1 /*
2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4  *
5  * This code is free software; you can redistribute it and/or modify it
6  * under the terms of the GNU General Public License version 2 only, as
7  * published by the Free Software Foundation.
8  *
9  * This code is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
12  * version 2 for more details (a copy is included in the LICENSE file that
13  * accompanied this code).
14  *
15  * You should have received a copy of the GNU General Public License version
16  * 2 along with this work; if not, write to the Free Software Foundation,
17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20  * or visit www.oracle.com if you need additional information or have any
21  * questions.
22  *
23  */
24 
25 #include "precompiled.hpp"
26 #include "code/codeCache.hpp"
27 #include "gc/parallel/adjoiningGenerations.hpp"
28 #include "gc/parallel/adjoiningVirtualSpaces.hpp"
29 #include "gc/parallel/gcTaskManager.hpp"
30 #include "gc/parallel/generationSizer.hpp"
31 #include "gc/parallel/objectStartArray.inline.hpp"
32 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
33 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
34 #include "gc/parallel/psMarkSweepProxy.hpp"
35 #include "gc/parallel/psMemoryPool.hpp"
36 #include "gc/parallel/psParallelCompact.inline.hpp"
37 #include "gc/parallel/psPromotionManager.hpp"
38 #include "gc/parallel/psScavenge.hpp"
39 #include "gc/parallel/vmPSOperations.hpp"
40 #include "gc/shared/gcHeapSummary.hpp"
41 #include "gc/shared/gcLocker.hpp"
42 #include "gc/shared/gcWhen.hpp"
43 #include "logging/log.hpp"
44 #include "memory/iterator.hpp"
45 #include "memory/metaspaceCounters.hpp"
46 #include "oops/oop.inline.hpp"
47 #include "runtime/handles.inline.hpp"
48 #include "runtime/java.hpp"
49 #include "runtime/vmThread.hpp"
50 #include "services/memoryManager.hpp"
51 #include "services/memTracker.hpp"
52 #include "utilities/macros.hpp"
53 #include "utilities/vmError.hpp"
54 
55 PSYoungGen*  ParallelScavengeHeap::_young_gen = NULL;
56 PSOldGen*    ParallelScavengeHeap::_old_gen = NULL;
57 PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
58 PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
59 GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL;
60 
initialize()61 jint ParallelScavengeHeap::initialize() {
62   const size_t heap_size = _collector_policy->max_heap_byte_size();
63 
64   ReservedSpace heap_rs = Universe::reserve_heap(heap_size, _collector_policy->heap_alignment());
65 
66   os::trace_page_sizes("Heap",
67                        _collector_policy->min_heap_byte_size(),
68                        heap_size,
69                        generation_alignment(),
70                        heap_rs.base(),
71                        heap_rs.size());
72 
73   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
74 
75   PSCardTable* card_table = new PSCardTable(reserved_region());
76   card_table->initialize();
77   CardTableBarrierSet* const barrier_set = new CardTableBarrierSet(card_table);
78   barrier_set->initialize();
79   BarrierSet::set_barrier_set(barrier_set);
80 
81   // Make up the generations
82   // Calculate the maximum size that a generation can grow.  This
83   // includes growth into the other generation.  Note that the
84   // parameter _max_gen_size is kept as the maximum
85   // size of the generation as the boundaries currently stand.
86   // _max_gen_size is still used as that value.
