if (dest->is_address() || src->is_address()) {
2929     move_op(src, dest, type, lir_patch_none, info,
2930             /*pop_fpu_stack*/false, /*unaligned*/false, /*wide*/false);
2931   } else {
2932     ShouldNotReachHere();
2933   }
2934 }
2935 
2936 #ifdef ASSERT
2937 // emit run-time assertion
emit_assert(LIR_OpAssert * op)2938 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
2939   assert(op->code() == lir_assert, "must be");
2940 
2941   if (op->in_opr1()->is_valid()) {
2942     assert(op->in_opr2()->is_valid(), "both operands must be valid");
2943     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
2944   } else {
2945     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
2946     assert(op->condition() == lir_cond_always, "no other conditions allowed");
2947   }
2948 
2949   Label ok;
2950   if (op->condition() != lir_cond_always) {
2951     Assembler::Condition acond = Assembler::AL;
2952     switch (op->condition()) {
2953       case lir_cond_equal:        acond = Assembler::EQ;  break;
2954       case lir_cond_notEqual:     acond = Assembler::NE;  break;
2955       case lir_cond_less:         acond = Assembler::LT;  break;
2956       case lir_cond_lessEqual:    acond = Assembler::LE;  break;
2957       case lir_cond_greaterEqual: acond = Assembler::GE;  break;
2958       case lir_cond_greater:      acond = Assembler::GT;  break;
2959       case lir_cond_belowEqual:   acond = Assembler::LS;  break;
2960       case lir_cond_aboveEqual:   acond = Assembler::HS;  break;
2961       default:                    ShouldNotReachHere();
2962     }
2963     __ br(acond, ok);
2964   }
2965   if (op->halt()) {
2966     const char* str = __ code_string(op->msg());
2967     __ stop(str);
2968   } else {
2969     breakpoint();
2970   }
2971   __ bind(ok);
2972 }
2973 #endif
2974 
2975 #ifndef PRODUCT
2976 #define COMMENT(x)   do { __ block_comment(x); } while (0)
2977 #else
2978 #define COMMENT(x)
2979 #endif
2980 
membar()2981 void LIR_Assembler::membar() {
2982   COMMENT("membar");
2983   __ membar(MacroAssembler::AnyAny);
2984 }
2985 
membar_acquire()2986 void LIR_Assembler::membar_acquire() {
2987   __ membar(Assembler::LoadLoad|Assembler::LoadStore);
2988 }
2989 
membar_release()2990 void LIR_Assembler::membar_release() {
2991   __ membar(Assembler::LoadStore|Assembler::StoreStore);
2992 }
2993 
membar_loadload()2994 void LIR_Assembler::membar_loadload() {
2995   __ membar(Assembler::LoadLoad);
2996 }
2997 
membar_storestore()2998 void LIR_Assembler::membar_storestore() {
2999   __ membar(MacroAssembler::StoreStore);
3000 }
3001 
membar_loadstore()3002 void LIR_Assembler::membar_loadstore() { __ membar(MacroAssembler::LoadStore); }
3003 
membar_storeload()3004 void LIR_Assembler::membar_storeload() { __ membar(MacroAssembler::StoreLoad); }
3005 
on_spin_wait()3006 void LIR_Assembler::on_spin_wait() {
3007   Unimplemented();
3008 }
3009 
get_thread(LIR_Opr result_reg)3010 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3011   __ mov(result_reg->as_register(), rthread);
3012 }
3013 
3014 
peephole(LIR_List * lir)3015 void LIR_Assembler::peephole(LIR_List *lir) {
3016 #if 0
3017   if (tableswitch_count >= max_tableswitches)
3018     return;
3019 
3020   /*
3021     This finite-state automaton recognizes sequences of compare-and-
3022     branch instructions.  We will turn them into a tableswitch.  You
3023     could argue that C1 really shouldn't be doing this sort of
3024     optimization, but without it the code is really horrible.
3025   */
3026 
3027   enum { start_s, cmp1_s, beq_s, cmp_s } state;
3028   int first_key, last_key = -2147483648;
3029   int next_key = 0;
3030   int start_insn = -1;
3031   int last_insn = -1;
3032   Register reg = noreg;
3033   LIR_Opr reg_opr;
3034   state = start_s;
3035 
3036   LIR_OpList* inst = lir->instructions_list();
3037   for (int i = 0; i < inst->length(); i++) {
3038     LIR_Op* op = inst->at(i);
3039     switch (state) {
3040     case start_s:
3041       first_key = -1;
3042       start_insn = i;
3043       switch (op->code()) {
3044       case lir_cmp:
3045         LIR_Opr opr1 = op->as_Op2()->in_opr1();
3046         LIR_Opr opr2 = op->as_Op2()->in_opr2();
3047         if (opr1->is_cpu_register() && opr1->is_single_cpu()
3048             && opr2->is_constant()
3049             && opr2->type() == T_INT) {
3050           reg_opr = opr1;
3051           reg = opr1->as_register();
3052           first_key = opr2->as_constant_ptr()->as_jint();
3053           next_key = first_key + 1;
3054           state = cmp_s;
3055           goto next_state;
3056         }
3057         break;
3058       }
3059       break;
3060     case cmp_s:
3061       switch (op->code()) {
3062       case lir_branch:
3063         if (op->as_OpBranch()->cond() == lir_cond_equal) {
3064           state = beq_s;
3065           last_insn = i;
3066           goto next_state;
3067         }
3068       }
3069       state = start_s;
3070       break;
3071     case beq_s:
3072       switch (op->code()) {
3073       case lir_cmp: {
3074         LIR_Opr opr1 = op->as_Op2()->in_opr1();
3075         LIR_Opr opr2 = op->as_Op2()->in_opr2();
3076         if (opr1->is_cpu_register() && opr1->is_single_cpu()