87   double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
88   double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
89 
90   _gens = new AdjoiningGenerations(heap_rs, _collector_policy, generation_alignment());
91 
92   _old_gen = _gens->old_gen();
93   _young_gen = _gens->young_gen();
94 
95   const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
96   const size_t old_capacity = _old_gen->capacity_in_bytes();
97   const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
98   _size_policy =
99     new PSAdaptiveSizePolicy(eden_capacity,
100                              initial_promo_size,
101                              young_gen()->to_space()->capacity_in_bytes(),
102                              _collector_policy->gen_alignment(),
103                              max_gc_pause_sec,
104                              max_gc_minor_pause_sec,
105                              GCTimeRatio
106                              );
107 
108   assert(!UseAdaptiveGCBoundary ||
109     (old_gen()->virtual_space()->high_boundary() ==
110      young_gen()->virtual_space()->low_boundary()),
111     "Boundaries must meet");
112   // initialize the policy counters - 2 collectors, 2 generations
113   _gc_policy_counters =
114     new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 2, _size_policy);
115 
116   // Set up the GCTaskManager
117   _gc_task_manager = GCTaskManager::create(ParallelGCThreads);
118 
119   if (UseParallelOldGC && !PSParallelCompact::initialize()) {
120     return JNI_ENOMEM;
121   }
122 
123   return JNI_OK;
124 }
125 
initialize_serviceability()126 void ParallelScavengeHeap::initialize_serviceability() {
127 
128   _eden_pool = new EdenMutableSpacePool(_young_gen,
129                                         _young_gen->eden_space(),
130                                         "PS Eden Space",
131                                         false /* support_usage_threshold */);
132 
133   _survivor_pool = new SurvivorMutableSpacePool(_young_gen,
134                                                 "PS Survivor Space",
135                                                 false /* support_usage_threshold */);
136 
137   _old_pool = new PSGenerationPool(_old_gen,
138                                    "PS Old Gen",
139                                    true /* support_usage_threshold */);
140 
141   _young_manager = new GCMemoryManager("PS Scavenge", "end of minor GC");
142   _old_manager = new GCMemoryManager("PS MarkSweep", "end of major GC");
143 
144   _old_manager->add_pool(_eden_pool);
145   _old_manager->add_pool(_survivor_pool);
146   _old_manager->add_pool(_old_pool);
147 
148   _young_manager->add_pool(_eden_pool);
149   _young_manager->add_pool(_survivor_pool);
150 
151 }
152 
post_initialize()153 void ParallelScavengeHeap::post_initialize() {
154   CollectedHeap::post_initialize();
155   // Need to init the tenuring threshold
156   PSScavenge::initialize();
157   if (UseParallelOldGC) {
158     PSParallelCompact::post_initialize();
159   } else {
160     PSMarkSweepProxy::initialize();
161   }
162   PSPromotionManager::initialize();
163 }
164 
update_counters()165 void ParallelScavengeHeap::update_counters() {
166   young_gen()->update_counters();
167   old_gen()->update_counters();
168   MetaspaceCounters::update_performance_counters();
169   CompressedClassSpaceCounters::update_performance_counters();
170 }
171 
capacity() const172 size_t ParallelScavengeHeap::capacity() const {
173   size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
174   return value;
175 }
176 
used() const177 size_t ParallelScavengeHeap::used() const {
178   size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
179   return value;
180 }
181 
is_maximal_no_gc() const182 bool ParallelScavengeHeap::is_maximal_no_gc() const {
183   return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
184 }
185 
186 
max_capacity() const187 size_t ParallelScavengeHeap::max_capacity() const {
188   size_t estimated = reserved_region().byte_size();
189   if (UseAdaptiveSizePolicy) {
190     estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
191   } else {
192     estimated -= young_gen()->to_space()->capacity_in_bytes();
193   }
194   return MAX2(estimated, capacity());
195 }
196 
is_in(const void * p) const197 bool ParallelScavengeHeap::is_in(const void* p) const {
198   return young_gen()->is_in(p) || old_gen()->is_in(p);
199 }
200 
is_in_reserved(const void * p) const201 bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
202   return young_gen()->is_in_reserved(p) || old_gen()->is_in_reserved(p);
203 }
204 
205 // There are two levels of allocation policy here.
206 //
207 // When an allocation request fails, the requesting thread must invoke a VM
208 // operation, transfer control to the VM thread, and await the results of a
209 // garbage collection. That is quite expensive, and we should avoid doing it
210 // multiple times if possible.
211 //
212 // To accomplish this, we have a basic allocation policy, and also a
213 // failed allocation policy.
214 //
215 // The basic allocation policy controls how you allocate memory without
216 // attempting garbage collection. It is okay to grab locks and
217 // expand the heap, if that can be done without coming to a safepoint.
218 // It is likely that the basic allocation policy will not be very
219 // aggressive.
220 //
221 // The failed allocation policy is invoked from the VM thread after
222 // the basic allocation policy is unable to satisfy a mem_allocate
223 // request. This policy needs to cover the entire range of collection,
224 // heap expansion, and out-of-memory conditions. It should make every
225 // attempt to allocate the requested memory.
226 
227 // Basic allocation policy. Should never be called at a safepoint, or
228 // from the VM thread.
229 //
230 // This method must handle cases where many mem_allocate requests fail
231 // simultaneously. When that happens, only one VM operation will succeed,
232 // and the rest will not be executed. For that reason, this method loops
233 // during failed allocation attempts. If the java heap becomes exhausted,
234 // we rely on the size_policy object to force a bail out.
mem_allocate(size_t size,bool * gc_overhead_limit_was_exceeded)235 HeapWord* ParallelScavengeHeap::mem_allocate(
236                                      size_t size,
237                                      bool* gc_overhead_limit_was_exceeded) {
238   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
239   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
240   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
241 
242   // In general gc_overhead_limit_was_exceeded should be false so
243   // set it so here and reset it to true only if the gc time
244   // limit is being exceeded as checked below.
245   *gc_overhead_limit_was_exceeded = false;
246 
247   HeapWord* result = young_gen()->allocate(size);
248 
249   uint loop_count = 0;
250   uint gc_count = 0;
251   uint gclocker_stalled_count = 0;
252 
253   while (result == NULL) {
254     // We don't want to have multiple collections for a single filled generation.
255     // To prevent this, each thread tracks the total_collections() value, and if
256     // the count has changed, does not do a new collection.
257     //
258     // The collection count must be read only while holding the heap lock. VM
259     // operations also hold the heap lock during collections. There is a lock
260     // contention case where thread A blocks waiting on the Heap_lock, while
261     // thread B is holding it doing a collection. When thread A gets the lock,
262     // the collection count has already changed. To prevent duplicate collections,
263     // The policy MUST attempt allocations during the same period it reads the
264     // total_collections() value!
265     {
266       MutexLocker ml(Heap_lock);
267       gc_count = total_collections();
268 
269       result = young_gen()->allocate(size);
270       if (result != NULL) {
271         return result;
272       }
273 
274       // If certain conditions hold, try allocating from the old gen.
275       result = mem_allocate_old_gen(size);
276       if (result != NULL) {
277         return result;
278       }
279 
280       if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
281         return NULL;
282       }
283 
284       // Failed to allocate without a gc.
285       if (GCLocker::is_active_and_needs_gc()) {
286         // If this thread is not in a jni critical section, we stall
287         // the requestor until the critical section has cleared and
288         // GC allowed. When the critical section clears, a GC is
289         // initiated by the last thread exiting the critical section; so
290         // we retry the allocation sequence from the beginning of the loop,
291         // rather than causing more, now probably unnecessary, GC attempts.
292         JavaThread* jthr = JavaThread::current();
293         if (!jthr->in_critical()) {
294           MutexUnlocker mul(Heap_lock);
295           GCLocker::stall_until_clear();
296           gclocker_stalled_count += 1;
297           continue;
298         } else {
299           if (CheckJNICalls) {
300             fatal("Possible deadlock due to allocating while"
301                   " in jni critical section");
302           }
303           return NULL;
304         }
305       }
306     }
307 
308     if (result == NULL) {
309       // Generate a VM operation
310       VM_ParallelGCFailedAllocation op(size, gc_count);
311       VMThread::execute(&op);
312 
313       // Did the VM operation execute? If so, return the result directly.
314       // This prevents us from looping until time out on requests that can
315       // not be satisfied.
316       if (op.prologue_succeeded()) {
317         assert(is_in_or_null(op.result()), "result not in heap");
318 
319         // If GC was locked out during VM operation then retry allocation
320         // and/or stall as necessary.
321         if (op.gc_locked()) {
322           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
323           continue;  // retry and/or stall as necessary
324         }
325 
326         // Exit the loop if the gc time limit has been exceeded.