3077             && opr1->as_register() == reg
3078             && opr2->is_constant()
3079             && opr2->type() == T_INT
3080             && opr2->as_constant_ptr()->as_jint() == next_key) {
3081           last_key = next_key;
3082           next_key++;
3083           state = cmp_s;
3084           goto next_state;
3085         }
3086       }
3087       }
3088       last_key = next_key;
3089       state = start_s;
3090       break;
3091     default:
3092       assert(false, "impossible state");
3093     }
3094     if (state == start_s) {
3095       if (first_key < last_key - 5L && reg != noreg) {
3096         {
3097           // printf("found run register %d starting at insn %d low value %d high value %d\n",
3098           //        reg->encoding(),
3099           //        start_insn, first_key, last_key);
3100           //   for (int i = 0; i < inst->length(); i++) {
3101           //     inst->at(i)->print();
3102           //     tty->print("\n");
3103           //   }
3104           //   tty->print("\n");
3105         }
3106 
3107         struct tableswitch *sw = &switches[tableswitch_count];
3108         sw->_insn_index = start_insn, sw->_first_key = first_key,
3109           sw->_last_key = last_key, sw->_reg = reg;
3110         inst->insert_before(last_insn + 1, new LIR_OpLabel(&sw->_after));
3111         {
3112           // Insert the new table of branches
3113           int offset = last_insn;
3114           for (int n = first_key; n < last_key; n++) {
3115             inst->insert_before
3116               (last_insn + 1,
3117                new LIR_OpBranch(lir_cond_always, T_ILLEGAL,
3118                                 inst->at(offset)->as_OpBranch()->label()));
3119             offset -= 2, i++;
3120           }
3121         }
3122         // Delete all the old compare-and-branch instructions
3123         for (int n = first_key; n < last_key; n++) {
3124           inst->remove_at(start_insn);
3125           inst->remove_at(start_insn);
3126         }
3127         // Insert the tableswitch instruction
3128         inst->insert_before(start_insn,
3129                             new LIR_Op2(lir_cmp, lir_cond_always,
3130                                         LIR_OprFact::intConst(tableswitch_count),
3131                                         reg_opr));
3132         inst->insert_before(start_insn + 1, new LIR_OpLabel(&sw->_branches));
3133         tableswitch_count++;
3134       }
3135       reg = noreg;
3136       last_key = -2147483648;
3137     }
3138   next_state:
3139     ;
3140   }
3141 #endif
3142 }
3143 
atomic_op(LIR_Code code,LIR_Opr src,LIR_Opr data,LIR_Opr dest,LIR_Opr tmp_op)3144 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp_op) {
3145   Address addr = as_Address(src->as_address_ptr());
3146   BasicType type = src->type();
3147   bool is_oop = type == T_OBJECT || type == T_ARRAY;
3148 
3149   void (MacroAssembler::* add)(Register prev, RegisterOrConstant incr, Register addr);
3150   void (MacroAssembler::* xchg)(Register prev, Register newv, Register addr);
3151 
3152   switch(type) {
3153   case T_INT:
3154     xchg = &MacroAssembler::atomic_xchgalw;
3155     add = &MacroAssembler::atomic_addalw;
3156     break;
3157   case T_LONG:
3158     xchg = &MacroAssembler::atomic_xchgal;
3159     add = &MacroAssembler::atomic_addal;
3160     break;
3161   case T_OBJECT:
3162   case T_ARRAY:
3163     if (UseCompressedOops) {
3164       xchg = &MacroAssembler::atomic_xchgalw;
3165       add = &MacroAssembler::atomic_addalw;
3166     } else {
3167       xchg = &MacroAssembler::atomic_xchgal;
3168       add = &MacroAssembler::atomic_addal;
3169     }
3170     break;
3171   default:
3172     ShouldNotReachHere();
3173     xchg = &MacroAssembler::atomic_xchgal;
3174     add = &MacroAssembler::atomic_addal; // unreachable
3175   }
3176 
3177   switch (code) {
3178   case lir_xadd:
3179     {
3180       RegisterOrConstant inc;
3181       Register tmp = as_reg(tmp_op);
3182       Register dst = as_reg(dest);
3183       if (data->is_constant()) {
3184         inc = RegisterOrConstant(as_long(data));
3185         assert_different_registers(dst, addr.base(), tmp,
3186                                    rscratch1, rscratch2);
3187       } else {
3188         inc = RegisterOrConstant(as_reg(data));
3189         assert_different_registers(inc.as_register(), dst, addr.base(), tmp,
3190                                    rscratch1, rscratch2);
3191       }
3192       __ lea(tmp, addr);
3193       (_masm->*add)(dst, inc, tmp);
3194       break;
3195     }
3196   case lir_xchg:
3197     {
3198       Register tmp = tmp_op->as_register();
3199       Register obj = as_reg(data);
3200       Register dst = as_reg(dest);
3201       if (is_oop && UseCompressedOops) {
3202         __ encode_heap_oop(rscratch2, obj);
3203         obj = rscratch2;
3204       }
3205       assert_different_registers(obj, addr.base(), tmp, rscratch1, dst);
3206       __ lea(tmp, addr);
3207       (_masm->*xchg)(dst, obj, tmp);
3208       if (is_oop && UseCompressedOops) {
3209         __ decode_heap_oop(dst);
3210       }
3211     }
3212     break;
3213   default:
3214     ShouldNotReachHere();
3215   }
3216   __ membar(__ AnyAny);
3217 }
3218 
3219 #undef __
3220