327         // The allocation must have failed above ("result" guarding
328         // this path is NULL) and the most recent collection has exceeded the
329         // gc overhead limit (although enough may have been collected to
330         // satisfy the allocation).  Exit the loop so that an out-of-memory
331         // will be thrown (return a NULL ignoring the contents of
332         // op.result()),
333         // but clear gc_overhead_limit_exceeded so that the next collection
334         // starts with a clean slate (i.e., forgets about previous overhead
335         // excesses).  Fill op.result() with a filler object so that the
336         // heap remains parsable.
337         const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
338         const bool softrefs_clear = soft_ref_policy()->all_soft_refs_clear();
339 
340         if (limit_exceeded && softrefs_clear) {
341           *gc_overhead_limit_was_exceeded = true;
342           size_policy()->set_gc_overhead_limit_exceeded(false);
343           log_trace(gc)("ParallelScavengeHeap::mem_allocate: return NULL because gc_overhead_limit_exceeded is set");
344           if (op.result() != NULL) {
345             CollectedHeap::fill_with_object(op.result(), size);
346           }
347           return NULL;
348         }
349 
350         return op.result();
351       }
352     }
353 
354     // The policy object will prevent us from looping forever. If the
355     // time spent in gc crosses a threshold, we will bail out.
356     loop_count++;
357     if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
358         (loop_count % QueuedAllocationWarningCount == 0)) {
359       log_warning(gc)("ParallelScavengeHeap::mem_allocate retries %d times", loop_count);
360       log_warning(gc)("\tsize=" SIZE_FORMAT, size);
361     }
362   }
363 
364   return result;
365 }
366 
367 // A "death march" is a series of ultra-slow allocations in which a full gc is
368 // done before each allocation, and after the full gc the allocation still
369 // cannot be satisfied from the young gen.  This routine detects that condition;
370 // it should be called after a full gc has been done and the allocation
371 // attempted from the young gen. The parameter 'addr' should be the result of
372 // that young gen allocation attempt.
373 void
death_march_check(HeapWord * const addr,size_t size)374 ParallelScavengeHeap::death_march_check(HeapWord* const addr, size_t size) {
375   if (addr != NULL) {
376     _death_march_count = 0;  // death march has ended
377   } else if (_death_march_count == 0) {
378     if (should_alloc_in_eden(size)) {
379       _death_march_count = 1;    // death march has started
380     }
381   }
382 }
383 
mem_allocate_old_gen(size_t size)384 HeapWord* ParallelScavengeHeap::mem_allocate_old_gen(size_t size) {
385   if (!should_alloc_in_eden(size) || GCLocker::is_active_and_needs_gc()) {
386     // Size is too big for eden, or gc is locked out.
387     return old_gen()->allocate(size);
388   }
389 
390   // If a "death march" is in progress, allocate from the old gen a limited
391   // number of times before doing a GC.
392   if (_death_march_count > 0) {
393     if (_death_march_count < 64) {
394       ++_death_march_count;
395       return old_gen()->allocate(size);
396     } else {
397       _death_march_count = 0;
398     }
399   }
400   return NULL;
401 }
402 
do_full_collection(bool clear_all_soft_refs)403 void ParallelScavengeHeap::do_full_collection(bool clear_all_soft_refs) {
404   if (UseParallelOldGC) {
405     // The do_full_collection() parameter clear_all_soft_refs
406     // is interpreted here as maximum_compaction which will
407     // cause SoftRefs to be cleared.
408     bool maximum_compaction = clear_all_soft_refs;
409     PSParallelCompact::invoke(maximum_compaction);
410   } else {
411     PSMarkSweepProxy::invoke(clear_all_soft_refs);
412   }
413 }
414 
415 // Failed allocation policy. Must be called from the VM thread, and
416 // only at a safepoint! Note that this method has policy for allocation
417 // flow, and NOT collection policy. So we do not check for gc collection
418 // time over limit here, that is the responsibility of the heap specific
419 // collection methods. This method decides where to attempt allocations,
420 // and when to attempt collections, but no collection specific policy.
failed_mem_allocate(size_t size)421 HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size) {
422   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
423   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
424   assert(!is_gc_active(), "not reentrant");
425   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
426 
427   // We assume that allocation in eden will fail unless we collect.
428 
429   // First level allocation failure, scavenge and allocate in young gen.
430   GCCauseSetter gccs(this, GCCause::_allocation_failure);
431   const bool invoked_full_gc = PSScavenge::invoke();
432   HeapWord* result = young_gen()->allocate(size);
433 
434   // Second level allocation failure.
435   //   Mark sweep and allocate in young generation.
436   if (result == NULL && !invoked_full_gc) {
437     do_full_collection(false);
438     result = young_gen()->allocate(size);
439   }
440 
441   death_march_check(result, size);
442 
443   // Third level allocation failure.
444   //   After mark sweep and young generation allocation failure,
445   //   allocate in old generation.
446   if (result == NULL) {
447     result = old_gen()->allocate(size);
448   }
449 
450   // Fourth level allocation failure. We're running out of memory.
451   //   More complete mark sweep and allocate in young generation.
452   if (result == NULL) {
453     do_full_collection(true);
454     result = young_gen()->allocate(size);
455   }
456 
457   // Fifth level allocation failure.
458   //   After more complete mark sweep, allocate in old generation.
459   if (result == NULL) {
460     result = old_gen()->allocate(size);
461   }
462 
463   return result;
464 }
465 
ensure_parsability(bool retire_tlabs)466 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
467   CollectedHeap::ensure_parsability(retire_tlabs);
468   young_gen()->eden_space()->ensure_parsability();
469 }
470 
tlab_capacity(Thread * thr) const471 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
472   return young_gen()->eden_space()->tlab_capacity(thr);
473 }
474 
tlab_used(Thread * thr) const475 size_t ParallelScavengeHeap::tlab_used(Thread* thr) const {
476   return young_gen()->eden_space()->tlab_used(thr);
477 }
478 
unsafe_max_tlab_alloc(Thread * thr) const479 size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
480   return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
481 }
482 
allocate_new_tlab(size_t min_size,size_t requested_size,size_t * actual_size)483 HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t min_size, size_t requested_size, size_t* actual_size) {
484   HeapWord* result = young_gen()->allocate(requested_size);
485   if (result != NULL) {
486     *actual_size = requested_size;
487   }
488 
489   return result;
490 }
491 
accumulate_statistics_all_tlabs()492 void ParallelScavengeHeap::accumulate_statistics_all_tlabs() {
493   CollectedHeap::accumulate_statistics_all_tlabs();
494 }
495 
resize_all_tlabs()496 void ParallelScavengeHeap::resize_all_tlabs() {
497   CollectedHeap::resize_all_tlabs();
498 }
499 
500 // This method is used by System.gc() and JVMTI.
collect(GCCause::Cause cause)501 void ParallelScavengeHeap::collect(GCCause::Cause cause) {
502   assert(!Heap_lock->owned_by_self(),
503     "this thread should not own the Heap_lock");
504 
505   uint gc_count      = 0;
506   uint full_gc_count = 0;
507   {
508     MutexLocker ml(Heap_lock);
509     // This value is guarded by the Heap_lock
510     gc_count      = total_collections();
511     full_gc_count = total_full_collections();
512   }
513 
514   if (GCLocker::should_discard(cause, gc_count)) {
515     return;
516   }
517 
518   VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
519   VMThread::execute(&op);
520 }
521 
object_iterate(ObjectClosure * cl)522 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
523   young_gen()->object_iterate(cl);
524   old_gen()->object_iterate(cl);
525 }
526 
527 
block_start(const void * addr) const528 HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
529   if (young_gen()->is_in_reserved(addr)) {
530     assert(young_gen()->is_in(addr),
531            "addr should be in allocated part of young gen");
532     // called from os::print_location by find or VMError
533     if (Debugging || VMError::fatal_error_in_progress())  return NULL;
534     Unimplemented();
535   } else if (old_gen()->is_in_reserved(addr)) {
536     assert(old_gen()->is_in(addr),
537            "addr should be in allocated part of old gen");
538     return old_gen()->start_array()->object_start((HeapWord*)addr);
539   }
540   return 0;
541 }
542 
block_size(const HeapWord * addr) const543 size_t ParallelScavengeHeap::block_size(const HeapWord* addr) const {
544   return oop(addr)->size();
545 }
546 
block_is_obj(const HeapWord * addr) const547 bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
548   return block_start(addr) == addr;
549 }
550 
millis_since_last_gc()551 jlong ParallelScavengeHeap::millis_since_last_gc() {
552   return UseParallelOldGC ?
553     PSParallelCompact::millis_since_last_gc() :
554     PSMarkSweepProxy::millis_since_last_gc();
555 }
556 
prepare_for_verify()557 void ParallelScavengeHeap::prepare_for_verify() {
558   ensure_parsability(false);  // no need to retire TLABs for verification
559 }
560 
create_ps_heap_summary()561 PSHeapSummary ParallelScavengeHeap::create_ps_heap_summary() {
562   PSOldGen* old = old_gen();
563   HeapWord* old_committed_end = (HeapWord*)old->virtual_space()->committed_high_addr();
564   VirtualSpaceSummary old_summary(old->reserved().start(), old_committed_end, old->reserved().end());
565   SpaceSummary old_space(old->reserved().start(), old_committed_end, old->used_in_bytes());
566 
567   PSYoungGen* young = young_gen();
568   VirtualSpaceSummary young_summary(young->reserved().start(),
569     (HeapWord*)young->virtual_space()->committed_high_addr(), young->reserved().end());
570 
571   MutableSpace* eden = young_gen()->eden_space();
572   SpaceSummary eden_space(eden->bottom(), eden->end(), eden->used_in_bytes());
573 
574   MutableSpace* from = young_gen()->from_space();
575   SpaceSummary from_space(from->bottom(), from->end(), from->used_in_bytes());
576 
577   MutableSpace* to = young_gen()->to_space();
578   SpaceSummary to_space(to->bottom(), to->end(), to->used_in_bytes());
579 
580   VirtualSpaceSummary heap_summary = create_heap_space_summary();
581   return PSHeapSummary(heap_summary, used(), old_summary, old_space, young_summary, eden_space, from_space, to_space);
582 }
583 
print_on(outputStream * st) const584 void ParallelScavengeHeap::print_on(outputStream* st) const {
585   young_gen()->print_on(st);
586   old_gen()->print_on(st);
587   MetaspaceUtils::print_on(st);
588 }
589 
print_on_error(outputStream * st) const590 void ParallelScavengeHeap::print_on_error(outputStream* st) const {
591   this->CollectedHeap::print_on_error(st);
592 
593   if (UseParallelOldGC) {
594     st->cr();
595     PSParallelCompact::print_on_error(st);
596   }
597 }
598 
gc_threads_do(ThreadClosure * tc) const599 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
600   PSScavenge::gc_task_manager()->threads_do(tc);
601 }
602 
print_gc_threads_on(outputStream * st) const603 void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
604   PSScavenge::gc_task_manager()->print_threads_on(st);
605 }
606 
print_tracing_info() const607 void ParallelScavengeHeap::print_tracing_info() const {
608   AdaptiveSizePolicyOutput::print();
609   log_debug(gc, heap, exit)("Accumulated young generation GC time %3.7f secs", PSScavenge::accumulated_time()->seconds());
610   log_debug(gc, heap, exit)("Accumulated old generation GC time %3.7f secs",
611       UseParallelOldGC ? PSParallelCompact::accumulated_time()->seconds() : PSMarkSweepProxy::accumulated_time()->seconds());
612 }
613 
614 
verify(VerifyOption option)615 void ParallelScavengeHeap::verify(VerifyOption option /* ignored */) {
616   // Why do we need the total_collections()-filter below?
617   if (total_collections() > 0) {
618     log_debug(gc, verify)("Tenured");
619     old_gen()->verify();
620 
621     log_debug(gc, verify)("Eden");
622     young_gen()->verify();
623   }
624 }
625 
trace_heap(GCWhen::Type when,const GCTracer * gc_tracer)626 void ParallelScavengeHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
627   const PSHeapSummary& heap_summary = create_ps_heap_summary();
628   gc_tracer->report_gc_heap_summary(when, heap_summary);
629 
630   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
631   gc_tracer->report_metaspace_summary(when, metaspace_summary);
632 }
633 
heap()634 ParallelScavengeHeap* ParallelScavengeHeap::heap() {
635   CollectedHeap* heap = Universe::heap();
636   assert(heap != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
637   assert(heap->kind() == CollectedHeap::Parallel, "Invalid name");
638   return (ParallelScavengeHeap*)heap;
639 }
640 
barrier_set()641 CardTableBarrierSet* ParallelScavengeHeap::barrier_set() {
642   return barrier_set_cast<CardTableBarrierSet>(BarrierSet::barrier_set());
643 }
644 
card_table()645 PSCardTable* ParallelScavengeHeap::card_table() {
646   return static_cast<PSCardTable*>(barrier_set()->card_table());
647 }
648 
649 // Before delegating the resize to the young generation,
650 // the reserved space for the young and old generations
651 // may be changed to accommodate the desired resize.
resize_young_gen(size_t eden_size,size_t survivor_size)652 void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
653     size_t survivor_size) {
654   if (UseAdaptiveGCBoundary) {
655     if (size_policy()->bytes_absorbed_from_eden() != 0) {
656       size_policy()->reset_bytes_absorbed_from_eden();
657       return;  // The generation changed size already.
658     }
659     gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
660   }
661 
662   // Delegate the resize to the generation.
663   _young_gen->resize(eden_size, survivor_size);
664 }
665 
666 // Before delegating the resize to the old generation,
667 // the reserved space for the young and old generations
668 // may be changed to accommodate the desired resize.
resize_old_gen(size_t desired_free_space)669 void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
670   if (UseAdaptiveGCBoundary) {
671     if (size_policy()->bytes_absorbed_from_eden() != 0) {
672       size_policy()->reset_bytes_absorbed_from_eden();
673       return;  // The generation changed size already.
674     }
675     gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
676   }
677 
678   // Delegate the resize to the generation.
679   _old_gen->resize(desired_free_space);
680 }
681 
ParStrongRootsScope()682 ParallelScavengeHeap::ParStrongRootsScope::ParStrongRootsScope() {
683   // nothing particular
684 }
685 
~ParStrongRootsScope()686 ParallelScavengeHeap::ParStrongRootsScope::~ParStrongRootsScope() {
687   // nothing particular
688 }
689 
690 #ifndef PRODUCT
record_gen_tops_before_GC()691 void ParallelScavengeHeap::record_gen_tops_before_GC() {
692   if (ZapUnusedHeapArea) {
693     young_gen()->record_spaces_top();
694     old_gen()->record_spaces_top();
695   }
696 }
697 
gen_mangle_unused_area()698 void ParallelScavengeHeap::gen_mangle_unused_area() {
699   if (ZapUnusedHeapArea) {
700     young_gen()->eden_space()->mangle_unused_area();
701     young_gen()->to_space()->mangle_unused_area();
702     young_gen()->from_space()->mangle_unused_area();
703     old_gen()->object_space()->mangle_unused_area();
704   }
705 }
706 #endif
707 
is_scavengable(oop obj)708 bool ParallelScavengeHeap::is_scavengable(oop obj) {
709   return is_in_young(obj);
710 }
711 
register_nmethod(nmethod * nm)712 void ParallelScavengeHeap::register_nmethod(nmethod* nm) {
713   CodeCache::register_scavenge_root_nmethod(nm);
714 }
715 
verify_nmethod(nmethod * nm)716 void ParallelScavengeHeap::verify_nmethod(nmethod* nm) {
717   CodeCache::verify_scavenge_root_nmethod(nm);
718 }
719 
memory_managers()720 GrowableArray<GCMemoryManager*> ParallelScavengeHeap::memory_managers() {
721   GrowableArray<GCMemoryManager*> memory_managers(2);
722   memory_managers.append(_young_manager);
723   memory_managers.append(_old_manager);
724   return memory_managers;
725 }
726 
memory_pools()727 GrowableArray<MemoryPool*> ParallelScavengeHeap::memory_pools() {
728   GrowableArray<MemoryPool*> memory_pools(3);
729   memory_pools.append(_eden_pool);
730   memory_pools.append(_survivor_pool);
731   memory_pools.append(_old_pool);
732   return memory_pools;
733 }
734